Observability by Viability Kernels

Khalid Kassara

MACS://Systems & Control Group
University Hassan II, Casablanca

PICOF’12, Ecole Polytechnique
Outline

1. Statement of the problem
2. Connection to Viability kernels
3. Using single-valuedness results
Outline

1 Statement of the problem

2 Connection to Viability kernels

3 Using single-valuedness results
A new framework for output

Consider the system

\[\dot{z}(t) = f(t, z(t)), \quad t \in [t_0, t_f], \quad \text{ODE} \]
\[(t, z(t)) \in \Theta, \quad t \in [t_0, t_f], \quad \text{output} \]

where

- \(f : \mathbb{R}_+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a continuous function, and \(n, t_0, t_f > 0 \).
- \(\Theta \subset \mathbb{R}_+ \times \mathbb{R}^n \), which we call the output domain

For instance, for standard output equation

\[\theta(t) = h(t, z(t)), \quad t \in [0, t_f] \]

one gets

\[\Theta = \{(t, z) \in \mathbb{R}_+ \times \mathbb{R}^n \mid \theta(t) = h(t, z)\} \]

To describe partial or uncertain information

\[\Theta = \{(t, z) \in \mathbb{R}_+ \times \mathbb{R}^n \mid |\theta(t) - h(t, z)| \leq \epsilon\} \]
A new framework for output

Consider the system

\[
\begin{align*}
\dot{z}(t) &= f(t, z(t)), \quad t \in [t_0, t_f], \quad \text{ODE} \\
(t, z(t)) &\in \Theta, \quad t \in [t_0, t_f], \quad \text{output}
\end{align*}
\]

where

- \(f : \mathbb{R}_+ \times \mathbb{R}^n \to \mathbb{R}^n \) is a continuous function, and \(n, t_0, t_f > 0 \).
- \(\Theta \subset \mathbb{R}_+ \times \mathbb{R}^n \), which we call the output domain

For instance, for standard output equation

\[
\theta(t) = h(t, z(t)), \quad t \in [0, t_f]
\]

one gets

\[
\Theta = \{(t, z) \in \mathbb{R}_+ \times \mathbb{R}^n | \theta(t) = h(t, z)\}
\]

To describe partial or uncertain information

\[
\Theta = \{(t, z) \in \mathbb{R}_+ \times \mathbb{R}^n | |\theta(t) - h(t, z)| \leq \epsilon\}
\]
A new framework for output

Consider the system

\[\dot{z}(t) = f(t, z(t)), \quad t \in [t_0, t_f], \quad \text{ODE} \]
\[(t, z(t)) \in \Theta, \quad t \in [t_0, t_f], \quad \text{output} \]

where

- \(f : \mathbb{R}_+ \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a \textit{continuous} function, and \(n, t_0, t_f > 0 \).
- \(\Theta \subset \mathbb{R}_+ \times \mathbb{R}^n \), which we call the \textit{output domain}.

For instance, for standard output equation

\[\theta(t) = h(t, z(t)), \quad t \in [0 \ t_f] \]

one gets

\[\Theta = \{(t, z) \in \mathbb{R}_+ \times \mathbb{R}^n \mid \theta(t) = h(t, z)\} \]

To describe \textit{partial} or \textit{uncertain} information

\[\Theta = \{(t, z) \in \mathbb{R}_+ \times \mathbb{R}^n \mid |\theta(t) - h(t, z)| \leq \epsilon\} \]
Definitions

Let \(t_0 \in [0, t_f) \), \(z_0, z_1, z_2 \in \mathbb{R}^n \) and \(\Sigma \subset \mathbb{R}^n \). We say that:

- \(z_0 \) generates output \(\Theta \) on the horizon \([t_0, t_f]\), if the system with output has a solution \(\bar{z} \) which satisfies \(\bar{z}(t_0) = z_0 \). Notation:
 \[
 z_0 \leadsto \Theta \text{ on } [t_0, t_f]
 \]

- \(z_1 \) and \(z_2 \) are indistinguishable if both generate \(\Theta \)

The system with output is:

- \(\Sigma \)-observable: no distinct indistinguishable states are in \(\Sigma \)
- loc. observable around \(z_0 \): \(W \)-observable for \(W \in \mathcal{N}(z_0) \)
- observable from near \(\bar{t} \) : there exists \(I \in \mathcal{N}(\bar{t}) \) such that for all \(t_0 \in I \), the system is observable on \([t_0, t_f]\)
- continuously observable from near \(\bar{t} \) if, further, the mapping \(t_0 \in I \to z_0 \), is well defined and continuous
Definitions

Let \(t_0 \in [0, t_f) \), \(z_0, z_1, z_2 \in \mathbb{R}^n \) and \(\Sigma \subset \mathbb{R}^n \). We say that:

- \(z_0 \) **generates** output \(\Theta \) on the horizon \([t_0, t_f]\), if the system with output has a solution \(\bar{z} \) which satisfies \(\bar{z}(t_0) = z_0 \). Notation:

\[
z_0 \leadsto \Theta \quad \text{on} \quad [t_0, t_f]
\]

- \(z_1 \) and \(z_2 \) are **indistinguishable** if both generate \(\Theta \)

- The system with output is:
 - \(\Sigma \)-observable: no distinct indistinguishable states are in \(\Sigma \)
 - loc. observable around \(z_0 \): \(W \)-observable for \(W \in \mathcal{N}(z_0) \)
 - observable from near \(t \): there exists \(I \in \mathcal{N}(\tilde{t}) \) such that for all \(t_0 \in I \), the system is observable on \([t_0, t_f]\)
 - continuously observable from near \(t \): if, further, the mapping \(t_0 \in I \rightarrow z_0 \), is well defined and continuous
Definitions

Let \(t_0 \in [0, t_f), z_0, z_1, z_2 \in \mathbb{R}^n \) and \(\Sigma \subset \mathbb{R}^n \). We say that:

- \(z_0 \) generates output \(\Theta \) on the horizon \([t_0, t_f] \), if the system with output has a solution \(\bar{z} \) which satisfies \(\bar{z}(t_0) = z_0 \). Notation:

\[
z_0 \rightsquigarrow \Theta \quad \text{on} \ [t_0, t_f]
\]

- \(z_1 \) and \(z_2 \) are indistinguishable if both generate \(\Theta \)

- The system with output is:
 - \(\Sigma \)-observable: no distinct indistinguishable states are in \(\Sigma \)
 - loc. observable around \(z_0 \): \(W \)-observable for \(W \in \mathcal{N}(z_0) \)
 - observable from near \(\tilde{t} \): there exists \(I \in \mathcal{N}(\tilde{t}) \) such that for all \(t_0 \in I \), the system is observable on \([t_0, t_f] \)
 - continuously observable from near \(\tilde{t} \): if, further, the mapping \(t_0 \in I \rightarrow z_0 \), is well defined and continuous
Definitions

Let \(t_0 \in [0, t_f) \), \(z_0, z_1, z_2 \in \mathbb{R}^n \) and \(\Sigma \subset \mathbb{R}^n \). We say that:

- \(z_0 \) **generates** output \(\Theta \) on the horizon \([t_0, t_f] \), if the system with output has a solution \(\tilde{z} \) which satisfies \(\tilde{z}(t_0) = z_0 \). Notation:

 \[
 z_0 \leadsto \Theta \quad \text{on} \ [t_0, t_f]
 \]

- \(z_1 \) and \(z_2 \) are **indistinguishable** if both generate \(\Theta \)

- The system with output is:
 - \(\Sigma \)-observable: no distinct indistinguishable states are in \(\Sigma \)
 - loc. observable around \(z_0 \): \(W \)-observable for \(W \in \mathcal{N}(z_0) \)
 - observable from near \(\tilde{t} \): there exists \(I \in \mathcal{N}(\tilde{t}) \) such that for all \(t_0 \in I \), the system is observable on \([t_0, t_f] \)
 - continuously observable from near \(\tilde{t} \): if, further, the mapping \(t_0 \in I \rightarrow z_0 \), is well defined and continuous
Definitions

Let \(t_0 \in [0, t_f) \), \(z_0, z_1, z_2 \in \mathbb{R}^n \) and \(\Sigma \subset \mathbb{R}^n \). We say that:

- \(z_0 \) generates output \(\Theta \) on the horizon \([t_0, t_f]\), if the system with output has a solution \(\bar{z} \) which satisfies \(\bar{z}(t_0) = z_0 \). Notation:

\[
 z_0 \rightsquigarrow \Theta \quad \text{on} \ [t_0, t_f]
\]

- \(z_1 \) and \(z_2 \) are indistinguishable if both generate \(\Theta \)

- The system with output is:
 - \(\Sigma \)-observable: no distinct indistinguishable states are in \(\Sigma \)
 - loc. observable around \(z_0 \): \(W \)-observable for \(W \in \mathcal{N}(z_0) \)
 - observable from near \(\bar{t} \): there exists \(I \in \mathcal{N}(\bar{t}) \) such that for all \(t_0 \in I \), the system is observable on \([t_0, t_f]\)
 - continuously observable from near \(\bar{t} \): if, further, the mapping \(t_0 \in I \rightarrow z_0 \), is well defined and continuous
Definitions

Let \(t_0 \in [0, t_f) \), \(z_0, z_1, z_2 \in \mathbb{R}^n \) and \(\Sigma \subset \mathbb{R}^n \). We say that:

- \(z_0 \) generates output \(\Theta \) on the horizon \([t_0, t_f] \), if the system with output has a solution \(\tilde{z} \) which satisfies \(\tilde{z}(t_0) = z_0 \). Notation:

\[
\begin{align*}
 z_0 & \leadsto \Theta \quad \text{on} \quad [t_0, t_f]
\end{align*}
\]

- \(z_1 \) and \(z_2 \) are indistinguishable if both generate \(\Theta \)

- The system with output is:

 - **\(\Sigma \)-observable**: no distinct indistinguishable states are in \(\Sigma \)

 - **loc. observable around \(z_0 \)**: \(W \)-observable for \(W \in \mathcal{N}(z_0) \)

 - **observable from near \(\tilde{t} \)**: there exists \(I \in \mathcal{N}(\tilde{t}) \) such that for all \(t_0 \in I \), the system is observable on \([t_0, t_f] \)

 - **continuously observable from near \(\tilde{t} \)**: if, further, the mapping \(t_0 \in I \rightarrow z_0 \), is well defined and continuous
Definitions

Let \(t_0 \in [0, t_f) \), \(z_0, z_1, z_2 \in \mathbb{R}^n \) and \(\Sigma \subset \mathbb{R}^n \). We say that :

- \(z_0 \) generates output \(\Theta \) on the horizon \([t_0, t_f]\), if the system with output has a solution \(\tilde{z} \) which satisfies \(\tilde{z}(t_0) = z_0 \). Notation :
 \[
 z_0 \rightsquigarrow \Theta \quad \text{on} \ [t_0, t_f]
 \]

- \(z_1 \) and \(z_2 \) are indistinguishable if both generate \(\Theta \)

- The system with output is :
 - \(\Sigma \)-observable : no distinct indistinguishable states are in \(\Sigma \)
 - loc. observable around \(z_0 \) : \(W \)-observable for \(W \in \mathcal{N}(z_0) \)
 - observable from near \(\tilde{t} \) : there exists \(I \in \mathcal{N}(\tilde{t}) \) such that for all \(t_0 \in I \), the system is observable on \([t_0, t_f]\)
 - continuously observable from near \(t \) if, further, the mapping \(t_0 \in I \rightarrow z_0 \), is well defined and continuous
Statement of the problem

Definitions

Let \(t_0 \in [0, t_f) \), \(z_0, z_1, z_2 \in \mathbb{R}^n \) and \(\Sigma \subset \mathbb{R}^n \). We say that :

- \(z_0 \) generates output \(\Theta \) on the horizon \([t_0, t_f]\), if the system with output has a solution \(\tilde{z} \) which satisfies \(\tilde{z}(t_0) = z_0 \). Notation :
 \[z_0 \leadsto \Theta \text{ on } [t_0, t_f] \]

- \(z_1 \) and \(z_2 \) are indistinguishable if both generate \(\Theta \)

- The system with output is :
 - \(\Sigma \)-observable : no distinct indistinguishable states are in \(\Sigma \)
 - loc. observable around \(z_0 \) : \(W \)-observable for \(W \in \mathcal{N}(z_0) \)
 - observable from near \(\tilde{t} \) : there exists \(I \in \mathcal{N}(\tilde{t}) \) such that for all \(t_0 \in I \), the system is observable on \([t_0, t_f]\)
 - continuously observable from near \(\tilde{t} \) if, further, the mapping \(t_0 \in I \rightarrow z_0 \), is well defined and continuous
Definitions

Let $t_0 \in [0, t_f)$, $z_0, z_1, z_2 \in \mathbb{R}^n$ and $\Sigma \subset \mathbb{R}^n$. We say that:

- z_0 **generates** output Θ on the horizon $[t_0, t_f]$, if the system with output has a solution \bar{z} which satisfies $\bar{z}(t_0) = z_0$. Notation:

$$z_0 \leadsto \Theta \quad \text{on} \quad [t_0, t_f]$$

- z_1 and z_2 are **indistinguishable** if both generate Θ

- The system with output is:
 - **Σ–observable**: no distinct indistinguishable states are in Σ
 - **loc. observable around z_0**: W–observable for $W \in \mathcal{N}(z_0)$
 - **observable from near \tilde{t}**: there exists $I \in \mathcal{N}(\tilde{t})$ such that for all $t_0 \in I$, the system is observable on $[t_0, t_f]$
 - **continuously observable from near \tilde{t}**: if, further, the mapping $t_0 \in I \rightarrow z_0$, is well defined and continuous
Outline

1. Statement of the problem
2. Connection to Viability kernels
3. Using single-valuedness results
The Observability Kernel

For each \(t \in [0 \ t_f) \), define the multifunction

\[
\mathcal{J}(t) \doteq \{ z \in \Sigma \mid z \sim \Theta \text{ on } [t, t_f] \}
\]

Then, two immediate results:

- System is \(\Sigma \)-observable on \([t_0 \ t_f]\) iff \(\text{card}(\mathcal{J}(t_0)) \leq 1 \)
- Let \(\mathcal{K} \) be the viability kernel of \(\Theta \) under system

\[
\begin{align*}
\dot{t} &= 1 \\
\dot{z} &= f(t, z)
\end{align*}
\]

(context of viability theory Aubin, Saint-Pierre, Bonneuil etc)

then, for all \(t \in [0 \ t_f) \)

\[
\mathcal{J}(t) = \{ z \in \Sigma \mid (t, z) \in \mathcal{K} \}
\]

We call subset \(\mathcal{K} \) the observability kernel of the system.
The Observability Kernel

For each $t \in [0 \ t_f)$, define the multifunction

$$\mathcal{J}(t) \doteq \{ z \in \Sigma \mid z \leadsto \Theta \text{ on } [t, t_f] \}$$

Then, two immediate results:

- **System is Σ–observable on** $[t_0 \ t_f]$ if and only if $\text{card}(\mathcal{J}(t_0)) \leq 1$
- Let \mathcal{K} be the viability kernel of Θ under system

 $$\begin{align*}
 \dot{t} &= 1 \\
 \dot{z} &= f(t, z)
 \end{align*}$$

 (context of viability theory Aubin, Saint-Pierre, Bonneuil etc) then, for all $t \in [0 \ t_f)$

 $$\mathcal{J}(t) = \{ z \in \Sigma \mid (t, z) \in \mathcal{K} \}$$

We call subset \mathcal{K} the observability kernel of the system.
The Observability Kernel

For each $t \in [0 \ t_f)$, define the multifunction

$$\mathcal{J}(t) \doteq \{z \in \Sigma \mid z \leadsto \Theta \text{ on } [t, t_f] \}$$

Then, two immediate results:

- **System is Σ–observable on** $[t_0 \ t_f]$ iff $\text{card}(\mathcal{J}(t_0)) \leq 1$
- **Let \mathcal{K} be the viability kernel of Θ under system**

$$\begin{align*}
\dot{t} &= 1 \\
\dot{z} &= f(t, z)
\end{align*}$$

(context of viability theory Aubin, Saint-Pierre, Bonneuil etc)

then, for all $t \in [0 \ t_f)$

$$\mathcal{J}(t) = \{z \in \Sigma \mid (t, z) \in \mathcal{K}\}$$

We call subset \mathcal{K} the observability kernel of the system.
The Observability Kernel

For each $t \in [0 \ t_f)$, define the multifunction

$$J(t) \doteq \{ z \in \Sigma \mid z \sim \Theta \text{ on } [t, t_f] \}$$

Then, two immediate results:

- **System is Σ–observable on** $[t_0 \ t_f]$ **iff** $\text{card}(J(t_0)) \leq 1$
- Let \mathcal{K} be the **viability kernel** of Θ under system

 $$\begin{align*}
 \dot{t} &= 1 \\
 \dot{z} &= f(t, z)
 \end{align*}$$

 (context of viability theory Aubin, Saint-Pierre, Bonneuil etc)

 then, for all $t \in [0 \ t_f)$

 $$J(t) = \{ z \in \Sigma \mid (t, z) \in \mathcal{K} \}$$

We call subset \mathcal{K} the **observability kernel** of the system.
A graphical illustration

The system is observable:
- on both $[0 \ t_f]$ and on all the horizons $[t \ t_f]$ for $t > t_4$
- from near t_3
- loc. on $[t_2 \ t_f]$ around x_0

But it is unobservable on $[t_1 \ t_f]$
The linear autonomous case

Consider the standard l. a. system

$$\dot{z} = Az, \quad \theta = Cz$$

where $A \in \mathcal{L}(\mathbb{R}^n), C \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^q)$ and $\theta \in L^2(t_0, t_f, \mathbb{R}^q)$

Then the associated observability kernel \mathcal{K} is given by

$$\mathcal{K} = z_0 + \ker(Q)$$

where $Q \doteq [C \ CA \ldots CA^{n-1}]'$ and z_0 is such that

$$C\exp(A(t - t_0))z_0 = \theta(t) \text{ for all } t \in [t_0 \ t_f]$$

If such z_0 does not exist then $\mathcal{K} = \emptyset$. Therefore the system is observable iff $\text{rank}(Q) = n$ or z_0 does not exist.
An example from Lorentz equation

\[
\begin{align*}
\dot{z}_1 &= \sigma z_1 - \sigma z_2, \\
\dot{z}_2 &= -rz_1 + z_2 + tz_1
\end{align*}
\]

with output:

\[(z_1, z_2) \in [-30, 30]^2 \text{ and } bt = z_1 z_2\]

The system is \textit{observable} on \([t_1, 50]\), for all \(t_1 \in \{0\} \cup [t_0, 50]\)
Outline

1. Statement of the problem

2. Connection to Viability kernels

3. Using single-valuedness results
Using single-valuedness results

Observability and Convexity

Consider the following implication,

\[(P) \quad z_1 \sim \Theta \text{ on } [t_1, t_f] \quad z_2 \sim \Theta \text{ on } [t_2, t_f] \implies \frac{z_1 + z_2}{2} \sim \Theta \text{ on } \left[\frac{t_1 + t_2}{2}, t_f\right]\]

Theorem (using a result by Nikodem et al.)

Assume \(\Sigma \) convex and that \((P)\) be satisfied for all \(z_1, z_2 \) in \(\Sigma \). Let \(I \subset \text{dom}(\mathcal{J}) \) be an open interval and \(\bar{t} \in I \) such that the system is \(\Sigma \)-observable on \([\bar{t}, t_f] \). Then:

- The system is \(\Sigma \)-observable on \([t_0, t_f] \) for all \(t_0 \in \mathcal{J} \)
- There exist an additive function \(\xi : \mathcal{J} \to \mathbb{R}^n \) and \(y_0 \in \mathbb{R}^n \) such that for each \(t_0 \in \mathcal{J} \), \(\xi(t_0) + y_0 \sim \Theta \text{ on } [t_0, t_f] \)
Using single-valuedness results

Observability and Monotonicity

Consider the following statement,

\[(Q)\]

\[
\begin{align*}
z_1 & \rightsquigarrow \Theta \text{ on } [\pi_1(y_1) \, t_f] \\
z_2 & \rightsquigarrow \Theta \text{ on } [\pi_1(y_2) \, t_f] \\
\implies (y_2 - y_1, z_2 - z_1) & \geq 0,
\end{align*}
\]

for \(z_1, z_2\) and \(y_1, y_2\) such that \(\pi_1(y_i) \in [0, t_f]\) for \(i = 1\) or \(2\)

\(\pi_1\) : the first projection

Theorem (using a result by Zarantonello)

Assume \(\text{int}(\mathcal{K}) \neq \emptyset\) and \((Q)\) holds for all \(z_1, z_2\) in \(\Sigma\). Then System is \(\Sigma\)–observable on \([t_0 \, t_f]\) for a. e. \(t_0\) in \(\text{dom}(\mathcal{J})\).
A Characterization

\[z_1 \sim \Theta \text{ on } [\pi_1(y_1), t_f] \text{ and } z_2 \sim \Theta \text{ on } [\pi_1(y_2), t_f], \]

\[\langle y_2 - y_1, z_2 - z_1 \rangle \geq -\langle y_2 - y_1, \tau(y_2) - \tau(y_1) \rangle, \]

for couples \((z_1, z_2), (y_1, y_2) \in \mathbb{R}^n \times \mathbb{R}^n\), such that \(\pi_1(y_i) \in [0, t_f]\) for \(i = 1\) or \(2\) and a function \(\tau : \mathbb{R}^n \to \mathbb{R}^n\).

Theorem (using a result by Levy and Poliquin)

Let \(\bar{t} \in [0, t_f]\), \(\bar{y} = (\bar{t}, 0, \ldots, 0)\)' and \(\bar{z} \sim \Theta \text{ on } [\bar{t}, t_f]\). Then the system is continuously observable from near \(\bar{t}\) iff:

- There exist \(U \in \mathcal{N}(\bar{y}), V \in \mathcal{N}(\bar{z})\), and \(\tau : U \to V\) continuous, such that \((R)\) holds for all \((y_i, z_i) \in U \times V\)

- If \((t_q)_q\) converges near \(\bar{t}\), there exists \((z_q)_q\) which converges near \(\bar{z}\) such that \(z_q \sim \Theta \text{ on } [t_q, t_f]\), for all \(q\).