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Abstract

A limiting one-dimensional Poisson-Nernst-Planck (PNP) equations is considered,
when the three-dimensional domain shrinks to a line segment, to describe the flows
of positively and negatively charged ions through open ion channel. The new model
comprises the usual drift diffusion terms and takes into account for each phase, the
bulk velocity defined by (4) including the water bath for ions (see [14]). The existence
of global weak solution to this problem is shown. The proof relies on the use of certain
embedding theorem of weighted sobolev spaces together with Hardy inequality.
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1 Introduction

Ion channels are proteins embedded in the cell membranes that surround all living cells;
one of the interesting properties of ionic channels is their selectivity to different ions, they
conduct ions of one type much better than ions of another type, this ionic movement allows
to conduct electrical signals down nerves. Ion channels control many important biological
processes that involve rapid changes in cells such as the coordination of muscle’s contraction
including cardiac muscle.
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In this paper, we analyze a nonlinear electro-diffusion model for flows of two types of ions
through open ion channel of biological membrane and in surrounding electrolyte bath. The
unknowns are the electric potential φ = φ(t, x), the concentration of positively charged ions
p = p(t, x) and the concentration of negatively charged ions n = n(t, x). Since the bath and
channel in practice always include water characterized by the concentration w = w(t, x), if
we suppose that the channel is saturated, we take

hnn + hpp + w = 1 (1)

where hn is the valence of negatively charged ions and hp is the valence of positively charged
ions.

To make the paper reasonably self-contained, we present briefly the derivation of the
model following the PNP (Poisson-Nernst-Planck) theory as has been used many times in
the literature (e.g; [1], [3], [5], [12]). More precisely, we adopt the model proposed by Giles
Richardson in[14].

We suppose that the electric potential is governed by the Poisson’s equation with a source
term equal to the charge generated by the ions including the permanent charge along the
interior wall of the channel q = q(x)

∇X . (ε0(X)∇Xφ(t, X)) = hnn(t, X) − hpp(t, X) + q(X) (2)

with electrical permittivity ε0. Nernst-Planck equations are used to describe the migration
and diffusion of ions which will be treated as a continuous charge distribution. The continuity
equations for the two types of ions are

∂n

∂t
+ ∇X .Jn = 0 and

∂p

∂t
+ ∇X .Jp = 0. (3)

The movement of ions depends on the electrical potential across the membrane, then the
flux densities Jn and Jp are given by the following relations

Jn = kn(∇Xn − n∇Xφ) − nv , Jp = kp(∇Xp + p∇Xφ) − pv

where kn and kp are the diffusion coefficients of the respective ions and v is the bulk velocity
given by

v = hn(kn − kw)∇Xn + hp(kp − kw)∇Xp + (hpkpp − hnknn)∇Xφ (4)

where kw is the diffusion coefficient of the water.
The problem (2)-(3) will be considered in R

+ × Ω, where Ω is the domain occupied by
the channel. We suppose that the channel can be modelled by

Ω =
{

(X = (x1, x2, x3) ∈ R
3 such that 0 < x1 < 1 and x2

2 + x2
3 < A2(x1, µ)

}

where A is a smooth function satisfying A(x1, 0) = 0 and ∂A
∂µ

(x1, 0) = g(x1) and the pa-
rameter µ measures the maximal radius of the cross-section of the ionic channel. We follow
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the idea of [1] and [12] to derive a one dimensional approximation of (2)-(3). We set the
following change of coordinates

x = x1, y =
x2

A(x1, µ)
, z =

x3

A(x1, µ)

when the radius of the cross-section µ approaches zero, the open channel form a nearly one
dimensional path for electro-diffusion even if the electric field is not. To solve the problem
we have to prescribe the boundary conditions at the ends of the channel but unfortunately
the values of the electric potential and concentrations are unknowns there; they are only
known at a macroscopic distance away from the channel, then we take into consideration the
ionic transport in the surrounding electrolyte bath. Therefore we suppose that the following
PDEs are considered in the whole real line
{

g2∂tn = ∂x [g2((kn − hn(kn − kw)n)∂xn − hp(kp − kw)n∂xp − knn(1 + hpkpp − hnknn)∂xφ)]

g2∂tp = ∂x [g2(−hn(kn − kw)p ∂xn + (kp − hp(kp − kw)p)∂xp − kpp(1 − hpkpp + hnknn)∂xφ)]

where φ satisfies (2). At the ends of the baths we impose the conditions

lim
x→±∞

n(t, x) = n± ∈ R
+, lim

x→±∞
p(t, x) = p± ∈ R

+, t ∈ R
+

lim
x→±∞

φ(t, x) = φ± ∈ R , t ∈ R
+

and we prescribe initial conditions (n0, p0) for (n, p). We suppose without loss of generality
that hn = hp = 1, else we perform the change of unknowns n1 = hnn and p1 = hpp. For
simplicity, we suppose also that ε0(x) = 1, kn = kp = k and we set k′ = k − kω. A remark is
given at the end of the paper concerning the general case kn 6= kp. The function g(x) grows
indefinitely with x into the baths, we take as in [1] and [12]

g(x) = 1 + x2.

In summary our model equations reads














































g2∂tn = ∂x [g2((k − k′n)∂xn − k′n∂xp − kn(1 + p − n)∂xφ)] in R
+ × R

g2∂tp = ∂x [g2(−k′p∂xn + (k − k′p)∂xp + kp(1 − p + n)∂xφ)] in R
+ × R

∂x (g2∂xφ) = g2(n − p + q(x)) in R
+ × R

lim
x→±∞

n(t, x) = n±, lim
x→±∞

p(t, x) = p±, lim
x→±∞

φ(t, x) = φ± in R
+

n(0, x) = n0(x), p(0, x) = p0(x) in R.

(5)

The two first equations in (5) can be rewritten in the compact form as

g2∂t(n, p) = ∂x(g
2[A(n, p)∂x(n, p) + ∂xφB(n, p)]) (6)
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where the diffusion matrix is given by

A(n, p) =

(

k − k′n −k′n

−k′p k − k′p

)

and the vector field B by B1(n, p) = −kn(1 + p − n) and B2(n, p) = kp(1 − p + n). In view
of (1) we will look for solutions satisfying n, p ≥ 0, n + p ≤ 1. Note that in this case A(n, p)
is positive definite, that is

A(n, p)ξ. ξ ≥ α ‖ξ‖2 , ∀ξ ∈ R
2 (7)

for some α > 0.
In the last few years, Poisson-drift-diffusion models have been drawing great attention,

but up to now, only partial results are available in the literature concerning the well-
posedness of such problems. For example in [6], [7] and [8] Poisson-drift-diffusion model
for semiconductors with linear diffusion was treated in a bounded domain of R

n for n ≤ 3,
there the diffusion matrix is constant and diagonal. In [4] the solvability and uniqueness of
solution were established for a degenerate Poisson-drift-diffusion problem with a non linear
diffusion describing semiconductors device, there the problem is considered in a bounded
domain of R

n, n ≤ 3 and the diffusion matrix is diagonal. In [2] the existence of weak
solution was shown, for a non linear degenerate drift-diffusion problem with full diffusion
matrix, also there the problem is considered in a bounded domain of R

n for n ≤ 3. The case
at hand differs from the preceding models in the fact that our problem will be solved in the
unbounded domain R, then the situation becomes more complicated. Moreover the diffusion
matrix A is not diagonal and there are values for n, p for which the diffusion matrix is not
positive.

The rest of the paper is organized as follows. In section 2, we precise the functional frame
of our work together with the asumptions and we give an a priori estimate which is the key
of the existence proof of a solution. In section 3, we define our notion of weak solution and
give the main result of this paper, that is the existence theorem of a weak solution to the
PNP problem. The proof is based on an approximating method via an introduction of a
small parameter ε > 0 and a regularization of the diffusion matrix, we set the approximated
problems in section 4 solve them and give a maximum principle satisfied by the approximated
solutions. This allows to obtain a solution of our problem by letting ε → 0 in section 5.

2 Assumptions and preliminary results

We begin with the notations that we will use throughout this paper. For any T > 0, we set
QT = (0, T ) × R. We define the positive and negative parts of a real number s by s+ :=
max {s, 0} , s− := max {−s, 0} respectively. The symbol C will denote positive constants
and sometimes we will write C(a1, a2, ..., am) to precise the arguments on which depend C.



5

The norm in a Banach space E will be denoted by ‖.‖2 if E = L2 (R) and ‖.‖E otherwise.

The Banach space F = L2(0, T ; E) will be endowed with the norm ‖u‖2
F =

∫ T

0

‖u(t)‖2
Edt.

To take into account the behavior of the solutions in the baths x → ±∞ we introduce
the functions θ(x), ϑ(x) satisfying the stationary equations











d

dx
(g2 dθ

dx
) =

d

dx
(g2dϑ

dx
) = 0 in R

lim
x→±∞

θ(x) = n±, lim
x→±∞

ϑ(x) = φ±

(8)

where n±, φ± are real numbers satisfying assumption (H1) below, we easily verify the fol-
lowing

Lemma 1. (θ, ϑ), are given by

θ(x) = n− +
a

2
(arctan x +

x

1 + x2
+

π

2
) , ϑ(x) = φ− +

b

2
(arctan x +

x

1 + x2
+

π

2
)

with a = 2
π
(n+ − n−), b = 2

π
(φ+ − φ−) and satisfy g dθ

dx
, g dϑ

dx
∈ L2 (R) together with

min(n+, n−) ≤ θ(x) ≤ max(n+, n−), ∀x ∈ R.

Note that θ and ϑ belong to L∞(R) but not to L2(R).
Hypotheses: We will make use of the following hypotheses

(H1) n± = p± ∈ R
+, n± ≤ 1/2 , φ± ∈ R

(H2) (3 − 2
√

2)k < kw < (3 + 2
√

2)k , k > 0

(H3) q has a compact support in R, q ∈ L2(R)

(H4) g (n0 − θ) , g (p0 − θ) ∈ L2 (R)

(H5) n0 − p0 + q = 0 on R and n0, p0 ≥ 0, n0 + p0 ≤ 1.

The main result of this paper is the global solvability of our problem in certain weighted
spaces. The key of the proof is the observation that the system (5) possesses an energy
functional which is uniformly bounded if n, p ≥ 0 and n + p ≤ 1. Indeed, multiplying the
first equation of (5) by n− θ and the second one by p− θ and adding the resulting equations
lead to the following formal equality

1

2

d

dt

∫

R

g2(|n − θ|2+|p − θ|2)dx+

∫

R

g2A(n, p)∂x(n−θ, p−θ)·∂x(n−θ, p−θ)dx = −(I1+I2+I3)
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where


































I1 =

∫

R

g2(A11(n, p) + A12(n, p))∂xθ ∂x(n − θ) dx

I2 =

∫

R

g2(A21(n, p) + A22(n, p))∂xθ ∂x (p − θ) dx

I3 =

∫

R

g2(B1(n, p) ∂x(n − θ) + B2(n, p) ∂x (p − θ)) ∂xφ dx.

(7) with the help of Young inequality, implies that

1

2

d

dt

∫

R

g2(|n − θ|2+|p − θ|2)dx+α

∫

R

g2
(

|∂x(n − θ)|2 + |∂x(p − θ)|2
)

dx ≤ C+C

∫

R

g2|∂xφ|2dx

In the other hand, deriving Poisson equation with respect to t leads to

∂x

(

g2 ∂2
x,tφ
)

= g2 (∂tp − ∂tn)

thus multiplying this relation by φ, using the equations of n and p, we obtain thanks to
Young inequality

1

2

d

dt

∫

R

g2|∂xφ|2dx ≤ α

2

∫

R

g2
(

|∂x(n − θ)|2 + |∂x(p − θ)|2
)

dx + C(α)

∫

R

g2|∂xφ|2dx + C(α)

therefore Gronwall inequality provides the energy estimate

∫

R

g2(|n − θ|2 + |p − θ|2 + |∂xφ|2)dx+α

∫ t

0

∫

R

g2
(

|∂x(n − θ)|2 + |∂x(p − θ)|2
)

dxds ≤ C. (9)

In order to make energy estimate rigorous, we have to prove that n, p ≥ 0 and n+p ≤ 1 (see
section 3). Observe that unfortunately, (9) does not provide an L2(0, T ; H1(R)) estimate
for φ since Poincaré inequality is not valid in the unbounded domain R. We overcome this
difficulty by using functions which decrease towards 0 at infinity so we introduce the following
weighted Sobolev spaces. For m = 0, 1, 2 and positive functions σi, i = 0, 1, 2, we set

Hm
σ0,...,σm

(R) =

{

functions u : R → R; σi

diu

dxi
∈ L2 (R) , i = 0, ...m

}

endowed with the norm

‖u‖2
Hm

σ0,...,σm
= Σm

i=0

∥

∥

∥
σi

diu

dxi

∥

∥

∥

2

2
.

If all the weight functions are equal to σ, we will denote the corresponding space by Hm
σ (R)

if m ≥ 1 and by L2
σ(R) if m = 0. Note that u ∈ H1

g (R) if and only if gu ∈ H1(R) with
C1‖gu‖H1 ≤ ‖u‖H1

g
≤ C2‖gu‖H1, (C1, C2 positive constants) and it holds
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Lemma 2. (i)The dual space (H1
g (R))′ of H1

g (R) is characterized by Ψ ∈ (H1
g (R))′ iff

g−1Ψ ∈ H−1(R) and

C−1
2 ‖g−1Ψ‖H−1 ≤ ‖Ψ‖(H1

g )′ ≤ C1‖g−1Ψ‖H−1

(ii) H1
g (R) is continuously and compactly embedded in L2 (R)

(iii) (Hardy inequality) There exists a constant C > 0 such that for every u ∈ H 1
1,g (R)

‖u‖2 ≤ C

∥

∥

∥

∥

du

dx

∥

∥

∥

∥

L2
g

.

Proof. The first point is a consequence of the precedent remark. For the second one, the
continuity of the embedding is obvious while the compactness is a direct consequence of [13],
theorem 2.1 when choosing the different data p = q = 2, b0 (x) = 1, b1 (x) = (1 + g(x))2,
w(x) = 1, v0 (x) = v1 (x) = g2(x) and r(x) = 1. See also [10] (theorems 18.12 and 20.5). For
the last point, we refer the reader to [10] (theorem 21.8) or [13] (theorem 2.3 and example
2.4).

3 The main result

First let us specify our notion of weak solution

Definition 1. Under hypotheses (H1)-(H5), (n, p, φ) is a weak solution of (5) in QT if the
following properties hold

(i) n − θ, p − θ ∈ L∞(0, T ; L2
g(R)) ∩ L2(0, T ; H1

g (R)), g2∂tn, g2∂tp ∈ L2(0, T ; (H1
g(R))′)

φ − ϑ ∈ L∞
(

0, T ; H2
1,g,g(R)

)

, 0 ≤ n , p , n + p ≤ 1 a.e. in QT

(ii) n(0, x) = n0(x) , p(0, x) = p0(x) a.e. in R.

(iii)

∫ T

0

〈

g2∂t(n, p), (ξ, ζ)
〉

dt +

∫

QT

g2A(n, p)∂x(n − θ, p − θ) · ∂x(ξ, ζ)dxdt

+

∫

QT

g2B(n, p)∂x(φ − ϑ) · ∂x(ξ, ζ)dxdt = 0

for all ξ, ζ ∈ L2(0, T ; H1
g (R)) where 〈 , 〉 is the dual product between (H1

g (R))′×(H1
g (R))′

and H1
g (R) × H1

g (R) and for all η ∈ L1(0, T ; H1
g (R))

∫

QT

g2∂xφ∂xηdxdt +

∫

QT

g2 (n − p + q) ηdxdt = 0

The main result of the paper can be stated as follows
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Theorem 1. Let T > 0, under the assumptions (H1)- (H5), there exists (at least) a weak
solution (n, p, φ) to the system (5) in QT . Moreover the following energy estimate holds for
t ∈ (0, T )

∫

R

g2(|n − θ|2 + |p − θ|2 + |∂x(φ − ϑ)|2)dx +

∫ t

0

∫

R

g2(|∂x(n − θ)|2 + |∂x(p − θ)|2)dxds ≤ C

The proof will be done in several steps. We consider an approximation of problem (5)
involving the additional term εg4φ in the equation of φ and we prove the existence of weak
solution of the approximate problem using decoupling mapping and Leray Shauder’s fixed
point theorem. Finally, uniform bounds with respect to ε are obtained and the limit ε → 0
can be performed.

4 The approximated problems

First, we set the change of unknowns N = n − θ, P = p − θ, Φ = φ − ϑ which transforms
(5) into































g2∂t(N, P ) = ∂x[g
2(Ã(N, P )∂x(N + θ, P + θ) + ∂x(Φ + ϑ)B̃(N, P ))] in QT

∂x(g
2∂xΦ) = g2(N − P + q(x)) in QT

lim
x→±∞

N(t, x) = lim
x→±∞

P (t, x) = lim
x→±∞

Φ(t, x) = 0 in (0, T )

N(0, x) = n0(x) − θ(x), P (0, x) = p0(x) − θ(x) in R

(10)

where the matrix Ã is defined by Ã(N, P ) = A(N +θ, P +θ) and the vector B̃ by B̃(N, P ) =
B(N + θ, P + θ). To solve the first equation, we need a definite positive matrix diffusion and
bounded coefficients, therefore we replace the diffusion matrix Ã by Ã+ and the vector field
B̃ by B̃+ defined by







































Ã+
11 (r, s) = Ã+

22 (s, r) =
k − k′ min ((r + θ)+, 1 − (s + θ)+) + kw ((r + θ)+ + (s + θ)+ − 1)

+

1 + ((r + θ)+ + (s + θ)+ − 1)+

Ã+
12 (r, s) = Ã+

21 (, r) = − k′(r + θ)+

1 + ((r + θ)+ + (s + θ)+ − 1)+

B̃+
1 (r, s) = B̃+

2 (s, r) = −k(r + θ)+ [max((r + θ)+ + (s + θ)+, 1) + (s + θ)+ − (r + θ)+]

1 + ((r + θ)+ + (s + θ)+ − 1)+
.
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Then we define the approximate problem































g2∂t(N, P ) = ∂x[g
2(Ã+(N, P )∂x(N + θ, P + θ) + ∂x(Φ + ϑ)B̃+(N, P ))] in QT

∂x(g
2∂xΦ) − εg4Φ = g2(N − P + q(x)) in QT

lim
x→±∞

N(t, x) = lim
x→±∞

P (t, x) = lim
x→±∞

Φ(t, x) = 0 in (0, T )

N(0, x) = n0(x) − θ(x), P (0, x) = p0(x) − θ(x) in R

(11)
where ε > 0 is a small parameter. We uncouple the problem (11) and consider two linear
problems. First, we solve for given

(

N, P
)

∈ L2 (QT ) × L2 (QT ) the problem







−∂x(g
2∂xΦ) + εg4Φ = −g2(N − P + q) in QT

lim
x→±∞

Φ(t, x) = 0 in (0, T )
(12)

then, we solve the linear problem


















g2∂t(N, P ) = ∂x[g
2(Ã+

(

N, P
)

∂x(N + θ, P + θ) + ∂x(Φ + ϑ)B̃+
(

N, P
)

] in QT

lim
x→±∞

(N, P ) = (0, 0) in (0, T )

(N, P )(0) = (n0 − θ, p0 − θ) in R

(13)
where Φ is the solution of (12).

4.1 Solving problem (12)

We have

Lemma 3. Let
(

N, P
)

∈ (L2 (QT ))2 be given, for all ε > 0 the problem (12) has a unique
solution Φ ∈ L2(0, T ; H2

g2,g,1(R)) and it holds for t ∈ (0, T )

‖Φ(t)‖H2

g2,g,1

≤ C(ε)‖N(t) − P (t) + q‖2. (14)

Proof. We use the variational method so we set

b(Φ, Ψ) =

∫

QT

g2∂xΦ ∂xΨ dxdt + ε

∫

QT

g4Φ Ψ dxdt , Φ, Ψ ∈ L2(0, T ; H1
g2,g(R))

l(Ψ) = −
∫

QT

g2(N − P + q) Ψ dxdt , Ψ ∈ L2(0, T ; H1
g2,g).

Applying Lax-Milgram theorem, we get a unique Φ ∈ L2(0, T ; H1
g2,g

) such that

b(Φ, Ψ) = l(Ψ) for all Ψ ∈ L2(0, T ; H1
g2,g). (15)
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Taking Ψ = Φ in (15), we obtain

∫

R

g2 |∂xΦ(t, x)|2 dx +
ε

2

∫

R

g4|Φ(t, x)|2dx ≤ C(ε)

∫

R

|N(t, x) − P (t, x) + q(x)|2dx. (16)

As usual, the regularity of ∂2
xΦ comes from the equation since ∂2

xΦ = −2
g′

g2
g∂xΦ + εg2Φ +

(N − P + q) and we get its L2 estimate using (16).

Moreover, the estimate (16) leads to

Lemma 4. The operator P : (L2 (QT ))2 −→ L2(0, T ; H2
g2,g,1(R)) defined by P(N, P ) = Φ

where Φ is the solution of (12) is continuous.

Proof. Indeed let (N1, P1), (N2, P2) ∈ (L2 (QT ))
2
, Φi = P(Ni, Pi), i = 1, 2, we set N =

N1 − N2, P = P1 − P2 and Φ = Φ1 − Φ2. Since −∂x(g
2∂xΦ) + εg4Φ = −g2(N − P ), we get

using (14)
∫ T

0

‖Φ(t)‖2
H1

g2,g

dt ≤ C(ε)

∫ T

0

‖N(t) − P (t)‖2
2dt.

4.2 Solving problem (13)

In order to solve problem (13), we need

Lemma 5. The matrix A+ is positive definite, that is there exists α > 0 such that A+(u, v) ξ. ξ ≥
α ‖ξ‖2 for all (u, v) ∈ R

2 and ξ ∈ R
2. The same holds for Ã+.

The proof is technical and will be given in appendix at the end of the paper. Let us prove
the following existence result for problem (13)

Lemma 6. Let ε > 0,
(

N, P
)

∈ (L2 (QT ))2 be given and Φ = P
(

N, P
)

. The problem (13)
possesses a unique solution (N, P ) such that N, P ∈ L2

(

0, T ; H1
g (R)

)

and it holds

‖N(t)‖2
L2

g
+ ‖P (t)‖2

L2
g
+ α

∫ t

0

(‖∂xN(s)‖2
L2

g
+ ‖∂xP (s)‖2

L2
g
)ds ≤

C(α, T ) + ‖n0 − θ‖2
L2

g
+ ‖p0 − θ‖2

L2
g
+ C(α, ε)

∫ t

0

‖N(s) − P (s) + q‖2
2ds.

(17)

Moreover g∂tN, g∂tP ∈ L2(0, T ; H−1(R)) and satisfy

‖g∂tN‖2
L2(0,T ;H−1(R)) , ‖g∂tP‖2

L2(0,T ;H−1(R)) ≤ C(α, ε, T ) + C(α, ε)

∫ T

0

‖N(s) − P (s) + q‖2
2ds.

(18)
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Proof. We introduce the change of unknowns Ñ = exp(−λt) N , P̃ = exp(−λt) P where

λ > 0, so Ṽ =
(

Ñ , P̃
)

satisfies



















g2∂tṼ + λg2Ṽ = ∂x[g
2(Ã+

(

N, P
)

∂x(Ṽ + Θ̃) + B̃+
(

N, P
)

∂x(Φ̃ + ϑ̃))] in QT

lim
x→±∞

Ṽ = (0, 0) in (0, T )

Ṽ (0) = (n0 − θ, p0 − θ) in R

(19)

where Θ̃ =
(

θ̃, θ̃
)

, θ̃(t, x) = exp(−λt) θ(x), ϑ̃(t, x) = exp(−λt) ϑ(x) and Φ̃ = exp(−λt) Φ.

We set X = L2(0, T ; H1
g (R)) and we introduce the space Y = D([0, T [×R) endowed with the

norm ‖u‖2
Y = ‖u‖2

X + 1
2

∫

R
g2(x)u2(0, x)dx, such as the injection of Y into X is continuous.

Then we define the continuous bilinear form ã on X2×Y 2 and the continuous linear functional
l̃ on Y 2 by

ã(V1, V2) = −
∫

QT

g2V1 · ∂tV2dxdt + λ

∫

QT

g2V1 · V2dxdt +

∫

QT

g2Ã+
(

N, P
)

∂xV1 · ∂xV2dxdt

l̃ (V ) =

∫

R

g2 (n0 − θ, p0 − θ)·V (0, x) dx−
∫

QT

g2[(Ã+(N, P )∂xΘ̃+B̃+(N, P )∂x(Φ̃+ϑ̃)]·∂xV dxdt.

Lemma 5 implies that for some real α̃ > 0 we have

ã(V, V ) ≥ α̃‖V ‖2
Y 2 , ∀V ∈ Y 2. (20)

Indeed

ã(V, V ) =

∫

QT

g2(−1

2
∂t|V |2 + λ|V |2 + Ã+(N, P )∂xV · ∂xV )dxdt

≥ 1

2

∫

R

g2|V (0, x)|2dx + λ

∫

QT

g2|V |2dxdt + α

∫

QT

g2|∂xV |2dxdt

so thanks to theorem of Lions [11], there exists Ṽ = (Ñ , P̃ ) ∈ X2 satisfying ã(Ṽ , V ) =
l̃(V ), ∀V ∈ Y 2. Then we get g2∂tṼ +λg2Ṽ = ∂x[g

2(Ã+
(

N, P
)

∂x(Ṽ +Θ̃)+ B̃+
(

N, P
)

∂x(Φ̃+

ϑ̃))] in the sense of distributions and we deduce that g∂tÑ , g∂tP̃ ∈ L2(0, T ; H−1(R)). In-
deed we have U ≡ g(Ã+

11(N, P )∂x(Ñ + θ̃) + Ã+
12(N, P )∂x(P̃ + θ̃) + B̃+

1

(

N, P
)

∂x(Φ̃ + ϑ̃)) ∈
L2 (0, T ; L2 (R)) then g∂tÑ = 1

g
∂x (gU) = g′

g
U + ∂xU ∈ L2 (0, T ; H−1 (R)) and similarly

g∂tP̃ ∈ L2 (0, T ; H−1 (R)). Therefore gÑ, gP̃ ∈ L2(0, T ; H1(R)) ∩ H1(0, T ; H−1(R)). Conse-
quently gÑ(0, ·), gP̃(0, ·) are well defined in L2(R) and the initial conditions are satisfied in
(19). Hence (N, P ) = exp(λt)(Ñ , P̃ ) is a solution of (13) and we get

1

2

d

dt

∫

R

g2(|N |2 + |P |2)dx +
α

2

∫

R

g2(|∂xN |2 + |∂xP |2)dx ≤ C(α)

∫

R

g2(|θ′|2 + |ϑ′|2 + |∂xΦ|2)dx
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so for all t ∈ (0, T ),

∫

R

g2(|N |2 + |P |2)dx + α

∫ t

0

∫

R

g2(|∂xN |2 + |∂xP |2)dxds ≤
∫

R

g2(|n0 − θ|2 + |p0 − θ|2)dx + tC(α)

∫

R

g2(|θ′|2 + |ϑ′|2)dx + C(α)

∫ t

0

∫

R

g2|∂xΦ|2dxds

(21)
which leads to (17) using (16) while (18) is a consequence of (17). For the uniqueness, it is
sufficient to prove that the solution of the homogeneous problem



















g2∂t(N, P ) = ∂x(g
2(Ã+(N, P ) ∂x(N, P )) in QT

lim
x→±∞

(N, P ) = (0, 0) in (0, T )

(N, P )(0) = (0, 0) in R

(22)

is (N, P ) = (0, 0) and this is a direct consequence of (21).

Remark 1. To give a meaning to the initial conditions, it was sufficient to prove that
g−1∂tN, g−1∂tP belong to L2(0, T ; H−1(R)) since L2

(

0, T ; H1
g (R)

)

∩ H1(0, T ; (H1
g (R))′) is

contained in C(0, T ; L2
g(R)).

The solution of problem (13) satisfies the following dependance with respect to the datum
(N, P )

Lemma 7. The mapping S : L2(QT )×L2(QT ) −→ L2(QT )×L2(QT ) defined by S(N, P ) =
(N, P ) where (N, P ) is the solution of (13) provided by lemma 6, is continuous and compact.

Proof. Consider a sequence (Nm, Pm) in (L2 (QT ))
2

such that
(

Nm, Pm

)

→
(

N, P
)

strongly

in (L2 (QT ))
2

and set P(Nm, Pm) = Φm, S(Nm, Pm) = (Nm, Pm). (17), (18), lemma 2
and Aubin lemma yield to the existence of a subsequence (not relabelled) and N, P ∈
L2(0, T ; H1

g (R)) ∩ H1(0, T ; (H1
g(R))′) such that

(Nm, Pm) ⇀ (N, P ) weakly in
(

L2(0, T ; H1
g (R)) ∩ H1(0, T ; (H1

g (R))′)
)2

(Nm, Pm) → (N, P ) strongly in (L2(QT ))2

and from lemma 4, we infer that

Φm → P(N, P ) = Φ strongly in L2(0, T ; H1
g2,g(R)).

Since the coefficients of the matrices Ã+ and B̃+ are bounded, we easily pass to the limit in
the equation satisfied by (Nm, Pm) (at least in the sense of distributions) then we conclude
as in proof of lemma 6 that (N, P ) = S(N, P ) thus S is continuous. The compactness is a
direct consequence of (17), (18), lemma 2 and Aubin lemma.
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4.3 Solving the full problem (11)

Now we are ready to solve the coupling problem (11). We have

Theorem 2. Assume (H1)-(H5), then for all ε > 0 the approximated problem (11) admits
at least one solution (Nε, Pε, Φε) ∈ L2(0, T ; H1

g (R) × H1
g (R) × H1

g2,g,1(R)).

Proof. We use the previous results to perform a fixed point procedure. We have proved
in lemma 7 that the mapping S is continuous and compact. Let us prove that the sets

Λδ =
{

(N, P ) ∈ (L2 (QT ))
2

; (N, P ) = δ S (N, P )
}

are uniformly bounded with respect to

δ ∈ [0, 1]. The set Λ0 = {(0, 0)}; let δ 6= 0, the equation (N, P ) = δ S (N, P ) is equivalent to



















g2∂t(N, P ) = ∂x(g
2[Ã+ (N, P ) ∂x(N + δθ, P + δθ) + δB̃+ (N, P ) ∂x(Φ + ϑ)]) in QT

lim
x→±∞

(N, P ) = (0, 0) in (0, T )

(N, P )(0) = δ(n0 − θ, p0 − θ) in R

(23)
Testing the equation of (23) with (N, P ), we get

1

2

d

dt

∫

R

g2
(

N2 + P 2
)

dx +

∫

R

g2Ã+ (N, P )∂x(N, P ). ∂x(N, P )dx = −(I1 + I2 + I3)

with














I1 = δ

∫

R

g2Ã+ (N, P ) ∂x(N, P ).∂x(θ, θ) dx

I2 = δ

∫

R

g2B̃(N, P )∂x(N, P ) .∂x(Φ + ϑ)dx.

We have the following inequalities

|I1| ≤ C(α)

∫

R

g2 |θ′|2 dx +
α

4

∫

R

g2(|∂xN |2 + |∂xP |2)dx

|I3| ≤ C(α)

∫

R

g2 |∂xΦ|2 dx + C(α)

∫

R

g2 |ϑ′|2 dx +
α

4

∫

R

g2
(

|∂xN |2 + |∂xP |2
)

dx.

Using (16) and inserting these inequalities in (24), we obtain

1

2

d

dt

∫

R

g2(N2 + P 2)dx +
α

2

∫

R

g2(|∂xN |2 + |∂xP |2)dx ≤ C(α, ε) + C(α, ε)

∫

R

g2(N2 + P 2)dx

then Gronwal’s lemma implies the claim.
We deduce from the theorem of Leray-Schauder that S has a fixed point (Nε, Pε) in

(L2(QT ))2. Thus (Nε, Pε, Φε) (with Φε = P(Nε, Pε)) is a weak solution of problem (11) in
QT .
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In fact, we get more regularity for (Nε, Pε, Φε). We have

Lemma 8. The solutions (Nε, Pε, Φε) of problem (11) provided by theorem 2 are such that

g∂tNε, g∂tPε ∈ L2(0, T ; H−1(R)) , ∂tΦε ∈ L2(0, T ; H1
g2, g(R)).

Proof. The regularity of ∂tNε, ∂tPε is a consequence of lemma 6 then the same proof as for
lemma 3 lead to the existence and uniqueness of a solution Ψε ∈ L2(0, T ; H1

g2,g
(R)) to the

equation






−∂x(g
2∂xΨε) + εg4Ψε = −g2(∂tNε − ∂tPε) in QT

lim
x→±∞

Ψε(t, x) = 0 in (0, T )
(24)

But since ∂tΦε solves this equation, we get the result.

These solutions satisfy the following maximum principle

Lemma 9. The solutions (Nε, Pε) of (11) provided by theorem 2 satisfy

Nε + θ, Pε + θ ≥ 0, Nε + Pε + 2θ ≤ 1 a.e. in QT .

Proof. First, let us show that (Nε + θ)− , (Pε + θ)− , (Nε + Pε + 2θ − 1)+ ∈ L2(0, T ; H1
g (R)).

We have

∫

QT

g2| (Nε + θ)− |2dxdt =

∫

Nε≤−θ

g2(N2
ε + 2Nεθ + θ2)dxdt ≤

∫

Nε+θ≤0

g2N2
ε dxdt < ∞.

Moreover
∫

QT

g2
∣

∣∂x (Nε + θ)−
∣

∣

2
dxdt =

∫

Nε+θ≤0

g2|∂x(Nε + θ)|2dxdt < ∞

because gθ′ ∈ L2(R). Thus (Nε + θ)− ∈ L2(0, T ; H1
g(R)) and the same arguments lead to

(Pε + θ)− ∈ L2(0, T ; H1
g (R)). Next let v = (Nε + Pε + 2θ − 1)+, we write

∫

QT

g2v2dxdt =

∫

Nε+Pε≥1−2θ

g2(Nε + Pε + 2θ − 1)2dxdt

=

∫

Nε+Pε≥1−2θ

g2((Nε + Pε)
2 − 2(Nε + Pε)(1 − 2θ) + (1 − 2θ)2)dxdt.

(25)

Using the fact that θ ≤ 1
2
, we get

∫

QT

g2v2 dxdt ≤
∫

Nε+Pε≥1−2θ

g2(Nε + Pε)
2dxdt < ∞.

Moreover
∫

QT

g2|∂xv|2dxdt =

∫

Nε+Pε≥1−2θ

g2|∂x(Nε + Pε + 2θ)|2dxdt < ∞
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so v ∈ L2(0, T ; H1
g (R)). Now, multiplying the first equation of (11) by ((Nε + θ)− , (Pε + θ)−)

and integrating by parts, we get

−1

2

d

dt

∫

R

g2(
∣

∣(Nε + θ)−
∣

∣

2
+ | (Pε + θ)− |2)dx =

∫

R

g2(Ã+
11(Nε, Pε)

∣

∣∂x((Nε + θ)−)
∣

∣

2
+ Ã+

22(Nε, Pε)
∣

∣∂x((Pε + θ)−)
∣

∣

2
)dx ≥ 0

(26)

Then since n−
0 = p−0 = 0 we get (Nε + θ)− = (Pε + θ)− = 0. Similarly, adding the equations

of Nε and Pε and testing the resulting equation with v = (Nε + Pε + 2θ − 1)+, we obtain

1

2

d

dt

∫

R

g2v2dx+

∫

R

g2[(Ã+
11+Ã+

21)(Nε, Pε)∂xNε+(Ã+
12+Ã+

22)(Nε, Pε)∂xPε)]∂xv dx = −L (27)

where L =
∫

R
g2((B̃+

1 + B̃+
2 )(Nε, Pε)∂x(Φε + ϑ) ∂xv dx = 0. Since

∫

R

g2[(Ã+
11 + Ã+

21)(Nε, Pε)∂x (Nε + θ) + (Ã+
12 + Ã+

22)(Nε, Pε)∂x (Pε + θ)]∂xvdx =

kw

∫

Nε+Pε+2θ≥1

g2(Nε + Pε)∂x(Nε + Pε) ∂xv dx = kw

∫

Nε+Pε+2θ≥1

g2(Nε + Pε)|∂xv|2dx ≥ 0

we deduce that d
dt

∫

R
g2v2dx ≤ 0 then v = 0 because v(0, x) = (n0 + p0 − 1)+ = 0. Therefore

Nε + Pε + 2θ ≤ 1.

Thus (Nε, Pε, Φε) also solves































g2∂t(Nε, Pε) = ∂x[g
2(Ã (Nε, Pε) ∂x(Nε + θ, Pε + θ) + B̃ (Nε, Pε) ∂x(Φε + ϑ))] in QT

−∂x(g
2∂xΦε) + εg4Φε = −g2(Nε − Pε + q(x)) in QT

lim
x→±∞

Nε(t, x) = lim
x→±∞

Pε(t, x) = lim
x→±∞

Φε(t, x) = 0 in (0, T )

Nε(0, x) = n0(x) − θ(x), Pε(0, x) = p0(x) − θ(x) in R

(28)
In order to pass to the limit in problem (28) when ε approaches 0, we need uniform

estimates on (Nε, Pε, Φε). Let us prove the following

Lemma 10. There exists a constant C (T ) > 0 independent of ε such that for t ∈ [0, T ]

‖Nε(t)‖2
L2

g
+ ‖Pε(t)‖2

L2
g
+ ‖∂xΦε(t)‖2

L2
g
+ ‖Φε(t)‖2

2 +

∫ t

0

(‖∂xNε(s)‖2
L2

g
+ ‖∂xPε(s)‖2

L2
g
)ds ≤ C(T )

(29)
‖g2∂tNε‖L2(0,T ;(H1

g (R))′) + ‖g2∂tPε‖L2(0,T ;(H1
g (R))′) ≤ C(T ). (30)
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Proof. We take back the formal calculus which have led to (9) and we use the regularity of
the solutions given in theorem 2 and lemma 8. First since (Nε, Pε) ∈ Λ1, we get as in the
proof of Theorem 2

1

2

d

dt

∫

R

g2(N2
ε + P 2

ε )dx + α

∫

R

g2(|∂xNε|2 + |∂xPε|2)dx ≤

η

∫

R

g2(|∂xNε|2 + |∂xPε|2)dx + Cη

∫

R

g2(|θ′|2 + |ϑ′|2) dx + Cη

∫

R

g2|∂xΦε|2dx

where η is any positive constant. In the other hand, as ∂tΦε satisfies the equation (24) then
testing it by Φε, using the equations satisfied by Nε and Pε and integrating over R, we get

1

2

d

dt

(

ε

∫

R

g4Φ2
εdx +

∫

R

g2|∂xΦε|2dx
)

= J1 + J2

with














J1 =

∫

R

g2((Ã11 − Ã21)(Nε, Pε)∂x(Nε + θ) + (Ã12 − Ã22)(Nε, Pε)∂x(Pε + θ)) ∂xΦε dx

J2 =

∫

R

g2(B̃1 − B̃2)(Nε, Pε) ∂x(Φε + ϑ) . ∂xΦε dx.

Using Young inequality, we obtain

|J1| ≤ η

∫

R

g2(|∂xNε|2 + |∂xPε|2)dx + Cη

∫

R

g2|θ′|2dx + Cη

∫

R

g2|∂xΦε|2dx

|J2| ≤ η

∫

R

g2|∂xΦε|2dx + Cη

∫

R

g2|ϑ′|2dx.

Gathering all these inequalities and choosing judiciously η, we obtain

1

2

d

dt

(

ε

∫

R

g4Φ2
εdx +

∫

R

g2(N2
ε + P 2

ε + |∂xΦε|2)dx
)

+
α

2

∫

R

g2(|∂xNε|2 + |∂xPε|2)dx ≤

C1

∫

R

g2(|θ′|2 + |ϑ′|2)dx + C2

∫

R

g2|∂xΦε|2dx

(31)

with Ci > 0 independent of ε. Integrating between 0 and t, we get using Gronwall inequality,
for all t ∈ (0, T )

ε

∫

R

g4Φ2
ε(t)dx +

∫

R

g2(N2
ε (t) + P 2

ε (t) + |∂xΦε(t)|2)dx +
α

2

∫ t

0

∫

R

g2(|∂xNε|2 + |∂xPε|2)dxds ≤

C1 exp(C2t)

∫

R

g2
[

|n0 − θ|2 + |p0 − θ|2 + |∂xΦε(0)|2 + εg2|Φε(0)|2
]

dx.

(32)
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From hypothesis (H5), we see that Φε(0) solves the equation −∂x (g2∂xΦε(0))+εg4(∂xΦε(0)) =
0 with lim

x→±∞
Φε(0, x) = 0 so Φε(0) = 0 and we infer that

ε

∫

R

g4Φ2
ε(t)dx+

∫

R

g2(N2
ε (t)+P 2

ε (t)+|∂xΦε(t)|2)dx+
α

2

∫ t

0

∫

R

g2(|∂xNε|2+|∂xPε|2)dxdt ≤ C(T )

for all t ∈ [0, T ]. To obtain a uniform bound of Φε in L2, we use lemma 2 so we get for
t ∈ [0, T ]

∫

R

|Φε(t)|2dx ≤ C(T ).

Now we set Vε = (Nε, Pε), Θ = (θ, θ) and Uε = g(Ã(Vε)∂x(Vε + Θ) + B̃(Uε)∂x(Φε + θ1)). We
have g2∂tVε = g′Uε + g∂xUε so g∂tVε = g′g−1Uε + ∂xUε. Therefore ‖g∂tVε‖L2(0,T ;H−1(R)) ≤
C‖Uε‖L2(QT ) ≤ C(T ) + C(‖∂xVε‖L2

g
+ ‖∂xΦε‖L2

g
). The result follows using (29) and lemma

2.

5 Passing to the limit

Thanks to (29) and (30) there exists subsequences (not relabeled) of Nε, Pε, Φε and three
functions N, P ∈ L2

(

0, T ; H1
g (R)

)

∩ H1
(

0, T ; (H1
g (R))′

)

, Φ ∈ L∞
(

0, T ; H1
1,g(R)

)

such that
as ε → 0

Nε ⇀ N weakly in L2
(

0, T ; H1
g (R)

)

∩ H1
(

0, T ; (H1
g (R))′

)

(33)

Pε ⇀ P weakly in L2
(

0, T ; H1
g (R)

)

∩ H1
(

0, T ; (H1
g (R))′

)

(34)

Φε ⇀ Φ weakly star in L∞
(

0, T ; H1
1,g(R)

)

. (35)

In order to pass to the limit in the nonlinear terms we need some strong convergence result.
The compactness of the embedding H1

g (R) ↪→ L2(R) and Aubin lemma imply that

Nε → N , Pε → P strongly in L2
(

0, T ; L2(R)
)

and a.e. in QT

then thanks to lemma 9,

N + θ, P + θ ≥ 0, N + P + 2θ ≤ 1 a.e. in QT .

Moreover since the operators Ã and B̃ are lipschitz continuous, we get

Ã(Nε, Pε) → Ã (N, P ) , B̃(Nε, Pε) → B̃ (N, P ) strongly in L2(QT ).

Therefore (N, P, Φ) satisfy in the sense of distributions the equations










g2∂t(N, P ) = ∂x[g
2(Ã (N, P ) ∂x(N + θ, P + θ) + B̃ (N, P ) ∂x(Φ + ϑ))] in QT

−∂x(g
2∂xΦ) = −g2(N − P + q(x)) in QT

(36)
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and we have the regularity N, P ∈ L∞(0, T ; L2
g(R)), g2∂tN, g2∂tP ∈ L2

(

0, T ; (H1
g (R))′

)

,
g∂2

xΦ ∈ L∞(0, T ; L2(R)) which lead to a weak solution of our problem according to definition
1.

Remark 2. The result of this work remains valid in the case where kn 6= kp and assumption
(H2) replaced by one of the following assumptions

kn ≥ kw, kp ≥ kw, kn + kp < 4kw

kn ≤ kw, kp ≤ kw, kn > max(
4kw − kp

5
, 4kw − 5kp)

kn ≥ kw, kp ≤ kw, kp > max(kn − 2kw,
2kw + kn

5
)

kn ≤ kw, kp ≥ kw, kn > max(kp − 2kw,
2kw + kp

5
).

Indeed in these cases, one has

4(kn − (kn − kω)n)(kp − (kp − kω)p) > ((kn − kω)p + (kp − kω)n)2

so that the diffusion matrix A(n, p) is positive definite if 0 ≤ n , p , n + p ≤ 1.

6 Appendix: Proof of lemma 5

Let ξ = (ξ1, ξ2) ∈ R
2, we distinguish two cases

1/ If u+ + v+ ≤ 1 we have

A+(u, v)ξ. ξ =
(

k − k′u+
)

ξ2
1 +

(

k − k′v+
)

ξ2
2 − k′(u+ + v+)ξ1ξ2.

We use the elementary inequality

ax2 + by2 + cxy ≥ min

(

4ab − c2

8b
,
b (4ab − c2)

4ab + c2

)

(

x2 + y2
)

for all a, b > 0 (37)

to obtain

A+(u, v)ξ. ξ ≥ min

(

F1(u, v)

8 (k − k′v+)
,
(k − k′v+) F1(u, v)

G1(u, v)

)

(

ξ2
1 + ξ2

2

)

where
{

F1(u, v) = 4 (k − k′u+) (k − k′v+) − k′2(u+ + v+)2

G1(u, v) = 4 (k − k′u+) (k − k′v+) + k′2(u+ + v+)2.

We are proving that F1(u, v) ≥ α0 > 0, for this we consider two cases. In the case k′ ≥ 0,
this inequality is equivalent to say that 4k2 − k′2 − 4kk′ > 0 which is satisfied thanks to
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(H2). Similarly, if k′ < 0 therefore (H2) implies that k′2 < 4k2 − 4kk′ then k′2 (u+ + v+) <
4k2 (u+ + v+) − 4kk′ (u+ + v+) which gives

k′2
(

u+ + v+
)2

< 4k2 + 4k′2u+v+ − 4kk′
(

u+ + v+
)

2/ If u+ + v+ ≥ 1 we have

A+(u, v)ξ. ξ =
1

u+ + v+

((

kv+ + kwu+
)

ξ2
1 +

(

ku+ + kwv+
)

ξ2
2 − (k − kw) (u+ + v+)ξ1ξ2

)

.

Once again applying the elementary inequality (37), we find

A+(u, v)ξ. ξ ≥ 1

u+ + v+
min

(

F2(u, v)

8 (ku+ + kwv+)
,
(ku+ + kwv+)F2(u, v)

G2(u, v)

)

(

ξ2
1 + ξ2

2

)

where
{

F2(u, v) = 4 (kv+ + kwu+) (ku+ + kwv+) − (k − kw)2 (u+ + v+)2

G2(u, v) = 4 (kv+ + kwu+) (ku+ + kwv+) + (k − kw)2 (u+ + v+)2.

We see that F2(u, v) = u+v+[4(k2 + k2
w) − ((u+)2 + (v+)2)(k2 + k2

w − 6kkw)] ≥ −((u+)2 +
(v+)2)(k2 + k2

w − 6kkw) ≥ C((u+)2 + (v+)2)
that is

F2(u, v)

(u+ + v+) (ku+ + kwv+)
≥ α and

(ku+ + kwv+)F2(u, v)

(u+ + v+) G2(u, v)
≥ α if u+ + v+ ≥ 1

then matrix A+ is definite positive.
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