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ABsTRACT. We study the homogenization and singular perturbation of the wave
equation in a periodic media for long times of the order of the inverse of the
period. We consider inital data that are Bloch wave packets, i.e., that are the
product of a fast oscillating Bloch wave and of a smooth envelope function. We
prove that the solution is approximately equal to two waves propagating in op-
posite directions at a high group velocity with envelope functions which obey a
Schréodinger type equation. Our analysis extends the usual WKB approximation
by adding a dispersive, or diffractive, effect due to the non uniformity of the
group velocity which yields the dispersion tensor of the homogenized Schrédinger
equation.
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1. INTRODUCTION

The homogenization of the wave equation in periodic media is a well studied subject
(see e.g. [9], [10], [17], [19], |28]). It is known that, for non oscillating initial data
(often called low frequency data), the homogenized limit is again a wave equation with
effective coefficients that can be computed as in the static case. On the other hand, for
oscillating initial data in resonance with the periodic medium (so-called high frequency
data), the usual two-scale asymptotic method breaks down and one needs to use the
famous WKB method (Wentzel, Kramers, Brillouin) to deduce that the asymptotic limit
of the wave equation is described by geometric optics, i.e. eikonal equations for the phases
and transport equations for the amplitudes of the waves (see e.g. [9], [17] or Section 6
below for a brief account).
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The present work pertains to the second category, namely homogenization with high
frequency data. However, the novelty is that we are interested in a much longer time
scale, way beyond the geometric optic regime. In this new limit regime, called diffractive or
dispersive regime [14], [15], [16], the phase is still the solution of the WKB eikonal equation
but the amplitude, or envelope function, is not any longer solution of a transport equation
but rather solution of a Schrédinger type equation (in a moving frame of reference).
Therefore, our homogenized model describes dispersive properties of the wave equation
for very long times (as already recognized in a special case in |2]). More precisely, we
study the homogenization of the singularly perturbed wave equation

)
2 0 < aua) —div(A:Vu) =0 inRY x (0,7,

A
(1.1) u:(0,7) = ul(x) in RV
Ou, o N
\ ﬁ(o,x) = u_(z) in RY |

where T' > 0 is a final time, A. and p. are oscillating coefficients of the form
t t
(12) AE(]}) - AO <£> + €2A1 (t7 - T, z) ) pé‘(m) = Po <£> + €2p1 <t7 EZ E) )
€ e ¢ € e ¢

with po(y) and Ay(y), real bounded periodic functions of period (0, 1)" such that the den-
sity po is strictly positive and the tensor Ay is symmetric uniformly coercive (see Section
2 for precise assumptions). The macroscopic modulations p; (¢, 7,z,y) and A;(t, 7, x,y)
are smooth bounded functions which are periodic of period (0, 1)" with respect to y (they
also satisfy assumption (1.7) below). The second order time derivative in (1.1) has been
written in conservative form because the density p. may depend on time. Of course, if p.
is independent of time, the inertial term is just equal to £2p.(9%u.)/(0t?) as usual. There
is also an £? scaling factor in front of the time derivative which corresponds to very long
time. Indeed, upon introduction of a new time variable 7 = !¢, the usual wave equation
(without scaling) is recovered. Thus a time ¢ of order 1 is equivalent to a long time 7 of

1

order ¢! (see Section 6).

We consider the following type of high-frequency, with linear phase initial data

0/, _ r R 1oy L T 2ir 202
(13)  ul@) = v (S.60) ™ Fup(a),  and ul(e) = v (Z.00) T (a),

where vy and v, are sufficiently smooth functions and 1, is a so-called Bloch eigenfunction,
solution of the following spectral cell equation in the unit torus TV

(1.4) —(div, + 2in0) <A0(y)(Vy + 2i7n9)wn> = M\(@)po(y) ¥ in TV,

corresponding to the n-th eigenvalue or energy level \,(6). As usual the interpretation
of the Bloch parameter 6 is that it is a reduced wave number and the eigenvalue is the
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square of a time frequency w,(y) defined by

wn((%) = 1/ )\n(eo)
The derivative of the frequency with respect to the wave number gives the group velocity
1 1

1
(1.5) V= %Vu}n(@o) = EWVATL(Q())?

and the divergence of the group velocity yields a dispersion tensor
A 1
(1.6) A= gdlv@v = 4—7T2V9V9wn(90).

Our main assumptions is that \,(6p) is a simple eigenvalue and that the modulated
coefficients p; and A; are "invariant along group lines", i.e.,

In truth, we shall make a weaker but more technical assumption than (1.7) (see Section 5
for further details). We prove that, as € goes to 0, the solution of (1.1) is asymptotically
the sum of two wave packets

(1.8)
 onw wn (8) Y _;wn(f) %
u(t,z) =~ 62”007¢n <£,6’0> (e’ 2t (t,x+ —t) + ety (t,x - —t)) ,
€ £ €

in a sense of weak two-scale convergence (see Theorem 5.1 and Remark 5.4). The envelope

functions v and v, in the right-hand side of (1.8), are solutions of two Schrédinger
equations, see (5.2) and (5.5). Each of them carries half of the initial data v° and opposite
contributions in terms of the initial velocity v!. The fact that the homogenized equations
are of Schrodinger type was observed in the physics literature [24], [29]. It is similar to the
dispersive geometric optics of [14], [15], [16] and is reminiscent of the so-called parabolic
or paraxial approximation for waves propagating in a privileged direction [7], [23], [30].

Formula (1.8) yields a family of approximate travelling wave solutions of (1.1) with a
coherent structure, even for long times. Remark that, when the group velocity V is zero
(which happens, at least, at the bottom and top of each Bloch band), (1.8) is rather a
stationary solution which is trapped by the periodic medium. As is well known there
exists no propagating solution of the type of (1.8) with a frequency w when w? is in a gap
of the Bloch spectrum, i.e. when w? # \,(0) for all n > 0 and § € TV. This property
is a key feature of photonic crystals (see e.g. [8], [22]). The fact that the homogenized
equations for the envelope v and v~ are Schrodinger equations is a confirmation of the
dispersive properties (i.e. the nonlinear character of the effective dispersion relation) of
periodic composite materials as already studied in [2], [3], [13], [28].

We give a weak convergence proof of (1.8) (see Theorem 5.1) which is based on the
notion of two-scale convergence with drift and on a simple, uniform in time, L? in space,
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estimate for the solution of (1.1). A strong convergence proof (for smooth coefficients),
including the construction of infinite order asymptotic expansion of the solution, is given
in a companion paper [5]. Note that, for technical reasons, the notations of the present
paper and of [5| are not exactly the same.

The content of this paper is the following. Section 2 recalls the necessary tools of Bloch
transform and two-scale convergence. Section 3 is concerned with the simpler case of
purely periodic coefficients, i.e., p; = 0 and A; = 0 in (1.2). The asymptotic analysis is
much simpler since it reduces to a Taylor expansion in the explicit formula for the solution
in terms of Bloch waves. Section 4 is devoted to a priori estimates for (1.1) which are
uniform with respect to €. Section 5 contains our main homogenization results and their
proofs. Section 6 makes a comparison with the well-known WKB method of geometric
optics.

2. PRELIMINARIES

In the present section we give our main assumptions, set some notations and a few pre-

liminary results needed for stating and proving the main results of this paper.
We first assume that the coefficients py(y) and (Ag(y));; are real, bounded and periodic
functions, i.e. they belong to L>°(TV), and that p; (¢, 7, z,y) and (Ai(¢, 7, z,v));, as well
op1 op1

as their time derivatives 5 and Fim

periodic with respect to y (they could be merely Caratheodory functions, i.e., measurable

(same for (A;);;), are bounded continuous functions,

with respect to y and continuous in ¢,7,z). In Section 5 we will make an additional
assumption on p; and A; which we do not specify here.

Furthermore the density function pg is uniformly positive, i.e. there exists a positive
constant C' > 0 such that py(y) > C a.e. in TV, and the elastic tensor A, is symmetric,
uniformly coercive, i.e. there exists another positive constant C' > 0 such that Aq(y)(-¢ >
C|¢|? for any ¢ € RY and a.e. in TV.

Under these assumptions it is well-known [9, 12, 21, 27| that, for any value of the
parameter § € TY, the cell problem (1.4) defines a self-adjoint compact operator on
L?(TV) (with the scalar product defined by (u,v) = [y pout dy) which admits a countable
sequence of real increasing eigenvalues {\,},>1 (repeated with their multiplicity) and
orthonormalized eigenfunctions {1, },>1 with [Ly po|tn|* dy = 1. The dual parameter ¢
is called the Bloch frequency and it runs in the dual cell of TV, i.e. by periodicity it is
enough to consider # € TV .

Our main assumption is that there exist an energy level n > 1 and a Bloch parameter
0, € TV such that

(2.1) An(0o) > 0 is a simple eigenvalue.
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Remark 2.1. We recall some basic facts about the Bloch spectral problem (9, 12, 21, 27|.
The minimum of \(0) is zero and is uniquely attained at 6 = 0 (this is a consequence
of the mazimum principle). Furthermore, the Hessian matriz at 0 = 0, VoV (0), is
positive definite since it is equal to the usual homogenized matriz for equation (1.1). In
particular, it implies that there exists a positive constant C' > 0 such that \1(0) > C|0]2.

On the other hand, for any n > 2, there exists another positive constant C > 0 such that
ming A, (0) > C > 0.

Remark 2.1 implies that \,(6y) > 0 except if n = 1 and 6y = 0. Therefore, the
important part of assumption (2.1) is the simplicity of the eigenvalue. However, recall
that simplicity is always generic, meaning that multiple eigenvalues are much more seldom
than simple ones.

Under the simplicity assumption (2.1) it is a classical matter to prove that the n-th
eigencouple of (1.4) is smooth in a neighborhood of 6y (see e.g. [20]). To simplify the
notations we introduce three operators, A, (#), B(#) and C(#), defined by

operator] (2.2) A.(0)v = —(div, + 2in0) <A0(y)(Vy + zmew) —M(@poly)d Ve € LTV,
operator2| (2.3) B(0)w = Ag(y)(V, + 2imf)yy Vb € L*(TV),

operator3| (2.4) C(0)¢ = (div, + 2in0)(Ag(y)p) Vo € L*(TV)V.
Denoting by (ex)1<x<n the canonical basis of RY and by (6;)1<p<n the components of 6,
the first derivative of (1.4) is

Wi _ diey - B(0)4, + 2irC(0)(exbn) + O

derivi| (2.5) A,(0)

(0)po(y)n,

0. 00,
and its second derivative is
Py : My M\ | O\, Oy,
A"(Q)aeka@ = 2imey - B(0) 20, + 2imC(6) (ek 20, ) + 20, (0)po(y) 20,
(2.6) oirer- BO) 22 1 2inC(9) (@220 ) + P )y () 20
00y, 00, a0, 00,

PN\,
—4mep Ao(y)erhn — Amei Ao (y)exthn + (0)po(y)¥n .
00,00,

Multiplying (2.6) by 1,,, recalling the normalization of 1, and integrating by parts we

obtain
4%2 a%jggk 0) = /T (2P Ager - e — 7 O, (vk%—qg? ), ?gz)
(2.7) +% @nm(e) gqg: - +EnB(9)%§j -ek)
~giz (G BO e+ B0 ) Y.
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We now give some results on the Bloch decomposition associated with the spectral
problem (1.4) (see e.g. [9, 12]).

Lemma 2.2. Let u(y),v(y) € L*(RY). Define their Bloch coefficients for n > 1 and
0 €TV

an(0) = / po(y)u(y) Py, O)e ™ dy ,  B,(0) = / po(y)v(Y) i, (y, 0)e™ >V dy.
RN RN
Then, oy, 3, belong to L*(TV) and
_ OV (y, )2V | _ 0V (1. )2 V0 |
o) =3 [ an®)iniy. 0 ) =3 [ 0o
and they satisfy the Parseval equality
L mwuwrdy =3 [ 0050 d.

n>1

In other words, the Bloch transform u — {c,(0)}n>1 is an isometry from L*(RY) into
2(L*(TYN)). Furthermore, the Bloch transform diagonalizes the elliptic operator in (1.1),
in the sense that

[, A ut) Vo) dy =Y [ 2 (0)an15,6)do.

n>1

We recall the notion of two-scale convergence (see [1, 26]).

Proposition 2.3. Let {v.}.~¢ be a bounded sequence in L*(RY). There ezists a subse-
quence, still denoted by ¢, and a limit v*(x,y) € L*(RY x TV) such that v. two-scale
converges weakly to v* in the sense that

lim - ve(T) <x, g) dr = /RN /TN v (x,y)o(z,y) dx dy

e—0

for all functions ¢(z,y) € L? (RN; C’('JTN)) (i-e., (0,1)"-periodic with respect to y).

In truth, in order to homogenize (1.1) we will need the following extension of the notion
of two-scale convergence which was introduced in [25].

Proposition 2.4. Let V € RY be a given drift velocity. Let {v.}.~o be a uniformly
bounded sequence in L?((0,T) x RY). There exists a subsequence, still denoted by €, and a

limit function v*(t,z,y) € L*((0,T) x RY x TV) such that v. two-scale converges weakly
with drift to v* in the sense that

T
lim/ / ve(t, x)¢ <t,x + Xt, E) dt dx =
e—0 0 RN g 19
T
| [ ] vtaotay aasay
0 RN JTN

(23)
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for all functions ¢(t,z,y) € L* ((0,T) x RN; C(TY)). Furthermore, if
ll_{% [vell 20, myxr™) = 10" L2((0,1) xRN x5

then the subsequence v. two-scale converges strongly with drift to v* in the sense that,

for any other sequence w. which two-scale converges weakly with drift to w*(t,x,y) €
L*((0,T) x RY x TV), we have

hm// vatsttxdtdx—// / “(t,x,y) w*(t, x,y) dt de dy.
e—0 RN RN JTN

Of course, the two-scale limit v* in Proposition 2.4 depends on the chosen drift velocity
Y but not on the final time 7. We emphasize that, except when }V = 0, Proposition
2.4 does not reduce to the usual definition of two-scale convergence upon the change of
variable z = x + gt because there is no drift in the fast variable y = £.

In the sequel we shall need the following technical lemma which will be applied to the
modulated coefficients p;, A;.

Lemma 2.5. Let a(t, 7, z,y) be a continuous bounded function on RT x RT x RY x TV
such that v — sup, ., |a(t, 7, 2,y)| belongs to L*(RY), and which admits a "weak average
on group lines", i.e., there exists a function a(t,x,y) such that

1 (7
(2.10) lim 7 / a(t,7,x = V1,y)dr = a(t,z,y),
0

T—~+o0

uniformly in (t,z,y). Then, a(t,L,z,2) two-scale converges weakly with drift to a(t,z,y).
Furthermore, if a(t, 7, z,y) admits a "strong average on group lines”, i.e., on top of (2.10)
a(t,x,y) satisfies also

1 [T
(211) Jin 2 [ d s = vrg)dr = @2a),
then a(t, £, z,2) two-scale converges strongly with drift to a(t,z,y).

Remark 2.6. In the sequel we shall assume that the modulated coefficients py, A1 satisfy
the hypothesis of "strong average on group lines"” (2.10)-(2.11). Note that (2.10)-(2.11) is
implied by assumption (1.7) on "invariance along group lines". In our companion paper
|5] we make a different, slightly weaker, assumption on the modulated coefficients py, A;:
we still assume (2.10) but we replace (2.11) by another assumption similar to (2.10) but
inwvolving more reqularity of the coefficients.

Proof. Under assumption (2.10) we compute the limit of

A, //RN t—x—gb(tw—i—v )dtdx
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for a smooth, compactly supported function ¢(¢,x,y) € L2 ((O,T) x RY; C(']I‘N)). We
first make the change of variables 2/ = x + ¢Vt

T t x, x/
A= / / alt, -, o' —e WVt — —e V1) ¢ <tx — - e‘th) dt da'.
o JrN € € €

Let ¢ > 0 and {m.} C N be a sequence of integer numbers such that m.c — o. Intro-
ducing a regular paving RY = Uy c,nYE with Y = 25 + (0,em.)Y and 25 = em.k, using
the continuity of a and ¢, we deduce

T
t
A€ - Z (€m5>N / / CL(t, 57 xi - 6_1Vt7 y) ¢ (t7 xi? y) dt dy + 56,0
0 TN

kezN

where 0. , denotes at various places different sequences of numbers going to zero as ¢,0 —
0. For a large positive integer M we introduce a subdivision 0 =ty <t; < ... <ty =T
such that, for all 0 <i < M — 1,

1
||a(tv ) ) - a(ti’ ) ')”LOO(R*',]RN,'JTN) < M Vt € [ti’ ti-i-l]’

and the same for ¢. Then

M-—1 tit1 +
AE - Z Z (6m6>N/ QS (tw'ri?y) (/ a(tia gwri - 5_1Vt>y> dt) dy + 66,0"
™ t;

1=0 kezZN

For € small, the points x; are close to ok and therefore, by continuity, we can replace z}
by ok in both a and ¢, up to a small error. Then, introducing s = ¢!t we obtain, as ¢
goes to 0,

tit1 t et et
/ a(ty, —, ok —e Wt,y)dt = s/ a(t;, s, ok — Vs, y)ds — 6/ a(t;, s,ok —Vs,y)ds
t; € 0 0
— (tiy1 — t)alts, ok, y)
by virtue of assumption (2.10). Consequently

M-1

Ac=>"> oNtim—t) | ¢(tioky)alts ok,y)dy + 6.,
TN

1=0 kezZN
which, for €,0 — 0 and M — +00, is just a Riemann sum approximation of

T
/ / / a(t,z,y)o(t,x,y)dtdedy = lim lim lim A..
o JrNJTN M 0

— 400 0—0e—

Therefore a(t, £, z,2) two-scale converges weakly with drift to a(t, z,y). The proof of the
strong two-scale convergence, under assumption (2.11), is completely similar, so we safely
leave it to the reader. O
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Notations. The same letter C' denotes various positive constants which are all indepen-
dent of € but whose precise value may change from place to place. Moreover by abuse

Oy,
5p W 0)

of notation we write 1, (y) and %(y) to indicate the value of 1, (y,6) and

respectively, evaluated at the point 0 = 6, :

oy, Oy,
¢n(y> = wn(:%eO)? (;g (y) = (;/‘; (y7‘90) :

Finally throughout this paper the Einstein summation convention is used.

3. EXPLICIT SOLUTIONS IN THE PERIODIC CASE

In this section we restrict ourselves to the case of purely periodic coefficients, with
no macroscopic modulations, and to special initial data defined as superposition of Bloch
waves. Under those simplifying assumptions we obtain an explicit formula for the solution
of the wave equation (1.1) on which, by means of a simple Taylor expansion, we can read
off the homogenized equation. More precisely, we take A; =0 and p; = 0 in (1.2) so that
the coeflicients are now purely periodic, i.e.

x x
On the other hand, instead of (1.3) we consider the following initial data

ul(z) = / o)y, (% 0o + en) etimat2im U g
(3.2) e

U;(.CE) — 5_2/ ﬁ(n)wn <£7 00 + ET]) 62i7m~x+2i7r90%dn’
e—1TN 5

where a(n) and 3(n) are smooth functions with compact support in RY. The advantage
of (3.2) is twofold. First, upon the change of variables 6 = 6y + en, the initial data is
already written as a Bloch decomposition (see Lemma 2.2) which is useful when we shall
diagonalize the wave equation (1.1) by means of the Bloch transform. Second, thanks
to the assumption on the compact support of o and (3, the integrals on ¢ !T" can be
replaced by integrals on R (for sufficiently small ¢) which yields a connection with the
usual Fourier transform. Specifically, let us define the inverse Fourier transforms of o and

g
’UO(QS) = / a(n>62iﬂn.xdn7 and Ul(x) — 6(77)62i7r77.xdn’
RN RN
then, by a simple Taylor expansion of ¢, in (3.2), we deduce the following
Lemma 3.1. Under assumption (2.1) on the simplicity of \,(0y), we have
T _bg-x
() = (£60) 25 00 @)y < Ce,

Z iwm
Je2ut(w) = b (£,60) €7 0} (@) |y < Ce.
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QOur main result in this section is

hm.explicit| Theorem 3.2. Under the above assumptions and the simplicity hypothesis (2.1), the so-
lution of the wave equation (1.1) is given by

eq.explicit| (3.3)
9500 x jenot V% _jen()t v
ue(t,z) = e < i, (—,80> e v (te+—t|+e 2 v tex——t) |+r(t,x)
€ 5

€
with
[r<(t, )| Lo (0,my xrvy) < Ce,

and vt € C ([O,T]; LQ(RN)) is the solution of the homogenized problem

+
:l:QiaL —div(A*Vvi> =0 in RN x (0,7),
ot
eq.pbhom| (3.4) . . 1 N 1 .
v =0.2) = 5 (@) % pmui(@) in Y,

where w,(0y) = \/An(6o), V is the group velocity defined by (1.5) and A* is the homoge-
nized dispersion tensor defined by (1.6).

Proof. Use the Bloch decomposition of Lemma 2.2 to diagonalize the elliptic operator in
the wave equation (1.1). Write

+o00
X . . 00
ue(t,z) = § :/ o (t,n) Y <—,90 + 517) 2T 2T gy
k=1 /e 1TV €

where the Bloch coefficients are determined as solutions of the initial value problems,

1>
dos,

d*a5  MN(Oy + €
(35) 52 dtQk + k( ° ,r]> Oéi - 07 062(0) = 04(77)51m7 dt (O) - 5_25(77)5%,

g2

where 0y, is the Kronecker symbol. For k # n it follows that o = 0. For k = n the
solution is equal to,

9
1 . - ( en)x | wn( en)
ug(t,x) = —/ (a(n) _ M) 1% <£7 90 + 57]) 62m 90+€ 1 950;— tdn
e~ 1TN Wn ) €

2 (0o + en

1 Zﬁ(n) (.7} gip Boten)-w . wn(8g+en) ,

5 7, _ N n ) 8 > v € t 52 d
+2/g—1w (a(nHwn(@oJren) Un (.00 +en) e 0

Perform a Taylor expansion to second order to find,

1
wn(Bo +em) = wn(bo) + Vw,(6o) - en + §Van(60)5277 n+ 0O(?)

1)

= wn(0o) + 2wV - en + 2w A%y - + O(?).
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Plug (3.7) into (3.6) and use a zero order Taylor expansion of ¢, to obtain

formulona| (3.8)
1 X ._0g-xz | .wn(8p)
(b = 50 (L o)t |
ue(t,z) = 59 ~oto)e

e~ 1ITN

i3(n) ) i (x4 Y t)n+2in? A*nnt+O(e)t
_ 1TT\X c 1T 1> d
(a(n) o)) n

+ %wn<§’ 80) €2iw%%—i%@t/ <a(77) + Zﬁ(ﬁ) >€2z'7r(z—%t)-n—QiﬁzA*n-nt—l-O(s)tdn
e~ 1TN

+ R.(t,x)

where R. is the sum of higher order remainders, smaller than ¢ in the L* norm. Since

the functions a and (3 are compactly supported, for ¢ sufficiently small we can replace the
integrals over ¢ 'TV by integrals over the whole space R and replace the factor e®)*
by 1 since we consider finite times 0 < ¢ < T. To show that we obtain formula (3.3),

consider the Fourier transform of the homogenized problem (3.4)

v

+2i + 412 A ot =0 in (0,7) x RY,

curierhongy] (3.9 YL L) R

0t =0,n) = 3 (ﬁo(n) + o ()

The solution to (3.9) is given by

o (t,z) =

(a(n) + ﬂ))) 2T AT

iwn(ﬁo

Therefore (3.8) can be rewritten as

. _Og-x | .wn(fpg)t .
e(t,2) = (0 )T / o () Emgy
R
x . Oz .wn(Op)t .
+ wn <_7 00> 62”‘-0?_27620 / ’f]_(t, x)€2z7r(z—%t)'77d77 + T'E(t, .Z')
g RN

. -z .wn (6g)t V .wn(0p)t V
= ezmeoTwn <£,80> <eZ =yt <t,x + —t) +e Iy <t,x — —t)) +r(t,x)
€ 5 €

where 7. takes into account the term R. in (3.8) and the approximation we have done by

replacing e by 1, and is of order ¢ in the L> norm. O
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Remark 3.3. If, as in (3.7), we expand 1, to second order in ¢ we construct correctors
which could improve the error estimate. We obtain

N €
o 2im 2t ienColt AL S LN CAN el
u(t,z) = e <w" <5> W)+ 24 — 00y, <5> <aa7k
& i 4, () o \*
A2 Pyt 86k891 £ axkaxl
N g
2im 202 _jen(o)t TN (o) + On (Y (OV-
Te : <¢n<€>(v ) + o0 20, (5) (69@;)

s Py (O
472 = 00,00, \ e/ \ Ox1,0x; ‘
In (3.10) we use the notation

(vh)E = ot (t,x+gt) : (v7)° = v (t,m— gt) ,

and similarly for their derivatives. However, to get an error of order O(g3) in the

(3.10)

L>((0,T) x RY) norm in (3.10), we also need to perform a second order expanson of
the remainder €®©* in the integrand of (3.8) which would add new differential terms with
coefficients of order e and £ in the homogenized equation (3.4). Equation (3.10) is the be-
ginning of a two scale asymptotic expansion of u.. An infinite order asymptotic expansion
of ue is performed in our companion paper [5].

4. A PRIORI ESTIMATE

We now come back to the general case of oscillating coefficients which are macroscop-
icaly modulated, as defined in (1.2). The goal of this section is to obtain a uniform a
priori estimate for the solutions of equation (1.1). Remark that uniform bounds for (1.1)
are not completely obvious, neither standard, because of the time scaling. Moreover ob-
serve that, although we do not require any positivity assumption on the coefficients p;
and A;, for each ¢ sufficiently small the existence and uniqueness of the solution u. in
C([0,T]; HY(RY)) N CL([0,T]; L*(RY)) is ensured by the positivity assumption on p, and
Ap together with the assumption of boundedness of p;, A; and their time derivatives.

Proposition 4.1. The solution u. of (1.1) satisfies

ou
2 € 0 1
(4.1) €”quHLOO((QT);LQ(RN)N) +e€ HE Lo ((0.T):L2(RN) < C (HU ||H1(RN) + ||U HLQ(RN)> s
and
(4.2) [te || Lo 0,72y < C (HUOHHI(RN) + ”UlHH?(RN)) ’
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where C(T') > 0 is a constant which does not depend on ¢.

e

Proof. In a first step we multiply the wave equation (1.1) by %= and take the real part
to obtain an energy conservation which is not exact because the coefficients depend on
time. Introducing the energy

1 ou. |°
(4.3) E(u.(t)) = —/ (52p€ =l 4+ AV, - Vm) dz,
2 RN at
we obtain
2 Opre |Ou > 0A.
(44)  B(u.(t)) = E(u.(0)) + %/0 /RN (—52 g;’ (;i + =55V, - VI | dsd,
where p1o(t,z) = pi(t, £, 2, %) (same for A;.). Here and in the sequel, for the sake of

notational simplicity, we adopt the convention that

Oe _ 0 LA Y (/I L Y R
o~ ot (pl(t’e’x’a))_(at L= t’a’x’é '

1

Thus, the time derivatives of p; . and A, are of order e, and the dissipative term in

the energy balance (4.4) is bounded by
CTe max E(u.(t)),

0<t<T
which, for small ¢, implies
B(u.(#)) < CE(u.(0)).
Because of our choice of initial data (1.3), we deduce (4.1). To obtain (4.2) we use a
classical regularization trick, namely we define

t
(4.5) w(t,z) =e " </ euc(s, x)ds + Xg(x)) :
0

where Y. is defined as the unique solution in H!(R") of

eq.chi| (4.6) —div (A (0) Vo) + 7?0 (0)xe = —2p.(0)ul + ve?p(0)u?  in RY.

The time exponentials in the definition of w, yield a zero-order term in (4.6), when v # 0,
which makes the analysis easier. In the sequel it is enough to take v = 1. The notations
A.(0) and p.(0) mean that these coefficients are evaluated at time ¢ = 0. In particular it
implies that y. does not depend on time. By definition of w., one finds

@)
t ¢
/ e*div (A.Vu.) ds = / div (Aevg(ewswe)) ds =

¢
_ / div (%V(e”swa)) ds + e'div (A.Vw,) (t) — div(A.(0)Vx.) .
0
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On the other hand, using (1.1) we write

t

t
(4.8) /e_Qeysdiv(AEVuE)ds:/ e’
0 0

- vt%aw‘f
ot ot

Then, combining (4.7) and (4.8), a lengthy but simple computation shows that w, is the

0, Ow.
—)dS = ew(a(paa—uz) - 72p8w5>

SIS
=~
o)

o5

~

t
Op.
+p(0)(yul —u )+7/ 6”8(6—2 + ype) ucds .

unique solution of the same wave equation with different initial data and a source term

522 <p€%) —div(A.Vw,) = f. inRY x(0,7),

ot ot
(4.9) we(0,2) = xs(a) in R
e (0,2) = ul(a) ~ el) in B

where the source term is

0p1.. Ow t _ 0p1.. Ow . 0A,
— 4 € € _ 2 ’Y(S t) 2 € € "SV
Jelt.z) = o ot - /0 ‘ (57 ot ot +div( ot we) ) (s)ds

Remark that this source term vanishes if the coefficients do not depend on time. We write

the energy conservation for w,

M%@>=Emmm+l 7.2

RN
2
ow,

+§ /t / —52 apl,e
2 0 RN at at

E(w.(0)) = %/RN <€2pa |l — x| + AV - VXE) dz.

As in the energy balance (4.4) for u., the dissipative term on the last line of (4.10) is

(4.10) DA,

ot

Vuw, - V@E) dt dz,

with

bounded by CTe maxo<i<r E(w.(t)). In order to estimate the other dissipative term due
to the source term, we first compute its part involving A; . by two integrations by parts

—€ / / awa / eW(S_t)div(agl;’E Vw,)(s)dsdt dx
RN
= —¢ / / 6A1 “Vw, -V (w6 — e“’(t_T)wa(T)) dt dz
RN

A
+e / / / 6'7 (s—t h(s)vfwa(‘g) . ng(t) ds dt dz
o Jry Jo ot

which is again bounded in absolute value by CTemaxo<;<r E(w.(t)) because

int and z

OA1 -
ot

uniformly bounded by Ce™!. The other terms involving the time derivative of p; . in the

1S
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definition of f. are easy to bound and we obtain the following estimate
H Jw, |2

t
/ o .
0 Ot MLe=((0,1):L2(RN))

Thanks to Proposition 4.2 below we have E(w.(0)) = O(g?). Thus, we deduce that
E(w.(t)) = O(¢?) and

< (CTe (max E(w.(t)) + €

0<t<T

<C
((0,T);L2(RN))

Since w.(0) = y. which is bounded in LQ(RN ), we also deduce

|5

[well Lo 0.1y 22 @Yy < C.

Finally, by definition of w. we have

ow,
(4.11) e = —,

which implies (4.2). O

Proposition 4.2. For vy # 0 the solution x. of (4.6) satisfies
HX‘EHLQ(RN) + E_IHVXEHLQ(RN)N < C.

Remark 4.3. While the estimate on ||V Xc|| 2w~ )~ provided by Proposition 4.2 is optimal,
that on || x:||2@yy is too pessimistic. Indeed, by formal two-scale asymptotic expansions
it 1s easily seen that

Xs(m) ~ )\n_(;O) 62iw?¢n<§>v1($) .

Therefore we expect that the optimal estimate is || x| 2@y) < Ce%. A proof of this can
be obtained by comparison between x. and a truncated two-scale asymptotic expansion of
it. Howewver, such a proof is tedious since it requires at least four terms, i.e. up to the &
term. We skip it since it is not necessary for the sequel.

Proof of Proposition 4.2. Recall that, by assumption (2.1), we have \,(6p) > 0 which
implies that, either 6, # 0, or n > 2 if ) = 0 (since the only forbidden case is A\;(0) = 0).
Multiplying (4.6) by x., integrating by parts, using the coercivity assumption on the
coefficients and the definition (1.3) of the initial data yields

IV ey + 2 cley < €| [ et (01 = rug)ada.
RN

Let us prove that

[T
RN

which clearly implies the desired result.

(4.12) < Cello'|| g2y (IVXell z2@yy + €llXell n2@ny)
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First case: assume that 6y # 0. By Lemma 4.4 there exists V' € L*(T")" such that
—div(Ve¥™0v) = poih, 2™V v c TV,
VI z2exvyy < Cllpotnll Loy -
Therefore after integrating by parts we can rewrite the left hand side of (4.12) as follows

(4.13) e / V(f)e%“’%‘z-<UIW€+Y€W1) dz |
RN 9

We can apply once more Lemma 4.4 to the second term in (4.13) to obtain

Xz

2 [ W . V(. Vo) dr

RN g

where WV is a matrix-valued function with entries in L>°(T%). Since V and W are bounded
functions, Cauchy-Schwarz inequality then leads to (4.12).

Second case: assume now that 6, = 0 and n > 2. Since A\;(0) = 0 and ¢4 (y,0) = 1,
by orthogonality of the eigenfunctions we deduce

[ w00 dy =0,

Therefore we can still apply Lemma 4.4 and a calculation completely similar to that in
the first case yields the same result. This concludes the proof of Proposition 4.2. 0

We conclude this section with a technical lemma on the divergence of Bloch wave vector
fields that was used in the proof of Proposition 4.2.

Lemma 4.4. For any n # 0 € TV, there exists a positive constant C(n) > 0 such that,
for any o € L*(TY), there exists a (non unique) vector field V € L*(TN)N such that

—div(V(y) e*™Y) = o(y) ™ in TV,
(4.14) V[ L2evy < C)llpll 2oy -

When n = 0 the same result holds true provided that fTN pdy =0, and in such a case one
can choose the vector field V such that f'JTN Vdy =0.
Furthermore, if o € L>®(TY), then the vector field V is continuous in TY.

Proof. For n = 0 this is a classical result. For n # 0, we introduce the unique solution
x € HY(TY) of

(4.15) —(div + 2imn)(V + 2imn)x = ¢,

and we define V := (V + 2imn)x which solves (4.14). If ¢ € L>°(TY), then x € W*P(T")
for any finite p and, by Sobolev embeddings, V is continuous in T%. 0J
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5. HOMOGENIZATION

Recall that the time frequency w is related to the reduced wave number (or Bloch
parameter) ¢ by the so-called dispersion relation w(fy) = \/A,(6p). Then, the group
velocity V is defined by (1.5) as Vyw(6y)/2m. Our precise assumptions on p; (¢, 7, z,y) and
Ay (t, 7, x,y) are that they both satisfy the hypothesis of "strong average along the group
lines" (2.10) and (2.11) with averages denoted by p;(t,z,y) and A (t,z,y) respectively
(see Remark 2.6 for comments on this assumption).

Theorem 5.1. Assume that (2.1) holds true (i.e., \,(6p) is a simple eigenvalue) and that
the initial data are given by (1.3) with vy € Hl(RN) and vy € H*(RN). Then the solution
of (1.1) can be written as

.wn (0g)t -z

(5.1) u(t,z) = e < e%”eOij(t,x),

where v} two-scale converges with drift V to 1, (y,00)v (¢, ) and vt € C ([0, T]; L*(RY))
15 the solution of the homogenized problem

vt
QZW - d1v<A*Vv ) + "0t =0 in RY x (0,7),

+(— i ___ in RN

v (t=0,2) = 5 <vo(m) + iwn(eo)vl(m)> in RY,

with the homogenized dispersion tensor A* defined by (1.6) and

63) 7 (t.0) = g [ ()00 - V00 = M0t 5. )n0)) do
Similarly, the solution of (1.1) can be written as
(5.4) ue(t ) = e EF AT (1 ),

where v_ two-scale converges with drift —V to 1, (y, 6)v™ (¢, z) and v~ € C ([0, T]; L*(RY))
is the solution of the homogenized problem
_2288—15 — d1v<A*Vv ) +"0" =0 in RN x (0,7T),
(5.5) 1 1
L, _ 1 B . DN
v (t=0,2) = 5 (vo(x) iwn(c%)vl(x)> in RY.

Theorem 5.1 gives two different possible limits for the solution u.. There is no contra-
diction since these limits corresponds to different convergences and furthermore only one
half of the initial data v, is taken into account in both homogenized problems. Each of
these asymptotic limits correspond to one of two propagating waves in opposite directions.
In other words, Theorem 5.1 is a "weak" justification of (1.8) in the sense that
(5.6)

- wn (0g) Y __wn(6g) Y
uc(t,z) = 2, ( ) <6Z Ea (t,x + —t) Fe iy (t,x - —t))+rg(t>$),
€ 9
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where the remainder term r. two-scale converges with drift —) and +V to zero. In our
companion paper [5], by a method of infinite order asymptotic expansion (valid only for
smooth coefficients and data), we prove that the remainder term r. goes to zero strongly
in L?2(RY x (0,7)), i.e., the above two waves (or limits v* and v~) completely describe
the asymptotic behavior of u.. We also explain below in Remark 5.4 how the strong
convergence of r. could be obtained by the method of two-scale convergence (combined
with asymptotic expansions).

Remark 5.2. The same result hold true for a system of wave equations (for example,
elastodynamics). We never use the fact that we consider a scalar-valued unknown. In
particular we do not rely on the mazrimum principle. Let us simply remark that, even if
the original problem is a system of equations, under the simplicity assumption (2.1) for
the Bloch eigenvalue, the homogenized problem is always a scalar equations (see |4] for
details). If the Bloch eigenvalue is of multiplicity p, we expect the homogenized problem
to be a system of p equations (see [6] for details).

Proof of Theorem 5.1. The proof is similar in spirit to that of the main result in [6].
We just prove the convergence of v the case of v is completely symmetric by changing
wn () in —w,(0y), and thus V in —V. For simplicity we drop the index + and we introduce
a new unknown

(5.7)

By the a priori estimates of Proposition 4.1 it follows that v. satisfies the same uniform
bounds

ov.

||UEHL<><>((0,T);L2(RN)) + 5||VUEHL2((O,T)><RN)N + 62“ ot =C.

Leo((0,T);L2(RN))

Applying the compactness of two-scale convergence with drift (see Proposition 2.4), up to
a subsequence, there exists v*(¢,z,y) € L*((0,T) x RY; H'(T")) such that v. and V.
two-scale converge with drift V to v* and V,v* respectively. Similarly, by definition of
the initial data, v.(0,x) two-scale converges (in the usual sense of Proposition 2.3) to
Un(y, 00)ve(z). The equation satisfied by v, is

(5.8)
(.0 ov, , Ove  O(peve) An(0o)
2_ S p—
5at<pfat)ﬂm”(90)(pgat_+ a1 ) 2 Pele
B (div+22ﬂ'90) (A€<V+227T90>U€) —0 in RN x (0,T>,
£ 5
. _6p-
ve(t =0,2) = ud(z)e 2™ in RY,
Qe (.1 wn (o) o —2ixfor N
| 2 (t=0,z) = (ug(m) —i E(m))e : in RY.




19
First step. We multiply (5.8) by the complex conjugate of
20°(t, x),
where

v
O (t,x) = (t, x4+ —t, E)
e e

and ®(t,z,y) is a smooth function defined on [0,7) x RY x TV with compact support in
[0,7) x RY and with values in C. In what follows we will denote by (V,®)¢ the gradient
of ® with respect to the x variable, evaluated at the point (¢, + %t, ),

(V,3) =V <1>(t T+ 2 Y, x)

Integrating by parts we obtain

—52/ Pe <€ ul +iy/\ (90)’&2)6_2”00%65@:0) dx
% BH\E
¢ / /RN at ;-(VxCD) )dtdx
—2ie?\/ A (60) / / ,051)5 ¥~(Vz5)8)dt dx
'/ 2n(00) / / O0ie \ & dt do

/ A (eV + 2imfy)v. - (eV — 2imby) D dt dx

RN
—n( 90/ / pavaq) dtde =0.
RN

Passing to the two-scale limit yields the variational formulation of

—(div, + 2imf) (Ao(y)(vy + 2i7n90)v*> = \(B0)po(y)v*  in TV,

By the simplicity of A,(fy), this implies that there exists a complex-valued function
v(t,z) € L? ((0,T) x RY) such that

v (t @, y) = v(t, ©)¢n(y, o).
Second step. We multiply (5.8) by the complex conjugate of

(5.9) w,x):(wn(f,eo)w >+—Za¢"( ) 9%, x>)

where

¢ (t, ) == gb(t, ot gt)
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and ¢(t, ) is a smooth, compactly supported, test function defined from [0, 7') x R" into
C. Remark that ¢° is not oscillating but is just transported by a large drift. In the sequel

we will use the following notations

610y (5) 6= G+ ) (o) 0= g (e 20
Ap () == A <§) , Ai(x) = A (t, é,x, g) ,

x t x
poe(x) == Po(g) . pre(T) =m <t, L2 g) ;

(). UG a). 250 ()

Remark that we have V¢® = (V¢)°. An integration by parts (with respect to the time
variable) yields

/ /]RN < ot ( (%8) An(bo) <pea§;5 + 6(,(;@8))) U.dt do =
_/ pe(%ul +i )\n(eo)ug)e_%”%%@g(tzo)dgj
e 700\ _‘; 27 e
/ /RN pe An(eo)vg) [wn <%) + %%ﬁk <££k> }dt dz
—6/ /RNpEaUEV VE T do dt

ey / [ oy VG da

. 9, By
2@71'/ /RN at 89kv V@xk du dt
Y 0¢"

N ]

[P s—— apLE., —

(5.11)
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As far as the elliptic part of equation (5.8) is concerned, some algebraic computations
similar to those in [6] lead to

/RN {AE (V + 2i7r%>vg- (V —2i 90)\11 R ;50)[)5@5@5] dp —
/RN A05<V + 2im— )(gb ve) - ( - 2m%>@i de

—% RNAO&(V-FQZ @><g—fk ) <V—2 90>(i;zg:d

- /RN AO,Eekg;ZUE : (V - 2”;0)%; da
+/RN A05<V + 24 00) (%va) - exth,, da

—E

1lipticpart| (5.12) —/ Aoﬁvgvgi-ekﬁ dz
Lk

RN

1 b NN
—i-% . Ao,avava—xk - (eV — 2imly) 20, dx

1 o, o
—% AO e a‘gk (5V + 2271'60)1)5 Vg—k dx
o An (60>

Eva_g & dx
52 /RN pO, O¢n¢

o < /RN”O”a 26,

+ /RN {52141,5 (V - QiW%)vE : (V — 227?85 )\I’ — An(bo) 1 avaq’s] dx.

Now, for any smooth compactly supported test function ® from R” into C, we deduce
from equation (1.4) for ¢, that

0, 0 1 .
(5.13) /RNAO,E<V—2¢7T5)¢ (V—i—Qm )(I)dx gx(eo)/wpown.@dxzo,

while equation (2.5) for 24 implies

90,
(5.14)

e o\ O, 0o oy
— RNAw(V—Qz >aek <v+27r )(bdx+2—)\ (90)/RNp0589k(I>d93

- /RN Ao (V - 2@%)@” cepdda + /RN Ageexil, - (V + 2ir 0 )oda

£
1 o\, —¢
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Equations (5.13) and (5.14) yield some (most welcome!) cancellations in (5.12). The sum
of the first and eighth lines of the right hand side of (5.12) cancels out because of (5.13)
with ® = & v.. The second, third, fourth and penultimate lines of the right hand side
of (5.12), after integration in time and addition to the fourth line of the right hand side
of (5.11), cancel out because of (5.14) with & = —va On the other hand, we do not
change the remaining four terms of (5.12) since they are bounded. Finally, after all these
simplifications, (5.8) multiplied by VU, yields

Oz_

—/ po (22l + i/ )2 T (¢ = 0V

. (0p\e & O,/ D% \¢
/ /RN”E o MelBo)v:) |7, (E) * 2ir 90, <8t8xk) Jt da
—e/ / psavav Vo U dr dt
RN
o, O, .. _ 0
zm/ /RNpa ot 96, " oy

+\/790//p” ”Vv%ddt
k

(519

T —E
—/ AOEU€V6¢ emﬁ dx dt
8xk
9,
2imty) —— dx dt
2Z7T/ /RNAOaUa 8 L (gv o 0> 60k *
¢
Ao - V—dzdt
2271’/ /]RN 0 60k )U V@xk .

+/ / [Al,a(sv + 2imlp)v. - (eV — 2imlhy) U, — )\n((%)pl,avaﬁa} dx dt
RN

2/ 90// Op1.c 0. U dedt =0,

Let us explain how to pass to the limit in (5.15). By assumptions (1.3) on the initial data,
the first line of (5.15) satisfies

/ pe(Eul+in/ M (00)ud)e _2”_\11 dx—>/ / VA (00)vo+01) pol | 20(t = 0) d dy .
RN RNJTN

In the second line of (5.15) the only non-zero limit is given by

//2@ n(6o) ,OEUE@D ( o dtdm—>/// 2i\/ An (6o p0|wn|20—¢dtdxdy,
RN RNJTN
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while all other terms obviously go to zero. Let us simply indicate that

(5.16) / / (%E gf) dt dz — 0
.

because 2 Eg}f, being bounded by virtue of Lemma 4.1, admits a two-scale limit which is

necessarily zero since v, is bounded in L*°((0,T); L*(RY)).

Let us focus on the third line of (5.15). A second (in time) integration by parts yields

—e/ /RN/)EC%EV Vo U dvdt = / /RN/)EUEV V)V V)G O, dedt

+5/ / pvV -V ¢)¢ d dt
RN
Ple —€ —€
/ / 0V -V U du dt
RN

+€/ pv-(t = 0)V-Vo(t =0)1, do.
RN

(5.17)

On passing to the two-scale limit the last three terms in the right hand side of (5.17) go
to zero while the first one gives

T
—/ / / poltn2(V © V)V - Vg da dy dt
0 RN JTN

Next, the fourth line in (5.15) tends to zero for the same reason than (5.16). To pass to the

limit in the penultimate line of (5.15) we use Lemma 2.5 which shows that A;(t, £, z, )

and pi(t, £, x,2) two-scale converge strongly to A, and p; respectively. By virtue of
Proposition 2.4 we can pass to the two-scale limit in the penultimate line of (5.15) under

the mere weak two-scale convergence of v.. The last line of (5.15) goes to zero because

3,01,5

3¢~ is uniformly bounded by Ce~!. Finally, we can use the weak two-scale convergence
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with drift V in all other terms of (5.15) to get

/ / V2 (00)vo + v1) poltn]? G(t = 0) dz dy
]RN ']TN

///21 (0o p0|¢n|20—¢dtdxdy
RN JTN

—/ / / Dol nl2(V & V)V - V5 da dy dt

0o JrNV JTN

PV (9)/T/ / 222y 590 4y ar
7V o) TNPO n? 89 D

T
—/ / / Aowan— . ek@n dt dz dy
RN JTN

/ / Ampnvv ¢ -(V, 2i7r90)aw” dt dx dy
2Z7T RN JTN aek

(5.18)

onp,, 5%
QW/ /RN . Ay 80, = (Vy + 2im6p) o - Va ™ dt dx dy

+/ / Yupdtdrdy = 0.
0 JRN

Recalling formula (2.7) (which is just the compatibility condition or Fredholm alternative
for equation (2.6), see [4], [6] for details) we obtain that the fourth to seventh lines of
(5.18) are equal to

T
/ Vng)xn(Qo)Vv . Va dt dx.
]RN
Since [pn poltn|*dy = 1 and

1 1
A== o (60) = ——— (o) — ,
477'2 V@V@W ( 0) )\ (80) (8 V@V@ ( 0) V@V)

(5.18) is therefore equivalent to

\/ 90 / Vo + w )5(15 0) dx
/ / —22 VA (00) v g(b—i-(A —V®V)VU-V$+7*v$>dtdx =0
RN t

which is a very weak form of the homogenized equation (5.2). By Lemma 5.3 below, the
homogenized problem (5.2) admits a unique solution in C'((0,7); L*(RY)). The unique-
ness of the solution implies that the entire sequence v. two-scale converges with drift to

Un (y, 60) v(t, ). O
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Lemma 5.3. If the initial data vy belongs to H*(RY) (with s € N and the usual conven-
tion that H°(RN) = L?(RY)), the homogenized problem (5.2), resp. (5.5), has a unique
solution v™, resp. v™, in the space C((0,T); H*(RY)).

Proof. The tensor A* is possibly non-coercive: so, if vy € L?(RY), one can not use the stan-
dard elliptic theory to show the existence and uniqueness of a solution in L*((0,T); H*(RY)).
However, multiplying equation (5.2) by vt and taking the imaginary part yields a for-
mal conservation of the L?(R™)-norm. Therefore, one can use semi-group theory (see
e.g. [11] or chapter X in [27]) to prove existence and uniqueness of a solution v* in
C((0,7); L*(RY)). In general, i.e. if A* is not positive definite, we can not expect any
gain in regularity. However, multiplying (5.2) by (A)*"v™, integrating by parts and tak-
ing the imaginary part we also get a formal conservation of the norm [[(A)™v™ (£)|| 2@w)-
A similar argument works for odd powers of A. Therefore, vy € H*(RY) implies that
vt e C((0,T); H*(RY)). Of course, the same holds true for (5.5). O

Remark 5.4. By the method of two-scale convergence it is possible to improve Theorem
5.1 by proving that r., defined in (5.6), goes to zero strongly. However, since it would
require some technical efforts and since such a result is proved in greater generality in our
companion paper [5], we do not give a full proof and merely sketch the main ideas. The
key point is to use the notion of strong two-scale convergence (see Theorem 1.8 in [1])

which says that a sequence v. € L*(RY), two-scale converging to a limit v*(z,y) and such
that

}:I_I)?% ||UE||L2(RN) = ”U*HLQ(RNX'EN),

satisfies (with a minor technical smoothness assumption on v*)
. * x
lim [0 () = v* (. ) [l 22 = 0.

We want to apply such a result to u. but the required energy convergence is not straight-
forward since the total energy (4.3) involves only derivatives of u.. Therefore, we work
with the energy conservation of we, the time primitive of u. introduced in (4.5). The proof
of the strong convergence of r. is divided in five steps as follows.

Since the initial data of w. involves the solution x. of (4.6), the first step is to show
that ||xc| r2@yy < Ce? (see Remark 4.3 for details).

The second step amounts to prove the same estimate for w,, that is

(5.19) el oo 0,1y 2wy < Ce™.

This can be achieved by introducing a new time reqularization

%mwzeﬂ(KZWMaww+@m0,
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where (. is defined as the unique solution in H*(RY) of

(5.20)  —div (A.(0)VE) + 722 (0)¢ = —52,05(0)8(;12

It is easily seen that (5.20) is similar to (4.6) except that its right-hand side is multiplied

(0) +ve2p-(0)w:(0) ~ in RY.

by a factor 2. Thus, the arguments of Proposition 4.2 and Remark 4.3 yield that
||<€HL2(RN) + €||VC€||L2(RN)N S 054'

Then, proceeding as in the proof of Proposition 4.1, we write the energy balance for z.,
which satisfies the same wave equation (4.9) as w. with different initial data and source
term, smaller of order €* than those of (4.9). We thus deduce the following estimate

ko <ce
L>°((0,T);L2(RN))

which in turn implies ||ze|| (o1 2@y) < Ce? because z.(0) = (.. Since, similarly to
(4.11), we have w. = 2= + yz., we deduce the desired estimate (5.19) for we.
The third step 1is to show the equipartition of the energy for w., namely

E(w.(t)) = /R e, a(;f(t,x) dz + O(c%).

The fourth step is to combine the energy conservation (4.10) for w., the previous energy
equipartition and the estimate (5.19) to obtain

(5.21) / |SE| de o+ O(e) = <2 B(w.(0).

Recalling (4.11), u. = awf +yw,., using estimate (5.19) for w., and passing to the two-scale
limit in the right-hand szde of (5.21), after some tedious but easy algebra we obtain
(622) ing [ ol de = o7 O) ey + 1o (Ol

The fifth and last step is to show that r., defined by (5.6), converges strongly to zero in
L*(RY). By its definition (5.6), for a.e. t € (0,T), we have

(5.23)

/RN Pa|7’5|2dx:/RN pg\ug\2daz—2/m petue (e — ) di 1
for Gl (s 2O (e
R X
[ ol (Zoto)[ e (1 Ze)o (10— L) .
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In the case when V # 0, for ¢ sufficientely small, the last two lines of the right-hand side
of (5.23) converge to zero because the functions v*, v~ belong to L*(RY) and, if translated
away by a large drift, their product converges strongly to zero. The first term in the right-
hand side of (5.23) converges by (5.22) and we can pass to the two-scale limit (with drift)
in the remaining terms of (5.23) to get, for a.e. t € (0,T),

lim pelrel>dr = 0.
e—0 RN

In the case when V = 0, the previous argument of "disjoint supports” in the limit does
not work for v*,v™. Rather, we observe that in the last two lines of the right-hand side of
(5.23) v and v~ are multiplied by functions oscillating in time. Therefore if we integrate
(5.23) with respect to time, again these two terms converge to zero, and we obtain

T
lim/ / pelre*dzdt = 0.
e—=0 Jg RN

6. LINK WITH GEOMETRIC OPTICS AND THE WKB METHOD

We make a comparison with the so-called WKB method (Wentzel, Kramers, Brillouin)
which is well known for studying high frequency limits of the wave equation (see e.g. [9]).
We content ourselves in recalling well-known formal asymptotic expansions. The WKB
method is concerned with a shorter time scale than that of (1.1). More precisely, in this
section we rescale the time variable which is now 7 = 7!t and we consider the following
wave equation

;

p(5) 2% —ai (a(Y) v) =0 mRY xR,

or?
(6.1) v:(0, ) = v2(x) in RY |
Ov. o N
\ E(O,x)—va(x) in RY |

with high frequency initial data

59 ()

= ()Y, <§, VSO(:E)>

where S°(z) is the initial phase and 1, (y, #) is the n-th eigenfunction of the Bloch spectral

59(z)

= vo(7)Yn <§,VSO(33)) and  vl(z) = e*"

W(r) =¢ce

24w
€

problem (1.4). The geometric optic or WKB ansatz is
ve(T,x) =€ p2im <w (7’, x, E) + ew (T, x, f) + 62...>
£ £

where w(7,x,y) and wy (7, x,y) are periodic functions with respect to the last variable

y € TV. The ansatz first order derivatives are

ov.
or

 S(ra os 0
= e 2im(w + ewy)— + 202 ,
or or
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S(r,z)

Vo, = 2™ = <2i7r(w +ew)VS + Vyw + e(Vow + Vywy ) + 52...).

Plugging this ansatz in the wave equation (6.1) yields, at least formally, a cascade of

equations in terms of powers of . The first and higher order, e}, is

(6.2) —(divy + 2i7V.S) <A(y)(Vy + 2i7TVS)w> = 47*p(y) (g—f) 2 w in  TV.

For given (7,x), (6.2) is precisely the Bloch spectral equation, a p.d.e. with respect to
the y variable, with the Bloch frequency 6 := VS(7,z). In view of the initial data and
because of assumption (2.1) on the simplicity of A, (6), we deduce that necessarily the
solution of (6.2) is a multiple of the n-th eigenfunction

w(r,,y) = o(7,2) Yuly, VS(7, 7))

with the corresponding eigenvalue

03\’
: ar? (=) =M
(6.3) T ( 87') (VS)
It turns out that (6.3) is equivalent to two eikonal or Hamilton-Jacobi equations
oS
2r— = £/ (VS
"or (V5)

with the initial data S(0,z) = S°(x), which allows us to compute the phase S(7,x) at
least as far as smooth solutions of (6.3) exist.
The next order, £°, yields

64)  —(div, + 2irV5) <A(y)(Vy+2i7rVS)w1> = M(VS)p(y)wr + f in TV,
with
F(ra,y) = —4i ()§%+<di 42 vs)(Av )+ di <A(V + 2iTVS) )
T,2,y) = —dmp(y 9 Ir vy i W A y s w ).

To solve (6.4) for w;, the Fredholm alternative requires that

(6.5) / o)), V) dy = 0.

After some computations and using the Fredholm alternative for (2.5), (6.5) is equivalent
to the following homogenized transport equation

(6.6) %iv-vzvib*v:O
with the group velocity given again by formula (1.5), i.e.
Vor(VS) 1

vg( An(VS))

T An/(VS) 27
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and b*(t,x) a (complicated) attenuation coefficient. Overall, the WKB method shows
that formally

(6.7)
. + T,% . (1,
ve(T, ) = 562”3 < )wn <§, VS*(r, :E)) vi(r, ) + 562”5 : )¢n <§,VS_(T, x)) v (T, 7)

+ are the solutions of the two

where ST are the solutions of the two eikonal equations, v
transport equations with group velocities V. Actually, the WKB method works for
periodically modulated coefficients. It can be rigorously justified only for short times
(before caustics). However, the transport equation (6.6) can be rigorously established,
globally in time, by the method of Wigner measures [19] which is a generalization of
H-measures [18], 31| to the periodic case.

A special case, of particular interest for the present work, is obtained for purely periodic
coefficients and monochromatic initial data. More precisely, if we assume that S°(z) =

0 - x, then the explicit (and globally defined) solutions of the two eikonal equations are
ST(raz)=0-2+/ 07 and S (r,z)=0-2—/\(0)T.
Furthermore, the group velocity V is constant and b* = 0, so that
vE(1, 1) = vz £ V7).
In such a case the approximate formula (6.7) reduces to

(6.8) ve(T, 1) € 2, <§, 8) <ei e v (z+ V1) + e e v (x — VT))

which can be directly compared to our result in Theorem 3.2. After changing the time
scale, i.e. replacing 7 bt t/e, the main difference between (6.8) and (1.8) is that the
envelope functions are fixed, given by the initial data, in (6.8), while they evolve according
to Schrodinger equation in (3.4).

Our results of Section 5 appears as a generalization and an extension of the WKB
method for longer times in the case of monochromatic wave packets. Theorem 3.2 recovers
the WKB transport effect but it further describes how the envelope function of the wave
packet is deformed with time, according to a Schrodinger equation.
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