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GREGOIRE ALLAIRE', FRANCOIS JOUVE?, AND NICOLAS VAN GOETHEM?

ABsTrACT. This paper is devoted to the numerical simulation of the evolution
of damage in brittle materials following the Francfort-Marigo model. This
model is based on a Griffith energy criterion for the competition between the
two phases, healthy and damaged, separated by a sharp interface. In a quasi-
static and irreversible framework, the damage configuration is obtained by
minimizing a total energy using a gradient descent method. The interface is
modeled by a level set function which is advected by the energy gradient issued
from a shape derivation. The nucleation of the damaged zone is obtained by
using the so-called topological derivative. Several numerical examples in 2-d
and 3-d are discussed.

! Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France.
Email: gregoire.allaire@polytechnique.fr

2 Laboratoire J.L.Lions, Université Paris 7 - Denis Diderot, 75252 Paris, France.
Email: jouve@math.jussieu.fr

3 Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France.
Email: vangoeth@cmap.polytechnique.fr

1. INTRODUCTION AND MODEL

This work is concerned with the Francfort-Marigo model [15] of quasi-static
damage evolution for brittle materials. In a body Q € R? (d = 2,3) the damage
problem is stated as a macroscopic phase transition model, the first phase being
the undamaged, otherwise called “healthy” phase, while the second phase is the
damaged one. The damaged zone is denoted by Q° C Q, while the healthy zone is
the remaining region Q! = 0\ Q°. The characteristic function of ° is denoted by
X- Both the healthy and damaged phases are assumed to be linear, isotropic and
homogeneous, so we work in a linearized elasticity framework and the Lamé tensor
of elasticity in Q is

Ay =AY (1 —x) + A%,
where 0 < A? < Al are the Lamé tensors of isotropic elasticity in the damaged and
healthy regions, respectively, defined by

A =2u T, + N, @ I

with ¢ = 0,1. Recall that, in space dimension d, the Young modulus E and the
POLSSOH ratio v are related to the Lamé moduli by A = Mﬁﬁ and p =

2(14v) -
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The boundary of the body is made of two parts, 9Q = I'p U 'y, where a
Dirichlet boundary condition is imposed on I'p and a Neumann boundary condition
is imposed on I'y. We denote by n the normal unit vector on 992. We introduce
the space of admissible displacement fields

V ={uc H(Q,R?) such that u = 0 on T'p}.

As usual, the strain and stress tensors write as
1
(1) e(u) = 3 (Vu+ VTu) ,  o(u) = Ae(u).
For given body and surface loads f and g, the elasticity system is
—div (Aye(uy))=f in Q
(2) Uy =0 on I'p
Ae(uy)n=g on I'y

It is well-known that (2) can be restated as a minimum potential energy principle,
that is, the displacement field u, € V' minimizes in V' the energy functional

PX(U):/Q<%AX€(U)'€(U)—JC'U> dV—/FNg'udS.

The Francfort-Marigo model consists in a global combined minimization over v and
x of the potential energy functional to which a Griffith energy for the creation of
the damaged region is added, writing as

/ KkdV,
0o

where k is known as the Griffith’s energy release rate. In other words, the Francfort-
Marigo model is based on the minimization of

(3) J(u,x) = /Q (%Axe(u) ce(u)+kx—f- u) dv — /F g - udS.

N
Since the latter is a min — min problem, and since the displacement field u, iden-
tically satisfies

/ Aye(uy) - e(uy)dV = / frudV —|—/ g - Uy dS,
Q Q I'n
the cost function to be minimized reads
1
@ 0= T0 = [ (= gaelu et + ) av:

It results from this global minimization, that at a point « € €, the choice for phase
0 or 1 is made according to the following local minimization

. 1
min {5 Axe(u) - eluy) + rx (@),
providing a transition from the healthy to the damaged phase as soon as the release
of elastic energy is larger than the threshold , namely if

(5) Ale(ux) : e(ux) - Aoe(ux) : e(ux) > K.
The model is quasi-static which means that the time is discretized by an in-
creasing sequence (¢;);>0, with to = 0 and ¢; < ;1. At each time ¢; the loads are

denoted by f; and g;, the characteristic function of the damaged phase is y; and
the corresponding displacement is u; = u,,, solution of (2) with loads f; and g;.



The model is irreversible which means that a material point x €  which is
damaged at time ¢; must remain damaged at later times, i.e.,

(6) Xi+1(7) > xi(®).

Therefore, introducing 7; and J;, which are defined as (3) and (4) with the loads at
time ¢;, the Francfort-Marigo model is a sequence, indexed by i > 0, of minimization
problems

1
i ilX) = ——A . :
@ xeL%(Q;%}%))XZXFI Ji(x) /Q ( B xe(uy) - e(uy) + HX) dv,

or equivalently, using (3),

weVxeL (20,1} x> xi1 Jilwx).
with minimizers x, and u;.

In the original work of Francfort and Marigo [15] and in the subsequent refine-
ments [14], [18], a global solution to the variational problem (7) is sought. This is
at the root of mathematical and mechanical difficulties. First of all, the existence
of minimizers for (7) is not always guaranteed. Actually, the relaxation of (7) was
given in [15] which proved that the optimal solution can be a mixture of phase 0 and
1 (a composite material) instead of a macroscopic spatial distribution of these two
pure phases. Secondly, the use of a global minimization process can yield damage,
at time step ¢;11, in a region far away from the previous damaged region at time
step t;, whereas it seems more sensible from a physical viewpoint to have expansion
of the previously damaged zone. Therefore, it might be reasonable to use local
minimizers in (7) which may avoid these two inconveniences of global minimizers.
However, the definition of local minimizers strongly depend on the chosen topology
and there is no clear and unambiguous choice.

The goal of our work is to numerically investigate the Francfort-Marigo model
and to consider local minimizers in the framework of the Hadamard method of shape
optimization (see [1], [19] and references therein). In other words, we parametrize
the characteristic function y by the interface between the healthy and damaged
zone. This surface is moved with a normal velocity which is a descent direction for
the cost functional (7), computed by shape differentiation. Since we use a simple
steepest descent gradient algorithm, we compute local minimizers which may be
not global. Here, local has to be understood in the topology of diffeomorphisms
parameterizing the interface. The irreversibility constraint is taken into account
by adding to the predicted damaged zone the previously damaged region so that it
never decreases.

From a numerical standpoint, the interface between the healthy and damaged
subdomains is captured by using the level set method of Osher and Sethian [21] in a
way very similar to what is done in structural optimization [3]. In section 2 we give
the shape derivative of (7). It turns out that this sole notion of shape derivative is
not sufficient for nucleating a damaged zone in an entire healthy domain. Therefore,
in section 3 we recall the notion of topological derivative, as introduced in [13], [17],
[23], and applied to the case of elastic inclusions in [7], [8]. The topological derivative
indicates where it might be energetically interesting to nucleate an infinitesimal
damage inclusion in the healthy region. Eventually section 4 is devoted to various
numerical experiments. We do not give complete proofs of our results neither do
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we make exhaustive numerical experiments. Instead we refer to our future more
complete work [5].

2. COMPUTATION OF THE SHAPE GRADIENT

The goal of this section is to compute the shape derivative of the cost function
(4), following the well-known Hadamard method (see e.g. [1], [19] and references
therein). This shape derivative will serve as an advection velocity for the boundary
of the damaged zone when numerically minimizing (4). Throughout this section
we assume that the sets 2, Q0 and Q' have smooth boundaries, and that the loads
f and g are smooth functions from (2 into R?. We also drop the index i, denoting
the time step, for notational simplicity.

The total body ( is fixed in our problem. Rather, the subdomains Q° and Q!
(or equivalently their interface X) are varying. Therefore, it makes sense to rewrite
Uy, solution of (2), in terms of its restrictions u” and u' in Q° and Q!, respectively,
which satisfy

—divAte(ut) = f in Q!
ut =0 on I'l, =Tpnoot
(8) Ale(ut)nt =g on I'l, =Tynoot
ul = u° on ¥ =090°Na0t
Ale(ul)n! + A% (u®)n® =0 on ¥
and
—divAle(u’) = f in QO
u’ =0 on I =Tpno°
9) Ale(u®)n’ =g on 'S =TynoN°
u® = ul on ¥ =090°Nna0t
APe(u®)n® 4+ Ale(ul)n' =0 on X
In the sequel, we simply denote by n = n® = —n! the unit normal vector to X.

Similarly, the cost function (4) can be rewritten

J(x) = / —lf-u0+n dv — 1f-uldv
0o 2 Q12
L 0 1 1
(10) - = g-udS—— g-uds,
2 F(J)\J 2 F}V

where u? and u! are the solutions of (8)-(9). The corresponding Lagrangian (i.e.

the sum of the cost function (10) and of the variational formulation for (8)-(9) seen
as constraints) reads

L0 p'p°x) = /QO KdV

—/Ql[Ale( Heeh) + 1 ( vt —p }dv+ g-(p' = 5v")ds
(0= [ [0ty 5G| v [ o605 as

—%/ (Ae(v!) + A%(W°)) n- (p* — p”)dS

P

—%/ (Ale(ph) + A%(p°)) n- (v" —v°)dS

P
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where p® and p' play the role of Lagrange multiplier or, at optimality, of the adjoint
state (on the same token, at optimality v°,v! are equal to u°,u'). All functions
oY, 0!, pY p! belong to the space V which implies that they satisfy a homogeneous
Dirichlet boundary condition on I'p.

In order to apply a gradient method to the minimization of (10) we recall the
classical notion of shape derivative. Starting from a characteristic function y of a
smooth reference subdomain 2°, we consider variations of the type

Xo = X © (Id+9), ie., xo(z)= x(x+9(x)),

with § € W (R4 R?) such that @ is tangential on O (this last condition ensures
that Q = (Id + 0)Q). It is well known that, for sufficiently small 0, (Id + 6) is a
diffeomorphism in R?.

Definition 2.1. The shape derivative of a function J(x) at x is defined as the
Fréchet derivative in W1>°(R% R?) at 0 of the application § — J(x o (Id+9)), i

J(xo (Fd+0)) = J0) + 7' (0)(6) +o(0) with 1 90—,

-0 0]
where J'(x) is a continuous linear form on W (R4 R?).
Let us recall the following classical result.

Lemma 2.2. Let w be a smooth bounded open set and 6 € W1>(R? RY). Let
f € HY(R?) and g € H*(R?) be two given functions. Assume that T' is a smooth
subset of Ow with boundary v = OU. The shape derivatives of

(12) Jl(w):/fdv and Jg(w)zfrgdS

are Jj(w) = f0-ndS and
Ow

Jo(w) = /F{%—FQH]H-TLCZS—&—/QG-TCH,
8!

respectively, where n is the unit vector normal to Ow, H is the mean curvature and
T is the unit vector tangent to Ow such that 7 is normal to both v and n, and dl is
the line measure along ~.

Let us explain how to use Lemma, 2.2 in order to compute the shape derivative
of (10). We rely on the well-known Lagrangian approach in shape optimization
problems (see, e.g., [1], [3], [22]). The Lagrangian (11) has been devised in such a
way that its partial derivatives with respect to p° and p', when equal to 0, yield
the state equation (8)-(9), including the transmission boundary conditions on the
interface ¥. Conversely, the partial derivatives of the Lagrangian with respect to
1% and v!, when equal to 0, provide the so-called adjoint equation for p° and p'. Tt
turns out that, due to the special choice of the cost function (10), the problem is
self-adjoint, namely the optimal p° and p' are explicitly given in terms of u® and
ul by pt = —ut/2.

The main interest of the Lagrangian is that its partial derivative with respect
to the shape x, evaluated at the state u, and adjoint p,, is equal to the shape
derivative of the cost function

J(x)(6) = %w% W, /2, /2, )(6).
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The notation % means that it is a shape partial derivative, i.e. we differentiate
L in the sense of Definition 2.1 while keeping the other arguments (v!,v", pt,p°)
fixed. Therefore, in order to prove Theorems 2.3 and 2.4 below, it is enough, for

fixed functions (v*,v°, p,p°) (not depending on x), to differentiate the functional
X — L' p 1% x)
which is just a combination of volume integrals in 0, Q! and surface integrals on ¥

(the integrals on 'y do not contribute to the shape derivative because Ty is fixed).
Applying Lemma 2.2 to £ yields the following results.

Theorem 2.3. In 2 — d the shape derivative of (10) in the direction 6 is

T00)(0) = / K0 -ndS

b
+[[12—EV ]]Aain(ux)Q-ndS+[[(12V)]]Aagn(ux)9.nds

0] | )enw)0-nds = 51 [ ehw)o-nds,

)
where t is the tangential direction (orthogonal to n).

We use the jump notation
[e]] = a' —a”
for a quantity a that has a jump through the interface > between the healthy and
damaged regions.
Theorem 2.4. In 3 — d the shape derivative of (10) in the direction 6 is

7000) = [ w8+ (S22 [ (00 + 0B 00) 8- nas

(1—v—2v2)
H =)

) / (1) (€11 (1) + e22(1)) 6 - 7 S

) [ A0 ndS (=] [ entuesn(up-nas

-5
gl [ (i) + i) - s
gl [ b0 nds,

where the indices 1 and 2 refer to the tangential directions (orthogonal to n).

The proofs of Theorems 2.3 and 2.4 are given in [5] in a more general context.
Similar results in the conductivity setting (scalar equations) appeared in [9], [20],
[22].

When applying Lemma 2.2, there is a subtle difficulty in the interpretation of
the results because the integrands in the integrals on ¥ are not continuous through
the interface Y. Actually, only the displacement and the normal stress vector are
continuous in view of the transmission conditions in (8)-(9). By continuity of the
displacements and standard elliptic regularity, we can deduce that its tangential
derivatives are also continuous. In other words, we rewrite all integrals on ¥ in terms
of continuous quantities and jumps of the elastic moduli thanks to the following
lemma.



Lemma 2.5. Let ¢ and o denote the strain and stress tensors of the solution to
the state equation (2), which are smooth functions on both side of the interface
Y. The components o,t, Onn, €t and ey are continuous across X, and the other
components can be rewritten in terms of these continuous quantities as

enn = (20 + N op, — Atred)
€tn - (QU)_latn
O = 2,U€tt/ fOT t 7é t/
2
o = 2uen + /\(tred + enn) = 2uew + /\(QH _’t 3

tred + (2 + A) "Lonn)

with tred = Ez;ﬁn €5 -

Proof. Recall that n is the normal unit vector of ¥ and ¢ (or ¢’) is any tangential
unit vector, orthogonal to n. These relations simply follows from the strain-stress
relation (1) and

Onn = 2enn + M tre? + e,n) = (20 + Nenn = 0pn — Atred. O

3. TOPOLOGICAL DERIVATIVE

Hadamard method of shape variation is able to reproduce the growth of a pre-
existing damaged zone but is unable to predict the onset of damage in a healthy
structure. The topological derivative, introduced in [13], [17], [23] for the case of
holes in an elastic body, and in [7], [8] for elastic inclusions, is the right tool for
nucleating an infinitesimal damaged region. The coupling of topological derivative
and shape gradient with the level set method is by now well understood in struc-
tural optimization [4], [12], [25] The aim of this section is to recall this notion of
topological gradient.

We define an infinitesimal damaged inclusion D, of size p centered at a point
zo € Q' in the healthy subdomain and of rescaled shape D

r — X

(13) D, = {x such that € D},

and observe the variation of the cost function upon introduction of D,. Without
this inclusion the body (2 is separated in its healthy subdomain Q! and its damaged
subdomain 2°. When adding D,, the body is now partitioned as

— 00 1 ) 0_ 00
Q=00uQl with Q%=0°UD,,

where, for small enough p, D, is disconnected from 2°. We denoted by x,, x, Xb,
the characteristic functions of Qg, Q0 and D, respectively, satisfying x, = x +x D,

Definition 3.1. If the objective function J admits the following so-called topological
asymptotic expansion for small p > 0

J(xp) — J(x) — p*DJ(x0) = o(p?),

then the number DJ(xq) is called the topological derivative of J at zq for the in-
clusion shape D.

Based on results in [6] we obtain the following lemma (see [5] for details).



8 GREGOIRE ALLAIRE, FRANQOIS JOUVE, AND NICOLAS VAN GOETHEM

Lemma 3.2. For xo € Q' and any shape D, the cost function J(x), defined by
(4), admits the following topological derivative

D (o) = 5+ ge(uy)(z0) Me(uy) (o),

where u, is the solution of the state equation (2) in Q without the inclusion D,,
and M is a non-positive fourth-order tensor depending only on the shape D and the
phase properties A°, A

The tensor M is called the elastic moment, or polarization, tensor. It can be
computed explicitly for spherical inclusions. In 2d, the topological derivative writes
as:

p1(po — pa) (A1 + 2p)
DJ(x = K+ 2mp? e(u) - e(u
(@) P Mo + 1) + pia(an + 3pi0) )-elv)
2 2 o — _ 2
n E(_(/\l‘f' p1) (A1 + p1 — Ao N0)+2 (1 — pro) (M + 2u1) >(tre(u))2.
2 Ao + po + p1 A1(po + p1) + pa(pr + 3po)

In 3d, the topological derivative writes as:

Do) = ki + npP = <(A1 — A0)b — 2(p1 — po)a

(tre(u))2 +2(p1 — po)e(u) - e(u)) )

3b (3a + b)
with
. A1(p1 = po) = Spavi(A — o) b —15p1(1 — v1) + 2(p1 — po)(4 — 511)
15A1/L1(1 - 1/1) ’ 15/14(1 - 1/1) ’
A1
where vy = ————.
! 2(A1 + p1)

4. ALGORITHM AND NUMERICAL EXPERIMENTS

Our goal is to compute, for each discrete time ¢;, ¢ > 0, a minimizer y; of the
Francfort-Marigo model (7). As we already said, we are interested in local minima.
Our notion of local minima is numerical in essence, that is, we minimize (7) with
a gradient descent algorithm in the level set framework. A minima is thus local in
the sense of perturbations of the location of the interface ¥. Our algorithm is made
of two nested loops:

(i) an outer loop corresponding to the increasing sequence of discrete times ¢;,
1>0,

(ii) an inner loop of gradient iterations for the minimization of the functional
(7) at each fixed time step t;.

The irreversibility constraint (6) on the damaged zone is taken into account in the
outer loop (i). However, the inner loop (ii) is purely numerical and is not subject
to this irreversibility constraint between two successive iterates of (ii). The inner
loop is performed with the level set method of Osher and Sethian [21] that we
now briefly describe (it is very similar with its application in the context of shape
optimization [3], [24]).

In the fixed bounded domain 2, uniformly meshed once and for all, we parame-
terize the damaged zone Q° by means of a level set function 1 such that

Y(E)=0 s zxzek,
P(xr) <0 o xel
() >0 S zel
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(a) (b) (c) (d)

(e) (f) (8) (h)

FIGURE 1. Mode I crack: boundary conditions (a), initial crack
(b). Cracks for a load intensity g = 1.2348 (c), g = 1.2391 (d),
g =1.2526 (e), g = 1.2751 (f), g = 1.2981 (g) g = 1.3074 (h).

The normal n to the damaged region 2V is recovered as V1/| V1| and the curvature
H is given by the divergence of the normal divn (these quantities are evaluated by
finite differences since our mesh is uniformly rectangular). Remark that, although
n and H are theoretically defined only on X, the level-set method allows to define
easily their extension in the whole domain €.

Following the minimization process, the damaged zone is going to evolve accord-
ing to a fictitious time s which corresponds to descent stepping and has nothing to
do with the "real" time ¢; in the outer loop (i). As is well-known, if the shape is
evolving in time, then the evolution of the level-set function is governed by a sim-
ple Hamilton-Jacobi equation. To be precise, assume that the shape °(s) evolves
according to a pseudo-time s € R* with a normal velocity V(s,z). Then

w(s,x(s)) =0 for any z(s) € 9%(s).

Differentiating in s yields

o o B
§+x(s)-v¢_ s +Vn-Vy=0.
Since n = V/|V)| we obtain
9 L vivy| =o.

0s
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This Hamilton-Jacobi equation is posed in the whole body €2, and not only on the
interface %, if the velocity V is known everywhere.

O, 150 time steps | |
N 250 time steps
———————— 350 time steps
B
9] -50 -
5
g
8
-100 |- 4
PR S S T O S SN TS NN SO NSRRI
1 11 12 13 14 15 16 1.7

forceintensity

FIGURE 2. Mode I crack: total energy or cost function (7) versus
force intensity for three different number of time steps (150, 250

and 350).

For the minimization of (7) we use the shape derivative

J'(x)(0) = / v0-ndsS,
b
where the integrand v is given by Theorems 2.3 or 2.4. Since n and the state
u, are defined everywhere in 2, the integrand v in the shape derivative is defined
throughout the domain 2 and not only on the interface .. Therefore, we can define
a descent direction in the whole domain (2 by

0=—-vn.
The normal component 6 - n = —wv is therefore the advection velocity in the
Hamilton-Jacobi equation
o
14 — —v|Vy| =0.
(14 LoV

Transporting 1) by (14) is equivalent to move the interface X (the zero level-set of
1) along the descent gradient direction —J'(x). Our proposed algorithm for the
inner loop (ii) is an iterative method, structured as follows:
(1) Initialization of the level set function 1)° as the signed distance to the pre-
vious damaged interface X; corresponding to the characteristic function
X° = xi-
(2) Iteration until convergence, for k > 0:
(a) Computation of the state uy by solving a problem of linear elasticity
with coefficients A, .
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(b) Deformation of the interface by solving the transport Hamilton-Jacobi
equation (14). The new interface X¥*! is characterized by the char-
acteristic function y**! or the level-set function 1/**1 solution of (14)
after a (pseudo-)time step Asy, starting from the initial condition 1" (z)
with velocity —v;, computed in terms of u;. The (pseudo-)time step
Asy, is chosen such that J(x**1) < J(x*).

(c) Irreversibility constraint: we replace x**! by max(x**!, x°) where
x? = x; corresponds to the damaged zone at the previous iteration of
the outer loop (i).

(d) (e) ()

FIGURE 3. Mode II crack (coarse mesh): boundary conditions (a),
initial crack (b). Cracks for a load intensity g = 1. (¢), g = 1.00015
(d), g = 1.0006 (), g = 1.001 (f).
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From time to time, for stability reasons, we also reinitialize the level-set function
1. The Hamilton-Jacobi equation (14) is solved by an explicit second order up-
wind scheme on a Cartesian grid. The boundary conditions for i are of Neumann
type. Since this scheme is explicit in time, its (pseudo-)time step, given by a CFL
condition is usually much smaller than As; which plays the role of the descent
step in the minimization of J(). Therefore, we run several explicit time steps of
the Hamilton-Jacobi equation (14) between two evaluations of the displacement by
standard Q1 finite elements.

(@) (b) ()

(d) (e) (f)

FIGURE 4. Mode II crack (fine mesh): boundary conditions (a),
initial crack (b). Cracks for a load intensity g = 1. (¢), g = 1.00015
(d), g = 1.0006 (e), g = 1.001 (f).

We now perform numerical experiments with a healthy material having Young’s
modulus F = 10* and Poisson ratio v = 0.3 (white in the pictures). The damaged
phase is characterized by E = 10 and v = 0.3 (black in the pictures). With such
a strong contrast between the two phases, the Francfort-Marigo damage model is
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believe to behave almost like a brittle fracture model. Actually some models of
fracture mechanics [16] are approximated by I'-convergence techniques [10], [11],
which is similar in spirit to a damage model. Our first tests are therefore on the
simulation of plane crack propagation.

In Figure 1 we study a mode I crack on a rectangular mesh (80 x 120 cells).
Uniform surface traction is applied on the vertical walls while the body is fixed on
a small dark square (see Figure 1-(a)). The Griffith energy release rate is k = 10.
A vertical crack is initialized at the bottom (see Figure 1-(b)). We do not use the
topological gradient in this case. The other pictures in Figure 1 correspond to an
increasing magnitude of the applied traction (we use 150 time steps). We start from
the initial crack with a force ¢ = 1 and increase it progressively. We detect the first
advance of the crack after 60 time steps leading to a force g = 1.2348 (see Figure
1-(c)). The last picture (h) in Figure 1, obtained at the 75th time step for a force
intensity g = 1.3074, corresponds to the crack first reaching the top wall. Overall,
we clearly see a crack propagating in straight line to the fixed square and then a
non symmetric crack percolating to the top. The evolution of the total energy or
cost function (7) as a function of the force intensity is displayed on Figure 2 for
three different choices of the number of time steps (150, 250 and 350) with the same
mesh. The abrupt decrease of the energy corresponds to the breakthrough of the
crack on the top wall and thus the complete failure of the structure. For example,
the last picture in Figure 1-(h) corresponds to a force intensity g = 1.3074 which
lies in the rapidly decreasing zone of the cost function (for the curve of the 150 time
steps test). The apparent plateau for small force intensities in Figure 2 is actually
not flat: the crack stays at its initial position so the Griffith energy is constant but
the potential elastic energy is decreasing quadratically with respect to the force
intensity. However, the elastic energy is much smaller than the Griffith one so we
cannot see any variation of the cost function except if we zoom on it.

-5000 [~ B
-10000 [ 4
-15000 [ B

-20000 [ B

total energy

25000 [ E

-35000 - | ——— 80x120 mesh B
[ 160x240 mesh ]

n n n n 1 n n n n 1
1 1.0005 1.001

forceintensity

FIGURE 5. Mode II crack: total energy or cost function (7) versus
force intensity for two different meshes.

We then simulate a mode II crack in Figure 3 for a coarse mesh (80 x 120 cells)
and in Figure 4 for a finer mesh (160 x 240 cells). The Griffith energy release rate is
now x = 0.0012. A shear stress is applied on the vertical walls while the body is still
fixed on a small dark square (see Figure 3-(a)). A vertical crack is initialized at the
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bottom and we again do not use the topological gradient. We start from the initial
crack with a force g = 1 which immediately yields an advanced of the crack, i.e.,
the crack moves at the first time step (see Figure 3-(c)). The remaining pictures are
obtained after 4, 7 and 10 time steps respectively. We clearly have a crack branching
in two symmetric branches. The same forces and the same time stepping is applied
for both computations on the coarse and fine meshes. The computations seem to
be reasonably mesh convergent in the sense that the same crack path is predicted.
However, as can be checked on the evolution of the cost function (7) in Figure 5,
the critical load which yields a sudden decrease of the energy (corresponding to the
crack reaching the support of the body) is not the same. Further mesh refinements
should be made for studying the convergence or not of this threshold. To study
the influence of the contrast between the two phases, we keep the same Young’s
modulus for the healthy material, £ = 10*, but we change that of the damaged
material to £ = 5.103. We run the same experiment on the coarse mesh (with a
different value of the Griffith energy release rate ) and we obtain a thick damaged
zone which does not look like a crack anymore, see Figure 6.

FIGURE 6. Mode II crack: thick damaged zone for a 1 to 2 contrast
between the phases.

The next example is an L-shaped structure (see Figure 7) which is intended to
show how the topological gradient can be used. While the previous test cases were
initialized with a pre-existing crack, the L-shape example has no such initialization.
Instead, we use the topological gradient at the first time step to decide if it is worth
to nucleate a small hole and where it should be. Remark that the topological
gradient used here (as described in Section 3) is based on a small hole cut inside
the bulk of a structure. A different type of topological gradient should be defined
for a hole biting the boundary of the structure. Nevertheless, we employ the same
topological gradient everywhere inside and at the boundary of the structure. More
precisely, starting from an initial domain without any crack or damaged zone, we
use the topological gradient at the first time step to nucleate a small (one cell)
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damaged area. In subsequent time steps we do not use anymore the topological
gradient and just rely on the shape gradient for evolving the interface. The L-shape
is clamped at the top wall and a force is acting on the middle of its right wall (see
Figure 7-(a)). It is meshed with 6400 cells, the initial force is ¢ = 1. and 10 times
steps are performed. The Griffith energy release rate is k = 5. The topological
gradient nucleates a damaged zone at the reentrant corner as expected (see Figure
7-(b)). Then a crack starts running until it cuts the body at the 10th time step.

(d) (e) ()

FIGURE 7. L-shape: boundary conditions (a), initial damaged
zone obtained by the topological gradient (b). Cracks for a load
intensity g = 1.5625 (c), g = 1.9531 (d), g = 2.4414 (e), g = 3.0518

(£)-

Eventually we consider a 3-d test case: a beam which is simply supported at
its two lower extremities and is vertically loaded on the center of its top face. The
healthy phase has now Young’s modulus £ = 1. and Poisson ratio v = 0.3 while the
damaged phase is characterized by £ = 0.3 and v = 0.3. By symmetry only one
fourth of the domain is meshed with 16800 rectangular cells. The Griffith energy
release rate is k = 250. Starting from a unit force, at each time step it is multiplied
by a factor 1.0488. On Figure 8 we plot the isosurfaces of the healthy domain after
1, 5, 10, 15, 20 and 25 time steps (the beam is deformed according to the elastic
displacement).
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() (f)

FI1GURE 8. Simply supported beam. Damage evolution for a load
intensity ¢ = 1. (a), ¢ = 1.27 (b), g = 1.61 (c), g = 2.04 (d),
g =2.60 (e), g = 3.30 (f).
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5. CONCLUSION

We have proposed a numerical implementation of the Francfort-Marigo model of
brittle damage evolution. It is based on the notion of shape derivative and topo-
logical gradient in the context of the level set method. By using a simple gradient
algorithm for the minimization of the total energy we compute local minimizers
which may be physically more sound than global minimizers. Our algorithm has
been implemented and tested in two and three dimensions. For a large contrast
between the healthy and damaged phases our numerical simulations show that the
Francfort-Marigo damage model is able to simulate crack propagations. Although
the minimization of the total energy (7) is not a well-posed problem in the sense
that it usually admits no global minimizer (see [15]), our numerical approach seems
to be stable. We did not experience any instabilities (oscillations or fingering of
the interface) and our first results are reasonably mesh convergent. If required,
stability could certainly be achieved by adding a perimeter constraint, i.e., adding
a surface energy term (proportional to the area of the interface) to (7).

Much remain to be done. We need to investigate in greater details the issues of
convergence under mesh and/or time step refinement. We plan to make comparisons
with previous results [2] based on global minimization and a relaxed formulation of
the model. We will also investigate the connections with models of brittle fracture
approximated by I'-convergence techniques [10], [11], which are similar in spirit to
a damage model. Eventually we shall try to reproduce physical experiments. These
issues, as well as many other technical points, will be the focus of our next work

[5]-
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