Inverse Magnetization Problems for Thin Plates

L. Baratchart (INRIA), D. Hardin (Vanderbilt)
E. Lima (MIT), E. Saff (Vanderbilt), B. Weiss (MIT)
Paleomagnetism

Earth’s magnetic field is generated by convection of the liquid metallic core (geodynamo).
Earth’s magnetic field is generated by convection of the liquid metallic core (geodynamo).

Rocks become magnetized by the ambient field at the time they are formed.
Paleomagnetism

- Earth’s magnetic field is generated by convection of the liquid metallic core (geodynamo).
- Rocks become magnetized by the ambient field at the time they are formed.
- Rocks remanent magnetization (magnetic moment per unit volume) records temporal variation of the ancient dynamo.
Paleomagnetism

- Earth’s magnetic field is generated by convection of the liquid metallic core (geodynamo).
- Rocks become magnetized by the ambient field at the time they are formed.
- Rocks remanent magnetization (magnetic moment per unit volume) records temporal variation of the ancient dynamo.
- Can be used to study past motions of tectonic plates and as a relative chronometric tool identifying geomagnetic reversals.

Magnetization in meteorites may record magnetic fields produced by the young sun and the primordial nebula of gas and dust which played a key role in solar system formation.
Paleomagnetism

- Earth’s magnetic field is generated by convection of the liquid metallic core (geodynamo).
- Rocks become magnetized by the ambient field at the time they are formed.
- Rocks remanent magnetization (magnetic moment per unit volume) records temporal variation of the ancient dynamo.
- Can be used to study past motions of tectonic plates and as a relative chronometric tool identifying geomagnetic reversals.
- Magnetization in meteorites may record magnetic fields produced by the young sun and the primordial nebula of gas and dust which played a key role in solar system formation.
Until recently, nearly all paleomagnetic techniques were only analyzing bulk samples (several centimeters in diameter).
Some technological facts

- Until recently, nearly all paleomagnetic techniques were only analyzing bulk samples (several centimeters in diameter).
- In fact, the vast majority of magnetometers in use in the Geosciences infer the net magnetic moment of a rock sample from a set of field measurements taken at some distance.
Until recently, nearly all paleomagnetic techniques were only analyzing bulk samples (several centimeters in diameter). In fact, the vast majority of magnetometers in use in the Geosciences infer the net magnetic moment of a rock sample from a set of field measurements taken at some distance. The development of scanning magnetic microscopes (superconductive coils) can extend paleomagnetic measurements to submillimeter scales.
Some technological facts

- Until recently, nearly all paleomagnetic techniques were only analyzing bulk samples (several centimeters in diameter).
- In fact, the vast majority of magnetometers in use in the Geosciences infer the net magnetic moment of a rock sample from a set of field measurements taken at some distance.
- The development of scanning magnetic microscopes (superconductive coils) can extend paleomagnetic measurements to submillimeter scales.
- Typical scanning magnetic microscopes map a single component of the field, measured in a planar grid, at fixed distance above a planar sample whose section is three orders of magnitude smaller than its horizontal dimension. Thus, assuming planar magnetization distribution is an accurate model for the sample.
Paleomagnetists are ultimately interested in determining the magnetization distribution within a sample. But in general, infinitely many magnetization patterns can produce the same magnetic field data observed outside the magnetized region.
Paleomagnetists are ultimately interested in determining the magnetization distribution within a sample. But in general, infinitely many magnetization patterns can produce the same magnetic field data observed outside the magnetized region.

Recovering the magnetization, up to addition of a “silent source”, from the field above the sample can be regarded as an *equivalent source problem* with added constraints on the support or direction of the magnetization.
Paleomagnetists are ultimately interested in determining the magnetization distribution within a sample. But in general, infinitely many magnetization patterns can produce the same magnetic field data observed outside the magnetized region.

Recovering the magnetization, up to addition of a “silent source”, from the field above the sample can be regarded as an equivalent source problem with added constraints on the support or direction of the magnetization.

A full characterization of silent sources was apparently not given before. In this talk, we use tools from harmonic analysis to achieve this.
Paleomagnetists are ultimately interested in determining the magnetization distribution within a sample. But in general, infinitely many magnetization patterns can produce the same magnetic field data observed outside the magnetized region.

Recovering the magnetization, up to addition of a “silent source”, from the field above the sample can be regarded as an equivalent source problem with added constraints on the support or direction of the magnetization.

A full characterization of silent sources was apparently not given before. In this talk, we use tools from harmonic analysis to achieve this.

A generalization of the classical Helmholtz-Hodge decomposition, that we call the Hardy-Hodge decomposition, is a key tool for characterizing silent sources.
Given a quasi-static \(\mathbb{R}^3 \)-valued magnetization \(\mathbf{M} \),
Given a quasi-static \mathbb{R}^3-valued magnetization M, the magnetic-flux density B and the magnetic field H satisfy

$$B = \mu_0 (H + M),$$

(1)
Constitutive Relations

Given a quasi-static \mathbb{R}^3-valued magnetization \mathbf{M}, the magnetic-flux density \mathbf{B} and the magnetic field \mathbf{H} satisfy

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}),$$

(1)

where $\mu_0 = 4\pi \times 10^{-7} \text{Hm}^{-1}$ is the vacuum permeability.
Given a quasi-static \mathbb{R}^3-valued magnetization \mathbf{M}, the magnetic-flux density \mathbf{B} and the magnetic field \mathbf{H} satisfy

$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}),$$

where $\mu_0 = 4\pi \times 10^{-7} \text{Hm}^{-1}$ is the \textit{vacuum permeability}. Maxwell’s equations give $\nabla \times \mathbf{H} = 0$ and $\nabla \cdot \mathbf{B} = 0$.
Given a quasi-static \mathbb{R}^3-valued magnetization \mathbf{M},

the magnetic-flux density \mathbf{B} and the magnetic field \mathbf{H} satisfy

$$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M}), \quad (1)$$

where $\mu_0 = 4\pi \times 10^{-7} \text{Hm}^{-1}$ is the vacuum permeability.

Maxwell’s equations give $\nabla \times \mathbf{H} = 0$ and $\nabla \cdot \mathbf{B} = 0$.

Hence $\mathbf{H} = -\nabla \phi$ where ϕ is the magnetic scalar potential,
Given a quasi-static \mathbb{R}^3-valued magnetization \mathbf{M}, the magnetic-flux density \mathbf{B} and the magnetic field \mathbf{H} satisfy

$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}),$$

(1)

where $\mu_0 = 4\pi \times 10^{-7} \text{Hm}^{-1}$ is the vacuum permeability.

Maxwell’s equations give $\nabla \times \mathbf{H} = \mathbf{0}$ and $\nabla \cdot \mathbf{B} = 0$.

Hence $\mathbf{H} = -\nabla \phi$ where ϕ is the magnetic scalar potential, and taking divergence in (1)

$$\Delta \phi = \nabla \cdot \mathbf{M}$$

(2)
As $1/(4\pi|\mathbf{r}|)$ is a fundamental solution of $-\Delta$, where \mathbf{r} is the position vector in \mathbb{R}^3, we infer since ϕ is zero at infinity that

$$
\phi(\mathbf{r}) = -\frac{1}{4\pi} \iiint \frac{\nabla \cdot \mathbf{M}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}'.
$$ \hspace{1cm} (3)

Integrating by parts we get

$$
\phi(\mathbf{r}) = \frac{1}{4\pi} \iiint \mathbf{M}(\mathbf{r}') \cdot (\mathbf{r} - \mathbf{r}') \frac{d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}^3,
$$

whenever \mathbf{M} is a distribution for which (4) is well-defined for all \mathbf{r} not in the support of \mathbf{M}.

As $1/(4\pi|\mathbf{r}|)$ is a fundamental solution of $-\Delta$, where \mathbf{r} is the position vector in \mathbb{R}^3, we infer since ϕ is zero at infinity that

$$\phi(\mathbf{r}) = -\frac{1}{4\pi} \iiint \frac{\nabla \cdot \mathbf{M}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d\mathbf{r}' \tag{3}$$

Integrating by parts we get

$$\phi(\mathbf{r}) = \frac{1}{4\pi} \iiint \mathbf{M}(\mathbf{r}') \cdot \frac{(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} \, d\mathbf{r}', \quad \mathbf{r} \notin \text{supp. } \mathbf{M} \tag{4}$$

whenever \mathbf{M} is a distribution for which (4) is well-defined for all \mathbf{r} not in the support of \mathbf{M}.
We single out the third component of $r \in \mathbb{R}^3$ by writing $r = (x, z)$, where $x \in \mathbb{R}^2$.
Thin plate Magnetizations

- We single out the third component of $\mathbf{r} \in \mathbb{R}^3$ by writing $\mathbf{r} = (x, z)$, where $x \in \mathbb{R}^2$.
- We assume that the support of the magnetization is contained in the $z = 0$ plane, that is \mathbf{M} is a distribution of the form

$$\phi(x, z) = \mathbf{m}(x) \otimes \delta_0(z) =: (m_T(x), m_3(x)) \otimes \delta_0(z), \quad (5)$$
We single out the third component of \(r \in \mathbb{R}^3 \) by writing \(r = (x, z) \), where \(x \in \mathbb{R}^2 \).

We assume that the support of the magnetization is contained in the \(z = 0 \) plane, that is \(M \) is a distribution of the form

\[
\phi(x, z) = m(x) \otimes \delta_0(z) =: (m_T(x), m_3(x)) \otimes \delta_0(z),
\]

where \(m_T = (m_1, m_2) \) and \(m_3 \) are distributions on \(\mathbb{R}^2 \) corresponding, respectively, to the tangential and normal components of \(m \).
Thin plate Magnetizations

- We single out the third component of $\mathbf{r} \in \mathbb{R}^3$ by writing $\mathbf{r} = (x, z)$, where $x \in \mathbb{R}^2$.

- We assume that the support of the magnetization is contained in the $z = 0$ plane, that is \mathbf{M} is a distribution of the form

$$\phi(x, z) = m(x) \otimes \delta_0(z) =: (m_T(x), m_3(x)) \otimes \delta_0(z), \quad (5)$$

where $m_T = (m_1, m_2)$ and m_3 are distributions on \mathbb{R}^2 corresponding, respectively, to the tangential and normal components of m.

- By Fubini’s rule

$$\phi(x, z) = \frac{1}{4\pi} \int \int \left(\frac{m_T(x') \cdot (x - x')}{(|x - x'|^2 + z^2)^{3/2}} + \frac{m_3(x')z}{(|x - x'|^2 + z^2)^{3/2}} \right) dx', \quad (6)$$

for all (x, z) such that either $z \neq 0$ or $x \notin \text{supp. } m$.
Letting $z > 0$ for definiteness, equation (6) means that

$$\phi(x, z) = \frac{1}{2} (H_z \ast m^T(x) + P_z \ast m_3(x)) \quad (7)$$

where \ast stands for convolution on \mathbb{R}^2 and where
Letting $z > 0$ for definiteness, equation (6) means that

$$\phi(x, z) = \frac{1}{2} \left(H_z \ast m_T(x) + P_z \ast m_3(x) \right)$$

where \ast stands for convolution on \mathbb{R}^2 and where

$$P_z(x) := \frac{1}{2\pi} \frac{z}{(|x|^2 + z^2)^{3/2}}$$

is the Poisson kernel at height z for the upper half-space,
Thin plate potentials as convolutions

Letting $z > 0$ for definiteness, equation (6) means that

$$\phi(x, z) = \frac{1}{2} (H_z * m_T(x) + P_z * m_3(x))$$ \hfill (7)

where $*$ stands for convolution on \mathbb{R}^2 and where

$$P_z(x) := \frac{1}{2\pi} \frac{z}{(|x|^2 + z^2)^{3/2}}$$ \hfill (8)

is the Poisson kernel at height z for the upper half-space,

$$H_z(x) := \frac{1}{2\pi} \frac{x}{(|x|^2 + z^2)^{3/2}}$$ \hfill (9)

is another kernel that we now analyze.
For $f \in L^p(\mathbb{R}^2)$, $p \in (1, \infty)$, the Riesz transforms of f, denoted by $R_1(f)$ and $R_2(f)$, are defined by

$$R_j(f)(x) := \lim_{\epsilon \to 0} \frac{1}{2\pi} \int \int_{\mathbb{R}^2 \setminus B(x, \epsilon)} f(x') \frac{(x_j - x_j')}{|x - x'|^3} \, dx', \quad j = 1, 2,$$

which exists a.e. and continuously maps $L^p(\mathbb{R}^2)$ into itself.

If $f_1, f_2 \in L^p(\mathbb{R}^2)$, it can be shown that

$$(f_1, f_2)^\ast H = Pz^\ast (R_1(f_1) + R_2(f_2)).$$

(11) We shall generalize this to more general distributions.
Riesz transforms

For $f \in L^p(\mathbb{R}^2)$, $p \in (1, \infty)$, the \textit{Riesz transforms of f}, denoted by $R_1(f)$ and $R_2(f)$, are defined by

$$R_j(f)(x) := \lim_{\epsilon \to 0} \frac{1}{2\pi} \int \int_{\mathbb{R}^2 \setminus B(x, \epsilon)} f(x') \frac{(x_j - x'_j)}{|x - x'|^3} \, dx', \quad j = 1, 2,$$

(10)

The limit (10) exists a.e. and R_j continuously maps $L^p(\mathbb{R}^2)$ into itself.
For $f \in L^p(\mathbb{R}^2)$, $p \in (1, \infty)$, the Riesz transforms of f, denoted by $R_1(f)$ and $R_2(f)$, are defined by

$$R_j(f)(x) := \lim_{\epsilon \to 0} \frac{1}{2\pi} \int \int_{\mathbb{R}^2 \setminus B(x, \epsilon)} f(x') \frac{(x_j - x'_j)}{|x - x'|^3} \, dx', \quad j = 1, 2,$$

(10)

The limit (10) exists a.e. and R_j continuously maps $L^p(\mathbb{R}^2)$ into itself.

If $f_1, f_2 \in L^p(\mathbb{R}^2)$, it can be shown that

$$(f_1, f_2) * \mathbf{H}_z = P_z * (R_1(f_1) + R_2(f_2)).$$

(11)
For \(f \in L^p(\mathbb{R}^2), \ p \in (1, \infty), \) the \textit{Riesz transforms of } \(f \),
denoted by \(R_1(f) \) and \(R_2(f) \), are defined by

\[
R_j(f)(x) := \lim_{\epsilon \to 0} \frac{1}{2\pi} \iint_{\mathbb{R}^2 \setminus B(x, \epsilon)} f(x') \frac{(x_j - x'_j)}{|x - x'|^3} \, dx', \quad j = 1, 2, \tag{10}
\]

The limit (10) exists a.e. and \(R_j \) continuously maps \(L^p(\mathbb{R}^2) \) into itself.

If \(f_1, f_2 \in L^p(\mathbb{R}^2) \), it can be shown that

\[
(f_1, f_2) \ast H_z = P_z \ast (R_1(f_1) + R_2(f_2)). \tag{11}
\]

We shall generalize this to more general distributions.
The space $W^{-\infty, p}$

- For $1 < p < \infty$, the space $W^{-\infty, p}$ consists of finite sums of partial derivatives of any order of $L^p(\mathbb{R}^2)$ functions.
The space $W^{-\infty,p}$

For $1 < p < \infty$, the space $W^{-\infty,p}$ consists of finite sums of partial derivatives of any order of $L^p(\mathbb{R}^2)$ functions. It contains all distributions with compact support.
The space $W^{-\infty,p}$

- For $1 < p < \infty$, the space $W^{-\infty,p}$ consists of finite sums of partial derivatives of any order of $L^p(\mathbb{R}^2)$ functions. It contains all distributions with compact support.
- $W^{-\infty,p}$ is dual to $W^{\infty,q}$, $1/p + 1/q = 1$, comprised of functions lying in $L^q(\mathbb{R}^2)$ together with all their partial derivatives.
The space $W^{-\infty, p}$

- For $1 < p < \infty$, the space $W^{-\infty, p}$ consists of finite sums of partial derivatives of any order of $L^p(\mathbb{R}^2)$ functions. It contains all distributions with compact support.

- $W^{-\infty, p}$ is dual to $W^{\infty, q}$, $1/p + 1/q = 1$, comprised of functions lying in $L^q(\mathbb{R}^2)$ together with all their partial derivatives.

- Poisson and Riesz transforms are defined on $W^{-\infty, p}$ by duality:

$$\langle R_j(m), f \rangle := -\langle m, R_j(f) \rangle, \quad \langle P_z \ast m, f \rangle := \langle m, P_z \ast f \rangle,$$

$$m \in W^{-\infty, p}, \quad f \in W^{\infty, q}.$$
Thin plate potentials as Poisson integrals

For \(m_1, m_2 \in W^{-\infty,p} \), it is still true that

\[
H_z \ast (m_1, m_2) = P_z \ast (R_1(m_1) + R_2(m_2)),
\]

(12)

More generally, for \(z \neq 0 \)

\[
\phi(x, z) = \frac{1}{2} P_{|z|} \ast (R_1(m_1) + R_2(m_2) + m_3),
\]

(13)
For $m_1, m_2 \in W^{-\infty, p}$, it is still true that

$$H_z * (m_1, m_2) = P_z * (R_1(m_1) + R_2(m_2)),$$

hence if $m \in (W^{-\infty, p})^3$, we have for $z > 0$:

$$\phi(x, z) = \frac{1}{2} (H_z * m^T(x) + P_z * m_3(x))$$

$$\quad \quad = P_z * (R_1(m_1) + R_2(m_2) + m_3)(x).$$

(12)
For $m_1, m_2 \in W^{-\infty,p}$, it is still true that
\[H_z * (m_1, m_2) = P_z * (R_1(m_1) + R_2(m_2)), \]

hence if $m \in (W^{-\infty,p})^3$, we have for $z > 0$:
\[\phi(x, z) = \frac{1}{2} \left(H_z * m_T(x) + P_z * m_3(x) \right) \]
\[= P_z * (R_1(m_1) + R_2(m_2) + m_3)(x). \] (12)

More generally, for $z \neq 0$
\[\phi(x, z) = \frac{1}{2} P_{|z|} * \left(R_1(m_1) + R_2(m_2) + \frac{z}{|z|} m_3 \right)(x). \] (13)
Altogether, we get
Altogether, we get

Theorem

Let \(m = (m_T, m_3) = (m_1, m_2, m_3) \in (W^{-\infty, p})^3. \) Then \(\phi(m)(x, z) \) is harmonic for \(z \neq 0. \)
Altogether, we get

Theorem

Let \(\mathbf{m} = (\mathbf{m}_T, m_3) = (m_1, m_2, m_3) \in (W^{-\infty,p})^3 \). Then \(\phi(m)(\mathbf{x}, z) \) is harmonic for \(z \neq 0 \). At such points it has the following representation in terms of the Riesz and Poisson transforms:

\[
\Lambda(m)(\mathbf{x}, z) = \frac{1}{2} P_{|z|} \ast \left(R_1(m_1) + R_2(m_2) + \frac{z}{|z|} m_3 \right)(\mathbf{x}).
\] (14)

Moreover, the limiting relation

\[
\lim_{z \to 0 \pm} \Lambda(m)(\mathbf{x}, z) = \frac{1}{2} \left(R_1(m_1)(\mathbf{x}) + R_2(m_2)(\mathbf{x}) \pm m_3(\mathbf{x}) \right)
\] (15)

holds in the distributional sense.
Altogether, we get

Theorem

Let \(\mathbf{m} = (m_T, m_3) = (m_1, m_2, m_3) \in (W^{-\infty}, p)^3 \). Then \(\phi(\mathbf{m})(\mathbf{x}, z) \) is harmonic for \(z \neq 0 \). At such points it has the following representation in terms of the Riesz and Poisson transforms:

\[
\Lambda(\mathbf{m})(\mathbf{x}, z) = \frac{1}{2} P_{|z|} * \left(R_1(m_1) + R_2(m_2) + \frac{z}{|z|} m_3 \right)(\mathbf{x}). \quad (14)
\]

Moreover, the limiting relation

\[
\lim_{z \to 0^\pm} \Lambda(\mathbf{m})(\mathbf{x}, z) = \frac{1}{2} \left(R_1(m_1)(\mathbf{x}) + R_2(m_2)(\mathbf{x}) \pm m_3(\mathbf{x}) \right) \quad (15)
\]

holds in the distributional sense.
Two magnetizations are *equivalent from above* (resp. *below*) if they produce the same potential in the upper (resp. lower) half-space.
Equivalent and silent sources

- Two magnetizations are *equivalent from above* (resp. *below*) if they produce the same potential in the upper (resp. lower) half-space.

- A magnetization is *silent from above* (resp. *below*) if it is equivalent from above (resp. below) to the null magnetization.

Since the Poisson transform is injective, Theorem 1 implies that \(m \) is silent from above if and only if \(R_1(m_1) + R_2(m_2) + m_3 = 0 \) and silent from below if and only if \(R_1(m_1) + R_2(m_2) - m_3 = 0 \). Hence, \(m \) is silent if and only if \(R_1(m_1) + R_2(m_2) = 0 \) and \(m_3 = 0 \).
Two magnetizations are *equivalent from above* (resp. *below*) if they produce the same potential in the upper (resp. lower) half-space.

A magnetization is *silent from above* (resp. *below*) if it is equivalent from above (resp. below) to the null magnetization.

Since the Poisson transform is injective, Theorem 1 implies that \(\mathbf{m} \) is silent from above if and only if
\[
R_1(m_1) + R_2(m_2) + m_3 = 0
\]
and silent from below if and only if
\[
R_1(m_1) + R_2(m_2) - m_3 = 0.
\]
Equivalent and silent sources

- Two magnetizations are *equivalent from above* (resp. *below*) if they produce the same potential in the upper (resp. lower) half-space.

- A magnetization is *silent from above* (resp. *below*) if it is equivalent from above (resp. below) to the null magnetization.

- Since the Poisson transform is injective, Theorem 1 implies that \(\mathbf{m} \) is silent from above if and only if
 \[R_1(m_1) + R_2(m_2) + m_3 = 0 \]
 and silent from below if and only if
 \[R_1(m_1) + R_2(m_2) - m_3 = 0. \]

- Hence, \(\mathbf{m} \) is silent if and only if
 \[R_1(m_1) + R_2(m_2) = 0 \]
 and
 \[m_3 = 0. \]
Hardy spaces of harmonic gradients

To understand better the role of the expression

\[R_1(m_1)(x) + R_2(m_2)(x) \pm m_3(x), \]

we introduce Hardy spaces of harmonic gradients in the upper and lower half-space respectively:

\[H^+: = \{ (R_1(f), R_2(f), f) : f \in W_{-\infty}, p \} \]

\[H^-: = \{ (-R_1(f), -R_2(f), f) : f \in W_{-\infty}, p \} \]

We also let

\[S: = \{ (s_1, s_2, 0) : s_1, s_2 \in W_{-\infty}, p, \nabla \cdot (s_1, s_2) = 0 \} \]
Hardy spaces of harmonic gradients

To understand better the role of the expression

$$R_1(m_1)(x) + R_2(m_2)(x) \pm m_3(x),$$

we introduce Hardy spaces of harmonic gradients in the upper and lower half-space respectively:
Hardy spaces of harmonic gradients

To understand better the role of the expression

\[R_1(m_1)(x) + R_2(m_2)(x) \pm m_3(x), \]

we introduce Hardy spaces of harmonic gradients in the upper and lower half-space respectively:

- we define

\[H^+ := \{(R_1(f), R_2(f), f) : f \in W^{-\infty,p}\}, \]

we also let

\[S := \{(s_1, s_2, 0) : s_1, s_2 \in W^{-\infty,p}, \nabla \cdot (s_1, s_2) = 0\}. \]
Hardy spaces of harmonic gradients

To understand better the role of the expression

$$R_1(m_1)(x) + R_2(m_2)(x) \pm m_3(x),$$

we introduce Hardy spaces of harmonic gradients in the upper and lower half-space respectively:

- we define

$${H^+} := \{(R_1(f), R_2(f), f) : f \in W^{-\infty, p}\},$$

- $${H^-} := \{(-R_1(f), -R_2(f), f) : f \in W^{-\infty, p}\}.$$
Hardy spaces of harmonic gradients

To understand better the role of the expression

\[R_1(m_1)(x) + R_2(m_2)(x) \pm m_3(x), \]

we introduce Hardy spaces of harmonic gradients in the upper and lower half-space respectively:

- we define

\[H^+ := \{ (R_1(f), R_2(f), f) : f \in W^{-\infty,p} \}, \]

- \[H^- := \{ (-R_1(f), -R_2(f), f) : f \in W^{-\infty,p} \}. \]

- We also let

\[S := \{ (s_1, s_2, 0) : s_1, s_2 \in W^{-\infty,p}, \nabla \cdot (s_1, s_2) = 0 \}. \]
The Hardy-Hodge decomposition

Theorem

It holds that \((W^{-\infty}, p)^3 = H^+ \oplus H^- \oplus S\).
The Hardy-Hodge decomposition

Theorem

It holds that
\[(W^{-\infty, p})^3 = H^+ \oplus H^- \oplus S.\]

Specifically,

\[m = (m_1, m_2, m_3) = P_{H^+}(m) + P_{H^-}(m) + P_S(m),\]

with
The Hardy-Hodge decomposition

Theorem

It holds that $(W^{-\infty, p})^3 = H^+ \oplus H^- \oplus S$.

Specifically,

$$m = (m_1, m_2, m_3) = P_{H^+}(m) + P_{H^-}(m) + P_S(m), \text{ with}$$

$$P_{H^+}(m) = \left(R_1(m^+), R_2(m^+), m^+ \right), \quad 2m^+ := -\sum_{j=1}^{2} R_j(m_j) + m_3$$
The Hardy-Hodge decomposition

Theorem

It holds that \((W^{-\infty,p})^3 = H^+ \oplus H^- \oplus S.\)

Specifically,

\[
m = (m_1, m_2, m_3) = P_{H^+}(m) + P_{H^-}(m) + P_S(m), \text{ with}
\]

\[
P_{H^+}(m) = \left(R_1(m^+), R_2(m^+), m^+ \right), \quad 2m^+ := -\sum_{j=1}^2 R_j(m_j) + m_3
\]

\[
P_{H^-}(m) = \left(-R_1(m^-), -R_2(m^-), m^- \right), \quad 2m^- := \sum_{j=1}^2 R_j(m_j) + m_3
\]
The Hardy-Hodge decomposition

Theorem

It holds that $(W^{-\infty,p})^3 = H^+ \oplus H^- \oplus S$.

Specifically,

$$m = (m_1, m_2, m_3) = P_{H^+}(m) + P_{H^-}(m) + P_S(m),$$

with

$$P_{H^+}(m) = \left(R_1(m^+), R_2(m^+), m^+ \right), \quad 2m^+ := -\Sigma_{j=1}^{2} R_j(m_j) + m_3$$

$$P_{H^-}(m) = \left(-R_1(m^-), -R_2(m^-), m^- \right), \quad 2m^- := \Sigma_{j=1}^{2} R_j(m_j) + m_3$$

$$P_S(m) = \left(-R_2(d), R_1(d), 0 \right), \quad d := R_2(m_1) - R_1(m_2).$$
Remark

- Each \((R_1(f), R_2(f), f) \in H^+\) is the trace on \(\{z = 0\}\) of a harmonic gradient in the upper half-space, namely
 \(P_z \ast (R_1(f), R_2(f), f)\)

Likewise \((-R_1(f), -R_2(f), f) \in H^-\) is the trace on \(\{z = 0\}\) of a harmonic gradient in the lower half-space, namely
\(P_z \ast (-R_1(f), -R_2(f), f)\).

Hence the decomposition \((W_{-\infty}, p)_3 = H^+ \oplus H^- \oplus S\) generalizes the classical decomposition of \(L^p(\mathbb{R})\) into a direct sum of holomorphic Hardy spaces.

The summand \(S\), which has no analog in dimension 1, is necessary because not every vector field is a gradient in dimension 2.
Remark

Each \((R_1(f), R_2(f), f) \in H^+\) is the trace on \(\{z = 0\}\) of a harmonic gradient in the upper half-space, namely \(P_z \ast (R_1(f), R_2(f), f)\).

Likewise \((-R_1(f), -R_2(f), f) \in H^-\) is the trace on \(\{z = 0\}\) of a harmonic gradient in the lower half-space, namely \(P_z \ast (-R_1(f), -R_2(f), f)\).
Remark

Each \((R_1(f), R_2(f), f) \in H^+\) is the trace on \(\{z = 0\}\) of a harmonic gradient in the upper half-space, namely
\[P_z * (R_1(f), R_2(f), f)\]

Likewise \((-R_1(f), -R_2(f), f) \in H^-\) is the trace on \(\{z = 0\}\) of a harmonic gradient in the lower half-space, namely
\[P_z * (-R_1(f), -R_2(f), f)\].

Hence the decomposition \((W^{-\infty}, p)^3 = H^+ \oplus H^- \oplus S\) generalizes the classical decomposition of \(L^p(\mathbb{R})\) into a direct sum of holomorphic Hardy spaces.
Remark

- Each \((R_1(f), R_2(f), f) \in H^+\) is the trace on \(\{z = 0\}\) of a harmonic gradient in the upper half-space, namely \(P_z \ast (R_1(f), R_2(f), f)\).
- Likewise \((-R_1(f), -R_2(f), f) \in H^-\) is the trace on \(\{z = 0\}\) of a harmonic gradient in the lower half-space, namely \(P_z \ast (-R_1(f), -R_2(f), f)\).
- Hence the decomposition \((W^{-\infty,p})^3 = H^+ \oplus H^- \oplus S\) generalizes the classical decomposition of \(L^p(\mathbb{R})\) into a direct sum of holomorphic Hardy spaces.
- The summand \(S\), which has no analog in dimension 1, is necessary because not every vector field is a gradient in dimension 2.
Theorem

Let $\mathbf{m} \in (W^{-\infty,p})^3$.
Theorem

Let $\mathbf{m} \in (W^{-\infty},p)^3$.

- The magnetization $P_{H^-}(\mathbf{m})$ (resp. $P_{H^+}(\mathbf{m})$) is equivalent to \mathbf{m} from above (resp. below).
Theorem

Let \(\mathbf{m} \in (W^{-\infty,p})^3 \).

- The magnetization \(P_{H^-}(\mathbf{m}) \) (resp. \(P_{H^+}(\mathbf{m}) \)) is equivalent to \(\mathbf{m} \) from above (resp. below).

- The magnetization \(\mathbf{m} \) is silent from above (resp. below) if and only if \(P_{H^-}(\mathbf{m}) = 0 \) (resp. \(P_{H^+}(\mathbf{m}) = 0 \)).
Theorem

Let \(\mathbf{m} \in (W^{-\infty,p})^3 \).

- The magnetization \(P_{H^-}(\mathbf{m}) \) (resp. \(P_{H^+}(\mathbf{m}) \)) is equivalent to \(\mathbf{m} \) from above (resp. below).

- The magnetization \(\mathbf{m} \) is silent from above (resp. below) if and only if \(P_{H^-}(\mathbf{m}) = 0 \) (resp. \(P_{H^+}(\mathbf{m}) = 0 \)).

- The magnetization \(\mathbf{m} \) is silent from above and below if and only if it belongs to \(S \); that is, if and only if \(\mathbf{m}_T \) is divergence-free and \(m_3 = 0 \).
Theorem

Let \(\mathbf{m} \in (W^{-\infty,p})^3 \).

- The magnetization \(P_{H^-}(\mathbf{m}) \) (resp. \(P_{H^+}(\mathbf{m}) \)) is equivalent to \(\mathbf{m} \) from above (resp. below).
- The magnetization \(\mathbf{m} \) is silent from above (resp. below) if and only if \(P_{H^-}(\mathbf{m}) = 0 \) (resp. \(P_{H^+}(\mathbf{m}) = 0 \)).
- The magnetization \(\mathbf{m} \) is silent from above and below if and only if it belongs to \(S \); that is, if and only if \(\mathbf{m}^T \) is divergence-free and \(m_3 = 0 \).
- If \(\text{supp} \mathbf{m} \neq \mathbb{R}^2 \), then \(\mathbf{m} \) is silent from above if and only if it is silent from below.
Equivalent magnetizations with compact support

Theorem

Let $m \in (W^{-\infty}, p)^3$ be supported on a compact set $K \subset \mathbb{R}^2$.
Equivalent magnetizations with compact support

Theorem

Let $m \in (W^{-\infty,p})^3$ be supported on a compact set $K \subset \mathbb{R}^2$. The magnetizations supported on K which are equivalent to m (either from above or below) are all sums $m + s$, where $s \in S$ is supported on K. Such magnetizations are in fact equivalent to m from above and below.
Theorem

Let \(m \in (L^2(\mathbb{R}^2))^3 \) *be supported on a compact, Lipschitz-smooth and finitely connected set* \(K \subset \mathbb{R}^2 \), *with interior* \(\Omega \).
Theorem

Let \(\mathbf{m} \in (L^2(\mathbb{R}^2))^3 \) be supported on a compact, Lipschitz-smooth and finitely connected set \(K \subset \mathbb{R}^2 \), with interior \(\Omega \).
Write \(P_S(\mathbf{m}) = (\mathbf{s}, 0) \) for the divergence-free component in the Hardy-Hodge decomposition of \(\mathbf{m} \).
Digression on the L^2 case

Theorem

Let $m \in (L^2(\mathbb{R}^2))^3$ be supported on a compact, Lipschitz-smooth and finitely connected set $K \subset \mathbb{R}^2$, with interior Ω.

Write $P_S(m) = (s, 0)$ for the divergence-free component in the Hardy-Hodge decomposition of m.

The magnetization $m_K \in (L^2(\mathbb{R}^2))^3$ which is equivalent to m, supported on K, and has minimum L^2 norm under these constraints is

$$m_K = P_{H^+}(m) + P_{H^-}(m) + (h, 0), \quad (16)$$

where h is the concatenation $v \lor s|_{\mathbb{R}^2 \setminus K}$ with v the unique integrable harmonic field on Ω, with normal component $v_n = (s|_{\Omega})_n$ on ∂K.
The next figure shows the silent magnetization \(\mathbf{m}(x, y) = (\psi(x)\psi'(y), -\psi'(x)\psi(y), 0) \) where
\[\psi(t) := \frac{1}{2}(1 - \cos(2\pi t)) \]
for \(t \in [0, 1] \) and zero otherwise.

Parts A and B show the magnetization
\(\mathbf{m}_1(x, y) = (\psi(x)\psi'(y), 0, 0) \) and resulting vertical component of the field measured at height \(z = 0.1 \) mm.

Parts C and D show the magnetization
\(\mathbf{m}_2(x, y) = (0, -\psi'(x)\psi(y), 0) \) and resulting vertical component.

Parts E and F illustrate the silent source magnetization
\(\mathbf{m} = \mathbf{m}_1 + \mathbf{m}_2 \) and resulting null vertical component of the magnetic field measured at height \(z = 0.1 \) mm. In this case, \(\mathbf{m}_1 \) and \(-\mathbf{m}_2 \) are equivalent magnetizations.

Each image corresponds to an area of 1 mm \(\times \) 1 mm.
A compactly supported silent source

Figure:
We call \(m \) \textit{unidirectional} if \(m = Qu \) for some fixed \(u \in \mathbb{R}^3 \) and some scalar valued distribution \(Q \).
We call \mathbf{m} unidirectional if $\mathbf{m} = Q\mathbf{u}$ for some fixed $\mathbf{u} \in \mathbb{R}^3$ and some scalar valued distribution Q.

The sum of two unidirectional magnetizations we call bidirectional.
We call \(\mathbf{m} \) unidirectional if \(\mathbf{m} = Q \mathbf{u} \) for some fixed \(\mathbf{u} \in \mathbb{R}^3 \) and some scalar valued distribution \(Q \).

The sum of two unidirectional magnetizations we call bidirectional.

Unidirectional magnetizations occur naturally for materials formed in a uniform external magnetic field. In such cases, \(Q \) will typically be assumed to be positive. We do not address here issues related to positivity.
We call \(\mathbf{m} \) unidirectional if \(\mathbf{m} = Q \mathbf{u} \) for some fixed \(\mathbf{u} \in \mathbb{R}^3 \) and some scalar valued distribution \(Q \).

The sum of two unidirectional magnetizations we call \textit{bidirectional}.

Unidirectional magnetizations occur naturally for materials formed in a uniform external magnetic field. In such cases, \(Q \) will typically be assumed to be positive. We do not address here issues related to positivity.

Bidirectional magnetizations are common models for unidirectional magnetizations later corrupted by some superimposed field.
A unidirectional magnetization $\mathbf{m} \in (W^{-\infty}, p)^3$ is determined uniquely by its direction and the field it generates from above (or below).
A unidirectional magnetization $\mathbf{m} \in (W^{-\infty, p})^3$ is determined uniquely by its direction and the field it generates from above (or below). In particular, \mathbf{m} is silent from above (or below) if, and only if $\mathbf{m} = 0$.
Theorem

- A unidirectional magnetization $\mathbf{m} \in (W^{-\infty}, p)^3$ is determined uniquely by its direction and the field it generates from above (or below). In particular, \mathbf{m} is silent from above (or below) if, and only if $\mathbf{m} = 0$.

- For $\mathbf{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$ with $u_3 \neq 0$, any magnetization in $(W^{-\infty}, p)^3$ is equivalent from above to a unidirectional magnetization of the form $Q(x)\mathbf{u}$.
A unidirectional magnetization $m \in (W^{-\infty}, p)^3$ is determined uniquely by its direction and the field it generates from above (or below). In particular, m is silent from above (or below) if, and only if $m = 0$.

For $u = (u_1, u_2, u_3) \in \mathbb{R}^3$ with $u_3 \neq 0$, any magnetization in $(W^{-\infty}, p)^3$ is equivalent from above to a unidirectional magnetization of the form $Q(x)u$.

A compactly supported unidirectional magnetization is equivalent from above (or below) to no other compactly supported unidirectional magnetization.
A proof

We prove the existence of an equivalent unidirectional magnetization from above.

By Theorem 3, \(Q\mathbf{u}\) is equivalent to \(\mathbf{m}\) from above iff

\[
 u_1 R_1(Q) + u_2 R_2(Q) + u_3 Q = R_1(m_1) + R_2(m_2) + m_3 =: h. \quad (17)
\]
A proof

We prove the existence of an equivalent unidirectional magnetization from above.

- By Theorem 3, Qu is equivalent to m from above iff

 \[u_1 R_1(Q) + u_2 R_2(Q) + u_3 Q = R_1(m_1) + R_2(m_2) + m_3 =: h. \quad (17) \]

- Taking Fourier transforms, we formally get

 \[\hat{Q}(\kappa) = \frac{\hat{h}(\kappa)}{u_3 - i u_T \cdot \kappa / |\kappa|}. \]
A proof

We prove the existence of an equivalent unidirectional magnetization from above.

- By Theorem 3, $Q \mathbf{u}$ is equivalent to \mathbf{m} from above iff

$$u_1 R_1(Q) + u_2 R_2(Q) + u_3 Q = R_1(m_1) + R_2(m_2) + m_3 =: h. \quad (17)$$

- Taking Fourier transforms, we formally get

$$\hat{Q}(\kappa) = \frac{\hat{h}(\kappa)}{u_3 - i \mathbf{u} \cdot \kappa / |\kappa|}.$$

- $1/(u_3 - i \mathbf{u} \cdot \kappa / |\kappa|)$ is smooth away from the origin, bounded, and homogeneous of degree 0, hence is a multiplier of $W^{\infty,q}$ by Hörmander’s theorem and since multiplier transformations commute with derivations.
A proof

We prove the existence of an equivalent unidirectional magnetization from above.

- By Theorem 3, Qu is equivalent to m from above iff
 \[u_1R_1(Q) + u_2R_2(Q) + u_3Q = R_1(m_1) + R_2(m_2) + m_3 =: h. \tag{17} \]

- Taking Fourier transforms, we formally get
 \[\hat{Q}(\kappa) = \frac{\hat{h}(\kappa)}{u_3 - iu_T \cdot \kappa / |\kappa|}. \]

- $1/(u_3 - iu_T \cdot \kappa / |\kappa|)$ is smooth away from the origin, bounded, and homogeneous of degree 0, hence is a multiplier of $W^{\infty,q}$ by Hörmander’s theorem and since multiplier transformations commute with derivations.

- By duality, (17) is solvable with $Q \in W^{-\infty,p}$ when $m \in (W^{-\infty,p})^3$.
Compactly supported bidirectional silent sources

Theorem

Suppose $m(x) = Q(x)u + R(x)v$ where $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ are nonzero vectors in \mathbb{R}^3 while Q, R are distributions with compact support. If u_3 or v_3 is nonzero, then m is silent iff $m = 0$. If $u_3 = v_3 = 0$, then m is silent iff $m^T(x) = Q(x)(u_1, u_2) + R(x)(v_1, v_2)$ is divergence free.
Theorem

Suppose \(\mathbf{m}(\mathbf{x}) = Q(\mathbf{x})\mathbf{u} + R(\mathbf{x})\mathbf{v} \) where \(\mathbf{u} = (u_1, u_2, u_3) \) and \(\mathbf{v} = (v_1, v_2, v_3) \) are nonzero vectors in \(\mathbb{R}^3 \) while \(Q, R \) are distributions with compact support.

1. If \(u_3 \) or \(v_3 \) is nonzero, then \(\mathbf{m} \) is silent iff \(\mathbf{m} = 0 \).
Compactely supported bidirectional silent sources

Theorem

Suppose \(m(x) = Q(x)u + R(x)v \) where \(u = (u_1, u_2, u_3) \) and \(v = (v_1, v_2, v_3) \) are nonzero vectors in \(\mathbb{R}^3 \) while \(Q, R \) are distributions with compact support.

1. If \(u_3 \) or \(v_3 \) is nonzero, then \(m \) is silent iff \(m = 0 \).
2. If \(u_3 = v_3 = 0 \), then \(m \) is silent iff

\[m_T(x) = Q(x)(u_1, u_2) + R(x)(v_1, v_2) \]

is divergence free.
Inversion of experimental magnetic data from a synthetic sample measured with MIT SQUID microscope.

(A) Optical photograph of the synthetic sample comprised of a piece of paper with Vanderbilt University’s ‘Star V’ logo printed on it. The paper was glued to a nonmagnetic quartz disc to ensure flatness and facilitate scanning by the instrument. The sample was magnetized in the minus z direction by applying a field pulse of 900 mT prior to mapping.

(B) Map of the z component of the remanent magnetic field produced by the sample. The sample-to-sensor distance was approximately 0.27 mm.

(C) Estimated magnetization distribution obtained by inversion of magnetic data in the Fourier domain using Wiener deconvolution.
The Vanderbilt star

Figure:
Generalizations

- The previous theory carries over to magnetizations with components in $BMO^{-\infty}$, the space of finite sums of partial derivatives of any order of BMO functions.
Generalizations

- The previous theory carries over to magnetizations with components in $BMO^{-\infty}$, the space of finite sums of partial derivatives of any order of BMO functions.
- $BMO^{-\infty}$ is a quotient space of distributions by the constants, dual to the space $\mathcal{H}^{\infty,1}$ of functions lying in the real Hardy space $\mathcal{H}^1(\mathbb{R}^2)$ together with all their derivatives.
Generalizations

- The previous theory carries over to magnetizations with components in $BMO^{-\infty}$, the space of finite sums of partial derivatives of any order of BMO functions.

- $BMO^{-\infty}$ is a quotient space of distributions by the constants, dual to the space $h^{\infty,1}$ of functions lying in the real Hardy space $h^1(R^2)$ together with all their derivatives.

- In this case, nonzero silent unidirectional magnetizations exist: they are “ridge” distributions of the form $m(x) = uh(x \cdot v)$, where $v \in R^2$ is orthogonal to (u_1, u_2) and $h \in BMO^{-\infty}(R)$.
Another unidirectional example of retrieval

Inversion of the magnetic field produced by a simulated piecewise-continuous magnetization, comprised of rectangular slabs uniformly magnetized. The bottom part of the letter ‘I’ is magnetized in the antipodal direction, equivalent to a negative magnetization.

(A) Intensity plot of the synthetic magnetization distribution.
(B) Simulated map of the z component of the magnetic field at a sample-to-sensor distance of 0.15 mm. The map was calculated on a 128 x 128 square grid of positions. Gaussian white noise was added to the map to simulate instrument noise, yielding a signal-to-noise ratio of 100:1 or 40 dB.
(C) Estimated magnetization distribution obtained by inversion in the Fourier domain. The estimated distribution has 128 x 128 elements. Notice the ridge artifacts along the magnetization direction.
(D) Solution obtained by means of an improved Wiener deconvolution algorithm, with only a minor impact on accuracy.