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Abstract

In a recent paper [13], Y. Boykov et al. propose an approach for computing curve and
surface evolution using a variational approach and the geo-cuts method of Boykov and Kol-
mogorov [11]. We recall in this paper how this is related to well-known approaches for mean
curvature motion, introduced by F. Almgren et al. [3] and S. Luckhaus and T. Sturzen-
hecker [44], and show how the corresponding problems can be solved with sub-pixel accuracy

using Parametric Maximum Flow techniques. This provides interesting algorithms for com-
puting crystalline curvature motion, possibly with a forcing term.

Keywords: crystalline and anisotropic mean curvature �ow, variational approaches, total vari-
ation, submodular functions, max-�ow/min-cut, parametric max-�ow algorithms.

1 Introduction

In [13], Y. Boykov, V. Kolmogorov, D. Cremers and A. Delong discuss the possibility of evolving
curves and surfaces by their mean curvature by solving a discrete minimal surface problem, using
a maximum �ow/graph-cut algorithm [1]. This kind of technique has become very popular in the
past year in image processing, for segmentation problems but also stereo correspondence, etc., in
particular since the apparition of quite e�cient algorithms [12] for graphs with low-connectivity,
typically in use in this kind of applications.

The idea of Boykov et al. consists of evolving a contour Ct by �nding Ct+dt through the
minimization of the following variational problem

min
C

F (C) +
1

2dt
dist (C,Ct) , (1)

where F (C) is an energy (in general, the length or surface of C) and dist (C,Ct) is (approximately)
the L2-distance, given by

dist (C,Ct) = 2
∫

∆C

dist (p, C) dp ,

where ∆C is the region between the two curves or surfaces C and Ct. They conjecture that if for
instance F is the Euclidean length or surface of C, then this process will approximate the Mean
Curvature Flow, which is in this case the gradient �ow of F .

It turns out that this approach to the mean curvature �ow has been proposed in the early 90's
by Almgren, Taylor and Wang [3] and simultaneously by Luckhaus and Sturzenhecker [44], in the
following way: we consider φ a convex, one homogeneous function in RN (with (1/c)|x| ≤ φ(x) ≤
c|x| for some c > 0) and the corresponding anisotropic perimeter of E ⊂ RN

Per φ(E) =
∫
∂E

φ(νE(x)) ds ,
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where ν(x) is the inner normal to E at x and ds the surface integral on ∂E (more generally,
ds = dHN−1, the (N − 1)-dimensional Hausdor� measure). Given a set E, let

dE(x) = dist (x,E)− dist (x,RN \ E)

be the signed distance to the boundary of E (negative inside, and positive outside). Then, for
E ⊂ RN (bounded, or of bounded complement, so that ∂E is bounded), and given a time-step
h > 0, we de�ne ThE as a solution of

min
F⊂RN

Per φ(F ) +
1
h

∫
F4E

|dE(x)| dx , (2)

where F4E is the symmetric di�erence between the sets F and E: this is exactly another way of
writing (1). Then the above-mentioned authors de�ne a discrete-in-time evolution Eh(t) starting
from E by letting Eh(t) = T

[t/h]
h E where [·] denotes the integer part. It is shown in [3] that if

E and φ are smooth enough, then as h → 0, ∂Eh(t) converges (in the Hausdor� sense) to ∂E(t)
where E(t) is the Mean φ-Curvature Flow starting from E, which is in some sense, as expected,
the gradient �ow of the perimeter Per φ(E) (this is de�ned as the motion where ∂E evolves along
its normal by the opposite of its �anisotropic mean curvature� κφ, see for instance [3, 8] for a
complete de�nition). Convergence results for generalized evolutions are found in [17, 20].

The idea, here, is that the Euler-Lagrange equation for Problem (2) is

hκφF (x) + dE(x) = 0 (3)

and since dE(x) measures exactly how far the point x has moved away from ∂E along its (outer)
normal, this may be seen as a implicit time-discrete scheme for the mean curvature motion.

Remark 1.1. Since∫
F4E

|dE(x)| dx =
∫
F\E

dE(x) dx−
∫
E\F

dE(x) dx =
∫
F

dE(x) dx−
∫
E

dE(x) dx ,

we observe that, whenever E is bounded, it is equivalent to minimize (2) and to solve

min
F⊂RN

Per φ(F ) +
1
h

∫
F

dE(x) dx. (4)

It can be shown (see [17]) that this algorithm enjoys a monotonicity property, in the sense
that if E ⊂ E′ then the minimal (respectively maximal) solution ThE is contained in the minimal
(resp., maximal) solution ThE

′. This yields the convergence of Eh(t) to the generalized �ow, in
the sense of viscosity solutions, at least when this is unique. See also [20].

Adding an external force (forcing term along the normal) in this formulation is quite easy: if
dE is replaced in (4) with a term of the form dE(x)− hg(t, x), then equation (3) turns into

dE(x) = −hκφF (x) + hg(x, t))

which means that now, x moves along the normal of h times the opposite of the curvature plus
the forcing term g.

This approach has been widely studied in the past years, mostly as a tool for the theoretical
study of the anisotropic and �crystalline� mean curvature motion (the crystalline case is the case
where φ is non smooth, and is of particular importance here since the discrete approaches we
consider will only work in such cases). See in particular [6, 15, 17, 19].

In this paper, we provide a framework for computing such evolutions by max�ow/mincut algo-
rithms. The idea in [13] is to solve a discrete version of (1) using such combinatorial optimization
techniques. However, such an approach produces a discrete set C de�ned on a discrete grid,
and this has then to be re�ned a lot to capture the motion with a good precision. We show
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that problems (1) or (2) are related to a convex minimization problem known in image process-
ing as the �Rudin-Osher-Fatemi� (ROF ) problem (Total Variation minimization with a quadratic
penalization). This connection, exploited both in the continuous and discrete setting, allows simul-
taneously to (i) use max�ow/mincut approaches, in a �parametric� way [30, 36], to solve e�ciently
the discrete ROF problem; (ii) solve a discretized (ROF ) problem to derive with a good (sub-
pixel) precision an approximation of the set F which minimizes (2). In her seminal work [36],
Hochbaum proposes an approach to solve the ROF model using parametric maximum-�ow. This
approach has been considered in [33] and we also refer the reader to [38, 39] for similar ideas used
in computer vision.

In the next section, we recall some results that link Problem (4) to the celebrated �Rudin-
Osher-Fatemi� problem in computer vision, and provide an approach for its resolution. Then, in
Section 3, we introduce our discrete setting, �discrete total variation� functionals, and basically
state the same results as in Section 2 in this new setting. These properties lead to an e�cient
algorithm for the ROF problem, which we describe in Section 4. It is essentially a variant of the
parametric max-�ow algorithm [30] and has been �rst proposed by D. Hochbaum [36]. Its most
salient features are that it solves the problem in polynomial time and up to an arbitrary precision.
Eventually, we propose our technique for solving surface evolution problems in Section 5 and show
numerical examples in Section 6. Various appendices complete the paper. A modi�ed version of
the Boykov and Kolmogorov's maximum �ow code [12], that implements the parametric approach
to solves the ROF problem, is available through the authors' personal web page.

2 Minimal surface problems and total variation minimization

It is well known that level sets of function which minimize the total variation are themselves
minimizing surfaces, and this fact is a main tool for the study of these surfaces and their regu-
larity [28, 31]. However, the relationship between surfaces with prescribed curvature (minimizing
their perimeter plus an external �eld) and total variation minimization with an additional pe-
nalization of the function seems to have been less used, though it relies on the same celebrated
�co-area formula� [28, 31]:

|Du|(Ω) =
∫ +∞

−∞
Per ({u > z},Ω) dz (5)

Let us just state the main equivalence:

Proposition 2.1. Let u be the (unique) solution of

min
u∈BV (Ω)

λ

∫
Ω

|Du| +
1
2

∫
Ω

|u(x)− g(x)|2 dx . (6)

Then, for all z > 0, the super-level sets Ez = {u ≥ z} and E′z = {u > z} are both minimizers of

min
E⊆Ω

λPer (E,Ω) +
∫
E

z − g(x) dx. (7)

Conversely, any minimizer E of (7) is between E′z and Ez: E
′
z ⊆ E ⊆ Ez. In particular, for all

z but a countable set in R, {u = z} has zero measure and the solution of (7) is unique up to a
negligible set.

The proof of this proposition is relatively easy but is out of the scope of this paper. The �rst
part (the super-level sets are minimizing) was shown for instance in [17], while the second (the
converse) comes from a comparison principle for the minimizers of (7) which appears in [5]:

Lemma 2.2 ([5], Lemma 4, (i)). Let z > z′ and Ez, Ez′ minimize (7) for the respective values z
and z′: then Ez ⊆ E′z.
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An observation which is clear from the proofs is that these properties remain true if the
term 1

2

∫
Ω
|u(x)− g(x)|2 dx in (6) is replaced with a term of the kind

∫
Ω

Ψ(x, u(x)) dx where Ψ is
uniformly convex and C1 with respect to u(x), and

∫
E
z−g(x) dx is replaced with

∫
E
∂Ψ/∂z(x, z) dx

in (7). The cases where Ψ is simply convex, or lacks regularity, are also interesting, and partial
results still hold in these cases: see [21, 25] where similar ideas are developed. We mention
that theses principles have been used in a series of recent papers for studying the properties of
minimizers of (6), see [2, 16].

Also, in a more general setting, one may replace the total variation with an anisotropic total
variation ∫

Ω

φ(Du) := sup
{∫

Ω

udiv ξ : ξ ∈ C1
c (Ω; RN ) , φ◦(ξ) ≤ 1 ∀x ∈ Ω

}
,

where φ◦ is the polar of φ, de�ned by φ◦(ξ) = supφ(ν)≤1 ν · ξ (and φ(ν) = supφ◦(ξ)≤1 ν · ξ). Then
the perimeter in (7) is replaced by the corresponding anisotropic perimeter

Per φ(E) =
∫

Ω

φ(DχE) =
∫
∂E

φ(νE) dσ ,

where the last expression holds if E is smooth enough and νE is then the inner normal to ∂E.
This will be useful in the sequel, since the total variations and perimeters that are approximated
by discrete methods in this paper are strongly anisotropic.

The equivalence in Proposition 2.1 is interesting for both studies of problems (6) and (7), since
it extends the knowledge of some properties of solutions of one to the other, see [16].

It also gives a practical way to solve (4). Indeed, we deduce that a solution is given by
F = {u ≤ 0} where u is the minimizer of

min
u∈BV (Ω)

∫
Ω

φ(Du) +
1

2h

∫
Ω

(u(x)− dE(x))2 dx (8)

at least as soon as Ω is �large enough� (with respect to E). Problem (8) is the classical convex
problem in image processing known as the �Rudin-Osher-Fatemi� denoising problem, and can be
solved in many ways. Although it does not seem that standard ways for solving (8) yield very
e�cient algorithms for the mean curvature �ow, we will introduce now a discrete setting in which
the resolution of such problems is very fast using combinatorial optimization approaches, and
leads to e�cient algorithms for the crystalline mean curvature �ow (and probably many other
applications in shape computation/optimization).

We now introduce the discrete setting and the discrete analogs of Proposition 2.1 and Lemma 2.2.

3 Discrete perimeters and discrete total variation

Most of the results in these section are well known in combinatorial optimization, we present
them for completeness [42, 47], and, also, to stress the similarities with the continuous setting (in
the continuous setting, a general overview of these topics is found in [10]). By analogy with this
setting, we de�ne a discrete total variation as a convex, nonnegative function J : RN → [0,+∞]
satisfying a discrete co-area formula:

J(u) =
∫ +∞

−∞
J(χ{u≥z}) dz (9)

where χ{u≥z} ∈ {0, 1}N denotes the vector such that χ
{u≥z}
i = 0 if ui ≤ z and χ

{u≥z}
i = 1 if

ui ≤ z.
By analogy, given E ⊆ {1, . . . , N} we also de�ne a discrete perimeter as PJ(E) := J(χE) where

the characteristic vector χE is de�ned by χEi = 1 if i ∈ E and χEi = 0 else.
We assume that J is not identically +∞. Under these assumptions, it is easy to derive from (9)

the following properties:
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Proposition 3.1. Let J be a discrete total variation. Then:

1. J is positively homogeneous: J(λu) = λJ(u) for any u ∈ RN and λ ≥ 0.

2. J is invariant by addition of a constant: J(c1+u) = J(u) for any u ∈ RN and c ∈ R, where
1 = (1, . . . , 1) ∈ RN is a constant vector. In particular, J(1) = 0.

3. J is lower-semicontinuous.

4. p ∈ ∂J(u)⇔ (∀z ∈ R, p ∈ ∂J(χ{u≥z}).

5. J is submodular: for any u, u′ ∈ {0, 1}N ,

J(u ∨ u′) + J(u ∧ u′) ≤ J(u) + J(u′). (10)

More generally, this will hold for any u, u′ ∈ RN .

Conversely, if J : {0, 1}N → [0,+∞] is a submodular function with J(0) = J(1) = 0, then the
co-area formula (9) extends it to RN into a convex function, hence a discrete total variation.

In the 4th point, the subgradient ∂J(v) of J at v is de�ned as the set of vectors p such that
J(v′) ≥ J(v) + p · (v′ − v) for any v′. Equivalently, in this case, it is the set of p ∈ ∂J(0) with
J(v) = p · v. See [27, 50] for details.
Remark 3.2. If J is a general real-valued submodular function with J(0) = 0, then it can be
extended in a similar way to a convex functions of non-negative vectors u ∈ RN+ , taking 0 instead
of −∞ as the lower bound for the integral in (9). This is well-known in optimization theory as
the Lovász' extension of J [43], or the Choquet integral (see for instance [42, Chap. 8] and [47]).

We prove the proposition in Appendix A. A typical example of discrete total variation (and
associated perimeters) is (for u = ui,j a 2D image in RM×M , hence N = M2 here)

J(u) =
∑

1≤i<M
1≤j≤M

|ui+1,j − ui,j |+
∑

1≤i≤M
1≤j<M

|ui,j+1 − ui,j | (11)

but in�nitely many other examples can be build, involving interaction between neighboring pixels
further and further apart. Also, less standard convex functions enter this framework, such as the
�oscillation�

J(u) =
∑

1≤i<M
1≤j<M

max{ui,j , ui+1,j , ui,j+1, ui+1,j+1} −
∑

1≤i<M
1≤j<M

min{ui,j , ui+1,j , ui,j+1, ui+1,j+1} (12)

which is also, in some sense, an approximation of an anisotropic total variation. See Appendix B
for how the minimization of this example can be implemented.

Another particular example is a pairwise circulant oscillation involving three pixels (which
might be useful for images de�ned on 2D hexagons lattice endowed with the 6-connectivity) de�ned
as follows:

J(u) =
∑

1≤i<M
1≤j≤M

max{|ui,j − ui+1,j |, |ui,j − ui,j+1|, |ui+1,j − ui,j+1|} . (13)

The latter reduces to pairwise interactions of the form given by Eq. (11) by considering the
following: without loss of generality we can assume that we have ui,j ≤ ui+1,j ≤ ui,j+1 and by
noticing that |ui,j − ui,j+1| = |ui,j − ui+1,j |+ |ui+1,j − ui,j+1| we get that Eq. (13) amounts to:

J(u) =
1
2

∑
1≤i<M
1≤j≤M

(|ui,j − ui+1,j |+ |ui,j − ui,j+1|+ |ui+1,j − ui,j+1|) .

Using similar arguments, one can show that any circulant oscillations involving any odd number
(greater than 1) of pixels can be casted into a pairwise interactions form.

If J is a discrete total variation, then the discrete counterpart of Proposition (2.1) holds:
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Proposition 3.3. Let g ∈ RN and let u ∈ RN be the (unique) solution of

min
u∈RN

λJ(u) +
1
2
‖u− g‖2 (14)

Then, for all z > 0, the characteristic functions of the super-level sets Ez = {u ≥ z} and E′z =
{u > z} (which are di�erent only if z ∈ {ui, i = 1, . . . , N}) are respectively the largest and smallest
minimizer of

min
θ∈{0,1}N

λJ(θ) +
N∑
i=1

θi(z − gi) . (15)

This is shown in [18, 26], but is also a consequence of the representation we will introduce in
the next section for problems (14) and (15). Again, here, the quadratic term ‖u − g‖2 can be
replaced with any term of the form

∑
i Ψi(ui), with Ψi strictly convex and C1, replacing then

θi(z − gi) in (15) with Ψ′i(z). We postpone the proof of this result to the Appendix C. Let us
just mention here that it relies on the following discrete counterpart of Lemma 2.2 which is a
consequence of the submodularity of J :

Lemma 3.4. Let z > z′ and θ, θ′ solve (7) for the respective values z and z′ of the parameter.
Then θ ≤ θ′ (in other words, {θ = 1} ⊆ {θ′ = 1}).

This key property is proved, at least for a particular case of submodular functions, in [30,
Lemma 2.4] (see also the references therein). We also refer the reader to [45] for further extensions
of this approach. A proof based on stochastic arguments is found in [26], while we present in
Appendix C the elementary proof given in [18].

Quantized total variation minimization problem. We will discuss in the next section how
Problem (14) can be (e�ciently) solved by successive minimizations of (15). (This was �rst
proposed by Gallo, Grigoriadis and Tarjan [30], and improved by Hochbaum [36]. The authors of
the present note rediscovered the latter algorithm [18, 26], following quite di�erent paths.) Then,
(14) will be seen as an approximation of (6), for some anisotropic variant of the perimeter. In
practice, we cannot expect to solve (15) for all values of t. Hence, we introduce the quantized
version of Problem (14):

min
{
λJ(v) +

1
2
‖v − g‖2 : v ∈ RN , vi ∈ {l0 . . . , ln} ∀i = 1, . . . , N

}
(16)

where the real levels (lk)nk=0 are given. That is, we minimize (14) only among functions that take
values in a prescribed, �nite set. Without loss of generality, we assume that l0 < l1 < · · · < ln, and
for simplicity that for all k = 1, . . . , n, lk−lk−1 = δ > 0 (adaption to other cases is straightforward).
Then the following result is true.

Proposition 3.5. Let v be a solution of (16), and u be the solution of (14). Then for each
i = 1, . . . , N , if l0 ≤ ui ≤ ln, |ui − vi| ≤ δ/2.

In particular, if l0 ≤ m and ln ≥ M , maxi |ui − vi| ≤ δ/2. This means that the quantized
problem (16) produces exactly a quantization of the solution of (14). We note that this approach
leads to algorithms which solve our problem with an L∞ a priori error bound. This is quite di�erent
from more standard (PDE-based) techniques (see for instance [18, Sec. 4]) which will produce a
solution up to some L2 error. Again, the proof of this proposition is given in Appendix C.

In the next section, we describe well-known algorithms for solving (15) and how to use them
to solve (14).
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4 Parametric and dyadic-parametric maximum �ow

4.1 Graph representation of binary energies

It was �rst observed by Picard and Ratli� [49] that binary Ising-like energies, that is, of the form∑
i,j

αi,j |θi − θj | −
∑
i

βiθi ,

could be represented on a graph and minimized by standard optimization techniques, and more
precisely using maximum �ow algorithms. Kolmogorov and Zabih [41] showed that submodularity
is a necessary condition, while, up to sums of ternary submodular interactions, it is also a su�cient
condition in order to be representable on a graph. Su�cient conditions for higher order interactions
are given in [29]. In general, it does not seem to be known whether any submodular J can be
represented on a graph in the way proposed in [49, 41]. For instance, it is easy for the particular
example (12), although it may involve much more than three variables, see Appendix B. Note
that other e�cient algorithms exist for minimizing submodular functions [24, 35, 37, 52].

Let us apply this to (15), in the simpler case where J has only pairwise interactions, hence:

J(u) =
∑
i,j

αi,j(ui − uj)+

The construction we will describe has been presented in [14, 34, 41, 49].
We consider problem (15), for a given value of t. We build a graph as follows: we consider E =

{1, . . . , N}∪{s}∪{t} where the two special nodes s and t are respectively called the �source� and
the �sink�. We consider then oriented edges (s, i) and (i, t), i = 1, . . . , N , and (i, j), 1 ≤ i, j ≤ N ,
and to each edge we associate a capacity de�ned as follows:

c(s, i) = (z − gi)− i = 1, . . . , N ,

c(i, t) = (z − gi)+ i = 1, . . . , N ,

c(i, j) = λαi,j 1 ≤ i, j ≤ N .

(17)

By convention, we consider there is no edge between two nodes if the capacity is zero. Let us
denote by E the set of edges with nonzero capacity and by G = (V, E) the resulting oriented graph.

We then de�ne a �cut� in the graph as a partition of E into two sets S and T , with s ∈ S and
t ∈ T . The cost of a cut is then de�ned as the total sum of the capacities of the edges that start
on the source-side of the cut and land on the sink-side:

C(S, T ) =
∑

(µ,ν)∈E
µ∈S,ν∈T

c(µ, ν) .

Then, if we let θ ∈ {0, 1}N be the characteristic function of S ∩ {1, . . . , N}, we clearly have

C(S, T ) =
N∑
i=1

(1− θi)(z − gi)− + θi(z − gi)+ +
N∑

i,j=1

λαi,j(θi − θj)+

= λJ(θ) +
N∑
i=1

θi(z − gi) +
N∑
i=1

(z − gi)− .

Hence, up to a constant, it is nothing else than the energy in (15).
So far, the problem has just been reformulated. The interesting part is that very e�cient algo-

rithms are available for �nding a minimum cut, based on a duality result of Ford and Fulkerson [1].
The idea is to �nd the maximum �ow in the graph, in the following sense: starting from s, we
�push� a quantity along the oriented edges of graph, with the constraint that the �ow along each
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edge (µ, ν) should remain between 0 and c(µ, ν), and that each �interior� node i must get as much
as it sends (while the source s only sends �ow to the network, and the sink t only receives). It is
clear that the total �ow which can be such sent is bounded from above, less clear, but not hard
to show, that this bound is given my a minimal-cost cut (S, T ). The duality theorem of Ford
and Fulkerson expresses the fact that this bound is actually reached, and the partition (S, T ) is
obtained by cutting along the saturated edges, where the �ow is equal to the capacity while the
possible reverse �ow is zero. More precisely, we can �nd starting from s the �rst saturated edge
along the graph, and cut there, or do the same starting from t and scanning the reverse graph,
this will usually give the same solution except for a �nite number of levels z. Several e�cient
algorithms are available to compute a maximum �ow in polynomial time [1]. Although the time
complexity of the Boykov and Kolmogorov's maximum �ow described in [12] is not polynomial,
this algorithm outperforms others in terms in time computations. We now describe how these
techniques can be adapted to solve e�ciently a series of problems, corresponding to varying levels
z = z1, . . . , zn, with the global complexity of a single one. These approaches follow from the
seminal work of Gallo, Grigoriadis and Tarjan [30], with an improvement due to Hochbaum [36].

4.2 Parametric max-�ow algorithm

The main idea idea of a parametric max-�ow is to reuse the �ow found for a given problem for
the next one. It works for a series of problem where the capacities from the sink to the source are
nondecreasing while those from the source to the sink are non-increasing and all other capacities
remain unchanged. The authors of [30] show that under these assumptions the monotony of the
solutions given by Lemma 3.4 hold. In terms of graph it means the the set of nodes connected
to the source is growing as the level z is decreasing. They take bene�t from this property by
modifying the pre�ow-push algorithm of Goldberg and Tarjan [32] using the �residual� pre�ow
obtained at the previous stage as a starting point for the next one. Using this strategy, they show
that the total time complexity of solving these series of max �ows is exactly the one for solving a
single one.

Of course, the same idea can also be embedded in augmented path-based algorithms, such as
the one of Boykov and Kolmogorov [12]. Let us describe quickly how it works. A convenient way
to describe a �ow f in a graph G = (V, E) is the notion of the residual network Gf = (V, Ẽ). It
has the same set of nodes as G, but the set of edges with positive capacity may be di�erent. For
each arc the �ow sent along an edge is deduced from its capacity while it is added to the capacity
of the opposite arc. More precisely, for all arcs (µ, ν) we have c̃(µ, ν) = c(µ, ν)− f(µ, ν) + f(ν, µ)
and c̃(ν, µ) = c(ν, µ) − f(ν, µ) + f(ν, µ). After one run of an augmented path-based max-�ow
algorithm, the initial graph is usually replaced with a residual network whose saturated arcs (µ, ν)
have been removed (i.e., their capacity has been set to zero, while c̃(ν, µ) = c(ν, µ) + c(µ, ν) is
maximal).

The implementation of the parametric algorithm is based on this representation. We start with
a minimal level z = z1 in (17) (assuming we want to solve our problem for z1, z2 = z1 +δ, . . . , zn =
z1 + (n − 1)δ), and compute a �rst residual network. Then, in this new network, we increase by
δ all residual capacities c̃(i, t), i = 1, . . . , N , and start again the augmented path algorithm. If
i was in T , it can not get any new �ow from any node (since all path from s are still saturated
at some point), hence nothing will happen there (and actually, the real implementation of the
algorithm does not even increase the corresponding capacity c(i, t)). In particular, edges from i
to some node of S (which need not be saturated) do not get any new �ow, and the output would
remain the same if these edges had been deleted before starting again the algorithm. This remark
is crucial for the variant of this algorithm we will discuss in the next section. On the other hand,
if i was in S, then it gets connected to the sink t again and �ow may pass through. This �ow
will saturate some edge closer to the source, so that i may either stay connected to the source
or become connected to the sink after the next run. This shows again why as z increases, the
corresponding set S decreases.

This procedure is iterated until the last level is reached.
For simple cases ([1] for instance, when the complexity is deduced from the properties of a
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nondecreasing distance function) one can verify that the global complexity of the parametric max-
�ow algorithm is the one of a maximum �ow plus O(Nn). The latter corresponds to the number
of operations required to update the capacities and retrieve the solution.

To our knowledge, the general case remains unknown. Considering this scheme applied with
the algorithm of Boykov and Kolmogorov [12], we do not know the complexity. However, we
observe a much faster convergence, compared to a naive approach that consists in re-creating a
new graph for each zk (we take into account the monotonicity property by deleting from this new
graph the nodes where the solution is already found to be below the level zk−1 < zk, see [26]).

This approach provides a �rst, fast method for solving (16). See Subsection 4.4 for some
experiments. Note that [39] describes an e�cient approach to recompute a maximum-�ow that
handles arbitrary changes in the graph. The next section describes a slightly faster approach.

4.3 Dyadic-Parametric max-�ow algorithm

It was �rst observed by Hochbaum [36] that this parametric approach could be improved according
to the following observation: a pixel only needs to be involved in O(log2(n)) computations (by a
dichotomy approach) instead of O(n). this fact has also been noted and used in [18, 26]. For the
sake of clarity we adopt a dyadic scheme to implement this dichotomic approach and we assume
n = 2Q − 1 for some Q > 1.

The algorithm works as follows. Instead of starting with z1 we begin with z(n+1)/2, and we
compute the max-�ow. We �nd a set S1\{s} of pixels i with value ui ≥ z(n+1)/2 and a complement
T1 \ {t} of pixels i with ui ≤ z(n+1)/2. On the �rst one, we solve now for the level z3(n+1)/2, while
on the second one we solve for the level z(n+1)/4. This can be done in many ways: in [18], a new
(disconnected) graph with N nodes was built to implement the corresponding energy, while in [26]
a more clever (and faster) approach, separating the various connected components of these two
sets, was implemented. It is more e�cient, however, to try to �continue� the previous graph-cut,
as described in [36] in the framework of a pre�ow-push implementation. In an augmented path
algorithm, we are left with a residual graph, such that no arc from S1 to T1 has positive capacity.

We then continue as follow: we �rst set to zero the capacities of the residual edges from T1 to S1

which means, we eliminate the corresponding edge, ending up with a totally disconnected graph.
Then, for i ∈ S1 we increase by ∆ = z3(n+1)/2 − z(n+1)/2 = z(n+1)/2 − z(n+1)/4 the capacity c(i, t)
while if i ∈ T1 we increase by ∆ the capacity c(s, i). We continue the augmented path algorithm,
to �nd a new cut (S2, T2). The discussion in the previous section shows that if i ∈ S1 ∩ S2, then
ui ≥ z3(n+1)/2, if i ∈ S1 ∩ T2, z(n+1)/2 ≤ ui ≤ z3(n+1)/2, if i ∈ T1 ∩ S2, z(n+1)/2 ≥ ui ≥ z(n+1)/4

and if i ∈ T1 ∩ T2, ui ≤ z(n+1)/4.
After the qth step, we are left with a new cut (Sq, Tq). Again we disconnect this partition,

setting to 0 the capacities c(i, j) for i ∈ Tq and j ∈ Sq), replace ∆ with ∆/2 and update the
capacities c(i, t) and c(s, i) as before: if i ∈ Sq, c(i, t) is increased by ∆, while if i ∈ Tq, c(s, i) is
increased by ∆. We repeat this until q = Q: in the end, we have partitioned the nodes into sets
where ui is between two consecutive values of zk.

Our modi�ed version of the maximum �ow code of Boykov and Kolmogorov (cite [12]) that
has been adapted for solving e�ciently problem (16) is available through the authors' web site.

Again, Hochbaum shows that this procedure, implemented upon the pre�ow-push algorithm,
has a complexity which is roughly the same as one of a max-�ow computation, plus O(NQ) (that
is, O(N log2 n)), leading to a globally polynomial algorithm for (16). We do not know if this is
still true for the variant we have implemented upon Boykov and Kolmogorov's algorithm, but it
clearly outperforms the previous implementations presented in [18, 26] in which new graphs were
rebuilt at each step (see the next subsection).

4.4 Comparisons

We now compare these di�erent approaches for solving the discrete ROF model 6. Two kinds of
discrete total variation are considered: the �rst one is given by Example 11, i.e., the image is
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(a) (b)

Figure 1: Two original images: (a) Cows, (b) Girl.

(a) (b) (c)

Figure 2: Regularized Girl (2562) images (a) λ = 10, (b) λ = 20, (c) λ = 60.

de�ned on a regular lattice endowed with the 4-connectivity while the second one assumes the 8-
connectivity. For the latter, the interactions terms involving the 4-nearest neighbors are weighted
by 1 while diagonal interaction terms are weighted by 1√

2
.

Two parametric maximum-�ows have been implemented. The �rst one relies of a the push-
relabel (PR) approach (see for instance [23] for more details), while the second is our adaptation
of the maximum-�ow implementation of Boykov-Kolmogorov (BK) [12]. Both the parametric and
dyadic-parametric approaches are considered. We also compare with the previous approaches
of [18, 26] by giving the time results of [26]. Time results for these �ve di�erent algorithms are
given for an Intel Core2 Q6600 processor running at 2.40GHz. They correspond to the average time
of 10 runs. Figure 1 depicts two images, cow (400× 600 and 800× 1200) and girl (2562) used for
our experiments. Minimizers with the 8-connectivity for the girl and cows images are respectively
depicted in Figure 2 and Figure 3. Time results with di�erent regularization parameters for 4-
and 8-connectivity are respectively given in Table 1 and Table 2.

Results clearly shows that the dyadic approach clearly outperforms the pure parametric one
by an order of magnitude. We note that the parametric PR is much more dependent to the
regularization parameter λ than BK's. We also observe that the order performance depends on
the content of the image and on the value of the regularization parameter. Indeed, for small
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(a) (b) (c)

Figure 3: Regularized Cows (400× 600) images (a) λ = 10, (b) λ = 20, (c) λ = 60.

regularization (λ = 10), PR performs better for cows but worse and girl. This order is reversed
for larger regularization.

Considering the dyadic approaches, the order is stable over regularization parameters and image
contents: The best one is the dyadic parametric BK algorithm followed by the Chambolle/Darbon-
Sigelle approach while the PR parametric comes third. Finally note that one can adapt the PR
parametric maximum-�ow as proposed in [33] to also get an e�cient TV minimization using the
Push-Relabel approach.

5 Surface evolution using parametric maximum �ows

We now show how all this can be used to approximate the mean curvature �ow of an hypersurface
(in some anisotropic geometry). Boykov et al [13] simply solve (1) by a simple graph cut (one run
of the max�ow algorithm), so that the output is a discrete set. In this way, subpixel motion cannot
be grasped (and in particular surfaces of very low curvature may remain stuck). We propose to
use (14) as a discretization of the continuous problem (6) (for an anisotropy φ related to J) and
then to estimate (by a linear interpolation) the position of the new hypersurface with a subpixel
precision. In particular, it means that we estimate, for the next step, the new distance function to
the zero level set of the function obtained at the previous step. Hence our algorithm is as follows:
the initial surface is given as the zero level set of a function u0, de�ned on our discrete grid. We �x
a time-step h > 0, and assume for the sake of clarity that our discrete grid has a spatial resolution
of 1. Given a discrete perimeter J , we alternatively, for n ≥ 0,

• Compute the signed distance function dn to the boundary of {un ≤ 0}, by (for instance) a
fast-marching algorithm [53, 54];

• Solve the discrete version of (8):

min
u
J(u) +

1
2h
‖u− dn‖2 (18)

by the dyadic-parametric max �ow algorithm, and call un+1 the solution.

Then, the surfaces Γn = {un = 0} will be approximation of the anisotropic curvature �ow with
normal velocity κφ if J is an approximation, in some variational sense, of the perimeter Per φ.
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Table 1: Time results for several regularization parameter λ using 4-connectivity. Time results
are in seconds.

Images (size) Approach λ = 10 λ = 20 λ = 60
Chambolle/Darbon-Sigelle 1.06 1.29 1.95
Parametric PR 4.37 7.01 13.97

Cows (400× 600) Dyadic Parametric PR 1.71 2.73 6.51
Parametric BK 6.13 6.45 7.37
Dyadic Parametric BK 0.61 0.75 1.10
Chambolle/Darbon-Sigelle 4.35 5.35 8.50
Parametric PR 19.73 37.52 198.32

Cows (800× 1200) Dyadic Parametric PR 8.89 15.37 39.25
Parametric BK 25.46 26.85 30.38
Dyadic Parametric BK 2.44 3.18 4.83
Chambolle/Darbon-Sigelle 0.30 0.38 0.52
Parametric PR 1.83 2.01 2.50

Girl (2562) Dyadic Parametric PR 0.65 1.04 1.66
Parametric BK 1.58 1.67 1.94
Dyadic Parametric BK 0.17 0.21 0.29
Chambolle/Darbon-Sigelle 1.17 1.50 2.36
Parametric PR 14.24 42.96 33.80

Girl (5122) Dyadic Parametric PR 3.58 6.24 8.88
Parametric BK 6.61 7.02 8.06
Dyadic Parametric BK 0.72 0.92 1.49

Figure 4: Evolutions with a square anisotropy (thick line: original curve, left: iterations 10, 20,
30, right: iterations 50, 100, 150, 200, 228).

For instance, the two-dimensional function

J(u) =
∑
i,j

|ui+1,j − ui,j |+ |ui,j+1 − ui,j | (19)

is an approximation (as the grid step goes to zero), of the anisotropic perimeter

Per φ(E) =
∫
∂E

|ν1|(x) + |ν2|(x) dx
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Table 2: Time results for several regularization parameter λ using 8-connectivity. Time results
are in seconds.

Images (size) Approach λ = 10 λ = 20 λ = 60
Chambolle/Darbon-Sigelle 1.98 2.53 4.12
Parametric PR 7.85 20.09 24.08

Cows (400× 600) Dyadic Parametric PR 4.50 2.72 16.26
Parametric BK 12.96 13.61 16.03
Dyadic Parametric BK 1.29 1.81 2.68
Chambolle/Darbon-Sigelle 8.22 11.01 18.72s
Parametric PR 145.08 279.44 306.48

Cows (800× 1200) Dyadic Parametric PR 24.81 50.40 111.03
Parametric BK 48.31 52.31 62.45
Dyadic Parametric BK 6.08 7.93 12.97
Chambolle/Darbon-Sigelle 0.55 0.72 1.08
Parametric PR 5.32 9.24 12.67

Girl (2562) Dyadic Parametric PR 1.49 2.05 3.42
Parametric BK 2.97 3.25 4.04
Dyadic Parametric BK 0.42 0.55 0.81
Chambolle/Darbon-Sigelle 2.34 3.05 5.01
Parametric PR 41.14 71.39 140.79

Girl (5122) Dyadic Parametric PR 10.15 12.92 22.17
Parametric BK 11.90 13.19 17.08
Dyadic Parametric BK 1.86 2.54 4.19

corresponding to the anisotropy φ(ν) = |ν1| + |ν2|. Less anisotropic examples are easily built by
considering more interactions (in other directions) in the de�nition of J (but this is not the only
way).

The crystalline curvature motion in the sense of [8] is obtained by computing in the �rst step
a non-euclidean distance function, and more precisely, the signed distance function given by the
polar of φ

dφE(x) = inf
y∈E

φ◦(x− y)− inf
y 6∈E

φ◦(y − x) (20)

with φ◦(ξ) = supφ(ν)≤1 ν · ξ (see [8] for details). In the case of φ(ν) = |ν1| + |ν2|, one has
φ◦(ν) = max{|ν1|, |ν2|} and the fast marching algorithm has to be modi�ed accordingly to compute
the appropriate distance (See Fig. 4 for an example of this crystalline �ow).

Numerous improvements to the algorithms can be done: for instance, one may compute the
distance function up to some given threshold (that might be adapted to the current shape), and
solve the Total Variation problem only in a neighborhood of the surface (where |dn| is small).

Also, an additional normal force g (depending on the space and the time) is implemented by
replacing (18) with

min
u
J(u) +

1
h
‖u− dn + hgn‖2 . (21)

6 Numerical examples

6.1 (Anisotropic) curvature �ow

We have computed several 2D and 3D evolutions with this technique. The simplest cases corre-
spond to the square (in 2D) or cubic (in 3D) anisotropy, that is, with φ(ν) =

∑
i |νi|. Indeed,

these cases are discretized on graphs with only nearest-neighbour interaction, for instance, in 2D,
the discrete energy is given by (19). The two examples illustrated by �gures 4 and 5 follow the
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de�nition of the crystalline motion in [8]; in each case, the distance function is computed using the
polar φ◦: in practice, a fast-marching algorithm is implemented with a local solver implementing
the discretization of φ(∇dφ) = 1, taking into account the direction of the incoming characteristics
just as in the isotropic case [51].

Figure 5: 3D evolutions with a cubic anisotropy: original shape and shape at times 1, 4, 7, 10.

Figure 6: Detail of the �facet breaking� at time 1.

In the 3D example of Figure 5, one observes the celebrated �facet-breaking� phenomenon: a
L-shaped facet of the original shape breaks into two rectangular facets which evolve at di�erent
speed, as predicted, and observed, in [7, 48], see Figure 6.

It is possible, now, to compute �more isotropic� motions, or motion with more complex
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anisotropies (see [11] for a general discussion on this topic). For instance, a hexagonal anisotropy
can be implemented using nearest-neighbour interaction on a triangular lattice: see Figure 7, left.
Nearly-isotropic evolutions are computed using more complex interactions, for instance, involving
next-nearest neighbours and even further neighbours: see �gure 7, right. However, in this last
case, one still sees that the evolution looks crystalline, with a shape presenting a small number of
facets after some time.

Figure 7: Evolution with a hexagonal anisotropy (left), and nearly-isotropic curvature motion
(right), both at times 0, 20, 40, 60, 80, 100.

6.2 Flows with forcing term

The mean curvature �ow with constant volume is the simplest �ow with a forcing term that can
be implemented using this approach with little extra cost. In this case, a normal force is added
(following eq. (21)) which keeps the volume of the shape equal to the volume of the initial shape.
In this particular case, this is simply done by thresholding the solution u of (18) not at the level
u = 0, but at the level s such that |{u < s}| = |{dn < 0}| = V , V being the initial volume. Such
an evolution (with a square anisotropy) is depicted on Figure 8.

Figure 8: Evolution of a volume preserving crystalline curvature motion.
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Figure 9: Two examples of 2D crystal growths.

Figure 10: An image of the heart (left) and the segmentation of a vein using an active �balloon�
(right, �nal state).

We brie�y show, without entering into the details, two other �ows with forcing term computed
with this technique. The �rst one is a basic 2D implementation of a crystal growth problem
(Stefan's system of equations). We have followed the variational numerical method described
in [4], where it is implemented in a more standard way. At each step, we solve problem (21) where
the external forcing �eld gn depends on the temperature and is recomputed at each iteration.
Results are shown on �gure 9.

Our last example is an implementation of an active contour (snake) model, more precisely
a �balloon�, �rstly introduced in [22]. Here, the curve follows the gradient �ow of a modi�ed
perimeter which takes into account the intensities of the original image (and is cheaper when the
curve goes through higher gradients). An internal (here, constant) in�ating force is added in order
to try to invade a whole region of interest. Figure 10 depicts an image of a heart in which we wish
to segment a vein. We initialize the process with a little circle in the middle of the image. As is,
this implementation is probably not very e�cient with respect to more standard snake models,
but this very simple approach gives good results.

A Proof of Proposition 3.1

In this appendix, we prove shortly Proposition 3.1. Let us prove the lower-semicontinuity and the
last assertion: �rst of all, J is lower semicontinuous because if un → u, then for all z 6∈ {ui, i =
1, . . . , N}, χ{un>z} = χ{u>z} as soon as n is large enough. Hence, J(χ{u

n>z}) → J(χ{u>z}) for
a.e. z, so that (Fatou's lemma)

J(u) =
∫ +∞

−∞
J(χ{u>z}) dz ≤ lim inf

n→∞

∫ +∞

−∞
J(χ{u

n>z}) dz = lim inf
n→∞

J(un) .
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(If J is everywhere �nite, then it follows from the convexity that it is locally Lipschitz-continuous.)
Let us now show the submodularity: assume �rst u and u′ are binary. Then, ui + u′i =

ui ∨ u′i + ui ∧ u′i = 0 if ui ∨ u′i = 0, 1 if ui ∨ u′i = 0 but ui ∧ u′i = 1, and 2 if ui ∧ u′i = 1. Hence,
by (9),

J(u+ u′) =
∫ 2

0

J
(
χ{u∨u

′+u∧u′≥z}
)
dz = J(u ∨ u′) + J(u ∧ u′).

On the other hand, since J is 1-homogeneous and convex,

J(u+ u′) = 2J
(
u+ u′

2

)
≤ 2

(
1
2
J(u) +

1
2
J(u′)

)
= J(u) + J(u′).

Hence (10) holds. If now u, u′ are not binary, we still have

J(u ∨ u′) + J(u ∧ u′) =
∫ +∞

−∞
J
(
χ{u∨u

′≥z}
)

+ J
(
χ{u∧u

′≥z}
)
dz

=
∫ +∞

−∞
J
(
χ{u≥s} ∨ χ{u

′≥s}
)

+J
(
χ{u≥z} ∧ χ{u

′≥z}
)
dz ≤

∫ +∞

−∞
J
(
χ{u≥z}

)
+J

(
χ{u

′≥z}
)
dz

= J(u) + J(v) .

We now want to consider the converse assertion, that is, the convexity of the extension
through (9) of a nonnegative submodular function. We consider J : {0, 1}N → [0,+∞] a submod-
ular function, i.e., such that (10) holds for any pair of binary vectors u, u′. We assume moreover
that J(0) = J(1) = 0, and we still denote by J its extension to RN by the co-area formula (9).
(We observe that thanks to J(1) = 0, if u ∈ {0, 1}N then (9) is already true.)

Then J is convex: hence it is a �discrete total variation�. This extends quite easily to the
continuous case. In the discrete case, however, this result is well known and usually proved in
the framework of the linear optimization theory, using duality [46, 42]. We propose here a very
elementary proof.

First of all, points (1-3) of the thesis of Proposition 3.1 are deduced only from (9) and therefore
hold for J even if it were not convex.

Let us now show the convexity of J . Since it is 1-homogeneous it is equivalent to show that

J(u+ v) ≤ J(u) + J(v) (22)

for any u, v ∈ RN . We �rst consider nonnegative, integer-valued vectors u, v. We observe that if
u is integer-valued, then J can be de�ned by the following inf-convolution formula:

J(u) = min

{
n∑
l=1

J(θl) : n ≥ 0, θl ∈ {0, 1}N ,
n∑
l=1

θl = u

}
. (23)

Indeed, denote by H(u) the right-hand side of 23. Since

J(u) =
∫ ∞

0

J(χ{u>z}) dz =
n∑
l=1

J(χ{u≥l}) ,

where n = maxi ui, we have H(u) ≤ J(u). The reverse inequality will hold if we show that
the minimum in (23) is reached precisely for n = maxi ui and θl = χ{u≥l} (and, of course, any
permutation of these), or, equivalently, if we show that it is reached for a monotone sequence of
binary vectors θl.

This follows from the submodularity of J . If J is strictly submodular (that is, if the inequality
in (10) is strict whenever the vectors are not ordered), then it is obvious: indeed, if the minimum
in (23) is reached for (θl)nl=1 and there are l, l′ such that θl 6≤ θl

′
nor θl 6≥ θl

′
, then, replacing θl
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with θl ∧ θl′ and θl
′
with θl ∨ θl′ we see that we strictly decrease the value of the minimum, a

contradiction. Hence the minimum is reached for θl = χ{u≥l}, l = 1, . . . , n = maxi ui.
If J is not strictly submodular, we choose a strictly submodular function Ĵ (for instance,

Ĵ(θ) = g(
∑N
i=1 θi), where g is a strictly concave function with g(0) = g(N) = 0), and for ε > 0

small we let Jε = J + εĴ . Then, the minimal value in (23) for Jε will be attained for θl = χ{u≥l},
l = 1, . . . , n = maxi ui. Passing to the limit, we still get that H(u) = J(u) so that (23) is true.

Let us now show (22) for a general pair of vectors u, v. We may obviously assume that
J(u) < +∞ and J(v) < +∞. In particular (since u and v take at most N value) we have
J(χ{u>z}) < +∞ and J(χ{v>z}) < +∞ for any z ∈ R. Let m < min{ui, vi, i = 1, . . . , N} and
M > max{ui, vi, i = 1, . . . , N}. We have u = m1 +

∫M
m
χ{u>z} dz and the same holds for v. Now,

for ε > 0 small, we let

uε = m1 + ε
∑
k∈Z

m≤kε≤M

χ{u>kε} and vε = m1 + ε
∑
k∈Z

m≤kε≤M

χ{v>kε} ,

clearly, uε → u and vε → v as ε → 0, and J(uε) → J(u), J(vε) → J(v). Now, letting uε# =
(uε −m1)/ε and vε# = (vε −m1)/ε, we have two non-negative integer-valued vectors to which we
can apply (22), and we �nd

J(uε + vε) = εJ(uε# + vε#) ≤ ε(J(uε#) + J(vε#)) = J(uε) + J(vε).

Since the right-hand side converges to J(u)+J(v) as ε→ 0, and J is l.s.c., we deduce (22). Hence
J is convex.

Remark A.1. By standard convex analysis (see e.g. [27, 50]), we deduce that

J(u) = sup
q∈K

q · u

where

K =

{
q ∈ RN :

N∑
i=1

qiθi ≤ J(θ), ∀ θ ∈ {0, 1}N
}

= ∂J(0) ,

the subgradient of J at 0. Then, it is standard that for any u, ∂J(u) = {q ∈ K : q · u = J(u)}
and using (9) one shows easily that q ∈ ∂J(u) ⇒ q ∈ ∂J(χ{u>s}) for any s ∈ R (point 4 of
Proposition 3.1).

B Representation of submodular functions on graphs

Following [40, 41], we say that the (necessarily submodular) J(θ1, . . . , θN ) can be represented on
a graph if there exists M additional nodes i ∈ {N + 1, . . . , N +M} and weights αi,j ≥ 0, βi ∈ R
(i, j ∈ {1, . . . , N +M}) such that for any θ ∈ {0, 1}N ,

J(θ1, . . . , θN ) = min
(θN+1,...,θN+M )∈{0,1}M

N+M∑
i,j=1

αi,j(θi − θj)+ +
N+M∑
i=1

βiθi . (24)

The energy in the right-hand side of (24) is clearly representable on a graph, following the stan-
dard construction in (4.1): hence (24) shows that J can be represented on a graph involving M
additional nodes. Of course, this is really interesting only if M remains small, at most of the
order of N . In [40, 41], it is shown that this is possible if N ≤ 3 (and, of course, for total energies
that are the sum of representable energies), at the cost of adding M = 2 additional nodes. See
also [29, 9].

Notice, however, that it is not di�cult to build many other examples, involving more than 3
variables, which still enter this category. For instance, the energy in (12) is a sum of terms of the
following type:

J0(θ1, · · · , θN ) = max{θi, i = 1, · · · , N} −min{θi, i = 1, · · · , N} .
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Such energies are representable: it is enough to add two additional nodes, corresponding to two
additional variables w and w, and observe that

J0(θ1, · · · , θN ) = min
w,w∈{0,1}

Ĵ0(θ1, · · · , θN , w, w)

where

Ĵ0(θ1, · · · , θN , w, w) = (w − w)+ +
N∑
i=1

(
(θi − w)+ + (w − θi)+

)
.

It is clear that if θ is a constant vector, then taking w = w = θi give the value 0, while if θ is not
constant, then the only way to make both terms in the sum less than 1 is by letting w = 1 and
w = 0, but then the �rst term is 1.

Other examples are easily built, for instance if g is a concave function with g(0) = g(N) = 0,
then

J1(θ1, . . . , θN ) = g(
N∑
i=1

θi)

is also representable.

C Proofs of Propositions 3.3 and 3.5

We give in this appendix short proofs of Propositions 3.3 and 3.5. As mentioned before, the �rst
relies on the comparison lemma 3.4.

Proof of Lemma 3.4. , We have

λJ(θ) +
N∑
i=1

θi(z − gi) ≤ λJ(θ ∧ θ′) +
N∑
i=1

(θi ∧ θ′i)(z − gi) , and:

λJ(θ′) +
N∑
i=1

θ′i(z
′ − gi) ≤ λJ(θ ∨ θ′) +

N∑
i=1

(θi ∨ θ′i)(z′ − gi) .

Summing both inequality and using the submodularity of J , we end up with

N∑
i=1

θi(z − gi) + θ′i(z
′ − gi) ≤

N∑
i=1

(θi ∧ θ′i)(z − gi) + (θi ∨ θ′i)(z′ − gi) .

This is nothing else than

z

N∑
i=1

θi − θi ∧ θ′i ≤ z′
N∑
i=1

θi ∨ θ′i − θ′i ,

but since θi − θi ∧ θ′i = θi ∨ θ′i − θ′i = (θi − θ′i)+, we �nd that if z > z′, (θi − θ′i)+ = 0 for all
i = 1, . . . , N , that is, θ ≤ θ′.

Proof of Prop. 3.3. We easily derive Proposition 3.3: indeed, if θz solve (15) for all values of z,
and if we de�ne u ∈ RN by

ui = sup{z : θzi = 1}

then clearly χ{u>z} ≤ θz ≤ χ{u≥z} for all z, as a consequence of Lemma 2.2. Also, m = minj gj ≤
ui ≤ maxj gj = M for all i (since 1 is the unique solution of (15) if z ≤ m, while 0 is the solution
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if z ≥ M). Hence, if v ∈ RN and m′ ≤ m ∧ (mini vi), we have (using (9) and the minimality of
each θz)

λJ(u) +
1
2
‖u− g‖2 =

∫ +∞

m′
λJ(θz) +

N∑
i=1

θzi (z − gi) dz +
N∑
i=1

(m′ − gi)
2

2

≤
∫ +∞

m′
λJ(χ{v≥z}) +

N∑
i=1

χ
{v≥z}
i (z − gi) dz +

N∑
i=1

(m′ − gi)
2

2

= λJ(v) +
1
2
‖v − g‖2

which shows our claim.

We give now the proof that the quantized ROF problem actually produces a solution which is
exact (in the sup norm), up to the quanti�cation.

Proof of Prop. 3.5. In fact, For an admissible v in (16), we can write

v = l0 +
n∑
k=1

(lk − lk−1)θk = l0 + δ

n∑
k=1

θk

where for each k ≥ 1, θk is the binary vector de�ned by θki = 1 i� vi ≥ lk. Then, the fact θk ≤ θk−1

for any k ≥ 2, and the co-area formula (9), yield J(z) =
∑n
k=1 δ J(θk). On the other hand,

‖g − v‖2 =
N∑
i=1

(gi − l0)2 + 2δ
n∑
k=1

N∑
i=1

(
lk + lk−1

2
− gi

)
θki ,

hence, up to a constant, problem (16) is the same as

min
θk

n∑
k=1

(
λJ(θk) +

N∑
i=1

(
lk + lk−1

2
− gi

)
θki

)
,

where the min is taken on all binary �elds (θk)nk=1, with the constraint that θk ≤ θk−1 for
any k = 2, . . . , n. Each term in the sum is the energy that appears in problem (15), for z =
zk = (lk + lk−1)/2. Now, by Lemma 3.4, if for each k = 1, . . . , n, θk is a minimizer of the
corresponding energy, then, zk > zk−1 yields θk ≤ θk−1: hence the minimum problem above is
in fact unconstrained. In particular, by Proposition 3.3 each θk is the between the characteristic
functions of {u > zk} and {u ≥ zk}. This shows that Proposition 3.5 is true.
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