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Abstract

For the classical Lp-spaces of signed measures on N, we devise a framework in
which bounds for a sub-Markovian semigroup of interest can be obtained, up to
a constant factor, from bounds for another tractable semigroup that dominates
stochastically the first one. The main tools are the Hardy inequality, the defini-
tion of related auxiliary Lp spaces suited to take advantage of the domination, and
the proof that the norms are equivalent to the classical ones if the reference mea-
sure is quasi-geometrically decreasing. We illustrate the results using birth-death
and single-birth processes.
KEYWORDS: semigroup inequalities, stochastic order, Hardy’s inequality, strong
ergodicity, exponential stability, spectral gap, birth-death and single-birth pro-
cesses
MSC 2000: 37A25, 37A30, 60E15, 47A30, 47A63

1 Introduction

The long-time behavior of sub-Markovian semigroups of signed measures is often stud-
ied in the classical Lp-spaces of the densities with respect to a reference measure. In
this setting, we establish a framework in which bounds for a semigroup of interest can
be deduced from bounds obtained for another semigroup that stochastically dominates
the first semigroup.
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Usually, semigroups are given through their generators, and the semigroup of in-
terest arises in the study of a particular problem and lacks structure and nice features.
The dominating semigroup and reference measure can then be chosen adequately, for
instance so as to satisfy exponential stability bounds. Powerful tools to prove such
bounds are, e.g., the Dirichlet form when the reference measure is invariant, or the spec-
tral decomposition when the reference measure is self-adjoint, together with spectral
gap estimates.

Such results on bound transfers are mainly found in the literature in cases when the
semigroup of interest is term-wise dominated by another one [1, 9, 14, 17, 23]. This
very strong assumption unsurprisingly yields results, but is seldom true, in particular it
cannot be satisfied between different semigroups of probability measures.

Hereafter in this paper, domination between measures or semigroups refers to stochas-
tic domination. This is a natural probabilistic notion, easily expressed also in the dual
functional space perspective. It is powerfully related to coupling methods, and sample-
path intuition may help find a convenient dominating semigroup for a complicated semi-
group of interest.

We introduce a new family of auxiliary Lp spaces related to stochastic domination
and the Hardy inequality. Under the mild assumption that the reference measure is
quasi-geometrically decreasing (has exponential tails), we show that the norms of the
classical and auxiliary Lp spaces are equivalent for p > 1. This enables the transfer
of bounds from the dominating semigroup to the dominated one, up to a controlled
constant factor.

Such ideas initially appeared in Graham [10], and yielded global exponential stabil-
ity results, first for sub-Markovian semigroups, then for a non-linear dynamical system
by adequate comparisons with the former. Even though the main sub-Markovian semi-
group of interest was self-adjoint in a Hilbert space with very strong norm, the goals
of [10] required bounds for weaker scalar products, applicable to much more general
initial conditions.

We have a wider scope in the present paper, and the novel use of the Hardy inequality
yields clearer arguments and nicer auxiliary Lp spaces. We consider sub-Markovian
semigroups of bounded signed measures on N= {0,1, . . .}, and expect these techniques
have wider applicability. Such semigroups may be rendered Markovian by adjoining a
cemetery or absorbing state to N, assumed to be the least state and denoted by −1.

The signed measure spaces are in duality with functional spaces, and the results
apply to semigroups in both kinds of spaces. The methods and results can be readily
extended to time-dependent “generators”, or flows of linear time-inhomogeneous equa-
tions instead of semigroups, as long as the controls we use can be taken uniformly in
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time.
We illustrate the results with birth-death processes and single-birth processes. For

the former, various spectral gap criteria and bounds exist, as in Callaert [3, 4], van
Doorn [6, 7, 8] and Chen [5], We discuss a striking result of Liggett [16, Cor. 3.8],
[5, Theorem 5.5 p. 93], showing that the assumption on quasi-geometrical decrease is
nearly optimal.

Stochastic monotonicity properties of birth-death processes were used in van Doorn’s
monograph [6] for different purposes than ours.

2 The framework and main result

2.1 Signed measures and sub-Markovian semigroups

For µ in the space M = M (N) of signed measures, we denote by |µ| its total variation
measure and by µ+ and µ− its positive and negative parts, so that |µ| = µ+ + µ− and
µ = µ+−µ−, and the duality bracket between M and the functional space L∞ = L∞(N)
by

〈µ , f 〉=
∫

f dµ = ∑
k∈N

µ(k) f (k) , µ ∈M , f ∈ L∞ ,

for which dual spaces, adjoints, etc., will be denoted classically using asterisks. The
space M is Banach for the strong dual norm, which is the total variation norm

‖µ‖TV = |µ |(N) = ∑
k∈N

|µ(k)|= sup
‖ f‖∞≤1

〈µ, f 〉 , µ ∈M .

We consider sub-Markovian semigroups: positivity-preserving contraction semi-
groups (Tt)t≥0 on L∞, satisfying Tt+s = TtTs and ‖Tt f‖∞ ≤ ‖ f‖∞ and Tt f ≥ 0 for all
t,s ≥ 0 and f ≥ 0 in L∞. The infinitesimal generators of such semigroups act on dense
subspaces. The adjoint semigroup (T ∗t )t≥0 given by 〈T ∗t µ, f 〉 = 〈µ ,Tt f 〉 for µ in M

and f in L∞ is also positivity-preserving and contractive on M .
The decomposition of signed measures in their positive and negative parts allows to

restrict our attention to probability measures (and even Dirac masses) as initial data
for the adjoint sub-Markovian semigroups, which then evolve in the subset of sub-
probability measures. Markovian semigroups preserve the set of probability measures.
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2.2 Some classic Banach spaces

For α > 0 in M and conjugate exponents 1 < p,q < ∞ (satisfying 1
p + 1

q = 1) we have

|〈µ, f 〉|=
∣∣∣∣∣∑k≥0

µ(k)
α(k)

f (k)α(k)

∣∣∣∣∣≤
(

∑
k≥0

∣∣∣∣
µ(k)
α(k)

∣∣∣∣
p

α(k)

)1/p (
∑
k≥0

| f (k)|qα(k)

)1/q

by Hölder’s inequality, and thus the functional space

Lq(α) =

{
f : ‖ f‖q

Lq(α) = 〈| f |q,α〉= ∑
k≥0

| f (k)|qα(k) < ∞

}

is in duality with the Banach space for signed measures

M p(α) =

{
µ ∈M : ‖µ‖p

M p(α) = ∑
k≥0

∣∣∣∣
µ(k)
α(k)

∣∣∣∣
p

α(k) = ∑
k≥0

|µ(k)|pα(k)1−p < ∞

}
.

We have
‖µ‖p

M p(α) = ‖|µ |‖p
M p(α) = ‖µ+‖p

M p(α) +‖µ−‖p
M p(α)

and Hölder’s inequality implies that for 1≤ a≤ b < ∞ we have dense continuous injec-
tions

M b(α)⊂M a(α)⊂M 1(α) = M , ‖α‖−1/a
TV ‖µ‖M a(α) ≤ ‖α‖−1/b

TV ‖µ‖M b(α) .

We state the following elementary fact as a lemma for further reference.

Lemma 1. For p > 1, the M p(α) norm dominates the M p(β ) norm if and only if
α = O(β ), and these two norms are equivalent if and only if α = Θ(β ).

The spaces Lp(α) are a classic choice for the study of stability bounds for semi-
groups, as in Saloff-Coste [21] and Roberts and Rosenthal [19]. When the semigroup
has α as an invariant measure or is self-adjoint (or reversible) with respect to α , then the
Hilbert space L2(α) is a natural setting, in which Dirichlet forms, the resolution of the
identity (see Rudin [20]) or other spectral decompositions such as Karlin and McGre-
gor’s [12, 13] for birth and death processes, see also [3, 4, 6, 7], may yield exponential
stability bounds through spectral gap estimates. The book of Chen [5] gives many such
stability bounds.
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2.3 The Hardy inequality and some related Banach spaces

We write Hardy’s inequality as follows: for any measure λ and function f on R and
p > 1,

∫ ∣∣∣∣∣

∫
[x,∞[ f (y)λ (dy)

λ [x,∞[

∣∣∣∣∣
p

λ (dx)≤
(

p
p−1

)p ∫
| f (x)|p λ (dx) . (1)

This is obtained considering the image of λ and f by x 7→ −x from the inequality

∫ ∣∣∣∣∣

∫
]−∞,x] f (y)λ (dy)

λ ]−∞,x]

∣∣∣∣∣
p

λ (dx)≤
(

p
p−1

)p ∫
| f (x)|p λ (dx)

itself derived from Hardy’s classical result [11, Theorem 330] for the Lebesgue measure
on R+ by Sinnamon [22, Theorem 1.1] using the non-increasing rearrangement f ∗ of f
with respect to λ . A related alternative derivation, more amenable to probabilists, uses
that λ is the image of the Lebesgue measure by G(x) = inf{y ∈ R : x≤ λ ]−∞,y]}, the
left-continuous inverse of the cumulative distribution function.

We consider α > 0 in M and for p≥ 1 the Banach spaces for signed measures

Bp(α) =

{
µ ∈M : ‖µ‖p

Bp(α) = ∑
k≥0

( |µ|[k,∞[
α[k,∞[

)p

α(k) < ∞

}

where |µ |[k,∞[ = ∑i≥k |µ(i)|= |µ(k)|+ |µ(k +1)|+ · · · .

Theorem 1. Let α > 0 be in M , C(α) = supk≥0
α[k,∞[
α(k) ∈ ]1,∞] and p > 1. Then

‖ · ‖Bp(α) ≤
p

p−1
‖ · ‖M p(α) , ‖ · ‖M p(α) ≤C(α)‖ · ‖Bp(α) ,

and if C(α) < ∞ then the M p(α) and Bp(α) norms are equivalent.

Proof. The Hardy inequality (1) with λ = α = ∑k∈Nα(k)δk and f = d|µ |
dα yields

∑
k≥0

( |µ |[k,∞[
α [k,∞[

)p

α(k)≤
(

p
p−1

)p

∑
k≥0

∣∣∣∣
µ(k)
α(k)

∣∣∣∣
p

α(k)

and clearly

∑
k≥0

( |µ|[k,∞[
α[k,∞[

)p

α(k)≥ ∑
k≥0

(
α(k)

α [k,∞[

)p ∣∣∣∣
µ(k)
α(k)

∣∣∣∣
p

α(k)≥ 1
C(α)p ∑

k≥0

∣∣∣∣
µ(k)
α(k)

∣∣∣∣
p

α(k) .
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When C(α) < ∞ we say that α is quasi-geometrically decreasing, or has an expo-
nential tail. We will explain in the study of birth-death processes in Section 3 below
how a result of Liggett [16, Cor. 3.8] (also [5, Theorem 5.5 p. 93]) shows that this is a
rather weak assumption for our purposes. We recall a classical characterization [15].

Lemma 2. The measure α is quasi-geometrically decreasing if and only if there are
constants m≥ 1 and r < 1 and R < ∞ such that, for all k ∈ N,

α(k +m)≤ rα(k) , α(k +1)≤ Rα(k) .

Then C(α)≤ 1
1−r

1−Rm

1−R for R 6= 1, C(α)≤ m
1−r for R = 1, and α(k) = O(rk/m).

Proof. The sufficiency and upper bound follow from

α[k,∞[ = ∑
i≥0

m−1

∑
j=0

α(k + im+ j)≤ α(k) ∑
i≥0

ri
m−1

∑
j=0

R j .

The necessity follows from the fact that if C(α) < ∞, then for any n ∈ N,

C(α)α(k)≥ α(k)+ · · ·+α(k +n)≥
(

n
C(α)

+1
)

α(k +n) , C(α)α(k)≥ α(k +1) ,

so that we may take m in N large enough that C(α)2

m+C(α) ≤ r < 1 and R = C(α).

For µ > 0 we have

‖µ‖p
Bp(α) = ∑

k≥0

( |µ|[k,∞[
µ(k)

)p (
α(k)

α[k,∞[

)p ∣∣∣∣
µ(k)
α(k)

∣∣∣∣
p

α(k)

and the second inequality in Theorem 2 is asymptotically saturated by α(k) = ak and
µ(k) = mk for 0 < m < a < 1 as m goes to 0, since C(α) = 1

1−a and ‖µ‖Bp(α) =
1−a
1−m‖µ‖M p(α) < ∞. Hence, this inequality is optimal.

Since f ∈ Lp(R+,dx) 7→ 1
x
∫ x

0 f (y)dy ∈ Lp(R+,dx) is one-to-one but not onto, it
is hopeless to try to find such reverse Hardy inequalities for completely general inte-
grands. Results such as those in [2, (26)], [18, Theorem 4] and [15] have very restrictive
assumptions, such as non-decreasing integrands or p ≤ 1, and cannot be used for our
purposes.
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2.4 Stochastic domination and inequality transfer

In M we write µ ≤d ν or ν ≥d µ and say that µ is dominated by ν or that ν dominates
µ if

|µ |[k,∞[≤ |ν |[k,∞[ , ∀k ∈ N . (2)

For probability measures this is the notion of stochastic domination, for sub-probability
measures of stochastic domination on the extended state-space N∪{−1}. It is much
weaker than term-wise domination.

If S and T are operators on L∞ such that S∗µ ≤d T ∗µ for all µ ∈M , we say that S
is dominated by T or S∗ is dominated by T ∗, and denote it by S ≤d T or S∗ ≤d T ∗, etc.
If the operators are positivity-preserving, it is enough to check this for Dirac masses µ ,
and equivalently S f ≤ T f for all positive increasing f (it suffices to take the 1I[k,∞[).

We extend these notions to operators on Lq(α) for α > 0 in M and q > 1, which
have adjoint operator on M p(α) for the conjugate exponent p > 1.

We have introduced this custom-made framework for the following theorem, which
is the main result of the paper. Its deceptively short proof involves all the above ideas
and tools.

Theorem 2. Let α > 0 in M be such that C(α) = supk≥0
α[k,∞[
α(k) < ∞ and conjugate

exponents 1 < p,q < ∞. If S and T are operators on Lq(α) such that S≤d T then

‖S∗µ‖M p(α) ≤
p

p−1
C(α)‖T ∗µ‖M p(α) , µ ∈M p(α) .

Proof. We have

‖S∗µ‖M p(α) ≤C(α)‖S∗µ‖Bp(α) ≤C(α)‖T ∗µ‖Bp(α) ≤C(α)
p

p−1
‖T ∗µ‖M p(α)

using Theorem 1, and the definition of domination and of Bp(α).

This result will be applied to semigroups such that St ≤d Tt for all t ≥ 0, yielding that
the generators also satisfy the inequality. In this situation, if (T ∗t )t≥0 is exponentially
stable then so is (S∗t )t≥0, with the same exponent: for p > 1 and µ in M p(α) and γ > 0
and Kµ < ∞,

‖T ∗t µ‖M p(α) ≤ Kµe−γt ⇒‖S∗t µ‖M p(α) ≤
p

p−1
C(α)Kµe−γt , t ≥ 0 .

This can be used for proofs of strong ergodicity in the sense of Chen [5].
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2.5 Intrinsic formulations versus identifications

A natural identification between M and the summable sequence space `1, and between
L∞ and the bounded sequence space `∞, is obtained by identifying a signed measure and
the sequence of its atoms, and a function with the sequence of its values.

Thus, a semigroup (Tt)t≥0 may be identified with its sub-stochastic matrix indexed
by N×N in the canonical basis, and its generator with a matrix with positive terms off
the diagonal and negative row sums (in the wide sense), sometimes called a Q-matrix.
The row sum is null for Markovian generators.

In matrix notation we further identify µ ∈M to a row vector and f ∈ L∞ to a column
vector, and adjunction may be replaced by multiplication to the left of the matrices, so
that

〈µ , f 〉= µ f , T ∗t µ = µTt , 〈T ∗t µ , f 〉= 〈µ ,Tt f 〉= µTt f .

These practical notations will be used in the sequel.
Intrinsic notations helped clarify the above arguments, and other interesting identi-

fications exist. For instance, in the study of self-adjoint operators on L2(α), one often
identifies µ ∈ M p(α) and its density dµ

dα ∈ L2(α), and the duality bracket between
measures and functions with the L2(α) scalar product, see [21, 19].

3 Some applications using birth and death processes

3.1 Preliminaries

Karlin and McGregor [12, 13] studied irreducible sub-Markovian birth and death pro-
cesses on N, with birth rates λn = A(n,n + 1) > 0 in states n ≥ 0, death rates µn =
A(n,n− 1) > 0 in states n ≥ 1, and a killing rate µ0 ≥ 0 in state 0. When µ0 > 0 the
process may be rendered Markovian by adding a cemetery or absorbing state −1. The
cases µ0 > 0 and µ0 = 0 may be related by a duality procedure.

The infinitesimal generator on N of such processes is given in matrix form by

A = (A(i, j))i, j∈N =




−(λ0 + µ0) λ0 0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
0 µ2 −(λ2 + µ2) λ2 · · ·
0 0 µ3 −(λ3 + µ3) · · ·
...

...
...

...




(1)
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and its potential coefficients is given by the row vector

α = (α(n))n∈N , α(n) =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
, (2)

which solves the detailed balance equations α(x)A(x,y) = α(y)A(y,x) for x,y ∈ N, so
that A is self-adjoint in L2(α). If µ0 = 0 then α is an invariant measure, but not if
µ0 > 0.

The notation of [12, 13] for α is π , but we reserve it for the invariant law when it
exists, which implies µ0 = 0.

We are interested in the existence and uniqueness for the (possibly defective) process
and for its backward and forward Kolmogorov equations. The forward equation ν̇t = νtA
is developed, with the convention λ−1νt(−1) = 0, into

ν̇t(n) = λn−1νt(n−1)− (λn + µn)νt(n)+ µn+1νt(n+1) , n≥ 0 . (3)

We assume from now on that
∞

∑
n=0

(
α(n)+

1
λnα(n)

)
= ∞ , ‖α‖TV = ∑

k∈N
α(k) < ∞ . (4)

The first condition is necessary and sufficient for these existence and uniqueness
results, in particular for (3) in M and if ν0 is in P(N) then νt is a sub-probability
measure, see Karlin and McGregor [13, Introduction], [12, Theorems 14,15].

The second is the “ergodic” case: either µ0 = 0, the process is recurrent positive,
and

π :=
α

‖α‖TV
∈M 2(α) (5)

is its unique invariant law [13, Theorem 2], or else µ0 > 0, the process is absorbed
ergodically at 0, and there is no invariant law [13, Sect. 5].

The condition [5, (1.24) p. 9] (in which µ0 = 0 and the notations are different) is
obviously equivalent to (4).

In Callaert and Keilson [3, p. 209] the conditions in (4) are respectively called Ā
and B̄, which together imply C̄ and D̄ (denoted by C and D in [6]), and then the process
has a natural boundary at infinity (intuitively, there is no loss or gain of probability at
infinity).
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3.2 Karlin and McGregor’s spectral decomposition

The representation of Karlin and McGregor [12, 13] yields in particular the results in
the previous subsection. Moreover, van Doorn and Zeifman [8] pointed out that this
representation is valid for a birth and death process with killing in every state (not only 0)
by relating it to a conservative one (without any killing).

The equation AQ(x) =−xQ(x) for an eigenvector Q(x) = (Qn(x))n≥0 of eigenvalue
−x (where x ∈ R+) is developed into

λ0Q1(x)= (λ0+µ0−x)Q0(x) , λnQn+1(x)= (λn+µn−x)Qn(x)−µnQn−1(x) , n≥ 1 .

With the natural choice Q0 = 1 and convention Q−1 = 0 we obtain inductively Qn as the
polynomial of degree n satisfying

−xQn(x) = µnQn−1(x)− (λn + µn)Qn(x)+λnQn+1(x) , n≥ 0 . (6)

These recursions correspond to [12, (2.1)] and [7, (2.15)]. A crucial fact is that a se-
quence of polynomials satisfying such a recursion is orthogonal with respect to a prob-
ability measure ψ on R+, and precisely∫ ∞

0
Qi(x)2 ψ(dx) = α(i)−1 ,

∫ ∞

0
Qi(x)Q j(x)ψ(dx) = 0 , i 6= j ∈ N ,

or in matrix notation, with Q considered as a row vector,∫ ∞

0
Q(x)Q(x)∗ψ(dx) = diag

(
α−1) .

Let Pt =(Pt(i, j))i, j∈N denote the sub-stochastic transition matrix for A, in semigroup
notation Pt = eAt . The fundamental solution for the forward Kolmogorov equation (3)
is given by P∗t = eA∗t , or by Pt = eAt with left-multiplication by row vectors. Karlin and
McGregor’s representation formula [12, (1.7)], [13, (0.12)], [7, (1.2),(2.18)], is

Pt(i, j) = α( j)
∫ ∞

0
e−xtQi(x)Q j(x)ψ(dx) , i, j ∈ N , (7)

or in matrix notation

Pt = eAt =
∫ ∞

0
e−xtQ(x)Q(x)∗ψ(dx)diag(α) .

The probability measure ψ is called the spectral measure, and its support S, called the
spectrum, is intimately related to the set of zeros of the orthogonal polynomials. Since
Pt = eAt is self-adjoint in L2(α), the spectral representation yields

‖νPt‖2
M 2(α) := ‖νeAt‖2

M 2(α) =
(
νe2At ,ν

)
M 2(α) = ν

∫

S
e−2xtQ(x)Q(x)∗ψ(dx)diag(α)ν∗ .

(8)
Karlin and McGregor’s spectral decomposition is not a resolution of the identity, see

Rudin [20, pp. 301–311], but the spectrum is obviously the same.
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3.3 Long time behavior and exponential stability

We obtain from (7) and dominated convergence that

lim
t→∞

Pt(i, j) = ψ(0)α( j) , i, j ∈ N ,

so that (8) yields for

γ = min(S−{0}) , H =⊥M 2(α)ψ(0)α ,

that
‖νPt‖2

M 2(α) := ‖νeAt‖2
M 2(α) ≤ e−2γt‖ν‖2

M 2(α) , ν ∈H . (9)

The alternative surrounding (5) then yields the following alternative:

• if µ0 = 0 then ψ(0) > 0 and hence

H =

{
ν ∈M 2(α) : ∑

n∈N
ν(n) = 0

}
= Span

(
P(N)−P(N)

)∩M 2(α)

so that instantaneous laws pt = p0Pt = p0eAt and qt = q0Pt = q0eAt , t ≥ 0, satisfy

‖pt −qt‖M 2(α) ≤ e−γt‖p0−q0‖M 2(α) , p0,q0 ∈P(N)∩M 2(α) ,

which is true in particular for qt = q0 = π given in (5), the invariant law,

• if µ0 > 0 then ψ(0) = 0 and
H = M 2(α)

so that

‖pt‖M 2(α) ≤ e−γt‖p0‖M 2(α) , p0 ∈P(N)∩M 2(α) .

More generally, the forward Kolmogorov equation ν̇t = νtA starting at ν0 = ν , made
explicit in (3), has solution νt = νeAt for t ≥ 0, so that (9) implies that if γ > 0 then this
equation is globally exponentially stable at 0 in H and globally exponentially stable at

(‖ν+
0 ‖TV−‖ν−0 ‖TV

)
1Iµ0=0π ∈M 2(α) .
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3.4 Spectral gap criteria and estimates

Many tractable spectral gap criteria and upper and lower bounds exist, see Callaert [3, 4]
and van Doorn [6, 7, 8] who use Karlin and McGregor’s spectral decomposition, and the
impressive wealth of information and bibliography in Chen [5, Index p. 226, birth-death
process].

In particular, a beautiful result of Liggett [16, Cor. 3.8], see also [5, Theorem 5.5
p. 93], sheds titillating light on the assumption of quasi-geometrical decrease.

Theorem 3 (T. Liggett). Let an irreducible birth and death process satisfy

µ0 = 0 , 0 < inf
n≥0

λn < sup
n≥0

λn < ∞ ,

and have an invariant law π . Then there exists a spectral gap if and only if π is quasi-
geometrically decreasing: with the notations of Theorems 1 and 2,

γ > 0⇔C(π) < ∞⇔C(α) < ∞ .

Under these assumptions, Lemma 2 implies that C(α) < ∞⇒ infn≥1 µn > 0.
Also, following Van Doorn [6, Sect. 2.2], [7, Sect. 2.3], Qn has n increasing zeros

(xn,i)1≤i≤n such that

0 < · · ·< xn+1,i < xn,i < xn+1,i+1 < · · ·

and hence ξi = limn→∞ xn,i ≥ 0 exists, ξi ≤ ξi+1, and σ = limi→∞ ξi exists in [0,∞].
Moreover

γ > 0⇔ σ > 0

and σ is not affected by a finite number of changes in the birth and death rates, see [7,
Theorem 5.1] and the explanation thereafter, whereas γ may vary greatly.

Many practical upper and lower bounds for σ exist, such as

σ ≥ liminf
n→∞

{
λn + µn−

√
λn−1µn−

√
λnµn+1

}
(10)

given in [7, Theorem 5.3 (i)] which implies for instance that γ > 0 if

liminf
n→∞

µn > 0 , liminf
n→∞

λn

µn
= ρ > 0 , limsup

n→∞

{√
λn−1

λn
+

√
µn+1

µn

}
<

ρ +1√ρ
. (11)
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3.5 An application to operators which are not necessarily self-adjoint

The infinitesimal generator B = (B(i, j))i, j∈N of a sub-Markovian process on N satisfies

B(i, j)≥ 0 (i 6= j) , b(i) :=− ∑
j∈N

B(i, j)≥ 0 ,

and the killing rate b(i) can be interpreted as the absorption rate into a cemetery state
−1.

We assume that for a birth and death sub-Markovian generator A satisfying the as-
sumptions in Subsection 3.1, we have

B(i, j) = 0 ( j > i+1) , B(i, i+1)≤ λi := A(i, i+1) ,

b(i)+ ∑
j<i

B(i, j) :=−B(i, i)−B(i, i+1)≥ µi := A(i, i−1) .

Such generators B are widely studied, and called single birth Q-matrices by Chen [5].
A simple coupling argument shows that if p0 ≤d q0 are in P(N) then p0eBt ≤d q0eAt

for all t ≥ 0, and this extends by linearity and sign preservation to initial data in M (N),
so that we may apply Theorem 2 for any α satisfying its assumptions.

We assume that C(α) < ∞ so as to use Theorem 2, and that there is a spectral gap
γ > 0, for which there are numerous tractable criteria and lower bounds, see Section 3.4.
Then Subsection 3.3 shows that B is exponentially stable on H : there is K < ∞ with an
explicit upper bound in terms of the rates such that

‖νeBt‖M 2(α) ≤ e−γtK‖ν‖M 2(α) , ν ∈H ,

‖p0eBt −q0eBt‖M 2(α) ≤ e−γtK‖p0−q0‖M 2(α) , p0,q0 ∈P(N)∩M 2(α) .

The stochastic domination assumption implies using positive recurrence that if µ0 = 0
then B is Markovian and has a unique invariant law, which is in M 2(α) (this also
follows from a classical fixed-point argument), and we have exponential convergence of
the instantaneous laws pt to this invariant law in M 2(α) for any initial law p0 in this
space.

This result implies strong ergodicity for the process in the sense of Chen [5].
Note that B may only be self-adjoint when it is itself the infinitesimal generator of

a birth-death process, and even then we may thus obtain a result for a weaker scalar
product than the one for which it is self-adjoint. Results for such weaker norms can
actually be stronger in the sense that they are applicable to much more general initial
values.
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This concept was essential in Graham [10], where the global exponential stability
result was used to prove tightness of the initial values of the fluctuations in equilibrium,
interpreted as long-time limits, see the discussion therein. The situation was such that
µ0 > 0.
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