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Abstract

We consider the homogenization of a periodic interfacial energy, such as
considered in recents papers by Ca�arelli and De La Llave [10], or Dirr, Lucia
and Novaga [12]. We provide a proof of a Γ-limit, however, we also observe
that thanks to the coarea formula, in most cases such a result is already
known in the framework of BV homogenization. This leads to an interesting
new construction for the plane-like minimizers in periodic media of Ca�arelli
and De La Llave, through a cell problem.

1 Introduction

In this paper, we will consider the homogenization of a periodic interfacial energy,

such as considered in a recent paper of L. Ca�arelli and R. De La Llave [10]. We

will show that (in the framework of Γ-convergence) after appropriate rescaling into

ε-periodic energies, and sending ε to zero, we get convergence to an anisotropic

perimeter, with an interfacial energy simply characterized by the energies of plane-

like minimizers in balls of large volume. In [12], a similar study has been performed,

however there the perimeter itself is replaced with a two-phase singular perturbation

problem (as in the seminal papers of Modica and Motorla [16, 17]), with some

parameter δ > 0 representing the width of the interface. Then, δ and ε are sent

simultaneously to zero, however, also the ratio δ/ε→ 0 so that in spirit the problem

is the same as ours, and the limit is of course the same. See also [9].

We provide here a direct proof of this homogenization result. It is quite standard.

It turns out, though, that in most cases it is �useless� (and probably in all cases),

in the sense that thanks to the coarea formula for BV functions, our problem can

be cast into a more standard homogenization problem in the space of functions

with bounded variation [3, 1, 8]. An interesting point, though, is the fact that the
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interfacial energy in both point of views is not given by the same formula: so that

we deduce an equality between two problems, which is at �rst glance not completely

obvious (however this identity is already observed, in some cases, by Braides and

Chiadò Piat in [8]).

Another interesting consequence is that we can use the cell problem in [3, 1, 8]

in order to derive a new proof of Ca�arelli and De La Llave's result, with a quite

di�erent construction.

In what follows, Q = [0, 1)d, and byQ] we denote the d-dimensional torus Rd/Zd.

Functions or measures over Q] will implicitly be identi�ed with Q-periodic functions

or measures in Rd (some care though has to be taken with periodic measures which

weigh ∂Q). We consider here g ∈ Ld(Q]) with
∫

Q
g = 0, and F (x, p) : Q] × Rd →

[0,+∞), continuous (periodic) in x, convex and one-homogeneous in p, with

c∗|p| ≤ F (x, p) ≤ c∗|p| (1)

for any p, for some positive constants c∗, c
∗.

We assume the existence of δ > 0 such that for any E ⊂ Q with �nite perimeter,1

JQ(E) :=
∫

Q∩∂∗E

F (x, νE(x)) dHd−1(x) +
∫

Q∩E

g(x) dx ≥ δPer (E,Q) , (2)

where here and in the whole paper, νE is the inner normal to ∂∗E. This is (as

observed in [12]) for instance the case if ‖g‖d = ‖g‖Ld(Q) is small enough, indeed,

we have in this case∫
Q∩E

g(x) dx = −
∫

Q\E
g(x) dx

≤ ‖g‖d min{|Q ∩ E|, |Q \ E|}
d−1

d ≤ C‖g‖dPer (E,Q)

for some constant C depending only on the dimension (see for instance [2]), hence

as soon as ‖g‖d < c∗/C we can �nd δ > 0 such that (2) holds.

Let us observe that a quite deep result of Bourgain and Brézis [6, 7] shows that

if g ∈ Ld(Q), there is a vector �eld σ ∈ C0(Q],Rd) (we can assume moreover that

σ = 0 on ∂Q) with divσ = g, hence∫
Q∩∂∗E

F (x, νE(x)) dHd−1(x) +
∫

Q∩E

g(x) dx

=
∫

Q∩∂∗E

F (x, νE(x))− σ(x) · νE(x) dHd−1(x).

We see that letting F ′(x, p) := F (x, p) − σ(x) · p, we can get rid of the external

�eld g (and F ′ will satisfy (1) if ‖g‖d is small enough). We discuss this in detail in

Section 4: in fact, we actually show that (2) yields the existence of such a σ. We

also show that (2) can be a bit weakened, thanks to the results in [6, 7].

1We refer for instance to [15, 14] for the de�nition and properties of sets of �nite perimeter
(a.k.a. Caccioppoli sets), and of their reduced boundary ∂∗E.
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We consider in this paper a �rst problem, quite standard, which regards the

Γ-limit of the energies

Eε(E) =
∫

∂∗E∩Ω

F
(x
ε
, νE(x)

)
dHd−1(x) +

1
ε

∫
Ωε∩E

g
(x
ε

)
dx , (3)

de�ned on �nite perimeter subsets E ⊂ Ω where Ω is a bounded open subset of Rd,

with Lipschitz boundary. Here Ωε is the union of all cubes ε(k+Q), k ∈ Zd, which

are contained in Ω. Considering also the integral of g over Ω \ Ωε would produce

annoying boundary e�ects.

The result we show (which is not new, see [12] where a similar issue is addressed

in the framework of a singular perturbation problem, and the discussion below, but

we give a direct proof for the reader's convenience) relies on a theorem of L. Ca�arelli

and R. De La Llave [10], that we now quote. Consider the functional

J (E) =
∫

∂∗E

F (x, νE) dHd−1(x) +
∫

E

g(x) dx (4)

(which is a priori �nite only for sets E with compact boundary). Following [10] we

introduce the following de�nition of a global minimizer in Rd:

De�nition 1.1. We say that E ⊂ Rd with locally �nite perimeter is a class A

minimizer for J if for any bounded set B ⊂ Rd and any E′ ⊂ Rd with E4E′ =

(E \ E′) ∪ (E′ \ E) b B, we have∫
B∩∂∗E

F (x, νE) dHd−1(x) +
∫

B∩E

g(x) dx

≤
∫

B∩∂∗E′
F (x, νE′) dHd−1(x) +

∫
B∩E′

g(x) dx .

The theorem of Ca�arelli and De La Llave [10, Thm 4.1] is as follows.

Theorem 1. For any ν ∈ Rd \{0}, we can �nd a connected set Eν (depending only

on ν/|ν|) such that

(i) For some M independent of ν, depending only on c∗, c
∗ and g, we have

∂Eν ⊂
{
x ∈ Rd : |x · ν| ≤M |ν|

}
,

Eν ⊃
{
x ∈ Rd : x · ν ≥M |ν|

}
,

Eν ⊂
{
x ∈ Rd : x · ν ≥ −M |ν|

}
.

(ii) Eν is a class A minimizer for J .

(iii) ∂Eν is �quasi-periodic�.

(For practical reasons we choose here to have ν pointing towards the interior of

the set Eν rather than the exterior.) The point (iv) of Theorem 4.1 in [10], which

claims that the projection of ∂Eν onto Q] laminates the torus, does not clearly

follows from the new proof (quite di�erent from Ca�arelli and De La Llave's�

though relying essentially on the same properties) which we will give in Section 3,
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so that we prefer not to mention it. It is unclear, moreover, under which assumptions

it is true, see Remark 3.6 below. It is clearly not the case, for instance, when the

direction is �rational�, that is, if ν = p/|p| for some p ∈ Zd, since in that case the

set Eν can be shown to be periodic, which improves statement (iii). When the

direction is not rational, the set is �quasi-periodic� in the following sense: for any

integer p with p · ν > 0, then Eν + p ⊂ Eν , whereas if p · ν < 0, Eν + p ⊃ Eν . If

pn is a sequence of integer vectors with pn · ν → 0, then Eν + pn converges (locally

in L1) to Eν . These statements are true provided Eν is in minimal or maximal in

some sense, we will not discuss this issue in this paper anymore since the proofs

would be the same as in [10].

A fundamental point in this result is the fact that M is independent on the

direction: letting Iν = {x ∈ Rd : x · ν > 0}, the theorem provides given any

direction ν ∈ Sd−1 a minimizer Eν such that the Hausdor� distance between the

surfaces ∂Eν and ∂Iν = {x · ν = 0} is bounded by the uniform bound M .

Another important result in [10] is Proposition 10.1 (and Equation (10.2)) which

states that for any ν ∈ Sd−1, the limit

φ(ν) = lim
L→∞

1
ωd−1Ld−1

∫
B(0,L)∩∂Eν

F (x, νEν
) dHd−1 +

∫
B(0,L)1∩Eν

g(x) dx (5)

exists and de�nes, after one-homogeneous extension, a convex function in Rd. Here

ωd−1 is the volume of the unit ball in Rd−1, and B(0, L)1 =
⋃
{z + Q : z ∈

ZN , z +Q ⊂ B(0, L)} so that g is integrated only on �complete� cells. The result,

in our case, needs be a bit more precise, see Appendix A.

Using these results, we show in Section 2 the Γ-convergence of the energies Eε

of (3), as ε→ 0, to the anisotropic perimeter

E(E) =
∫

∂∗E

φ(νE(x)) dHd−1(x) . (6)

de�ned for any �nite-perimeter set E ⊂ Ω.

Using the coarea formula for functions with bounded variation [14, 2], it is

easy to relate this Γ-convergence to more classical results on the homogenization

of functionals with growth 1 (see [1, 8]), for which the limit density φ is known to

be given by a cell problem. This observation actually leads us to consider the cell

problem for functional J , and give (in Section 3) a new proof of Theorem 1, which

might be not simpler than the one in [10] (it shares some common steps), but we

believe has its own interest.

Eventually, in Section 4, we discuss the possibility of integrating out the external

�eld g in the surface tension F , and show that the results in this paper still hold

under coercivity assumptions that are slightly milder than (2).
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2 Homogenization of the interfacial energy

Our goal in this section is to show the following. We assume, here that the function-

als Eε and E are extended to all Borel sets in Ω by letting Eε(E) = E(E) = +∞ if E

does not have �nite perimeter. It will be also convenient to introduce the �localized�

version of Eε, denoted by Eε(E,A) for A an open set, which is given by (3) with Ω

replaced with A. In this localized version the second integral is also, by convention,

on the set Aε which is the union of the cubes z+εQ, z ∈ εZd, such that z+εQ ⊂ A.

Then, we have (assuming, still, that ∂Ω is Lipschitz):

Theorem 2. Eε Γ-converges to E as ε → 0, where the convergence is in the space

of Borel sets endowed with the topology of the L1-convergence of their characteristic

functions.

This means that given εn ↓ 0, for any Borel set E ⊂ Ω we have:

• for any (En)n≥1 sequence of Borel sets with |En4E| → 0,

lim inf
n→∞

Eεn
(En) ≥ E(E) ; (7)

• there exists (En)n≥1, with |En4E| → 0 as n→∞, and

lim sup
n→∞

Eεn
(En) ≤ E(E) . (8)

Here, En4E = (En \ E) ∪ (E \ En) (the symmetric di�erence).

2.1 Proof of (7)

Consider (En)n≥1 which converges to E. Up to the extraction of a subsequence

we may assume that lim infn→∞ Eεn(En) = limn→∞ Eεn(En), and without loss of

generality we assume it is �nite (otherwise, there is nothing to prove). Let us de�ne

the measures µn by

µn =
∑
k∈Zd

εn(k+Q)⊂Ω

(∫
∂∗En∩εn(k+Q)

F

(
x

εn
, νEn

(x)
)
dHd−1(x)

+
1
εn

∫
En∩εn(k+Q)

g

(
x

εn

)
dx

)
δεnk . (9)
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It is actually de�ned as a sum of Dirac masses on the points εnk of εnZd ∩Ω, such

that εn(k +Q) ⊂ Ω. It is important here that Q is de�ned as [0, 1)d (containing 0

and not 1), as the �rst integral is on a singular measures that might weight (d− 1)-

dimensional surfaces, and we do not want some to be counted twice (or never) in

the sum.

We have Eεn
(En) ≥ µn(Ω): hence by (2), we know that (χEn

)n≥1 is equibounded

in BV (Ω) and that the µn are nonnegative measures, which are uniformly bounded.

Hence, up to a subsequence we may assume there exists some measure µ and some

�nite-perimeter set E such that µn
∗
⇀ µ as measures, and that χEn → χE (in

L1(Ω)). We have

µ(Ω) ≤ lim inf
n→∞

µ(Ωn) ≤ lim inf
n→∞

Eεn(χEn)

so that (7) follows if we show that µ ≥ φ(νE)Hd−1 ∂∗E.

It is therefore enough to compute the Radon-Nikodým derivative of the measure

µ with respect to Hd−1 ∂∗E. By the Besicovitch derivation theorem (see for

instance [2, Thm. 5.52]), it is given for Hd−1-a.e. x ∈ ∂∗E by

lim
r→0

µ(B(x, r))
Hd−1(B(x, r) ∩ ∂∗E)

In particular, at a regular point x0 (where ∂
∗E has (d−1)-density 1, a normal vector

νE(x0), and the blow-up sequences of E converge to {(x − x0) · νE(x0) > 0}) the
limit becomes

` = lim
r→0

µ(B(x0, r))
ωd−1rd−1

. (10)

where ωd−1 is the volume of the unit ball in Rd−1.

Let us now show that ` ≥ φ(ν), where ν = νE(x0). Notice that since x0 is

regular, we also have

lim
r→0

∫
B(x0,2r)

|χ{(x−x0)·νE(x0)>0} − χE(x)| dx
rN

= 0.

For a.e. r > 0 (small), we have

µ(B(x0, r)) = lim
n→∞

µn(B(x0, r)) ,

and∫
B(x0,2r)

|χ{(x−x0)·νE(x0)>0} − χE(x)| dx

= lim
n→∞

∫
B(x0,2r)

|χ{(x−x0)·νE(x0)>0}(x− x0)− χEn(x)| dx .

Hence, using a diagonal argument, there exist subsequences nm and rm such

that ε′m = εnm
/rm → 0,

` = lim
m→∞

µnm
(B(x0, rm))
ωd−1r

d−1
m

(11)
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and

lim
m→∞

∫
B(x0,2rm)

|χ{(x−x0)·νE(x0)>0} − χEnm
(x)| dx

rd
m

= 0. (12)

We let as before Iν = IνE(x0) = {x ∈ RN , x · νE(x0) > 0}. We now make for

each m the change of variable x = x0 + rmy, and we de�ne E′m = (Enm −x0)/rm ⊂
(Ω− x0)/rm. It follows from (12) that

lim
m→∞

∫
B(0,2)

|χE′
m

(y)− χIν
(y)| dy = 0. (13)

Letting Bm =
⋃
{εnm

(k+Q) : εnm
k ∈ εnm

Zd∩B(x0, rm)} and B′
m = (Bm−x0)/rm,

we have, on the other hand:

µnm
(B(x0, rm))
rd−1
m

=

1
rd−1
m

(∫
∂∗Enm∩Bm

F

(
x

εnm

, νEnm
(x)
)
dHd−1(x) +

1
εnm

∫
Enm∩Bm

g

(
x

εnm

)
dx

)

=
∫

∂∗E′
m∩B′

m

F

(
x0

εnm

+
y

ε′m
, νE′

m
(y)
)
dHd−1(y) +

1
ε′m

∫
E′

m∩B′
m

g

(
x0

εnm

+
y

ε′m

)
dy.

Let now θm ∈ [0, 1)d be the fractionary part of x0/εnm
, that is, the vector ((θm)i)d

i=1

whose ith component is (θm)i = (x0)i/εnm
− [(x0)i/εnm

] (where [ · ] is the integer

part, and (x0)i is the ith component of x0). By periodicity, we may clearly replace

the argument x0/εnm + y/ε′m in the two last integrals above with (ε′mθm + y)/ε′m.

Alternatively, we can change again variables and de�ne E′′m = E′m + ε′mθm and

B′′
m = B′

m + ε′mθm: we �nd

µnm
(B(x0, rm))
rd−1
m

=
∫

∂∗E′′
m∩B′′

m

F

(
y

ε′m
, νE′′

m
(y)
)
dHd−1(y) +

1
ε′m

∫
E′′

m∩B′′
m

g

(
y

ε′m

)
dy.

and it follows from (11) that

ωd−1` = lim
m→∞

∫
∂∗E′′

m∩B′′
m

F

(
y

ε′m
, νE′′

m
(y)
)
dHd−1(y) +

1
ε′m

∫
E′′

m∩B′′
m

g

(
y

ε′m

)
dy ,

(14)

where, exactly, since Bm = (B(x0, rm) ∩ εnmZd) + εnmQ,

B′
m =

(
B(0, 1) ∩

{
ε′mk −

x0

rn
: k ∈ Zd

})
+ ε′mQ

and

B′′
m =

(
(B(0, 1) + ε′mθm) ∩ ε′mZd

)
+ ε′mQ , (15)

moreover, it also follows from (13) that

lim
m→∞

∫
B(0,3/2)

|χE′′
m

(y)− χIν (y)| dy = 0. (16)

Observe that for any s < 1, B(0, s) ⊂ B′′
m for m large enough.
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Let η > 0. Let Eν be the set provided by Theorem 1, and for s ∈ (1− 2η, 1− η)
which will be choosen later on, de�ne

Êm = (ε′mEν \B(0, s)) ∪ (E′′m ∩B(0, s)) .

Then, by the minimality of Eν , we have∫
∂∗Êm∩B′′

m

F

(
y

ε′m
, νÊm

(y)
)
dHd−1(y) +

1
ε′m

∫
Êm∩B′′

m

g

(
y

ε′m

)
dy ,

≥
∫

∂∗(ε′mEν)∩B′′
m

F

(
y

ε′m
, ν(ε′mEν)(y)

)
dHd−1(y) +

1
ε′m

∫
(ε′mEν)∩B′′

m

g

(
y

ε′m

)
dy ,

which converges (see (5), and details in the appendix) to Hd−1(∂Iν ∩ B1)φ(ν) =

ωd−1φ(ν) as m → ∞. Hence the inequality ` ≥ φ(ν) will follow from (14) if we

show that (for a suitable choice of s) the di�erence

Eε′m(E′′m, B
′′
m)− Eε′m(Êm, B

′′
m)

=
∫

∂∗E′′
m∩B′′

m

F

(
y

ε′m
, νE′′

m
(y)
)
dHd−1(y) +

1
ε′m

∫
E′′

m∩B′′
m

g

(
y

ε′m

)
dy

−
∫

∂∗Êm∩B′′
m

F

(
y

ε′m
, νÊm

(y)
)
dHd−1(y) +

1
ε′m

∫
Êm∩B′′

m

g

(
y

ε′m

)
dy (17)

is bounded from below, as m→∞, by some quantity which can be made arbitrarily

small.

Call Rm the region made of all cubes z + ε′mQ, z ∈ ε′mZd, which intersect ∂Bs

(we denote by Nm the number of such cubes), Sm = (B′′
m\Bs)∪Rm, R′m = Sm\Rm.

In B′′
m \Sm, the sets E′′m and Êm coincide, so that the di�erence in (17) is also given

by

Eε′m(E′′m, Sm)− Eε′m(Êm, Sm)

which is larger than (using (1))

− Eε′m
(ε′mEν , R

′
m)

− c∗Per (ε′mEν , Rm \Bs) − c∗Hd−1(∂Bs ∩ (E′′m4(ε′mEν)))

+
1
ε′m

∫
Rm

g
(x
ε

)
(χE′′

m
− χÊm

)(x) dx . (18)

Denote respectively by −Ai
m, i = 1, 2, 3, 4 the four terms of this expression.

By (51),

lim sup
m→0

A1
m ≤ φ(ν)Hd−1(∂Iν ∩ (B1 \Bs)) ≤ C(1− s) ≤ 2Cη . (19)

Observe that the number Nm of cubes z + ε′mQ, z ∈ ε′mZd, which compose the

set Rm is (at most) of order (1/ε′m)d−1. (Indeed, Rm ⊂ Bs+
√

dε′m
\ Bs−

√
dε′m

so

that ε′dmNm ≤ Cε′m.) Moreover, the number of such cubes which intersect ∂(ε′mEν)

(which is at distance M from ∂Iν by Theorem 1) is at most of order (1/ε′m)d−2

8



(using the same argument). Since the perimeter of ε′mEν in each such cube is of

order ε′d−1
m , A2

m is of order ε′m hence

lim
m→0

A2
m = 0 . (20)

Since both sets E′′m and ε′mEν converge to Iν as m → ∞, up to a subsequence we

know that for a.e. choice of s ∈ (1 − 2η, 1 − η), Hd−1(∂Bs ∩ (E′′m4(ε′νEν))) → 0.

Hence, if we choose well s,

lim
m→0

A3
m = 0 . (21)

It remains to bound A4
m. We have, for any cube z + ε′mQ which intersects ∂Bs

(z ∈ ε′mZd),

1
ε′m

∫
z+ε′mQ

g
(x
ε

)
(χE′′

m
− χÊm

)(x) dx ≤ ‖g‖d

(∫
z+ε′mQ

|χE′′
m
− χÊm

| dx

)1−1/d

so that (summing on all such cubes and recalling Nm is the number of cubes which

constitute Rm)

A4
m ≤ N 1/d

m ‖g‖d

(∫
Rm

|χE′′
m
− χÊm

| dx
)1−1/d

≤ C

(
1
ε′m

∫
Bs+

√
dε′m

\Bs−
√

dε′m

|χE′′
m
− χÊm

| dx

)1−1/d

(22)

where we have used the fact that Nm ≤ Cε′1−d
m and Rm ⊂ Bs+

√
dε′m

\ Bs−
√

dε′m
.

Since (by Fubini's theorem)∫ 1−η

1−2η

(
1
ε′m

∫
Bt+

√
dε′m

\Bt−
√

dε′m

|χE′′
m
− χÊm

| dx

)
dt

≤ 2
√
d

∫
B1−η+

√
dε′m

\B1−2η−
√

dε′m

|χE′′
m
− χÊm

| dx → 0,

as m → ∞, up to a subsequence we �nd that for almost any choice of s ∈ (1 −
2η, 1− η), the right-hand side of (22) goes to zero, hence:

lim
m→∞

A4
m = 0. (23)

Collecting (19), (20), (21) and (23) we deduce that

lim inf
m→∞

Eε′m(E′′m, B
′′
m)− Eε′m(Êm, B

′′
m) ≥ −2Cη

for some constant C. It follows (from (5) and (14)) that ` ≥ φ(ν)− 2Cη/ωd−1, and

since η is arbitrary we get ` ≥ φ(ν), which was our claim. Hence (7) holds.

2.2 Proof of the inequality (8)

The proof of (8) in the particular case of polyhedral limit set is given in the Ap-

pendix A (Corollary A.3), where several �simple� limits of Eε are investigated. We

deduce here (8) in the general case.
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Let E ⊂ Ω is an arbitrary set with �nite perimeter. Here we need to assume

that ∂Ω is Lipschitz. In this case, it is standard that it is possible to approximate

E with sets En which are the intersection of Ω with a polyhedron, and such that

limn→∞Hd−1(∂En ∩ Ω) = Per (E,Ω). The Reshetnyak continuity Theorem (see

[2, Theorem 2.39]), together with the continuity of φ (Corollay A.4) show that

limn→∞ E(En) = E(E). By corollary A.3 and a diagonal argument, we therefore can

�nd sets (Eε)ε>0 such that |Eε4E| → 0 as ε → 0 and lim supε→0 Eε(Eε) ≤ E(E).

We deduce (8).

3 A new construction for the plane-like minimizers

The coarea formula for BV functions shows that if u ∈ BV (Ω) (the space of func-

tions with bounded variation in Ω [14, 2]), then

Fε(u) :=
∫

Ω

F
(x
ε
,Du

)
+
∫

Ωε

g
(x
ε

)
u(x) dx =

∫ +∞

−∞
Eε({u > s}) ds

and it is not di�cult to deduce from Theorem 2 that Fε (extended by the value

+∞ to functions u ∈ L1(Ω) \BV (Ω)) Γ-converges to

F(u) :=


∫
Ω
φ(Du) if u ∈ BV (Ω) ,

+∞ if u ∈ L1(Ω) \BV (Ω) .

See for instance [11, Prop. 3.5].

On the other hand, it is well-known (at least when g = 0, see [1, 8]) that Fε

Γ-converges, as ε → 0, to F if the convex one-homogeneous function φ is replaced

with the solution ψ of the following cell problem: for each p ∈ Rd,

ψ(p) = min
u∈BV (Q])

∫
Q]

F (x, p+Du) +
∫

Q

g(x)(p · x+ u(x)) dx (24)

where BV (Q]) denotes the space of BV functions which are integer-periodic in Rd.

It is a priori quite important in the �rst integral here to consider the variation

of the (periodic) measure F (x, p+Du) on Q] (rather than just Q, since it may be

positive on ∂Q), however, for a given p and a minimizer u for (24), if |Du|(∂Q) > 0,

we might translate slightly u and g (u → u(· − τ), g → u(· − τ), or equivalently

τ → τ + Q, τ ∈ Rd) to get a new problem with the same value and such that

|Du|(∂Q) = 0. Hence in what follows we will not bother about this issue and

implicitly consider that the derivatives of our functions do not charge ∂Q (and

by periodicity, k + ∂Q, k ∈ Zd). Observe also that by standard regularization

arguments [15], the min in (24) is also the in�mum over smooth, periodic functions

u � for which integrating over Q or Q] does not make any di�erence.

It is clear that (24) de�nes a convex, one-homogeneous function ψ. Letting u = 0

in the problem yields

ψ(p) ≤ (c∗ + ‖g‖d)|p| . (25)
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On the other hand, provided as before that assumption (2) holds (for instance,

if ‖g‖d is small enough), we have that the functional which is minimized in (24) is

coercive in BV , so that the problem is well-posed and admits actually a minimizer.

Indeed, given a function u and letting v(x) = p · x+ u(x), we have (using
∫

Q
g = 0)

∫
Q]

F (x, p+Du) +
∫

Q

g(x)(p·x+u(x)) ≥
∫ +∞

−∞
JQ({v > s}) ds ≥ δ|Dv|(Q) ,

(26)

in particular we deduce that

ψ(p) ≥ δ|p| . (27)

Fix now p ∈ Rd, and let u be a minimizer in (24). Let v(x) = p ·x+u(x) (which

is in BVloc(Rd)). For any s > 0, let Es = {v > s}. Then we show the following:

Proposition 3.1. The set Es is a class A minimizer for J .

Proof. The proof relies on convex duality and a calibration argument.

Step 1. Existence of a �calibrating �eld�. First of all, we have that for any p ∈ Rd

and u ∈ BV (Q]),

Hp(u) :=
∫

Q]

F (x, p+Du)

= sup
{
p ·
∫

Q

σ(x) dx−
∫

Q

u(x)divσ(x) dx :

σ ∈ C∞(Q]; Rd) , σ(x) ∈ C(x) ∀x ∈ Q]
}

(28)

where for each x, C(x) is the convex set

C(x) =
{
q ∈ Rd : q · p ≤ F (x, p) ∀p ∈ Rd

}
,

such that supq∈C(x) q · p = F (x, p). This representation is found for instance in [4,

5], and is not too di�cult to show. The key point is the fact that � thanks to

the continuity of F � for any θ < 1, there exists η > 0 such that |x − y| ≤ η

yields θC(y) ⊆ C(x), so that building �elds satisfying the constraint at each point,

or regularizing these �elds, is relatively easy. Given u ∈ BV (Q]), a Besicovitch

covering argument allows to build a measurable �eld σ, constant in balls, and such

that σ(x) ∈ C(x) a.e. and
∫

Q] σ · (p+Du) ≈
∫

Q] F (x, p+Du). Then for any θ < 1,

a molli�cation of θσ will provide a C∞ �eld with the same properties.

On the other hand, if u ∈ Ld/(d−1)(Q]) \ BV (Q]), then the right-hand side

of (28) is +∞, and we also set Hp(u) = +∞ in this case.

Let K0 be the convex subset of Ld(Q]):

K0 =
{
−divσ : σ ∈ C∞(Q]; Rd) , σ(x) ∈ C(x) ∀x ∈ Q]

}
.
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and K = K
Ld(Q])

its closure in Ld. For h ∈ K0, let

Gp(h) := inf
{
− p ·

∫
Q

σ(x) dx : σ ∈ C∞(Q]; Rd) ,

σ(x) ∈ C(x) ∀x ∈ Q] , h = −divσ
}
,

and let Gp(h) = +∞ if h ∈ Ld(Q]) \ K0. One checks that this de�nes a convex

function of h, so that, in particular, its l.s.c. envelope (in Ld) is a convex function

with domain K, which coincides with its convex l.s.c. envelope G∗∗p . Then (28)

expresses that

Hp(u) = G∗p(u) = sup
h∈Ld(Q])

〈h, u〉Ld,Ld/(d−1) − Gp(h)

is the Legendre-Fenchel conjugate of Gp (in the duality (Ld, Ld/(d−1)), see [13]) so

that and H∗
p = G∗∗p . Now, u is a minimizer for (24) if and only if

−g ∈ ∂Hp(u)

(this is obvious from the de�nition of the subdi�erential ∂Hp(u), which is the set

of h such that Hp(v) ≥ Hp(u) +
∫

Q
h(v − u) dx). The Legendre-Fenchel's identity

shows that it is equivalent to

−
∫

Q

g(x)u(x) dx = Hp(u) + G∗∗p (−g) .

Since there must exist hn ∈ K0 such that hn → −g and G∗∗p (−g) = limnGp(hn),

it shows the existence of a sequence σn ∈ C∞(Q]), such that divσn → g in Ld(Q),

−p ·
∫

Q
σn dx→ G∗∗p (−g) and

−
∫

Q

divσn(x)u(x) dx + p ·
∫

Q

σn(x) dx → Hp(u) (29)

as n→∞. Observe that since u has bounded variation (and is periodic), and σn is

smooth and periodic, the integrals can be written
∫

Q] σn(x) · (p+Du).

Step 2. Proof of the minimality of Es. The sequence σn built in the previous

step, seen as a periodic �eld over Rd, is now used to show the minimality of the

level sets Es. Consider a large ball B and denote B′ = ∪k+Q∩B 6=∅k + Q where

k ∈ Zd. Let v(x) = u(x) + p · x, where u is as before. The co-area formula for BV

functions yields∫ +∞

−∞

∫
B′∩∂∗Es

F (x, νEs
(x)) dHd−1(x) ds

= lim
n→∞

∫ +∞

−∞

∫
B′∩∂∗Es

σn(x) · νEs
(x) dHd−1(x) ds

and since σn(x) · νEs
(x) ≤ F (x, νEs

(x)) we deduce that up to a subsequence, we

have for a.e. s ∈ R

lim
n→∞

∫
B′∩∂∗Es

σn(x) · νEs
(x) dHd−1(x) =

∫
B′∩∂∗Es

F (x, νEs
(x)) dHd−1(x) .

12



Fix s such that this is true, and let now E′ be a set with E′4Es b B. We have∫
B′∩∂∗E′

F (x, νE′) dHd−1 +
∫

B′∩E′
g dx

≥
∫

B′
σn ·DχE′+

∫
B′∩E′

g dx =
∫

B′
σn ·DχEs

+
∫

B′
σn ·D(χE′−χEs

)+
∫

B′∩E′
g dx

=
∫

B′
σn ·DχEs −

∫
B′

divσn(χE′ − χEs) +
∫

B′∩E′
g dx

→
∫

B′∩∂∗Es

F (x, νEs
) dHd−1 ds +

∫
B′∩Es

g dx

as n→∞, showing the minimality of Es. We deduce easily that for a.e. s, Es is a

class A minimizer for J . The proof that Es is a minimizer for all s follows from the

fact that Es is the limit of any sequence Esj
with sj ↓ s (sj > s), sj such that Esj

is a class A minimizer, and the stability of class A minimizer, see [10, Sec. 9].2

The next lemma is classical, and shown for instance in [10]. For the reader's

convenience we include a very quick proof.

Lemma 3.2. There exists r0 > 0 and γ > 0 such that for any x ∈ Rd:

• if |B(x, r) ∩ Es| > 0 for any r > 0 then for r ≤ r0, |B(x, r) ∩ Es| ≥ γrd,

• if |B(x, r) \ Es| > 0 for any r > 0 then for r ≤ r0, |B(x, r) \ Es| ≥ γrd.

Proof. This is quite standard: letting Br = B(x, r), the idea is to compare the

energy of Es and the energy of Es \ Br for r > 0, small. The minimality of Es

yields for a.e. r > 0:∫
Br∩∂∗Es

F (x, νE) dHd−1 +
∫

Es∩Br

g(x) dx ≤
∫

∂Br∩Es

F (x,−νBr
) dHd−1

hence, using (1) and Hölder's inequality,

c∗Hd−1(Br ∩ ∂∗Es) ≤ c∗Hd−1(∂Br ∩ Es) + ‖g‖Ld(Br)|Es ∩Br|
d−1

d .

Letting f(r) = |Es ∩Br| > 0 for all r > 0, and using the isoperimetric inequality in

Rd, we �nd

cdf(r)
d−1

d ≤ Per (Es ∩Br) = Hd−1(Br ∩ ∂∗Es) +Hd−1(∂Br ∩ Es)

≤ c∗ + c∗

c∗
Hd−1(∂Br ∩ Es) +

1
c∗
‖g‖Ld(Br)f(r)

d−1
d .

Since Hd−1(∂Br ∩ Es) = f ′(r) for all r but a �nite or countable number, and

choosing r0 such that if r < r0, ‖g‖Ld(Br)/c∗ ≤ cd/2 (which is possible since g is

periodic and |g|d ∈ L1(Q]) is equi-integrable), we deduce that if r < r0,

cd
2
f(r)1−

1
d ≤ c∗ + c∗

c∗
f ′(r) .

2Although the proof there is only sketched, but taking any competitor E′ with Es4E′ b B,
for B a big ball, one easily shows that one �nds competitors E′

j → E′ (of the form (E′ ∩ (1 +

t)B)∪ (Esj \ (1+ t)B) for a well-chosen t ∈ (0, 1/2), such that Hd−1(∂(1+ t)B ∩ (Esj4Es)) → 0)
with Esj4E′

j b 2B and Per (E′
j , 2B) → Per (E′, 2B) as j →∞, from which the minimality of Es

is easily deduced.
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Then, the conclusion follows from Gronwall's lemma, and the constant γ depends

only on c∗, c
∗, and the dimension d � while r0 depends on c∗ and g. The proof

of the second inequality is done in the same way, comparing this time Es with the

sets Es ∪Br.

It follows that Es (which a priori is �just� a Caccioppoli set) is a closed set with

recti�able boundary:

Corollary 3.3. The sets of points of Lebesgue density, respectively, 1 and 0 of Es

are both open, hence we may consider Es as a closed set (the complement of points of

density 0), whose topological boundary coincides with the measure-theoretical bound-

ary (which is the set of points of density neither 0 nor 1), hence, up to a Hd−1-

negligible set, to the reduced boundary ∂∗E [2, 14, 15].

The density estimates, together with the coarea formula, yield an estimate on

the oscillation of v:

Corollary 3.4. There exists C > 0 (depending on c∗, c∗, g, but not on p) such that

oscQ(v) ≤ C|p|. (Equivalently, oscQ(u) ≤ C|p|.)

(Here oscQ(f) = ess supQ f − ess infQ f .)

Proof. If x ∈ ∂Es, it follows from Lemma 3.2 that |B(x, r0) ∩ Es| ≥ γrd
0 and

|B(x, r0) \ Es| ≥ γrd
0 . In particular, if x ∈ ∂Es ∩ Q, we have (assuming r0 < 1)

min{|(−1, 2)d ∩ Es|, |(−1, 2)d \ Es|} ≥ γrd
0 . We deduce that Per (Es, (−1, 2)d) ≥

Cγrd
0 for a constant C depending only on the dimension. Hence,∫

(−1,2)d

|Dv| ≥ Cγrd
0 |{s ∈ R : ∂Es ∩Q 6= ∅}| ,

and we observe that |{s ∈ R : ∂Es ∩ Q 6= ∅}| = ess supQ v − ess infQ v. On the

other hand, using (25) and (26),∫
(−1,2)d

|Dv| = 3d

∫
Q

|Dv| ≤ C|p|

where C depends on d, c∗ and ‖g‖d (and δ, which depends on the properties of g).

We deduce that there exists C > 0, depending on c∗, c∗ and g such that |ess supQ v−
ess infQ v| ≤ C|p|, which shows the corollary. Of course the oscillation of u = v−p·x
on Q is bounded by (C +

√
d)|p|.

Corollary 3.5. There exists M which does not depend on p such that, if s is such

that ∂Es ∩ Q 6= ∅: then ∂Es ⊂ {x : |x · p| ≤ M |p|}, more precisely {x : x · p ≥
M |p|} ⊂ Es ⊂ {x : x · p ≥ −M |p|}.

Proof. Just letM = C+2
√
d where C is the constant in the previous proof. Indeed,

if x ∈ Es, that is, v(x) = u(x) + p · x > s, we have p · x > s − u(x). But since

∂Es∩Q 6= ∅, there is x′ with |x′| ≤
√
d and u(x′)+p·x′ ≤ s, hence s ≥ u(x′)−|p|

√
d.

We deduce p · x > −oscQu−
√
d|p| ≥ −(C − 2

√
d)|p|.
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To get a full proof of Theorem 1, it remains to show that the sets Es are con-

nected. In fact, we would just repeat here arguments similar to what is found in [10]

(see in particular Prop. 7.3), which show that not only Es, but also Rd \ Es, must

be connected if Es is a class A minimizer. Hence we admit this point, and this

achieves our new proof of Theorem 1.

Remark 3.6. If ν is a rational direction, that is, if ν = p/|p| with p ∈ Zd, then

the corresponding set Es is clearly periodic: indeed, assuming for instance pd 6= 0

and denoting by (ei)d
i=1 the canonical basis, there exist d − 1 independent integer

vectors qi = pdei − pied such that qi · p = 0 so that Es + qi = {v(· − qi) > s} = Es.

In particular, it is expected that v is, in general, �at with a concentrated gradient.

On the other hand, if ν is irrational, one could expect that Dv is not singular

and ∂Es laminates the torus, but this is not always true: for instance, if g = 0,

F (x, p) = a(x)|p| with a continuous, a = 1 outside of a ball in Q and a >> 1 in the

ball half smaller, then the region where a is large will be avoided by ∂Es for any

direction ν, including irrational.

A consequence of this analysis is the following identity, which is already proved

in [8, Thm. 5.1] (at least for g = 0 but if g 6= 0, we refer to the discussion in the

next section where it is shown how to �eliminate� g).

Corollary 3.7. φ = ψ: the limits in (5) and (24) coincide on Sd−1.

4 Elimination of the external �eld and weaker co-

ercivity

We show in this section that, thanks to a recent result of Bourgain and Brézis [7],

the external �eld g can be removed in our formulation, in the sense that it can be

integrated by part into the surface tension as soon as the global energy is coercive.

Pushing further this remark (Sec. 4.2) allows then to weaken a little the coerciveness

assumption which is necessary for Theorems 1 and 2. A simple two-dimensional

example illustrates the di�erences between these various hypotheses, see Section 4.3.

4.1 The coercive case is equivalent to the case g = 0

Proposition 4.1. Assume (2) holds: then there exists F ′(x, p), continuous and

periodic in x, convex and one-homogeneous in p, with

c′∗|p| ≤ F ′(x, p) ≤ c∗′|p| (30)

(c∗′ > c′∗ > 0) for any p ∈ Rd and such that for any E ⊂ Q with �nite perimeter,

JQ(E) =
∫

Q∩∂∗E

F ′(x, νE(x)) dHd−1(x) . (31)
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Proof. Since (2) holds and g ∈ Ld(Q) with
∫

Q
g dx = 0, we can �nd ε ∈ (0, 1),

small, such that for any �nite-perimeter set E ⊂ Q (using Hölder's inequality and

the relative isoperimetric inequality in Q),

−ε
∫

E

g(x)dx = ε

∫
Q\E

g(x) dx ≤ δ

2
Per (E,Q)

so that ∫
Q

F (x,Du) +
∫

Q

(1 + ε)g(x)u(x) dx ≥ δ

2
|Du|(Q) , (32)

for any u ∈ BV (Q).

Thanks to (32), the problem

min
u∈BV (Q)

∫
Q

F (x,Du) +
∫

Q

(1 + ε)g(x)u(x) dx

has a unique solution (u = 0). As in the previous section (but now we consider a

functional de�ned for functions u ∈ BV (Q), and not as in (24) for periodic functions

de�ned on the torus Q]), there is the representation∫
Q

F (x,Du) = sup
{
−
∫

Q

u(x)divσ(x) dx : σ ∈ C∞c (Q; Rd) , σ(x) ∈ C(x) ∀x ∈ Q
}
.

Hence, using similar convex analysis arguments, we deduce the existence of a se-

quence of compactly supported vector �elds σn ∈ C∞c (Q; Rd) such that as n→∞,

divσn → (1 + ε)g

in Ld(Q), while σn(x) ∈ C(x) for any x ∈ Q. Letting σ′n = σn/(1 + ε), we �nd

smooth, compactly supported vector �elds with divσ′n → g as n → ∞, while

σ′n ∈ C(x)/(1 + ε) for all x.

Now, thanks to [7, Thm 3] and the fact that
∫

Q
g − divσ′n dx = 0, there exist

σ′′n ∈ C0 ∩W 1,d
0 (Q) with divσ′′n = g − divσ′n, and

‖σ′′n‖∞ ≤ C‖g − divσ′n‖d → 0

as n→∞.

Choose n large enough, in order to have ‖σ′′n‖∞ ≤ c∗ε/2, and let σ = σ′n + σ′′n.

We have divσ = g, and σ = 0 on ∂Q, so that∫
Q

F (x,Du) +
∫

Q

g(x)u(x) dx =
∫

Q

F (x,Du)−σ(x) ·Du =
∫

Q

F ′(x,Du) , (33)

where we have let F ′(x, p) = F (x, p) − σ(x) · p for any x ∈ Q and p ∈ Rd. The

function F ′, extended by periodicity to Rd × Rd, is still continuous in x (since σ

vanishes on ∂Q), 1-homogeneous and convex in p. Moreover we have for any x

σ(x) · p = σ′n(x) · p + σ′′n(x) · p ≤ 1
1 + ε

F (x, p) +
c∗ε

2
|p|

so that

F ′(x, p) = F (x, p) − σ(x) · p ≥ ε

1 + ε
F (x, p) − c∗ε

2
|p| ≥

(
1− ε

1 + ε

)
c∗ε

2
|p| ,
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hence the new F ′ satis�es (30) with new constants c′∗ ≤ c∗, c
∗′ ≥ c∗. Observe

that (33) is equivalent to (31).

Returning to the functional Eε in (3), we see that it is expressed as

Eε(E) =
∫

∂∗E∩(Ω\Ωε)

F
(x
ε
, νE(x)

)
dHd−1(x) +

∫
∂∗E∩Ωε

F ′
(x
ε
, νE(x)

)
dHd−1(x)

and its Γ-limit can be deduced from classical results.

4.2 Weaker coercivity

Let us now assume that, instead of (2), F, g are such that for any �nite-perimeter

set E in the torus Q] = Rd/Zd,∫
Q]∩∂∗E

F (x, νE(x)) dHd−1(x) +
∫

Q]∩E

g(x) dx ≥ δPer (E,Q]). (34)

This assumption is weaker than (2) � it is simple to see that it is implied by (2),

see Section 4.3 for an example where it is not equivalent. On the other hand, it is

much more natural, since it does not depend on the �origin� of the periodicity cell.

Now, the same proof as above (still using convex duality and the result of Bourgain

and Brézis, this time in the torus [7, Thm 1']) shows the existence of a periodic �eld

σ ∈ C0 ∩W 1,d(Q]) such that divσ = g, and F ′(x, p) = F (x, p)− σ(x) · p ≥ c′∗|p| for
any (x, p) ∈ Q] × Rd, for some constant c′∗ > 0. In particular, for any p ∈ Rd and

u ∈ BV (Q]),∫
Q]

F (x, p+Du) +
∫

Q

g(x)(p · x+ u(x)) dx

=
∫

∂Q

(p · x)σ(x) · nQ(x) dHd−1(x) +
∫

Q]

F ′(x, p+Du)

= σ̂ · p +
∫

Q]

F ′(x, p+Du) ,

where the vector σ̂ ∈ Rd is de�ned by

σ̂i =
∫

∂Q∩{xi=1}
σi(x) dHd−1(x)

for i = 1, . . . , d. Here, nQ = −νQ denotes the outer normal to Q. Hence the cell

problem (24) can be restated as

ψ(p) = σ̂ · p + min
u∈BV (Q])

∫
Q]

F ′(x, p+Du) , (35)

and, again, it admits a solution. Clearly, again, one can construct the plane-like

minimizers as before: it is enough to build them considering only the surface energy
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F ′, then, if Eν is such a minimizer and E ⊂ RN is such that Eν4E b B,∫
B∩∂Eν

F (x, νEν (x)) dHd−1(x) +
∫

B∩Eν

g(x) dx

=
∫

B∩∂Eν

F ′(x, νE(x)) dHd−1(x) +
∫

∂B∩Eν

σ(x) · nB(x) dHd−1(x)

≤
∫

B∩∂∗E

F ′(x, νE(x)) dHd−1(x) +
∫

∂B∩E

σ(x) · nB(x) dHd−1(x)

=
∫

B∩∂∗E

F (x, νE(x)) dHd−1(x) +
∫

B∩E

g(x) dx .

so that Eν is also a class A minimizer for J . We have shown the following:

Proposition 4.2. Theorem 1 still holds under assumption (34). Moreover, the

limit (5) also exists (and the more precise results in Section A).

Hence, one could expect again the Γ-convergence of the energies Eε, de�ned

in (3), to
∫
Ω
φ(DχE) =

∫
Ω
ψ(DχE). The situation is slightly more complicated. In

the limit case δ = 0 in (2), we can still conclude:

Proposition 4.3. Assume (34) holds. Assume moreover that for any E ⊂ Q,

JQ(E) =
∫

Q∩∂∗E

F (x, νE(x)) dHd−1(x) +
∫

Q∩E

g(x) dx ≥ 0 . (36)

Then the thesis of Theorem 2 still holds: Eε Γ-converges to E.

We will discuss in the end what happens whenever (36) is not satis�ed.

Proof. In fact, there is almost nothing to prove. The proof of Theorem 2 only

uses (2) for essentially two purposes: (i) to show that the measures µn de�ned in (9)

are nonnegative, or, similarly, when one needs to know that the energy decreases if

computed on �less cubes�, and (ii) to show that if (En) are sets with supn Eεn(En) <

+∞, then they are uniformly bounded in BV (Ω). In cases (i), assumption (36) is

enough. To show (ii), that is, that the (En) converge up to a subsequence to a �nite-

perimeter set E, one just notices that, after integrating by part (1/εn)g(x/εn) =

div (σ(x/εn)), we have

Eεn
(En) ≥ c∗Per (En,Ω\Ωεn

) + c′∗Per (En,Ωεn
) +

∫
∂Ωεn

χEn
σ

(
x

εn

)
·nΩεn

dHd−1,

however, the last boundary integral is uniformly bounded as n → ∞ (by some

constant times Hd−1(∂Ω)), so that still, the perimeters Per (En,Ω) are uniformly

bounded.

Now, what happens if (34) still holds but not (36)? The example in Section 4.3

shows that the Γ-limit of Eε could be strictly lower than E . However, it is not a

very natural counterexample. In fact, it still holds:
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Proposition 4.4. Assume (34) holds. Let En, E be �nite perimeter sets such that

En → E, that is, |En4E| → 0 as n→∞ ,

lim sup
δ→0

(
lim sup

n→∞
Per (En, {x ∈ Ω : dist(x, ∂Ω) < δ})

)
= 0 , (37)

that is, the measures Hd−1 En do not accumulate on the boundary as n → ∞.

Then, there holds (7).

On the other hand, (8) holds under the weaker assumption (34), see Appendix A.

A consequence (which in fact is simpler to prove that Proposition (4.4)) is that if

B b Ω is a subdomain of Ω, then Eε still Γ-converges to E on the restricted class of

�nite-perimeter sets with support in B. A more general result is a Γ-convergence

of Eε to E with �well prepared� Dirichlet boundary conditions:

Corollary 4.5. Let E0 ⊂ Ω be a �nite-perimeter set, and B b Ω an open set. Let

E0
ε be a recovery sequence for E0, as provided by (8). Let E0

ε (E) := Eε(E) if E is a

�nite-perimeter set in Ω with E4E0
ε ⊂ B, and +∞ else, and let E0(E) := E(E) if

E4E0 ⊂ B and +∞ else. Assume (34) holds. Then E0
ε Γ-converges to E0.

Of course, the �most natural� convergence result in this paper is this one, since

both Theorem 2 and Proposition 4.3 treat the boundary of the integral on g in

a quite arbitrary way, which in particular depends on the �origin� of the cell of

periodicity, see the discussion in Section 4.3. All these results should coincide for

compactly supported sets.

Proof of Proposition 4.4. We �rst show that the identity φ = ψ (Cor. 3.7) still holds

under (34). Denote respectively φ′ and ψ′ the interfacial energies corresponding to

F ′(x, p) = F (x, p) − σ(x) · p, given by equations (5) and (24). By Corollary 3.7,

φ′ = ψ′, and by (35), ψ(p) = ψ′(p) + σ̂ · p. Hence we must just show that for any

ν ∈ Sd−1,

φ(ν) = φ′(ν) + σ̂ · ν . (38)

Let Eν be a class A minimizer (for J or the surface tension F ′, it is of course

equivalent) as provided by Theorem 1. We have∫
B(0,L)∩∂Eν

F (x, νEν ) dHd−1 +
∫

B(0,L)1∩Eν

g(x) dx

=
∫

B(0,L)∩∂Eν

F ′(x, νEν ) dHd−1 +
∫

∂B(0,L)1

χEν (x)σ(x) · nB(0,L)1(x) dx (39)

but since, by de�nition, B(0, L)1 =
⋃
{z + Q : z ∈ Zd, z + Q ⊂ B(0, L)}, the last

integral is an integral on a �nite union of facets of translated unit cubes, and in

particular the unit normal nB(0,L)1 is at each point an element of the canonical

basis (ei)d
i=1 of Rd (or its opposite). We denote by 〈χEν

〉 the function on ∂B(0, L)1
which is equal, on each facet of a cube z +Q, z ∈ Zd to the average of χEν on the
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same facet (and, more precisely, of the trace of χEν on the boundary of B(0, L)1).

Then, we observe that since this new function is constant on each facet, we have∫
∂B(0,L)1

〈χEν 〉(x)σ(x) · nB(0,L)1(x) dx

=
∫

∂B(0,L)1

〈χEν 〉(x)σ̂ · nB(0,L)1(x) dx

=
∫

∂B(0,L)1

χEν (x)σ̂ · nB(0,L)1(x) dx =
∫

B(0,L)1

σ̂ ·DχEν . (40)

Combining (39) and (40), we �nd∫
B(0,L)∩∂Eν

F (x, νEν ) dHd−1 +
∫

B(0,L)1∩Eν

g(x) dx

=
∫

B(0,L)∩∂Eν

F ′(x, νEν ) + σ̂ · νEν dHd−1

+
∫

∂B(0,L)1

(χEν (x)− 〈χEν 〉(x))σ(x) · nB(0,L)1(x) dx . (41)

The last integral in (41) is zero except in aM -neighborhood of ∂Iν on the boundary

∂B(0, L)1, hence on a set of measure of order ∼ CMLd−2. Hence, dividing (41) by

ωd−1L
d−1 and sending L to in�nity, we �nd (38), which shows that φ = ψ.

Now, let En, E be as in the thesis of Proposition 4.4. We have

Eεn
(En) ≥

∫
Ωεn∩∂∗En

F ′
(
x

εn
, νEn

(x)
)
dHd−1(x)

+
∫

∂Ωεn

χEn(x)σ
(
x

εn

)
· nΩεn

(x) dHd−1(x). (42)

By Theorem 2 (or standard results [3, 1, 8]),

lim inf
n→∞

∫
Ωεn∩∂∗En

F ′
(
x

εn
, νEn

(x)
)
dHd−1(x) ≥

∫
∂∗E

φ′(νE(x)) dHd−1(x) . (43)

On the other hand, introducing as before the functions 〈χEn
〉, average of χEn

on

the faces of the cubes εn(z + Q), z ∈ Zd which constitute ∂Ωεn (while ±σ̂i is still

the average of σ(x/εn) · nΩεn
on the facets with nΩεn

= ±ei), we �nd∫
∂Ωεn

χEn
(x)σ

(
x

εn

)
· nΩεn

(x) dHd−1(x)

=
∫

∂Ωεn

(χEn(x)− 〈χEn〉(x))σ
(
x

εn

)
· nΩεn

(x) dHd−1(x) +
∫

Ωεn

σ̂ ·DχEn

We claim that assumption (37) yields

lim
n→∞

∫
∂Ωεn

(χEn
(x)− 〈χEn

〉(x))σ
(
x

εn

)
· nΩεn

(x) dHd−1(x) = 0 , (44)

so that we deduce from (42) and (43) that

lim inf
n→∞

Eεn
(En) ≥

∫
∂∗E

φ′(νE(x)) dHd−1(x) +
∫

Ω

σ̂ ·DχE ,

20



which reduces to (7) by (38). Hence the proposition holds if we show (44). In fact,

let z ∈ Zd such that εn(z+Q) ⊂ Ωεn
, and assume εn(z+∂Q)∩∂Ωεn

6= ∅. Standard
estimates show that there exists C > 0 (depending only on d) with∫

εn(z+∂Q)∩∂Ωεn

|χEn(x)− 〈χEn〉(x)| dHd−1(x) ≤ C|DχEn |(εn(z +Q)) ,

so that∫
∂Ωεn

|χEn
(x)− 〈χEn

〉(x)| dHd−1(x) ≤ CPer (En, {x ∈ Ω : dist(x, ∂Ω) ≤ 2
√
dεn}).

Hence we deduce (44) from (37).

4.3 A simple example

Consider now the two-dimensional case (d = 2). We consider F (x, ν) = 1 and de�ne

g ∈ Ld(Q]) as follows: for a > 0 we let g(x) = −a if 0 < x1 < 1/2 and g(x) = a if

1/2 < x1 < 1. Observe that g = divσ, where for any x = (x1, x2) ∈ Q,

σ(x) =

(−ax1, 0)T if 0 < x1 <
1
2 ,

(a(x1 − 1), 0)T if 1
2 < x1 < 1 .

Hence if E ⊂ Q,

Per (E,Q) +
∫

E

g(x) dx =
∫

∂∗E

(1− σ · νE(x)) dH1(x) ≥ (1− a

2
)Per (E,Q).

Hence we see that if a < 2, (2) holds, while if a = 2, (36) holds. On the other hand,

as soon as a > 2, neither (2) nor (36) do hold, as shown by the set E = {x ∈ Q :

x1 < 1/2}: we have Per (E,Q) +
∫

E
g(x) dx = 1− a/2 < 0.

Now, what about (34)? If we show that it holds for some a > 2, then, for

instance, Proposition (4.2) applies and Eε Γ-converges to E also when a = 2. Notice,

in this case, that φ(−1, 0) = 0, the class A minimizer corresponding to this direction

being given by E(−1,0) = {x1 < 1/2} ⊂ R2.

We have the following relative isoperimetric inequality in the torus Q] = R2/Z2:

Lemma 4.6. For any E ⊂ Q] with |E| ≤ 1/2,

|E| ≤ 1
8
Per (E,Q])2 (45)

and the constant 1/8 is optimal.

Hence: one has for any E ⊂ Q]

Per (E,Q]) +
∫

E

g(x) dx

≥ Per (E,Q])− amin{|E|, |Q] \ E|} ≥
(
1− a

8
Per (E,Q])

)
Per (E,Q])

If a < 4, choosing a′ with a < a′ < 4, we can �nd δ > 0 such that Per (E,Q]) −
amin{|E|, |Q] \ E|} ≥ Per (E,Q]) − a/2 ≥ δPer (E,Q]) whenever Per (E,Q]) ≥
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a′/2. On the other hand, if Per (E,Q]) < a′/2, we have (1 − aPer (E,Q])/8) >

1−aa′/16 > 0, hence possibly choosing a smaller δ we get that (34) holds. If a = 4,

it clearly does not hold since the set E = {0 < x1 < 1/2} has zero energy, while if

a > 4, its energy is 2 − a/2 < 0. Hence the bound 4 is optimal. In particular, we

can conclude that actually for a = 2, Proposition (4.2) is true.

Proof of Lemma 4.6. Let En be a minimizing sequence for Per (E,Q])/
√
|E| under

the constraint |E| ≤ 1/2. If |En| → 0, also Per (En, Q
]) → 0, however in this case

one can check for instance after an appropriate blow-up that the limit set should

satisfy the isoperimetric equality in R2, hence it is a disc, and the ratio goes to 2
√
π.

If |En| does not go to zero, we may assume En converges to some set E (in L1) and

we �nd that Per (E,Q])/
√
|E| is optimal (in particular, standard regularity results

show that ∂E is analytic). Assume there exists s, t ∈ (0, 1) such that ∂E does not

cross neither {x1 = s} nor {x2 = t}. Then, (E − (s, t)) ∩Q is a subset of R2 which

is optimal for the isoperimetric ratio, hence a disc. In the other case, we have for

instance that {x1 = s} ∩ ∂E for any s, and for a.e. s, this contains at least two

points. Hence, integrating over s ∈ (0, 1) we get Per (E,Q]) ≥ 2. But in this case,

the optimal set is a strip of width 1/2 (for instance E = {0 < x1 < 1/2}), and the

ratio is 2
√

2 (which is less than 2π). This proves the Lemma.

Now, we consider the case where 2 < a < 4, so that (34) holds and not (2). Let

us explain why the Γ-limit of Eε might be strictly below E in this case. In fact,

this is very simple: let Ω = (0, 1)2 and E ⊂ Ω a �nite perimeter set with smooth

boundary. Let εn = 1/n and En be the recovery sequence in (8). In this case, we

can choose Ωεn
= Ω for each n (although strictly speaking, with our de�nition, it

should be [1/n, 1)× [1/n, 1)). Set now Ên = En ∪ ((0, 1/(2n))× (0, 1)): we add to

En a little strip where g = −a. Then, each time a cube (0, 1/n)× (k/n, (k + 1)/n)

does not meet En, the additional energy is 1/n − n × (a/(2n2)). Hence, if we let

Σ = {s ∈ (0, 1) : (0, s) ∈ E}, we get for n large enough

Eεn(Ên) ≈ Eεn(En) + (1− |Σ|)
(
1− a

2

)
So that lim supn→∞ Eεn

(Ên) < E(E) as soon as |Σ| < 1. Of course, in some sense

our sets Ên now converge to E∪{0}× (0, 1) rather than E: this shows that in order

to get still the convergence of Eε to E , one actually needs to impose some kind of

Dirichlet boundary conditions on the sets (Cor. 4.5).

Of course, all this is a bit arti�cial: if we translate now g by (1/4, 0): g(x) = a if

0 < x1 < 1/4 or 3/4 < x1 < 1, and −a if 1/4 < x1 < 3/4, and let now σ = (ax1, 0)T

if 0 < x1 < 1/4, (−a(x1−1/2), 0)T if 1/4 < x1 < 3/4, (a(x1−1), 0)T if 3/4 < x1 < 1,

then again g = divσ, but now if E ⊂ Q

Per (Q,E) +
∫

E

g(x) dx =
∫

Q∩∂∗E

(1−σ(x) ·νE(x)) dH1(x) ≥
(
1− a

4

)
Per (Q,E)
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so that now the optimal a is the same for (2) and (34) (the latter is of course more

natural, since independent on the (arbitrary) origin of the period which is chosen

for de�ning Eε).

A question which is natural, is whether there exists (still for F (x, p) = |p|) a
periodic g ∈ Ld(Q]) such that (34) holds, while (2) never holds for any translation

g(· − y), y ∈ Q: that is, whether there is really a di�erence between conditions (2)

and (34). We do not know the answer, although it is likely to be true.

A Proof of (5) and some more general statements

In this appendix, we prove (5), under the assumption that the set Eν (which in fact

may vary with L) is a class A minimizers whose boundary is contained in a strip of

width 2M . In fact, neither (1) nor (2) are really necessary for this section: as long

as the minimizers exist and satisfy ∂Eν ⊂ {|x · ν| ≤ M}, we just use the fact that
F (x, p) ≤ c∗|p| for any x and p, and g ∈ Ld(Q) with

∫
Q
g dx = 0. (Hence (5) also

holds with the milder assumption (34), see Section 4.2.)

For each ν ∈ Sd−1, we let Qν be the unit open cube (−1/2, 1/2)d rotated in a

way such that ν is orthogonal to one face, and Qν
ε , as before, is the union of all

cubes z + εQ ⊂ Qν with z ∈ εZd. As before, Iν = {x ∈ Rd : x · ν > 0}.
Let us �rst show the following lemma, which is quite standard (a variant is

proven in [10]):

Lemma A.1. We consider g ∈ Ld(Q) with
∫

Q
g dx = 0, and F (x, p) an interfacial

energy (continuous, periodic in x and convex, one-homogeneous in p) with F (x, p) ≥
c∗|p| for any x, p ∈ Rd. We assume that for each ν ∈ Sd−1, there exists a class A

minimizer Eν for J which satis�es point (i) of Theorem 1.

Then, there exists φ(ν) a bounded function, such that for any εk ↓ 0 and any

sequence of class A minimizers Ek
ν for J with ∂Ek

ν ⊂ {|x · ν| ≤M} for each k (so

that, in particular, εkE
k
ν → Iν as k →∞),

φ(ν) =

lim
k→∞

∫
∂∗(εkEk

ν )∩Qν

F

(
x

εk
, ν(εkEk

ν )(x)
)
dHd−1(x) +

1
εk

∫
Qν

εk
∩(εkEk

ν )

g

(
x

εk

)
dx .

(46)

Proof. We follow [10] and a similar proof in [11]. Observe �rst that for any E ⊂ Rd

which is a class A minimizer of E , by de�nition if Q′ is any translate of Q = [0, 1)d

we have, comparing E with E \Q and using
∫

Q
g dx = 0,

E1(E,Q′) ≤
∫

∂Q∩E

F (x, nQ(x)) dHd(x) ≤ c∗Per (Q),

(where here, nQ = −νQ is the outer normal to ∂Q) so that∫
Q′∩∂∗E

F (x, νE(x)) dHd(x) ≤ 2dc∗ + ‖g‖d (47)
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is bounded by a universal constant which depends only on g and the dimension.

We �rst prove that the limit (if it exists) must be bounded. The integrals in (46)

can be written as a sum of integrals on small cubes εk(z+Q), z ∈ Zd of volume εd
k.

Most of these contributions are zero, the only which may have a positive or negative

contribution lie in the strip Sk = {x ∈ Rd : dist(x,Qν∩∂Iν) ≤ εk(M+
√
d)}. When

non zero, the contribution is (by (47)) between −εd−1
k ‖g‖d and εd−1

k (2dc∗ + ‖g‖d).

Hence,

− lim
k→∞

ε−1
k ‖g‖d|Sk| ≤ φ(ν) ≤ lim

k→∞
ε−1

k (2dc∗ + ‖g‖d)|Sk|

and since |Sk| = 2εk(M +
√
d) + o(εk) as εk → 0, we deduce

−2‖g‖d(M +
√
d) ≤ φ(ν) ≤ 2(2dc∗ + ‖g‖d)(M +

√
d) (48)

Now, consider ε > ε′ > 0 such that ε′ << ε, and let Eν , E
′
ν be two class A min-

imizers of E with ∂Eν ∪ ∂E′ν ⊂ {|x · ν| ≤M}. We make the following construction.

First of all, we can cover ∂Iν ∩ (1/ε′)Qν with N = [(ε/ε′)/(1 + 2ε
√
d)]d−1 disjoint

translates of (2
√
d + 1/ε)Qν , each centered on ∂Iν (here, [ · ] denotes the integer

part). Strictly inside each of these cubes (meaning at positive distance from the

boundary), there is at least a translate of (1/ε)Qν which is centered on an point

of Zd. We denote by (Qi)N
i=1 these translates. We also denote by Ei ⊂ Qi the

corresponding translate of Eν ∩ (1/ε)Qν , and let

E′ =

(
E′ν \

N⋃
i=1

Qi

)
∪

(
N⋃

i=1

Ei

)
.

Then (observing that E′ν and E′ are identical on all cubes z+Q, z ∈ Zd, which are

not contained in (1/ε′)Qν), we have by class A minimality of E ′ν :

E1(E′ν ,
1
ε′
Qν) ≤ E1(E′,

1
ε′
Qν) .

That is, denoting R =
⋃N

i=1Qi and S the union of the cubes z + Q, z ∈ Zd, with

z +Q ⊂ (1/ε′)Qν and z +Q 6⊂ R,

E1(E′ν ,
1
ε′
Qν) ≤ NE1(Eν ,

1
ε
Qν)

+
∫

∂E′∩(1/ε′)Qν\R
F (x, νE′(x)) dHd−1(x) +

∫
S∩E′

g(x) dx . (49)

Let us decompose the �rest� in the previous estimate as follows:∫
∂E′∩(1/ε′)Qν\R

F (x, νE′(x)) dHd−1(x) +
∫

S∩E′
g(x) dx

≤
∫

∂E′
ν∩(1/ε′)Qν\R

F (x, νE′
ν
(x)) dHd−1(x) + c∗Hd−1(∂R ∩ ∂E′)

+
∫

S∩E′
g(x) dx = (I) + (II) + (III) . (50)

24



By (47), (I) is bounded by a constant (C) times the number of cubes z+Q, z ∈ Zd,

which intersect ∂E′ν ⊂ {|x · ν| ≤M}. Hence,

(I) ≤ C(M +
√
d)×

{(
1
ε′

+ 2
√
d

)d−1

−N

(
1
ε
− 2

√
d

)d−1
}

=
C(M +

√
d)

ε′d−1

{(
1 + 2ε′

√
d
)d−1

−
(
ε′

ε

[
ε

ε′
1

1 + 2ε
√
d

]
(1− 2ε

√
d)
)d−1

}

=
AI(ε′, ε)
ε′d−1

where AI(ε′, ε) → 0 if ε→ 0, ε′ → 0 and ε′/ε→ 0.

On the other hand, (II) is bounded by the total surface of ∂R ∩ {|x · ν| ≤
M + 2

√
d}:

(II) ≤ c∗N
M + 2

√
d

εd−2
≤ c∗ε

M + 2
√
d

ε′d−1

(
ε′

ε

[
ε

ε′
1

1 + 2ε
√
d

])d−1

=
AII(ε′, ε)
ε′d−1

where again, AII(ε′, ε) → 0 if ε→ 0, ε′ → 0 and ε′/ε→ 0.

Then, (III) =
∫

S∩E′ g(x) dx is bounded by ‖g‖d times the number of cubes z+Q

(z ∈ Zd) in S which meet ∂E′: again, since by construction ∂E′ ⊂ {|x·ν| ≤M+
√
d},

all these cubes lie in the strip {|x · ν| ≤ M + 2
√
d} and since they must not meet

R =
⋃N

i=1Qi we �nd

(III) ≤ ‖g‖d(M + 2
√
d)
{

1
ε′d−1

−N
1

εd−1

}
=

‖g‖d(M + 2
√
d)

ε′d−1

{
1−

(
ε′

ε

[
ε

ε′
1

1 + 2ε
√
d

])d−1
}

=
AIII(ε′, ε)
ε′d−1

,

where as before, AIII(ε′, ε) goes to zero if ε, ε′, ε′/ε go to zero.

Hence, letting A(ε′, ε) = AI(ε′, ε) + AII(ε′, ε) + AIII(ε′, ε), we �nd that the

�rest� in (49), that is, (50), is less than A(ε′, ε)/ε′d−1 where A(ε′, ε) goes to zero if

ε, ε′, ε′/ε go to zero.

Consider now two possible limits a and a′ of (46), along two di�erent sequences

εk and ε
′
k (and E

k
ν , E

′k
ν the corresponding sequences of minimizers). Upon extracting

a subsequence (and relabelling appropriately), we may assume that ε′k/εk → 0 as

k →∞. Then, after an appropriate rescaling, (49) shows that

Eε′k
(ε′kE

′k
ν , Q

ν) ≤
(
ε′k
εk

)d−1

NkEεk
(εkE

k
ν , Q

ν) + A(ε′k, εk)

where Nk = [(εk/ε
′
k)/(1 + 2εk

√
d)]d−1. As k → ∞, we deduce a′ ≤ a. This shows

the lemma.

It then follows:
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Corollary A.2. Let A ⊂ Rd be an open set and let Iν = limε→0(εEν) = {x : x ·ν ≥
0}. Then,

Hd−1(∂Iν ∩A)φ(ν)

= lim
ε→0

∫
∂∗(εEν)∩A

F
(x
ε
, ν(εEν)(x)

)
dHd−1(x) +

1
ε

∫
Aε∩(εEν)

g
(x
ε

)
dx (51)

Observe that after a suitable rescaling, (5) follows from (51) taking A = B(0, 1)

and ε = 1/L.

Proof. For any n ≥ 1, we simply cover ∂Iν ∩A by �nitely many disjoint translates

of (1/n)Qν , centered on ∂Iν , so that (denoting by Rn the union of all these cubes),

Hd−1(∂Iν ∩ (A \Rn)) → 0 as n→∞. Then, we estimate the error as in the proof

of boundedness of φ in the previous lemma, to deduce from (46) show that both

lim inf
ε→0

Eε(εEν , A) ≥ φ(ν)Hd−1(∂Iν ∩Rn) − CHd−1(∂Iν ∩ (A \Rn))

and

lim sup
ε→0

Eε(εEν , A) ≤ φ(ν)Hd−1(∂Iν ∩Rn) + CHd−1(∂Iν ∩ (A \Rn))

for any n, where C is some constant. Sending n→∞, we deduce (51).

Corollary A.3. Let E ⊂ Ω be a polyhedral set, that is, such that ∂E∩Ω is made of

�nitely many subsets of xi + ∂Iνi , for xi ∈ Rd, νi ∈ Sd−1, i = 1, . . . , N (and where

νi coincides with νE). Then, there exist sets Eε → E such that

lim sup
ε→0

Eε(Eε) ≤ E(E) (52)

Proof. We sketch the proof. First, for any η > 0, we can cover ∂E with disjoint

cylinders Ai = ωi + (−η′, η′)νi ⊂ Ω, η′ > 0 small, where ωi ⊂ (xi + ∂Iνi
) ∩ ∂E,

νi = νE on ωi, and Hd−1(Ω ∩ (∂E \
⋃N

i=1 ωi)) ≤ η.

Then, we let for ε > 0 small enough (in particular, than η′/M)

Eε =

(
E \

N⋃
i=1

Ai

)
∪

(
N⋃

i=1

(xi + εEνi) ∩Ai)

)

where each Eνi
is a class A minimizer of J which satis�es (ii) in Theorem 1. Then,

an accurate estimate of the error as in the previous proofs will show that

lim sup
ε→0

Eε(Eε) ≤
N∑

i=1

φ(νi)Hd−1(ωi) + Cη

so that Corollary A.3 follows from a diagonal argument.

If we assume that (2) holds, it now follows from Corollary A.3 and the esti-

mate (7) that Eε Γ-converge to E in the class of polyhedral sets (in particular, the

lim sup in (52) is a limit). We deduce in particular (using quite standard semicon-

tinuity arguments) the following:
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Corollary A.4. The function φ, extended to Rd by one-homogeneity, that is letting

φ(p) = |p|φ(p/|p|) if p 6= 0 and φ(0) = 0, is convex (hence Lipschitz-continuous).

In fact, still assuming �only� the same assumptions as in Lemma A.1, Corol-

lary A.4 still holds. The proof is identical to the proof of [10, Lem. 10.2] whose

idea is as follows: we choose ν1, ν2, ν = (ν1 + ν2)/|ν1 + ν2|, and for any δ > 0 we

compare the energy in Qν of the �plane� ε∂Eν , with the energy of the approxima-

tion Eε provided by Corollary A.3 of a polyhedron E such that ∂E ⊂ {|x · ν| ≤ δ}
and νE = ν1 on half of ∂E ∩ Qν , and ν2 on the other half. Letting ε → 0 we �nd

φ(ν) ≤ (φ(ν1) + φ(ν2))/|ν1 + ν2| + Cδ, and letting δ → 0 we deduce the convexity

of the one-homogeneous extension of φ.
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