Inverse boundary problems for elliptic PDE and best approximation by analytic functions

Juliette Leblond

Sophia-Antipolis, France team APICS

Joint work with

L. Baratchart (team APICS), Y. Fischer (team Magique3D, INRIA Bordeaux)
Overview

- Boundary value problems
 Dirichlet, Cauchy

- Normed spaces of generalized analytic functions
 Hardy

- Application: a physical free boundary problem
 plasma

- Conclusion
Conductivity equation

Let $\Omega \subset \mathbb{R}^2$ with smooth boundary $\Gamma = \partial \Omega$ (Hölder or Dini-smooth)

Ω simply connected: $\Omega \simeq$ disk \mathbb{D}, $\Gamma \simeq$ circle T

or annular: $\Omega \simeq A$, $\Gamma \simeq T \cup \varrho T$

(also in multiply connected domains)

Conductivity coefficient σ Lipschitz smooth function in Ω (known)

Consider solutions u to (u):

$$\text{div} \ (\sigma \ \text{grad} \ u) = \text{div} \ (\sigma \ \nabla \ u) = 0 \quad \text{in} \ \Omega$$

(u)

distributional sense $\ 0 < c \leq \sigma \leq C$ \quad second order elliptic equation $\ \Delta u + \nabla (\log \sigma). \nabla u = 0$
Boundary value problems

- Cauchy (inverse) problem: \(|I|, |J| > 0\) partial overdetermined boundary data

Given measures \(u\) and \(\sigma \partial_n u\) on \(I \subset \Gamma\) of a solution \(u\) to \((u)\),

\[
(u): \operatorname{div}(\sigma \nabla u) = 0 \quad \text{in } \Omega
\]

recover \(u, \sigma \partial_n u\) on \(J = \Gamma \setminus I\) (or \(\partial_n u\))

\(n\) outer unit normal

\(\sigma\) given

pair of Dirichlet-Neumann data \((\phi_I, \psi_I)\) on \(I\), \(\phi_I \in L^2_{\mathbb{R}}(I), \psi_I \in W^{-1,2}_{\mathbb{R}}(I)\)...

compatibility...

- Dirichlet (direct) problem:

Given measures of \(u\) on \(\Gamma\), recover \(u\) in \(\Omega\) (and \(\sigma \partial_n u\), on \(\Gamma\))

well-posed for Dirichlet data \(\phi \in L^2_{\mathbb{R}}(\Gamma)\)...

(already for smooth data)

\(L^2\) boundary data \(\rightsquigarrow\) smooth conductivity \(\sigma\), tradeoff

practically: pointwise corrupted boundary measurements
\[\Omega = A \]

\[l = \mathbb{T}, J = \varrho \mathbb{T} \]

\[\Omega = \mathbb{D}, I \subset \mathbb{T}, J = \mathbb{T} \setminus I \]
Generalized Cauchy-Riemann equations: for $\Omega = \mathbb{D}$

$$u \text{ solution to } (u): \text{div} \left(\sigma \nabla u \right) = 0 \quad \Rightarrow \exists v \text{ such that in } \Omega:\nabla$$

$$\left\{ \begin{array}{l}
\partial_x v = -\sigma \partial_y u \\
\partial_y v = \sigma \partial_x u
\end{array} \right. \quad \text{whence } \text{div} \left(\frac{1}{\sigma} \nabla v \right) = 0$$

Function v: σ-conjugated to u $\quad v \text{ unique up to additive constant}$

If u solution to (u) and its σ-conjugated v have $L^2(\Gamma)$ trace, then Cauchy-Riemann equations hold up to boundary Γ:

$$\partial_\theta v = \sigma \partial_n u \quad \text{ for } \Omega = \mathbb{A}: \exists v \text{ if compatibility boundary condition}$$

∂_θ tangential derivative
Generalized analytic functions

In $\Omega \cong \mathbb{D} \subset \mathbb{R}^2 \cong \mathbb{C}$ complex plane

$$X = (x, y) \cong z = x + iy, \quad \partial = \partial_z = \frac{1}{2}(\partial_x - i \partial_y), \quad \bar{\partial} = \partial_{\bar{z}} = \frac{1}{2}(\partial_x + i \partial_y)$$

u solution to (u): $\text{div} (\sigma \nabla u) = 0$

$\nabla \cong \bar{\partial}, \text{div} \cong \text{Re} \partial$

$\Leftrightarrow f = u + i \nu$ satisfies conjugated Beltrami equation

$$\bar{\partial} f = \nu \partial f \quad (f)$$

for $\nu = \frac{1 - \sigma}{1 + \sigma} \in W^{1,\infty}(\Omega), \ |\nu| \leq \kappa < 1$ in Ω

f solution to $(f) \iff u = \text{Re} f$ solution to (u)

(f) conformally invariant

$\neq \mathbb{C}$-linear Beltrami equation: $\bar{\partial} g = \nu \partial g$, quasi-conformal map.

$f(z, \bar{z}), u(x, y), \nu(x, y)$ in $\Omega \cong \mathbb{A}$, compatibility condition needed for \Leftarrow
Harmonic and analytic functions

Generalization of homogeneous situations $\sigma = \text{cst} \mapsto \sigma = 1$, $\nu = 0$

Holomorphic / complex analytic functions $\bar{\partial}F = 0$ in $\mathbb{D} \subset \mathbb{C}$:

$\Omega = \mathbb{D}$ unit disc or $\Omega \simeq \mathbb{D}$ conformally equivalent

$X = (x, y) \simeq z = x + iy$, $\partial = \partial_z = \frac{1}{2}(\partial_x - i \partial_y)$, $\bar{\partial} = \partial_z = \frac{1}{2}(\partial_x + i \partial_y)$

Laplace operator $\Delta = 4\bar{\partial}\partial = 4\partial\bar{\partial} = \partial_x^2 + \partial_y^2$

$F(z) = \sum_{k \geq 0} \hat{F}_k z^k = \sum_{k \geq 0} \hat{F}_k r^k e^{ik\theta}$, $z = re^{i\theta} \in \mathbb{D}$, $r < 1$

(Fourier series, coefficients \hat{F}_k) $\bar{\partial} F = 0$ (F holomorphic) $\iff F = u + iv$

with $\Delta u = 0$ and $\Delta v = 0$: harmonic u and conjugate function v satisfying Cauchy-Riemann equations in \mathbb{D}:

$$\begin{cases}
\partial_x v = -\partial_y u \\
\partial_y v = \partial_x u
\end{cases}$$
Hardy spaces H^2 of analytic functions in \mathbb{D}

$H^2(\mathbb{D})$: solutions to $\bar{\partial} F = 0$ in \mathbb{D}, $\|F\|_2 < \infty$

$$\|F\|_2^2 = \text{ess sup}_{0<r<1} \int_0^{2\pi} |F(re^{i\theta})|^2 \frac{d\theta}{2\pi} = \sum_{k \geq 0} |\hat{F}_k|^2$$

Hilbert space $\subset L^2(\mathbb{D})$

Parseval $p = 2$, also $\Omega = \mathbb{A}$ and Banach H^p

$\hookrightarrow L^2$ boundary values on \mathbb{T}: $\text{tr} \ H^2(\mathbb{D}) \subset L^2(\mathbb{T})$

$L^2(\mathbb{T}) = \text{tr} \ H^2(\mathbb{D}) \oplus \text{tr} \ H^2,0(\mathbb{C} \setminus \bar{\mathbb{D}})$

\hookrightarrow decomposition, projection P_+

\hookrightarrow equivalent boundary $L^2(\mathbb{T})$ norm:

$$\|F\|_2 = \|\text{tr} \ F\|_{L^2(\mathbb{T})}$$

\hookrightarrow Cauchy-Riemann equation in $\bar{\mathbb{D}}$, up to boundary \mathbb{T}:

$$F = u + iv, \quad \partial_\theta v = \partial_n u, \quad \partial_n v = -\partial_\theta u \quad \text{tr} \ v = \mathcal{H} \text{tr} \ u$$

also Cauchy integral formula, Poisson kernel, Hilbert-Riesz operator + further properties [Duren, Garnett]

\hookrightarrow results for $\sigma = 1, \nu = 0$, Laplace equations (dimension 2 or 3)
Generalized Hardy space H^2_{ν}

Hilbert space $H^2_{\nu} = H^2_{\nu}(\Omega)$:

- solutions f to (f)
- bounded in Hardy norm in Ω

\[\bar{\partial} f = \nu \bar{\partial} f \text{ in } \Omega \]
\[\| f \|_2 < \infty \]
\((\sup \text{ of } L^2 \text{ norms on circles in } \Omega) \)

H^2_{ν} shares many properties of $H^2 = H^2_0$

Properties of H^2_ν

Generalize those of H^2 \(\Omega = \mathbb{D} \) or \(\mathbb{A} \) also H^p_ν \cite{[BFL,F]}

Theorem \cite{BLRR} \(f \in H^2_\nu(\Omega) \)

- f admits a non tangential limit $\text{tr} \ f \in L^2(\Gamma)$ on Γ
- $\text{tr} \ f = 0$ a.e. on $I \subset \Gamma$, $|I| > 0$ implies that $f \equiv 0$
 if $f \not\equiv 0$, then $\log |\text{tr} \ f| \in L^1(\Gamma)$, and f admits isolated zeroes (+ Blaschke condition)
- $\|\text{tr} \ f\|_{L^2(\Gamma)}$ is equivalent to $\|f\|_2$ on $H^2_\nu(\Omega)$
- Closedness of traces: $\text{tr} \ H^2_\nu(\Omega)$ is closed in $L^2(\Gamma)$
- $\text{Re} \text{tr} \ f = 0$ a.e. on Γ implies that $f \equiv 0$ in Ω
 (up to constant)

whenever

$$f \in H^2_{\nu,0}(\Omega) = \{ f \in H^2_\nu(\Omega), \int_\mathbb{T} \text{Im} \text{tr} \ f = 0 \}$$

$\Gamma = \mathbb{T}$ or $\mathbb{T} \cup \partial \mathbb{T}$

+ maximum principle in modulus
Properties of \(\text{tr} \ H^2_\nu(\mathbb{D}) \)

Corollary [BLRR]

- \(\forall \phi \in L^2_{\mathbb{R}}(\mathbb{T}), \ \exists! \ f \in H^2_{\nu,0}(\mathbb{D}) \) such that \(\text{Re} \ \text{tr} \ f = \phi \)

 moreover,

 \[
 \| \text{tr} \ f \|_{L^2(\mathbb{T})} \leq c_\nu \| \phi \|_{L^2(\mathbb{T})}
 \]

- conjugation operator \(\mathcal{H}_\nu \) bounded on \(L^2_{\mathbb{R}}(\mathbb{T}) \)

 \[\text{Re} \ \text{tr} \ f = \phi \quad \xrightarrow{\mathcal{H}_\nu} \quad \text{Im} \ \text{tr} \ f = \mathcal{H}_\nu \phi \]

 \[
 f \in H^2_{\nu,0}(\mathbb{D}) \iff \text{tr} \ f = (I + i\mathcal{H}_\nu)\phi, \ \phi \in L^2_{\mathbb{R}}(\mathbb{T})
 \]

- density:

 let \(I \subset \mathbb{T}, \ J = \mathbb{T} \setminus I \) such that \(|J| > 0 \)

 then, restrictions to \(I \) of functions in \(\text{tr} \ H^2_\nu(\mathbb{D}) \) dense in \(L^2(I) \)

 also in \(H^p_\nu, \ 1 < p < \infty \)
Other situations

- Generalization to $\Omega = A$ annulus

$$A = \mathbb{D} \setminus \varrho \overline{\mathbb{D}}$$

and multiply connected smooth domains [BFL, F]

Dirichlet in $H^2_\nu(A)$ for data in $L^2_{\mathbb{R}}(A) \ominus S$

$$H^2_\nu(A) = \text{solutions to } (f): \bar{\partial} f = \nu \partial f \text{ in } A \text{ with } \|f\|_2 < \infty$$

$$S = \{ \phi \in L^2_{\mathbb{R}}(\partial A) \text{ s.t. } \phi|_T = C, \ \phi|_{\varrho T} = -C, \ C \in \mathbb{R} \}$$

Density of restrictions on $I \subseteq \mathbb{T}$ of $\text{tr } H^2_\nu(A)$ in $L^2(I)$ (or $I \subseteq \varrho \mathbb{T}$)

- Conformal invariance of (f): $\Omega \sim \mathbb{D}$ or $\Omega \sim A$

- For Hölder smooth $\nu \in W^{1,r}(\Omega), \ r > 2$

$$\text{in } H^p_\nu(\Omega) \quad \text{with } \infty > p > r/(r - 1)$$
For related conductivity PDE

\[u \text{ solution to } (u) \text{ in } \Omega : \]
\[\text{div} \ (\sigma \nabla u) = 0 \iff u = \text{Re} \, f \text{ with } f \text{ solution to } (f) \text{ in } \Omega \]
\[\Omega \simeq D \text{ or } A \text{ if } \Omega \simeq D, \iff \]

Dirichlet boundary value problems:
from prescribed boundary data \(\phi \in L^2_{\mathbb{R}}(\Gamma) \)
recover \(u \) in \(\Omega \) solution to \((u) \) such that \(\text{tr} \ u = \phi \) on \(\Gamma \)

From Dirichlet theorem in \(H^2_{\nu,0}(\Omega) \):
\[\exists! \ u \text{ in } L^p_{\mathbb{R}}(\Omega) \text{ solution to } (u) \text{ such that } \text{tr} \ u = \phi \]
\[\text{tr} \ f = \phi + i \int_{\Gamma} \sigma \partial_n u = \phi + i \mathcal{H}_\nu \phi , \quad \| u \|_2 = \| \text{tr} \ u \|_{L^2(\Gamma)} = \| \phi \|_{L^2(\Gamma)} \]

Also, unique continuation properties for \((u) \)...

bounded conjugation operator \(\rightsquigarrow \) stability properties for \((u) \)...

Dirichlet-Neumann map: \(\Lambda \phi = \partial_\theta \mathcal{H}_\nu \phi \)
For related conductivity PDE

Cauchy inverse problems, $I \subset \mathbb{T}$

Given ϕ_I and ψ_I in $L^2_{\mathbb{R}}(I)$
recover u solution to (u) in Ω such that $\text{tr } u = \phi_I$, $\sigma \partial_n u = \psi_I$ on I

Let

$$\Phi = \phi_I + i \int_I \psi_I \in L^2(I)$$

Density results: $[\text{tr } H^2_{\nu}]|_I$ dense in $L^2(I)$

Runge property (compatible boundary data)

$$\exists f_k \in \text{tr } H^2_{\nu}, \| \Phi - f_k \|_{L^2(I)} \to 0$$

$(k \to \infty)$

either $\Phi \in \text{tr } H^2_{\nu}|_I$ already and $\| \Phi - f_k \|_{L^2(\mathbb{T})} \to 0$

However

or $\Phi \notin \text{tr } H^2_{\nu}|_I$

and $\| f_k \|_{L^2(J)} \to \infty$
For related conductivity PDE

\[\Phi = \phi_I + i \int_I \psi_I \in L^2(I) \setminus (\text{tr } H^2_{\nu})|_I: \]

\[\exists u_k = \text{Re } f_k \text{ solution to } (u) \text{ in } \Omega \]
\[\|\delta_0 H_\nu u_k - \psi_I\|_{L^2(I)} \rightarrow 0 \]
\[\Rightarrow \text{ Look for } \text{tr } u \simeq \phi_I, \sigma \partial_n u \simeq \psi_I \text{ on } I \text{ with tr } u \text{ bounded on } J... \]
\[\Rightarrow \text{Bounded extremal problems (BEP) in } \text{tr } H^2_{\nu} \]

best constrained approximation
Best constrained approximation in H^2_ν

Regularization: bounded extremal problems (BEP)

Let $I \subset \Gamma$, $|I|, |J| > 0$, $\varepsilon > 0$

$$\Omega = \mathbb{D}, \Gamma = \mathbb{T}, J = \mathbb{T} \setminus I$$

$$B = \left\{ f \in \text{tr } H^2_\nu, \| \text{Re } f \|_{L^2(J)} \leq \varepsilon \right\} |I| \subset L^2(I).$$

Theorem [BFL, FLPS] (BEP) well-posed $\nu = 0$: [BLP]

\forall \text{ function } \Phi \in L^2(I), \exists \text{ unique } f_* \in B \text{ such that}

$$\| \Phi - f_* \|_{L^2(I)} = \min_{f \in B} \| \Phi - f \|_{L^2(I)}$$

Moreover, if $\Phi \notin B$, then $\| \text{Re } f_* \|_{L^2(J)} = \varepsilon$

Proof: bounded conjugation, density result

also in $\Omega \simeq \mathbb{A}$, with $I \subset \mathbb{T}$, $J = (\mathbb{T} \setminus I) \cup g\mathbb{T}$

also in H^p_ν, for $L^p(I)$ data, or with other norm constraints
Constructive issues in H^2_ν

Computation algorithm, from $\Phi \in L^2(I)$, $\Omega = \mathbb{D}$, $A \ (I \subseteq \mathbb{T})$ [AP,BFL,FLPS]

\perp projection operator $L^2(\Gamma) \to \text{tr } H^2_\nu;^0$:

$$P_\nu \phi = \frac{1}{2} (\phi + i H_\nu \phi)$$

vanishing mean on \mathbb{T}

Solution to (BEP): given $\Phi \in L^2(I)$, $M > 0$

Toeplitz-Hankel operators on H^2_ν

$$P_\nu(\chi_I f_*) - \gamma P_\nu(\chi_J f_*) = (I - (\gamma + 1)P_\nu \chi_J) f_* = P_\nu(\Phi \vee 0)$$

for ! Lagrange parameter $\gamma < 0$ s.t. $\|f_*\|_{L^2(J)} = M$

$$\min_{f \in \text{tr } H^2_\nu} \|\Phi - f\|_{L^2(I)} + \gamma \|\text{Re } f\|_{L^2(J)}$$

$\gamma \% M$ smoothly decreasing

Complete families of solutions, for computations in $H^2_\nu(\Omega)$ and $L^2(\Gamma)$

\leadsto Bessel/exponentials, toroidal harmonics (w.r.t. σ or ν, and Ω) polynomials?

$\nu = 0$: Fourier basis, polynomials [L.-P.-Pozzi]
Plasma equilibrium model in a tokamak

In 2D poloidal sections, poloidal magnetic flux u:

$$\text{div} \left(\frac{1}{\chi} \nabla u \right) = \text{div} (\sigma \nabla u) = 0$$

in the vacuum Ω, conductivity $\sigma = \frac{1}{\chi}$

Maxwell equations, cylindrical coordinates $(x, y) = (R, Z)$, $\phi = $ cte

$$\Omega \simeq A_0 \subset \mathbb{R}^2$$

annular domain between plasma and chamber

$$\Gamma = \Gamma_e \cup \Gamma_p$$

limitor $\Gamma_l \subset \Omega$ inside plasma, Grad-Shafranov equation, control

From pointwise magnetic data on outer boundary Γ_e (tg poloidal mag. field)

$$u, \quad B_\rho = -\frac{1}{\chi} \partial_t u, \quad B_t = \frac{1}{\chi} \partial_n u$$

recover plasma boundary Γ_p

free boundary problem
Plasma in tokamak

\[\sigma(x, y) = \frac{1}{x} = \frac{2}{z + \bar{z}} \text{ smooth in } \Omega \]

\[\nu(z, \bar{z}) = \frac{z + \bar{z} - 2}{z + \bar{z} + 2} \]

Complete families of solutions to (u) and (f):
- Bessel-exponentials \(\Omega \sim \mathbb{D}_0 \)
- toroidal harmonics for \(\Omega \sim \mathbb{A}_0 \)

In place of Fourier bases for \(\sigma = 1 \) or \(\nu = 0 \)

More about constructive issues, Toeplitz operators, algorithms \(\sim \text{GT-EP} \)
Toroidal harmonics

Toroidal coordinates
\[\tau = \log \left(\frac{MA}{MB} \right), \quad \eta = \overline{AMB} \]

Annulus \(\simeq A_0 \) between circles
\[\tau = \text{cst} \]
Toroidal harmonics

Complete family $\mathcal{T} = (u_j(\tau, \eta))_{j \geq 0}$ in $L^2(\partial A_0)$

$$(\tau = \text{cst})$$ [F]

$$u_j(\tau, \eta) = a \frac{\sinh \tau}{\sqrt{\cosh \tau - \cos \eta}} \left\{ \begin{array}{l}
P_j^{1} \left(\cosh \tau \right) \\
Q_j^{1} \left(\cosh \tau \right)
\end{array} \right\} \left\{ \begin{array}{l}
\cos j \eta \\
\sin j \eta
\end{array} \right\}$$

$$x = \frac{a \sinh \tau}{\cosh \tau - \cos \eta}, \quad y = \frac{a \sin \eta}{\cosh \tau - \cos \eta}$$

solutions to $\text{div} \left(\frac{1}{x} \nabla u_j \right) = 0$

P_j^{1}, Q_j^{1} associated Legendre functions

\leadsto explicit σ-harmonic conjugate functions $v_j = \mathcal{H}_\nu u_j$

on P_j^{0}, Q_j^{0}, $\text{div} (x \nabla v_j) = 0$
Plasma in tokamak

From measurements of \(u, \sigma \partial_n u \) on outer boundary \(\Gamma_e \), find level line \(\Gamma_p \) of associated solution \(u \) to (\(u \)), tangent to limitor \(\Gamma_l \)

Take a first such \(\Gamma_{p,0} \)

Data transmission \(\Gamma_e \rightsquigarrow \Gamma_{p,0} : \)

\(u, \sigma \partial_n u \) on \(I = \Gamma_e \rightsquigarrow u, \sigma \partial_n u \) on \(J_0 = \Gamma_{p,0} \), \(u \) in \(\Omega_0 \)

Cauchy boundary inverse problem in \(\Omega_0 \)

s

solve (BEP)

\(u, B_\rho \rightsquigarrow \phi_I, B_t = \partial_\theta v = \sigma \partial_n u \rightsquigarrow \psi_I \rightsquigarrow \) Cauchy data \(\Phi \) on \(\Gamma_e \)

constraint \(\| \text{Re} f_* - c \|_{L^2(J_0)} \leq M \) small, \(c \) constant

Free boundary problem \(\Gamma_p \):

iterate 1st step \(\rightsquigarrow \Gamma_p \), last closed level line tangent to \(\Gamma_l \)

\(u, \partial_n u \) on \(\Gamma_l \rightsquigarrow \Gamma_{p,1} : \{ u = \max_{\Gamma_l} u \} \) with shape optimization [Fischer-Privat]
Approximation on Γ_e

Of given smooth data u, $\partial_n u$ by toroidal harmonics expansions
Plasma boundary recovery

\[\Gamma^{(1),10}_p \]
\[\Gamma^{(1),14}_p \]
\[\Gamma^{(1),18}_p \]
\[\Gamma_{EFIT} \]
\[\Gamma_{LIM} \]
\[\Gamma_{APOLO} \]
Plasma boundary recovery

Poloidal section of tokamak Tore Supra

Reconstruction of plasma boundary Γ_p from measurements \bigcirc of poloidal flux u and \times of magnetic field $\partial_n u$ on Γ_e with series of toroidal harmonics (18 terms)
Application to plasma shaping in a tokamak

Tore Supra
(CEA-IRFM Cadarache)

magnetic field B, flux u
Conclusion

Work in progress:

- More about generalized Hardy classes H^p_ν

 factorization, operators; $p = 1, \infty$?

 density of traces for $\Omega = \mathbb{A}$;

 reproducing kernel in H^2_ν?

 extremal problems

 solutions $w = e^s F$ to related $\bar{\partial} w = \alpha \bar{w}$

 $\alpha = \bar{\partial} \log \sigma^{1/2}$

- Other elliptic operators (and relat-ed/-ing PDEs)?

 + time t?

 Schrödinger $\Delta w \simeq |\alpha|^2 w + (\partial \alpha) \bar{w}$, 3D Laplace + symmetry properties \rightarrow 2D conductivity (u)

- Stability estimates

 unique continuation for (u) and Schrödinger eq.?

- In higher dimensions?

- Non smooth conductivity σ (or coefficients ν, α)?

 anisotropic (matrix-valued)?

 (up to now, \mathbb{R}-valued Hölder smooth σ, $r > 2$, in $H^p_\nu(\Omega), p > r/(r-1)$)

 Also, geometrical issues: Bernoulli type (free boundary) problems

 other tokamaks, ITER: non smooth boundary (X point)
Main references

[BLF] Baratchart, Fischer, Leblond, Dirichlet/Neumann problems and Hardy classes for the planar conductivity equation (subm.)

[FLPS] Fischer, Leblond, Partington, Sincich, BEP in Hardy spaces for the conjugate Beltrami equation in simply conn. dom. (2011)

and Astala, Iwaniec, Martin (2008), Kravchenko (2009), Vekua (1962), ...