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Abstract

We investigate the model suggested by [1] dealing with the effect of aptamers on the efficiency
of anticancer drugs. The system is described by nonlinear parabolic equations. The boundary
condition on the inhibitor concentration is a nonlinear Michaelis-Menton form while the others
are zero flux conditions. Due to the nonlinearity of the Michaelis-Menton boundary condition,
the operator associated to the problem is nonlinear so we will use theory of perturbation of
maximal monotone operators by pseudomonotones ones associated with Schauder fixed point
theorem to get our main result.

1 The model equations and main result

Many anti-cancer drugs need to penetrate the cell membrane to perform their functions. K.
Boushaba, H.A. Levine and M. Nilsen Hamilton [1] propose in their recent work that the intra-
cellular concentration and the effectiveness of a drug might be increased by the presence, inside
the cell, of a means of capturing the drug and moving it through the cytoplasm. As a drug
binding agent, they use an aptamer: aptamers are small single stranded nucleic acids that have
been selected for tight and spedific binding to a target molecule, which in this case is the drug.
The authors studied the efficiency of the aptamers by comparing the system without aptamers
and with aptamers.

1.1 The chemical kinetics (Protein-Inhibitor)

We are given an enzyme, an inhibitor, and a product, denoted by E, I, P. We use the notation
E(z,t) = [F](t) because species are distributed in space as well as time. The mecanism

E+I=* P
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is not assumed to be in equilibrium. Suppose

(1) The reaction takes place in a bounded region € of the three space ( the cytoplasm of a cell)
(2) The enzyme decays with rate . > 0. The enzyme-inhibitor complex P = {E : I} decays
with rate pe; > 0. The inhibitor may decay with rate v > 0.

(3) The inhibitor species, I, diffuses much faster than F, P.

(4) The cell functions as a steady source for the enzyme and the aptamer (if any), i.e. there is a
nonnegative function S.(x) supported in a region Qg C Q for all nonnegative times that defines
the cellular rate of production of the enzyme.

These assupmtions and the law of mass action lead to the following where A denotes the Lapla-
cian

OE(t,x) = DeAE +k_1P — k1 ET — p.E + Se(z), RT x Q,

P =D.,AP —k_1P+ ki FEI— p; P, Rt xQ,

Ol = DAT +k_P—kEI—vI, RT xQ (1)
I1(0,2) = Iy(z) > 0, P(0,x) = Py(z) >0, E(0,z) = Eg(x) > 0,

DeOnE =0, D0y P =0, —DO,I(x,t) = % +T.(I—J) on 8.

where i is the backgroud concentration of the drug in the cell due solely to membrane transport,
T. the membrane permeability of the inhibitor, J is the concentration of the drog on the apical
side of the celle membrane and is asumed to be constant, where K., K,, may be thought of
Michealis-Menten constants for transport of inhibitor through the cell membrane.

The meaning of the Michaelis-Menton boundary condition is the following: If the concentration
of I is larger than the threshold value i, the contribution to the flux out of the cell by the active
transport will be positive that is, I will leave the cell. If the concentration is smaller than the
threshold value, this contribution to the flux out will be negative. Likewise if I > J, the passive
diffusion will contribute positively to the flux out of the cell while if I < J, the passive diffusion
will contribute positively to the flux into the cell. [1].

1.2 The chemical kinetics (Enzyme-inhibitor-Aptamer)

We consider the effect of an aptamer on the efficiency of the enzyme reaction E+1 = P = IE.
The aptamer has a single binding site for the inhibitor only and interacts with it via A+ 1 :51_1
@ = AI. The aptamer source S, () is supported on Q4 C 2. Mass action consideration lead to

I =DAI+k P —kiEl+1,Q— LAl —vI, Rt xQ,

A =DeAA+11Q — (I1] + vy)A + Sa(x), RT x Q,

8,Q = DoAQ + 1LAT — (I-1 + va))Q, RT x Q,

OE(t,z) = DoAE + k_1P — (kiI 4+ v)E 4 Se(z), RT x Q,

0P = D.AP + kyET — (k—1 + j1e) P, RT x Q, (2)
1(0,2) = Io(x) > 0, A(0,z) = Ag(x) >0, Q0,2) = Qo(z) >0,

P(0,) = Py(z) >0, E(0,2) = Eo(x) >0,

DoyOnA=Dy0,Q =0, D.O,E=0,D.0,P=0, on 09,

—DO,I(z,t) = % +T.(I—J) on 9.

We assume that the molecular wheights are ordered via M; < M4 < Mpg. The smallest
molecule I, will be the most diffusible. Therefore D = D; > D, = Dy = D, > D, > 0.



Definition 1. Let (I, P, Q) satifiying
I,P,Q € L*(RT; HY(Q)),0,1,0:P,0,Q € L*(RT; (H'(Q))"),
and (A, E) such that
A E e LA(RT; HY(Q)), 0:A,0E ¢ L*(RT; L*(Q)).

We say that (A, E, I, P,Q) is a global weak solution to (2) if

1-The second and fourth equations of (2) are satisfied a.e. and the boundary conditions 0, A =
OnE =0 are satisfied in Hfé(Q).

2- (A, E,I,P,Q)(0) = (Ao, Eo, In, P, Qo)  in  L2(%),

3-For all p,p,m eV

i Jo lode = = [ VI -Vode = K, [y gg70do = Te [oo(I = J)pdo
+ fQ(k—lp — klEI + l_lQ — llAI — Z/I)gadx = 0,

(3)
% fQ Qydx = —D, fQ VQ - Vipdr + fQ(llAI — (I21 + v0i)Q)dx = 0,
4 [ Pnde = =D, [, VP - Vndz + [ (ki EI = (k_1 + ve;))ndz = 0.
Theorem 1. Assume
S{l) Se Z 07 Sa) Se 6 LDO(Q)v
Iy <Uoy+vaiy, k1 <k—14 pei, lo1+k-1<v, 14 |Salloc < va, k14 |Selloo < Ve,
0 S I07Q07P0aE0aAO S ]-7 (I07P07Q0aA07E0) € (Hl(Q))57
(AIO; AP07AQ05 AA07AE0) S (LQ(Q))Q
(4)

Then, there exists a global weak solution (A, E,I, P,Q) to (2) such that 0 < A,E, I, P,Q < 1.

2 Preliminary results

2.1 Step I: Parabolic problem for given aptamer and enzyme

Denote by
V=H'(Q); H=L*Q); V'=(H(Q),

V=L*0,T; H'(Q)); H = L*0,T;L*Q)), (5)

V' = L%(0,T; (H'(Q))), C={veV, dwel, v)=0}

where V' is the dual of V', the norm in H will be denoted by |||
Let us recall the principal definitions

Definition 2. /8], [6], [5]
Let V be a reflexive Banach space; consider an operator A:V — V',
1-A is type M if u,, — u, Au, — f and limsup Auy, (uy,) < f(u) imply that Au = f.

2-The function A is coercive if AHI:L(Illt) —oo as ||lul]| — oo.

3- A is hemicontinuous if for each u,v € V the real-valued function t — A(u + tv)(v) is
continuous.

4- A is bounded if S bounded in V implies the image A(S) is bounded in V.

5-A is monotone if (A(u) — A(v);u —v) >0 for all u,v € V.

6-A is strictly monotone if (A(u) — A(v);u —v) >0 for all u,v € V, u # v.

7-A is strongly continuous if and only if

Up = U aS N — +00 (6)



implies

Au, — Au as n — +oo (7)
8- A is demicontinuous if
Uy — U AS N — +00 (8)
implies
Au, = Au as n — +oo 9)

Let A, E € L (RY; L)), 0 < A, E <1 be given and consider the nonlinear parabolic
system

O = DAI + k_P — ki ET +1_1Q — LAl — vI, Rt x Q,

9:Q = DoAQ + AT — (I_1 + v4i)Q, Rt x Q,

P = D,AP + k1 ET — (k_1 + pies)P, RT x Q (10)
1(0,z) = Ip(x) > 0, Q(0,2) = Qo(x) >0,P(0,2) = Py(x) >0,

Da9,Q =0, D.0,P =0, —Dd,I(z,t)= %f(h)) +T.(I—J) on 8.

Theorem 2. Assume

b <l 4 Ve, ki <k_1+ pei; lo1+k-1 <v,
(11)
0<1o,Qo0, P <1, (o, Py,Q0) €V, (Aly, APy, AQo) € H.

Then, there exists a unique global weak solution (I, P,Q) € V3 such that 0;(I,P,Q) € (V')3.
Moreover, 0 < I,Q, P <1 and the following energy estimate holds

st Jo (11 + |PI> +|QI*)dz + D [, [VI]dz + De [, [VPPdz + Dq [ [VQI?dz + v I||?
+ o ki BIIP + LA Pdr + (I—a + vai) | QI + (k=1 + pred) | P
+Ke [o0 7oy + Tel?do = [ k1 PI+1_1QI + LAIQ + ky EIPdx

+ich faQ ﬁ —|— TeIJdO'
(12)

Proof. Without loss of the generality, the proof will be done in the case when Py = Qg = Ip =0
in order to apply approximation method of evolution operators by stationnary ones. The proof
in the case when the initial conditions does not vanish is obtained in the same way by setting
I=I-1,,P=P—P,, Q=Q — Qo and repeating the same arguments.

In order to get solutions (which are concentrations) satisfying 0 < I, P,Q < 1, we will study,
for given 0 < E, A < 1 the following problem where f+ = max(f,0)

O = DAI + k_1Pt —kiET+1_1Q* — LAl —vI, Rt x Q,

9Q = DoAQ + L Amin(It,1) — (I_1 + v4)Q, RT x Q,

P = D,AP + ki Emin(I,1) — (k_y + pei)P, RT x Q, (13)
1(0,2) =0, Q(0,z)=0,P(0,z) =0,

D,0,Q =0, D.2,P=0, —Dd,I(z,t) = %&)1)) +T.(I—J) on 0.

Let A be the operator defined on H? by



AU = (—=DAuy + u1, —DgAug + ug, —DeAus + us), for U = (u1,us2,us)
(14)

D(A) = {U € V¥, AU € H 8,us = Opuz = 0, — Doy = L9204 T, (uy — 7)),
m T Uy

The linear operator A is not monotone because uf —4p and u; — J may change signe on the

boundary. Let B the operator associated with A, that is B: V — V'’ defined by

BUW) = fig 1y UW + VU - SWdadt + Ko [ig 7). o0 1ot widodt )
+T, f(O,T)xE)Q(ul — J)wdodt,
where U = (ug,u2,u3) € V, W = (wy,wz,w3) € V and define K : C3 — H3 by
—k,lug' + klEuf — l,lué|r + llflul + vuq
K(ui,ug,u3) = | —LA min(uy, 1) + (I-1 + vai)uz (16)
—k E min(uf, 1)+ (k-1 4 vei)us
Lemma 1. The operator B is monotone.
Proof. By definition of B, we have
(BU —BW;U -W) =

Ja, DIV(u1 — w1)|? + Dy|V(ug — w2)|? + De|V(u3z — w3)|>dxdt
(17)

+ Jo, U = W|?dzdt + K. Joar (;i;;} - ;g;:} ) (u1 — wq)dodt
+T. fBQT (u1 — wq)?dodt.
Then
(BU — BW;U — W) =
Ja, DIV(u1 — w1)|? + Da|V(ug — w2)|? + De|V(uz — w3)|>dxdt

(uf —w) (u1 —wq)dodt (18)

+ U—W|3dzdt + K.(i +Km/
Jor U =W ot K)o o ul) (Ko + 07)

—|—Te/ (uy — w1 )*dodt.
lors

Hence, writing u; —wy = (uf —w]) — (u] —w;) we get

(BU — BW;U — W) =
Ja, DIV (ur — w1) [ + Do|V(uz — wa)[* + De|V (uz — wy)[*dadt

2 . (uir - wf)Q
+ Jo, U = Wdzdt + Kc(ip + Kn) /BQT o uT) (o T wf)dadt (19)
. uiwy +uywy
+ K (ip + Km) /mT . :L u})(K; _:wf_)dodt
—|—Te/ (w1 — wy)?dodt > 0.
aQr
O

Lemma 2. The operator K : C3 — H? is strongly continuous.



Proof. Set K : C? — H3 defined by
—k_quz + k1 Euy — 1 _qug + 1 Auy + vy
Ki(uy,ug,u3) = —l1 Auq + (I—1 + Vai)ua (20)
—k1Fuy + (k=1 + Ves)us

K is compact and linear then K7 is strongly continuous (Cf. [6] Proposition 26-2 p. 555). Since
the mappings (u1, u2,u3) — u; and (u1,us2,u3) — min(u;, 1) are Lipschitz continous from H to
‘H then K being a composition of a strongly continuous mapping with Lipschitz mapping so K
is strongly continuous. [l

Lemma 3. The operator B+ K is coercive.

Proof. Since

75(“2 WUl + K. Joo,7)x00 |Wulda'df o Jo. T)XaQH;?”VJ)uldadt. (21)
Then .
Zlgllé(lﬁ) STy — K Jo. T)xasll‘;ﬁr?dadt TJf(O T)ﬁgsﬁsldadt- (22)
On the other hand
/ KU.Udzdt > C|U|% — / I Jus] + k1 |us|dzdt. (23)
(0,T)xQ2 JTYxQ

for some positive constant C' depending on the constants occuring in the system (C' > 0 thanks
to the hypothesis 1 + k_1 < v). Hence

oF
— dodt
f(o T)x00 ¥k

_T Jf(o Tyx 09 uydodt

[BLRNUW) > (1 4+ O)|U|ly — Keip o> - oy (24)

uiv

11 |u2\+k_1 |u3|d.’13dt
oy

_ f(O,T)xSZ

The second term of the RHS of the last inequality goes to 0 as ||U]|y goes to co, while the third
and the fourth term of RHS are bounded. It follows that W goes to oo as ||U||y goes
to oo and B + K is coercive. O

Lemma 4. B is type M, bounded and hemicontinuous.
Proof. Assume that

U, —=U in V, BU,— f in V', limsupBU,(U,) < f(U). (25)
First U,, — U and limsup BU,,(U,) < f(U) imply that U,, and VU,, are bounded in H. Con-

sequently u, — u in L?(0,T;0) strong. It follows from Lebesgue’s convergence theorem that
+

I:"jr:; — ;;;ZZ and u, —J — u—J in L2((0,T) x Q) strong. Then, for all V € V

+ +_y
/ M vdodt — / L”’jvdadt, / (up — Jododt — | (u— Jyvdodt. (26)
oQr Km + un QT Km + u QT oQr

Moreover Au,, — f in V' writes
U+

U,V + VU, - VVdzdt + K, "7vdo + T, / (un — J)v — f(V) (27)
Qr o0y Km + Qs



for all V € V. Then passing to the limit we get BU = f in V' so B is type M.

We check easily that B is bounded and hemicontinuous. Consequently B is pseudomonotone (
Cf. [6] proposition 27-6 p. 586). Next, we will apply the following result to prove existence of
solutions to (10). O

Theorem 3. [6] Corollary 32.25 p.867

Suppose

(H1) C is a nonempty closed convex set in the real B-Space X .

(H2) The mapping A : C — 2% is mazimal monotone.

(H3) The mapping B : C — X' is pseudomonotone, bounded, and demicontinuous.

Suppose moreover that one of the following two conditions is satisfied
(i) C is bounded.
(ii) C is unbounded, and B is A-coercive, i.e. there exists ug € C N D(A) such that

(Bu,u — ug)

Tl — 400 as ||u|| = 400 in C. (28)
u

Then, R(A+ B) = X'. That is, for each b € X', the original problem b € Au+ Bu, u € C, has
a solution.

Corollary 1. For each f € V', the following abstract Cauchy problem

U'(t)+ BU(t) + KU(t) = f(t), 0<t<T,
{ (29)

u(0) = 0.
has a unique solution U € C.
Proof. Set

A:DA) —-H—H, Au=v/, DA)={ue L?0,T;V)),u € L*(0,T;V")),u(0) = 0}.

(30)

We will apply the previous Theorem in the case when C = D(A), A=A, B =B+ K and

uo = 0. By virtue of [6] Proposition 32.10 p. 855, A is maximal monotone.

As B is bounded, hemicontinuous and monotone then B is pseudomonotone (Cf. [3] p. 179 or

[6] Proposition 27.6 p. 586). Since K is strongly continuous then B + K is pseudomonotone

thanks to [6] Proposition 27.6 p. 586. Moreover, by virtue of the previous lemma B + K is

coercive. Finally, we check easily that B+ K is demicontinuous, hence by virtue of the previous

theorem where we take ug = 0, there exists at least one solution U € C solution to (29).

For the uniqueness, let U; € C,i = 1,2 be two solutions to (29) and set U = U; — Us. We have

1
§||U(T)||%{ + (BUy — BU3; Uy — Uz) + (K(Uy — Uz); Uy — Uz) =0 (31)

Since B is monotone

ST < (K (U~ V)01~ T2) (32

As K : H — H is Lipschitz then

T
|waw%sqénm@@w (33)

Then by Gronwall’s Lemma we get |U||g(T) = 0 for arbitrary T" > 0 then the solution is
unique. [l

Next, we will prove that U > 0. Indeed, multiplying the first Eq of (13) by I~



— ot [T 12(t)dz = D|VI~|? + ki [, E|I" [Pdz + 11 [, Q"I dx + 1y [, A|I” [*dx

_ (34)
v Jo U Pde + i Ke [y i do + T oo T2+ JI-do + k-1 o PYI™ >0,
hence, assuming that Iy > 0 we get
[P < [ 155 P =0, (35)
Q Q

then I~ =0 a.e. i.e. 1 > 0 a.e.. Moreover

—2—’3“ Jo Q™ 12(t)dx = D,||[VQ~||*> + Iy Jo flmin([*, DQ dx + (I-1 + Vai) [o Q™ 2dx >0
} (36)
— 52 Jo [IPT2(t)dz = De|[VP™ |2 + k1 [ Emin(IT,1)P~da + (k—1 + ptai) [ |Q ™ |dz > 0
(37)
then we proceed similarly to prove Q@ > 0, P > 0 a.e. as soon as Qg > 0,FP) > 0. Next
assuming hypotheses of theorem, we get I, P,Q < 1. Indeed

saill(1 = P)7|IP(t) = =De|[ V(L = P)7||> + ka1 fo, Emin(I*, 1)(1 — P)~da

(38)
et o) |1 = PY I = (e + 1) Jo1 — P)d.
then
sill(L=P)7|2(t) < k1 [ Emin(IT,1)(1 = P)~da — (k-1 + pres) Jo(1 — P)~d -
< [kr = (k=1 + pei)] fg(l — P)~dz.

Under hypothesis ki < k_1 + p1e; we get 5% [|(1 — P)~[|2(t) < 0 hence P < 1 as soon as Py < 1.
Similarly

swll(1=Q)7[2(1) = =Da| V1 = Q)7 |2 + 1 Jo Emin(I+,1)(1 — Q)~dx (40)
(-1 +va) (1= Q)7 [1* = (I-1 +vai) Jo(1 - Q) du,
then
sll(1=Q)72(t) < b Jo Emin(IF,1)(1 = Q)~dz — (11 + vai) [o(1 — Q)" da
<[l = (=1 + vai)] Jo(1 = Q) da,

(41)

as l1 < 1_1 + vg; by hypotheses, %H(l — Q)7 |1*(t) <0 hence Q < 1 as soon as Qo < 1. Finally
s (L= D)7|2(t) = =DV = )7 P + k_y [ PY(1 = I)"dw — ky [ E|(1 — 1)~ Pdz
~ky [ E(1—I)7dzl_y [(QT(1—I)"dx — 1y [, A|(1 — I)"|?dz — 1 [, A1 —I)"dz  (42)
|1 =D v [o(1 - 1) dz,
hence
A= D7[]2@) < koy Jo PTA—D)"de+1 [(QT(1—I)"dz —v [o(1—1I)"dz 3)
< (k_l +1_1— l/) fQ(l — I)_da:,

then assuming that k_1 +1_1 —v <0 we get I <1 as soon as [y < 1. O



2.2 Step II: Parabolic problem for given I,Q, P

For given S,,S. € L (Q), I, Q. PecC,0<1I, P, Q <1, consider the linear parabolic
problem R R
A =Dy AA+1 1Q — (I1] + vg)A + Sa(x), RT x Q,

OE(t,x) = DAAE +k_ P — (ki1 4 v.)E + Se(x), RT x Q,

(44)
A(0,z) = Aog(z) >0, E(0,z)= Ep(z) >0,
D,0,A=0, D.O,E =0 on 09Q.
Theorem 4. Assume that
Sa, Se >0, Sa, Se € L>®(0)
(45)

l—l + HS(L”DO < Va, k—l + ||Se||oo S Ve.

There exists a unique mild solution (A, E) € C°(0,00; L2(2) x C°(0, oo; LQ( ) to (44). More-
over, assuming that (Ag, Eo) € H*(Q) x HY(Q), (AAO,AEO) € L?(Q) x L*(Q), we get A E €
L2(0,T; HY(Q)), AAAE € L*(0,T; L*(2)), 0;A,0,E € L*(0,T; L*(2)). In addition, sz <
AQ,EQ S 1 then0§ A,ES 1.

Furthermore, there exists C > 0 such that the following energy estimate holds

st (1AI7 + 1EI*)(#) + Dal| VA|?(8) + De[|VE|(t) + val Al (8) + ve | EI*(2)

+ fq I|A|2dfr+k1 Jo I|EPde=1_ 1 /g QAdx + k_ 1 g PEd;U—i—fQ x)Adz (46)
+ Jq Se(z)Edx
Proof. Let 0 < Q,I, P < 1 be given. We notice that A and E are independent then we can

solve separately
QA =DoAA+1_1Q — (1 + o)A+ Sa(z), A(0,2) = Ag(z), ,0,A=0 on 80  (47)
QE(t,x) = DAAE + kP — (kiI + v.)E + Se(z), E(0,2) = Eo(z), 0,F =0 on 9. (48)
Consider the operator B defined on L*(Q2) and F : L*(Q) — L?(2) by
B(u) = DyAu; D(B) = {u e HY(Q), B(u) € L*(Q), d,u=0}

. . (49)
Fu) =1-1Q — (I1I + vg)u + S ()
B is self-adjoint and negative and F is Lipschitz in L%(£2) uniformly in time then there exists
a unique mild solution u € C%(0,00; L2(2)) to (47). Assuming that Ay € D(B), we get A €
L?(0,T; HY(Q)), AA € L*(0,T; L*(Q)) and then ;A € L*(0,T; L*(Q)) Cf. [2]. We proceed
similarly for F.
Next, we will prove A, F > 0. Indeed, multiplying (47) by A~ and integrating by parts, we get

2dt|\A |12 = D,||[VA™|® +1_ 1/QA dm+/l1 (I+v)|A™ |da:+/S YA~dz  (50)

The right hand side of the last equatily is nonnegative hence ||A~[|2(t) < [|[45|> =0s0 A >0
a.e. We procced similarly for £ > 0.
Next, we will prove that A, E < 1. We have

—0(1—A) = =D A1 — A) +11Q — (hI 4 v,) A+ Su(x), (51)
then
O]l (1 — A)*H? = —Dg||[V(1—A)~|2+1_1 [, QL — A)~dz — [,(l] + va) A(l — A)~dz

+ Jo Sa(z)(1 — A)~dz,
(52)



in other words
(1 —A)7 2= -Da||VL— A2+ 11 [, Q1 — A)~da + [,(h] +va)(1 — A) (1 — A)~dz
— Jo I +vo)(1 — A)~dz + [, Sa(z)(1 — A)~dz
(53)
then
Oull(1 = A)7)? = =Dal[ V(A = A7 + 11 o, QL = A)~dar — [ (] +va)|(1 = A)~[Pdar

— oI +va) (1 — A)~dx + [, Sa(z)(1 — A)~da,
(54)
consequently, by the assumption on [|.S,||co

Oll(1 = AP <oy Jo(1 = A)7da —va [o(1 = A)7da + [|Sa(@)l|se [o(1 = A)7dz <0, (55)

hence A <1 as soon as Ag < 1. On the other hand
9,1 (1— E)|I2 :k;_l/ 15(1—E)*dx—/(k1f+ye)E(1—E)*daH—/ So(x)(1— B)~dz (56)
Q Q Q

then
WA —E) > =k_1 [, PA— E)~da + [y (kil +ve)(1 — B)(1 — B)da -
— Jo(k1I +ve)(1 — E)~da + [, Se(z)(1 — E)~da,

hence
(1 —=E)7|I?=k_1 fQ ]5(1 — E) dx — fQ(klf—i— ve)|(1 — E)~|2dx — fQ(klf—i— ve)(1 — E)"dx

+ Jo Se(x)(1 — E)~dx
(58)
By virtue of hypothesis on ||Se ()] oo

ol — B)|? < k_l/ﬂ(l—E)‘dx—ue/ﬂ(l—E)_daH— ||Se(a:)|\oo/9(1 _B)dr <0 (59)

then F <1 whenever Fy < 1. O

3 Fixed point procedure and proof of the main theorem
We will apply Schauder’s fixed point theorem to solve the nonlinear parabolic problem

Ol = DAT + k1P — ki EI +1_1Q — 4 Al —vI, RT x Q,

A =D AA+11Q — (I1] +vy)A + Sa(x), RY x Q,

0:Q = DAQ + 11 AT — (I-1 +14;)Q, R x Q,

O E(t,r) = DAE +k_ 1P — (kiI + ve)E + Se(z), RT x Q,

0P = D.AP + k1 ET — (k_1 + pie;) P, RT x (60)
I1(0,z) = Ip(x) >0, A(0,z) = Apg(z) >0, Q(0,z) = Qo(z) >0,

P(0,z) = Py(z) >0, E(0,z) = Eo(X) >0,

D,0,A=D,0,Q =0, DO,FE =0, D.0,P =0,

—DOI(z,t) = K= L T(T—7) on 0.
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Set
(u,v) € L2(0,T5 H'(Q)) x L*(0,T; H'(Q))
= (61)
O¢(u,v) € L2(0,T; L*(Q)) x L*(0,T;L*(Q)), 0 <u,v <1
We check that W is a convex, compact subset of L?(0,7T; L?(2)). Next, define the operator £
on W by

L(AE)= (A", E"), (62)

where (A*, E*) is the solution to (44) given by Theorem 4 associated to (I, P, Q) which is the
solution to (10) given by Theorem 2 for E = E and A = A. Tt follows from Theorem 2 and 4
that L(W) C W.
Our aim is to prove that £ is Lipschitz on L2(0,T; L*(Q)) x L2(0,T; L*(12)).
Let (A;, E;) € W,i=1,2 and (I;, P;, Q;) the solution to (10) associated to A=A; et E=E;.
Set

(A7, EY) = L(A;, E3), A* = A} — A3, E* = E} — E3,

Q=Q1—Qy P=P—P, I=51—-1,, A=A, — Ay, E=FE, — Es. (63)
By definition of operateur £, we have
OpAY = Do AAT +11Q; — (W + va) AT + Sa(x),
OEf(t,x) = DAEY +k_1 Py — (k1I; + ve) Ef + Se(z),
AF(0,2) = Ag(x) > 0, Ef(0,2) = Ep(x) >0, &
D,0,A; =0, D.0p,Ef =0o0n 0.
Consequently
OA* = D,AA* +11Q — 11 (11 A — [ A%) — v, A*,
OE* = D.AE* + k1P — ki(L EY — [LES) — v B, (65)
A*(0) =0, E*(0)=0, 0,A*=0; 9,E*=0. 0.
Then
O A* = DaAA* +11Q — li(I1A* + TAS) — v, A%,
O0E* =D AE*+k 1P —ki(LE*—IE}) — v.E™, (66)
A*(0) =0, E*(0)=0, 0,A* =0,E*=0; 09.
Hence

d
—HA*H?+Da||VA*||2+ua|\A*|\2+11/11|A*|2dx=1,1/ QA*dx—zl/IA*A;dx, (67)

ST E*||? + De || VE*|? + kl/ LIE*? + v |E*|Pde = k,l/ PE*dx
—ky / IE E*dz.
Q

Consequently
a7 (A (17 + | B*1?) + Dal[VA*[* + D[ VE*|* + val | A*||* + ve | E*[* + 1y /Q L|A*Pde

+k1/[1|E*|2d$:l_1/ QA*dx+k_1/PE*da:—ll/IA*Agdx—kl/IEgE*dx.
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Finally, using Gronwall’s lemma, for arbitrary T" > 0, there exists Cr > 0 depending on
T7 ll, l_l, kl, k_l such that

T
(LA + 1E**)(t) < CT/O (LI + QI + 1PII*)(s)ds, ¢ € [0,T]. (70)

On the other hand, for given A4;, E;

O(Ih —I2) = DA(I1 — I2) + k—1(Py — P2) — k1(B1[h — Eolo) +1-1(Q1 — Q2)

+ (AL — Asl) — v(I; — ),

9:(Q1 — Q2) = DaA(Q1 — Q2) + 11 (A1]y — Aslp) — (I-1 + vai) (@1 — Q2),

0i(Py — Py) = DA(Py — Py) + ky (Br Ty — Bslo) — (ko1 + pei)(Py — P), (71)
(P = P)(0,2) =0, (Q1 — Q2)(0,2) =0, (I — I2)(0,2) =0,

O (Q1—Q2) =0, 9,(P1—P2) =0,

~DOu (11~ Ip) = St 4 71y - 1),

Setting Q = Q1 —Qo2, P=P, — P, =1, — I, A= A; — Ay, E = E; — FE> we get

Ol = DAT +k_1P — ki(EIL + ExI) +1_1Q + 1 (AL + AoI) — v,

0:Q = D, AQ + Li(AL + AoT) — (121 + v4:)Q,

P = D AP + ky(EIL + ExI) — (k—1 + ptei) P, (72)
P(0,z) =0, Q(0,z2) =0, I(0,z) =0,

_ _ _ K (Km+ip)!
0@ =0, 0,P=0, —DO,I = W(Kv:w + Tel.

Hence
= (11> + 1QII* + IPII?) + DIIVI|? 4+ DallVQII? + De|[VP||2 + v ||| + Te|| 1|2

Ke(Km + i) |1]?
(K + 1) (K + 1)

+1 fQA2|I|2dx:k,1/ PIdx—i—Ll/QIdx—i—ll/AIIldx—i—ll/ AQILdx
Q Q Q Q

o+ 1) QI+ (ko + e [PIP + [ oty [ Ealifdo
o0 Q

(73)

+11/AgIde+k1/EPI1dx+k1/EQIde—kl/EIhdx.
Q Q Q Q

Then, it follows from Gronwall’s lemma that for 7' > 0, there exsits C/» > 0 depending on T
and the constants occuring in the system such that

T
(I + QI + 1PI*) () < Cér/o (IAI* + [|E]*)ds, ¢ € [0,T]. (74)
Finally, we conclude from (70) and (74) that

IL(A1, Ev) — L(A2, E2)||l20,1522(0)) < C1l(A1, Er) — (A2, Ba) |l £2(0,1;22(9)) (75)

for some positive constant Cr > 0 depending only on 7' > 0 and the constants occuring in the
system. It derives from Schauder fixed point theorem that operatoe £ has a fixed point and the
proof of Theorem 1 follows.
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