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Abstract

We investigate the mathematical structure and properties of a Saint-Venant model with an

energy equation and with temperature dependent transport coefficents. These equations model

shallow water flows as well as thin viscous sheets over fluid substrates like oil slicks, atlantic waters

in the Strait of Gilbraltar or float glasses. We exhibit an entropy function for the system of partial

differential equations and by using the corresponding entropic variable we derive a symmetric con-

servative formulation of the system. The symmetrized Saint-Venant quasilinear system of partial

differential equations is then shown to satisfy the nullspace invariance property and is recast into

a normal form. Upon establishing the local dissipative structure of the linearuzed normal form,

global existence results and asymptotic stability of equilibrium states are obtained. We finally

derive the Saint-Venant equations with an energy equation taking into account the temperature

dependence of transport coefficients from an asymptotic limit of a three-dimensional model.

1 Introduction

We investigate the derivation and mathematical properties of a viscous Saint-Venant system of partial
differential equations with an energy equation and with temperature dependent transport coefficients.
These equations model shallow water flows as well as thin viscous sheets over fluid substrates like oil
slicks on water, surface atlantic waters above the denser Mediterranean sea in the Strait of Gilbraltar
or float glasses used for the production of plate glass. Modeling temperature variations is important
in various environmental and engineering applications or float glasses and this motivates the present
study.

We first present the Saint-Venant system of partial differential equations with an energy equation
and temperature dependent transport coefficients. We exhibit an entropy function for the system of
partial differential equations and by using the corresponding entropic variable we derive a symmetric
conservative formulation of the system. The symmetrizing variable is obtained from the entropy and
not the kinetic energy as investigated by Tadmor [41], Hauke [18], and Carey [7] in the isothermal
case. These symmetrized systems may also be useful for finite element discretization and numerical
simulations [7, 18].

The symmetrized Saint-Venant system of partial differential equations is then shown to satisfy the
nullspace invariance property and is recast into a normal form, that is, in the form of a symmetric
hyperbolic-parabolic composite system. We next establish stability conditions of the source term as
well as the local dissipative structure of the linearized normal system around constant equilibrium
states. In particular the entropy production is nonnegative and the source term lies in the range of
its derivative at equilibrium. Global existence results and asymptotic stability of equilibrium states
are then obtained from Kawashima’s theory of hyperbolic-parabolic systems [27] and its extension to
systems with sources terms [16].

Numerous existence results can be found in the literature concerning the Saint-Venant system
without an energy equation in various functional settings. We refer the reader notably to Serre [38]
and Dafermos [9] for inviscid models, and Kanayama and Ushijima [24], Bernardi and Pironneau [5],
Ton [42], Kloeden [29], Sundbye [40], Orenga [33], Lions [30], Bresch, Desjardins, and Métivier [6] and
Wang and Xu [44] for viscous Saint-Venant models with a constant viscosity coefficient. To the authors’
knowledge, it is the first time that the quasilinear Saint-Venant model with an energy equation and
temperature dependent transport coefficients is investigated.
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In the remaining part of the paper we derive the Saint-Venant equations with an energy equation
taking into account the temperature dependence of transport coefficients. These equations are derived
from an asymptotic study of a three dimensional incompressible model of a thin viscous sheet over a fluid
substrate. The fluid substrate is incompressible and is modeled by using the hydrostatic approximation.
We also derive typical free boundary conditions for the Saint-Venant model from the three dimensional
governing equations and free boundary conditions associated with the viscous sheet.

Numerous derivations of the viscous Saint-Venant system of partial differential equations without
an energy equation and with a constant viscosity can also be found in the literature. The inviscid
equations were first written by Saint-Venant in 1871 [10]. Gerbeau and Perthame have revisited the
derivation of the viscous case and validated the Saint-Venant model by a direct numerical comparison
with the underlying incompressible model [13]. For viscous layers on a fluid substrate, Howell has
derived a Saint-Venant model by performing an asymptotic analysis [20, 21]. Multilayer Saint-Venant
models have recently been investigated by Audusse [1], Audusse and Bristeau [2], and Kanayama and
Dan [26]. A Saint-Venant model with a temperature equations has been introduced by Benqué, Haugel,
and Viollet [3] and used by Podsetchine, Schernewski, and Tejakusuma [36] to investigate the Oder
Lagoon. The derivation of a Saint-Venant model of a thin viscous sheet over a fluid substrate with a
temperature equation and taking into account the temperature dependence of transport coefficients as
well as that of boundary conditions from an asymptotic analysis is new to the authors’ knowledge.

2 Governing equations

We summatize in this section the Saint-Venant equations governing thin viscous sheets over fluid
substrates as well as shallow water flows. We include an energy equation in the model since temperature
variations are important in various engineering and environmental applications.

2.1 Conservation equations

The equations governing shallow water flows and thin viscous sheets over fluid substrates express
the conservation of mass, horizontal momentum and energy. The mass conservation equation can be
written in the form

∂th+ ∂x(hu) + ∂y(hv) = 0, (2.1)

where t denotes time, (x, y) the horizontal cartesian coordinates, h the height of the shallow water flow
or of the viscous sheet in the vertical direction, u the velocity in the x direction, and v the velocity in
the y direction. The momentum equations in the x and y directions can be written

∂t(hu) + ∂x(hu2 + p) + ∂y(huv) + ∂xΠxx + ∂yΠxy = 0, (2.2)

∂t(hv) + ∂x(huv) + ∂y(hv2 + p) + ∂xΠyx + ∂yΠyy = 0, (2.3)

where p is the kinematic pressure and Πxx, Πxy, Πyx, and Πyy are the coefficients of the kinematic
viscous tensor Π . Finally the total energy conservation equation can be written in the form

∂t(he
tot) + ∂x

(
(hetot + p)u

)
+ ∂y

(
(hetot + p)v

)

+ ∂x(Qx +Πxxu+Πxyv) + ∂y(Qy +Πyxu+Πyyv) = H, (2.4)

where etot is the total energy per unit mass, Qx, Qy are the components of the kinematic heat flux Q,
and H denotes a heat loss term.

Since the Saint-Venant system of partial differential equations is naturally written in two dimensions,
we will use in the following sections the indexing set C = {x, y} which is more explicit than the set
C = {1, 2}.

2.2 Thermodynamic properties

In the Saint-Venant system, the kinematic pressure is given by

p = 1
2αh

2, (2.5)

where α is a constant associated with gravity. On the other hand, the total energy per unit mass etot

of the fluid sheet is given by
etot(h, T ) = e+ 1

2 (u2 + v2), (2.6)
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where e denotes the fluid sheet internal energy per unit mass. The internal energy e can be written

e(h, T ) = est +

∫ T

T st

cv(τ) dτ + 1
2αh, (2.7)

where cv is the heat capacity at constant volume per unit mass of the fluid, T the absolute temperature
and est the formation energy of the fluid at the standard temperature T st. We also define for convenience

the formation energy at zero temperature e0 = est −
∫ T st

0 cv(τ) dτ is such a way that the internal energy

e can also be written e = e0 +
∫ T

0 cv(τ) dτ + 1
2αh.

In comparison with the perfect gas model, we note that, with the Saint-Venant system modeling
fluid sheets, the height h plays the rôle of a density, the fluid is barotropic with a quadratic dependence
of the pressure p on height h and the internal energy per unit mass of the fluid sheet e depends on
both temperature T and height h.

The natural compatibility relation [30] between p and e is also satisfied since h2∂he = p− T∂Tp =
1
2αh

2 so that there exists an entropy per unit mass s such that Gibbs relation T ds = de + pd(1/h)
holds. From Gibbs relation, it is easily shown that T∂T s = ∂T e = cv and T∂hs = ∂he − p/h2 = 0 in
such a way that

s = sst +

∫ T

T st

cv(τ)

τ
dτ, (2.8)

where sst is the formation entropy of the fluid at temperature T st. The Gibbs function is further
defined as g = e+ p/h− Ts and will be required to express the entropic symmetrizing variable. Note
finally that the Gibbs function g can be decomposed into g(h, T ) = g(T ) + αh where g only depends

on temperature and reads g = est +
∫ T

T stcv(τ) dτ − T
(
sst +

∫ T

T st

cv(τ)
τ dτ

)
.

Remark 2.1. Strictly speaking, denoting by ρ the—constant—density of the fluid, only the quantity
ρp/h is homogeneous to a pressure and p/h to a kinematic pressure. However, these h factors are
natural since the equations are in two dimensions so that the internal constraints are transmitted
through contact lines and not contact surfaces. Similarly, the quantity ρeh is the internal energy per
unit horizontal surface and ρsh the entropy per unit horizontal surface of the fluid sheet.

2.3 Transport fluxes

The transport fluxes of the fluid sheet, that is, the kinematic viscous tensor Π and the kinematic heat
flux Q, can be obtained from an asymptotic analysis as presented in Section 7. The kinematic viscous
tensor is in the form.

Π = −νh
(
∂

x
v + ∂

x
vt + 2∂

x
·vI

)
, (2.9)

where ∂
x

denotes the derivation vector ∂
x

= (∂x, ∂y)t, v the velocity vector v = (u, v)t, x the com-
ponent x = (x, y)t, ν the kinematic shear viscosity of the fluid, I the two dimensional unit tensor,
and t the transposition operator. The viscous tensor Π thus corresponds to the usual two dimensional
formulation with a ‘shear viscosity’ hν and a ‘volume viscosity’ 3hν. Upon decomposing the viscous
tensor, we obtain

Π =

(
Πxx Πxy

Πyx Πyy

)
= −νh

(
2(2∂xu+ ∂yv) ∂yu+ ∂xv

∂yu+ ∂xv 2(∂xu+ 2∂yv)

)
. (2.10)

We also define, for future use, the kinematic pressure tensor P = pI + Π, which can be interpreted as
a kinematic momentum flux tensor. In addition, the kinematic heat flux is given by

Q = (Qx,Qy)
t = −κh∂

x
T, (2.11)

where κ is the kinematic thermal conductivity of the fluid.

Remark 2.2. Strictly speaking, denoting by ρ the—constant—density of the fluid, only the quantity
ρΠ/h is homogeneous to a viscous tensor and Π/h to a kinematic viscous tensor. Similarly, only the
quantity ρQ/h is homogeneous to a heat flux and Q/h to a kinematic heat flux. However, these h factors
are natural since the internal constraints are transmitted through contact lines in two dimensional
models. We have still termed Π the ‘viscous tensor’ and Q the ‘heat flux’ for the sake of simplicity.
The quantities η = νρ and λ = κρ are the dynamic viscosity and the thermal conductivity, respectively,
of the fluid.
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Remark 2.3. Erroneous forms of the viscous terms are often found in the literature as for instance
the forms −∂

x
·

(
ν(∂

x
(hv)+ ∂

x
(hv)t + 2∂

x
·(hv)I)

)
or −h∂

x
·

(
ν(∂

x
v + ∂

x
vt +2∂

x
·vI)

)
instead of the

correct form obtained from asymptotics −∂
x
·

(
νh(∂

x
v +∂

x
vt +2∂

x
·vI)

)
. Only the correct later form

is energetically consistent as shown by Gent [12].

2.4 Source terms

Heat exchanges are important in the modeling of shallow water flows [36] and various viscous sheets
such that oil slicks and float glasses [20]. We consider a heat loss term in the form

H = −λ∗(T − T e),

where T e is a given constant ambiant temperature and λ∗ a heat exchange coefficent.

Remark 2.4. Various other effects may be taken into account in the Saint-Venant system of partial
differential equations depending on the particular application under consideration. For shallow water
flows, it is possible for instance to take into account friction forces, wind effects, coriolis forces due to
earth rotation and the sea depth [7, 13]. In the modeling of oil spills it is also important to take into
account friction forces, water currents, shoreline deposition, winds effects and evaporation [34]. These
extra source terms would not essentially modify the mathematical analysis that will be presented in
the next sections.

Remark 2.5. Depending on the particular application under investigation, various terms may also
be neglected in the Saint-Venant system of partial differential equations as for instance the kinetic
energy terms in the energy conservation equation. However, these terms have been kept since they
are important for structural purposes. They guarantee that the structure of the system is that of a
symetrizable system of partial differential equations of hyperbolic-parabolic nature as will be shown in
the next sections.

3 Quasilinear form

The governing equations presented in Section 2 are recast into a quasilinear vector form in this section.

3.1 Conservative and natural variables

The conservative variable U associated with the equations (2.1)–(2.4) is given by

U =
(
h, hu, hv, hetot

)t
, (3.1)

and the natural variable Z by

Z =
(
h, u, v, T

)t
, (3.2)

where h is the vertical height of the viscous sheet or of the shallow water flow playing the rôle of a
density, u, v are the horizontal components of the mass averaged flow velocity in such a way that the
velocity vector is v = (u, v)t, etot is the total energy per unit mass of the fluid, t is the transposition
symbol, and T is the absolute temperature.

The components of U naturally appear as conserved quantities in the Saint-Venant system with an
energy equation. On the other hand, the components of the natural variable Z are more practical to
use in actual calculations of differential identities.

3.2 Vector equations

The Saint-Venant equations modeling thin viscous sheet over fluid substrates or shallow water flows
(2.1)–(2.4) can be rewritten into the compact form

∂tU + ∂xFx + ∂yFy + ∂xF
dis
x + ∂yF

dis
y = Ω, (3.3)

where ∂t is the time derivative operator, ∂x, ∂y are the space derivative operator in the x and y directions

respectively, Fx and Fy are the convective flux in the x and y directions respectively, F dis
x and F dis

y are
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the dissipative flux in the x and y directions respectively, and Ω is the source term. We will use the
indexing set C = {x, y} in the following for the sake of simplicity.

From Section 2 the convective fluxes Fx and Fy in the x and y directions are given by

Fx =
(
hu, hu2 + p, huv, hetotu+ pu

)t
, (3.4)

Fy =
(
hv, hvu, hv2 + p, hetotv + pv

)t
, (3.5)

where p is the pressure and etot the total energy per unit mass. The dissipative flux F dis
x and F dis

y in
the x and y directions are

F dis
x =

(
0, Πxx, Πxy, Qx +Πxxu+Πxyv

)t
, (3.6)

F dis
y =

(
0, Πyx, Πyy, Qy +Πyxu+Πyyv

)t
, (3.7)

where Π is the kinematic viscous stress tensor (2.9)(2.10) and Q the kinematic heat flux vector (2.11).
Finally, the source term is given by

Ω =
(
0, 0, 0,H

)t
, (3.8)

where H is the heat loss term.
These equations have to be completed by the relations expressing the transport fluxes Π and Q,

the thermodynamic properties p and etot, and the source term Ω, already presented in Section 2. These
relations have been given in terms of the natural variable and are used in the next sections to rewrite
the system as a quasilinear system in terms of the conservative variable U .

3.3 Mathematical assumptions

We describe in this section the mathematical assumptions concerning the thermodynamic properties
and the transport coefficients associated with the Saint-Venant equations. These assumptions are
assumed to hold in Sections 3, 4. and 5.

(Th1) The fluid density ρ and the pressure factor α are positive constants. The formation energy

est and the formation entropy sst are constants. The specific heat per unit mass cv, is a C∞

function of T ≥ 0 and there exist positive constants cv and cv with 0 < cv ≤ cv(T ) ≤ cv, for

T ≥ 0.

(Tr1) The kinematic shear viscosity ν, the kinematic thermal conductivity κ, and the thermal ex-

change coefficient λ∗ are C∞ functions of T for T > 0.

(Tr2) The kinematic thermal conductivity κ, the kinematic shear viscosity ν, and the heat exchange

coefficient λ∗ are positive functions.

Remark 3.1. The adiabatic situation where λ∗ = 0 is also easily investigated and we only assume
that λ∗ > 0 in order to simplify the formal presentation. Similarly, the situations where ν and κ are
functions of both T and h are easily taken into account.

3.4 Dissipation matrices and quasilinear system

In this section, we rewrite the system of partial differential equations (3.3) as a quasilinear system of
second-order partial differential equations in terms of the conservative variable U . In order to express
the natural variable Z in terms of the conservative variable U , we first investigate the map Z → U and
its range.

Proposition 3.2. The map Z 7−→ U is a C∞ diffeomorphism from the open set OZ = (0,∞)× R
2 ×

(0,∞) onto an open set OU . The open set OU is convex and given by

OU = { (u1, u2, u3, u4) ∈ R
4;u1 > 0, u4 − φ(u1, u2, u3) > 0 }, (3.9)

where φ : (0,∞) × R
2 → R is defined by

φ(u1, u2, u3) = 1
2

u2
2 + u2

3

u1
+ e0u1 + 1

2αu
2
1,

and where e0 is the formation energy of the fluid at zero temperature.
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Proof. From Assumption (Th1) and the expression of thermodynamic properties, we first deduce that
the map Z → U is C∞ over the domain OZ . On the other hand, it is straightforward to show that the
map Z → U is one to one and that

∂ZU =




1 0 0 0
u h 0 0
v 0 h 0

etot + 1
2αh hu hv hcv


 ,

so that the matrix ∂ZU is nonsingular over OZ . From the inverse function theorem, we deduce that
Z → U is a C∞ diffeomorphism onto an open set OU . From hetot = he+ 1

2hv·v, the expressions of e,
and (Th1), it is then established that OU is given by (3.9). The convexity of OU is finally a consequence
of the convexity of φ, which is established by evaluating its second derivative. More specifically, for
u1 > 0 and u2, u3 ∈ R, we have

∂2
u1
φ =

u2
2 + u2

3

u3
1

+ α, ∂2
u1u2

φ = −
u2

u2
1

, ∂2
u1u3

φ = −
u3

u2
1

,

∂2
u2
φ = ∂2

u3
φ =

1

u1
, ∂2

u2u3
φ = 0,

in such a way that for any (x1, x2, x3) ∈ R
3 we have

∑

1≤i,j≤3

xixj∂
2
uiuj

φ = αx2
1 +

1

u1

(
x2 −

u2

u1
x1

)2

+
1

u1

(
x3 −

u3

u1
x1

)2

,

and the matrix (∂2
uiuj

φ)1≤i,j≤3 is positive definite over (0,∞) × R
2.

In Section 2.3, the transport fluxes Π and Q and, therefore, the dissipative fluxes F dis
x and F dis

y ,
have been expressed in terms of the gradient of the natural variable Z. By using Proposition 3.2, these
dissipation fluxes can thus be expressed as functions of the conservative variable gradients

F dis
i = −

∑

j∈C

Bij(U)∂jU,

where C = {x, y} and Bij(U), i, j ∈ C, are the dissipation matrices. The matrix Bij(U) is a square
matrix of dimension 4, which relates the dissipative flux in direction i to the gradient of U in direction j.

We may further introduce the Jacobian matrices Ai, i ∈ C, of the convective fluxes Fi, i ∈ C,
defined by

Ai = ∂UFi, i ∈ C,

and finally rewrite the system (3.3) in the quasilinear form

∂tU +
∑

i∈C

Ai(U)∂iU =
∑

i,j∈C

∂i

(
Bij(U)∂jU

)
+ Ω(U), (3.10)

where the matrix coefficients are defined on the open convex set OU . As a direct consequence of (Th1)
and (Tr1), the system coefficients satisfy the following property (Edp1)

(Edp1) The convective fluxes Fi, i ∈ C, the dissipation matrices Bij, i, j ∈ C, and the source term Ω
are smooth functions of the variable U ∈ OU .

Expanding the sums over C = {x, y}, these equations can also be written in the more explicit form

∂tU +Ax(U)∂xU+Ay(U)∂yU = ∂x

(
Bxx(U)∂xU

)
+ ∂x

(
Bxy(U)∂yU

)

+ ∂y

(
Byx(U)∂xU

)
+ ∂y

(
Byy(U)∂yU

)
+ Ω(U). (3.11)

The detailed form of the coefficient matrices Ai(U), i ∈ C, and Bij(U), i, j ∈ C, will not be needed in
the following, and, therefore, will not be given.
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4 Symmetrization of Saint-Venant equations

For hyperbolic systems of conservation laws, the existence of a conservative symmetric formulation
has been shown to be equivalent to the existence of an entropy function [17, 11, 32]. These results
have been generalized to the case of second order quasilinear systems of equations by Kawashima and
Shizuta [28, 16, 14]. Kawashima and Shizuta [28] have also shown that, when the nullspace naturally
associated with dissipation matrices is a fixed subspace, a symmetric system of conservation equations
can be put into a normal form, that is, in the form of a symmetric hyperbolic-parabolic composite
system. Giovangigli and Massot [16, 14]. have further characterized all possible normal forms for such
systems.

In this section, we investigate the symmetrization of the Saint-Venant system with an energy equa-
tion (3.10). We exhibit a mathematical entropy function and derive the corresponding conservative
symmetric form. This symmetric form is then used to derive a normal form. The symmetrizing variable
is obtained from the entropy and not from the kinetic energy as investigated by Tadmor [41], Hauke
[18], and Carey [7] in the isothermal case. The assumptions concerning thermodynamic properties
(Th1) and transport properties (Tr1)(Tr2) are assumed to hold in this section.

4.1 Entropy and symmetric conservative form

The following definition of a symmetric (conservative) form for the system (3.10) is adapted from
Kawashima and Shizuta [28, 16, 14].

Definition 4.1. Consider a C∞ dipheomorphism U → V from the open domain OU onto an open

domain OV and consider the system in the V variable

Ã0(V )∂tV +
∑

i∈C

Ãi(V )∂iV =
∑

i,j∈C

∂i

(
B̃ij(V )∂jV

)
+ Ω̃(V ), (4.1)

where {
Ã0 = ∂V U, Ãi = Ai∂V U = ∂V Fi,

B̃ij = Bij∂V U, Ω̃ = Ω.
(4.2)

The system is said of the symmetric form if the matrices Ã0, Ãi, i ∈ C, and B̃ij, i, jC, satisfy the

following properties (S1-S4).

(S1) The matrix Ã0 is symmetric positive definite for V ∈ OV .

(S2) The matrices Ãi, i ∈ C, are symmetric for V ∈ OV .

(S3) We have B̃t
ij = B̃ji for i, j ∈ C, and V ∈ OV .

(S4) The matrix B̃ =
∑

i,j∈C B̃ij(V )wiwj is symmetric and positive semidefinite, for V ∈ OV and

w ∈ Σ1, where Σ1 is the unit sphere in 2 dimensions.

The following generalized definition of a mathematical entropy function is adapted [16, 14] from
Kawashima [27] and Kawashima and shizuta [28].

Definition 4.2. Consider a C∞ function σ(U) defined over the open convex domain OU . The function

σ is said to be an entropy function for the system (3.10) if the following properties hold.

(E1) The function σ is a strictly convex function of U ∈ OU in the sense that the Hessian matrix

∂2
Uσ is positive definite over OU .

(E2) There exists real-valued C∞ functions qi = qi(U) such that

(
∂Uσ

)
Ai = ∂Uqi, i ∈ C, U ∈ OU .

(E3) We have the property that, for any U ∈ OU

(
∂2

Uσ
)−1

Bt
ji = Bij

(
∂2

Uσ
)−1

, i, j ∈ C.
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(E4) The matrix B̃ =
∑

i,j∈C Bij(U)
(
∂2

Uσ(U)
)−1

wiwj is symmetric positive semidefinite for any

U ∈ OU and any w ∈ Σ1.

Kawashima and Shizuta have established [28, 16, 14] the equivalence between conservative sym-
metrizability and the existence of an entropy function.

Theorem 4.3. The system (3.10) admits an entropy function σ defined over the open convex set OU

if and only if it can be symmetrized over the open convex set OU . In this situation the symmetrizing

variable V and the entropy function can be chosen such that

V = (∂Uσ)t. (4.3)

As is usual for compressible gases [28], mixtures of reacting gases [16, 14], ambipolar plasmas [15],
we define the mathematical entropy function σ of the Saint-Venant system with an energy equation as
the opposite of the physical entropy hs

σ = −hs,

where s is the entropy per unit mass of the fluid under considerartion (2.8). The mathematical entropy
σ is associated with the physical entropy per unit surface hs and not the entropy per unit volume as
usual. The corresponding entropic variable

V =
(
∂Uσ

)t
,

is then easily evaluated as

V =
1

T

(
g − 1

2v·v, u, v, −1
)t
,

where g is the Gibbs function.

Proposition 4.4. The change of variable U 7−→ V is a C∞ diffeomorphism from the open convex set

OU onto an open set OV . The open set OV is given by

OV = { (u1, u2, u3, u4) ∈ R
4;u4 < 0, u1 − ψ(u2, u3, u4) > 0 }, (4.4)

where ψ : R
2 × (−∞, 0) → R is given by

ψ(u2, u3, u4) = −u4g(−1/u4) + 1
2

u2
2 + u2

3

u4
,

and where the Gibbs function has been decomposed into g(h, T ) = g(T ) + αh.

Proof. From Proposition 3.2, the map Z → U is a C∞ diffeomorphism from OZ onto OU , so that
we only have to show that the map Z → V is a C∞ diffeomorphism from OZ onto the open set OV .
From Assumption (Th1) and the expression of thermodynamic properties, we first deduce that the map
Z → V is C∞ over the domain OZ . It is then straightforward to show that the map Z → V is one to one
and that its range is OV since the Gibbs function can be decomposed in the form g(h, T ) = g(T )+αh.
In addition, the matrix ∂ZV is easily shown to be nonsingular over OZ from its triangular structure
and the proof is complete thanks to the inverse function theorem.

The conservative symmetric form is now investigated in the following theorem.

Theorem 4.5. The function σ is a mathematical entropy for the system (3.10), that is, σ satisfies

Properties (E1-E4) of Definition 4.2. The symmetrized system associated with the entropic variable

V ∈ OV can be written

Ã0∂tV +
∑

i∈C

Ãi∂iV =
∑

i,j∈C

∂i

(
B̃ij∂jV

)
+ Ω̃, (4.5)

and satisfies Properties (S1-S4) of Definition 4.1. The matrix Ã0 is given by

Ã0 =
T

α




1 Sym

v v⊗v + αhI

etot + 1
2αh (etot + 3

2αh)v
t Υ0


 ,
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where

Υ0 = (etot + 1
2αh)

2 + αh(u2 + v2 + Tcv).

Since this matrix is symmetric, we only give its block lower triangular part and write “Sym” in the

upper triangular part. Denoting by ξ = (ξx, ξy)t an arbitrary vector of R
2, the matrices Ãi, i ∈ C, are

given by

∑

i∈C

Ãiξi =
T

α




v·ξ Sym

v(v·ξ) + αhξ Σv,v

(etot + 3
2αh)v·ξ Σe,v Υ1 v·ξ


 ,

where

Σv,v = v·ξ v ⊗ v + αh(v ⊗ ξ + ξ ⊗ v + 2v·ξ I),

Σe,v = (etot + 5
2αh)v·ξ vt + (etot + 1

2αh)αhξ
t,

Υ1 = (etot + 5
2αh)(e

tot + 1
2αh) + αh(u2 + v2 + Tcv).

The dissipation matrices, are given by

B̃xx = hTν




0 0 0 0

0 4 0 4u

0 0 1 v

0 4u v θ + 3u2


 , B̃xy = hTν




0 0 0 0

0 0 2 2v

0 1 0 u

0 v 2u 3uv


 ,

B̃yx = hTν




0 0 0 0

0 0 1 v

0 2 0 2u

0 2v u 3uv


 , B̃yy = hTν




0 0 0 0

0 1 0 u

0 0 4 4v

0 u 4v θ + 3v2


 ,

where θ = κT/ν + (u2 + v2). Denoting by ξ = (ξx, ξy)t and ζ = (ζx, ζy)t arbitrary vectors of R
2, we

have

∑

i,j∈C

B̃ijξiζj = hTν




0 0 Sym

0 2ξ⊗ζ + ζ⊗ξ + ξ·ζI

0 2v·ζ ξt + v·ξ ζt + ζ·ξ vt θζ·ξ + 3v·ξ v·ζ


 .

Finally, the source term Ω̃ is given by

Ω̃ = Ω.

Proof. The calculation of the matrices Ã0, Ãi, i ∈ C, and B̃ij , i, j ∈ C, is lengthy but straightforward
and, therefore, is omitted. This calculation is easily conducted by using the natural variable Z as an
intermediate variable. The symmetry properties of Ã0, Ãi, i ∈ C, and B̃ij , i, j ∈ C, required in (S1-S4)
are then obtained.

Consider then a vector x ∈ R
4, with components (xh, xu, xv, xT )t. After a little algebra, we obtain

xtÃ0x =T
α

(
αh(xu+uxT )2+αh(xv+vxT )2

+
(
xh + uxu + vxv + (etot + 1

2αh)xT

)2
+ αhcvT x2

T

)
, (4.6)

so that from (Th1) and the positivity of α, cv, and T , we deduce that Ã0 is positive definite. Further-
more, a straightforward calculation leads to the following expression

xtB̃(V,w)x = Tνh
(
3
(
wx(xu + uxT ) + wy(xv + vxT )

)2

+ (xu + uxT )2 + (xv + vxT )2 +
κ

νT
x2
T

)
, (4.7)

where x = (xh, xu, xv, xT )t and w2
x + w2

y = 1. The matrix B̃—easily shown to be symmetric—is thus
positive semidefinite from the positivity properties of transport coefficients. Finally, σ also satisfies
(E1-E4) with qx = σu and qy = σv, as is easily checked and σ is strictly convex since Ã0 is positive
definite over the open convex set OU .

We have thus established in this section that the Saint-Venant system satisties the property

(Edp2) The quasilinear Saint-Venant system of partial differential equations (3.10) admits an entropy

function σ on the open convex set OU .
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4.2 Normal forms of Saint-Venant equations

The quasilinear Saint-Venant system of partial differential equations (3.10) has smooth coefficients
and admits an entropy function, that is, satisfies the properties (Edp1) and (Edp2). Introducing the
symmetrizing variable V = (∂Uσ)t, the corresponding symmetric system (4.5) then satisfies Properties

(S1-S4). However, depending on the range of the dissipation matrices B̃, this system lies between the
two limit cases of a hyperbolic system and a strongly parabolic system. In order to split the variables
between hyperbolic and parabolic variables, we have to put the system into a normal form, in the form
of a symmetric hyperbolic–parabolic composite system [27, 28, 16].

To this aim, introducing a new variable W , associated with a diffeomorphism V → W from OV

onto OW , changing of variable V = V (W ) in (4.5) and multiplying on the left side by the transpose of
the matrix ∂WV , we get a new system in the variable W and have the following definition of a normal
form [28].

Definition 4.6. Consider a system in symmetric form, as in Definition 4.1, and a diffeomorphism

V →W from the open set OV onto an open set OW . The system in the new variable W

A0(W )∂tW +
∑

i∈C

Ai(W )∂iW =
∑

i,j∈C

∂i

(
B(W )∂jW

)
+ T (W,∂xW ) + Ω(W ), (4.8)

where 



A0 = (∂WV )t Ã0 (∂WV ), Bij = (∂WV )t B̃ij (∂WV ),

Ai = (∂WV )t Ãi (∂WV ), Ω = (∂WV )tΩ̃,

T = −
∑

i,j∈C

∂i(∂WV )t B̃ij (∂WV )∂jW,

(4.9)

satisfies properties (S1-S4) rewritten in terms of overbar quantities. This system is then said to be of

the normal form if there exists a partition of {1, . . . , 4} into I = {1, . . . , n0} and II = {n0 + 1, . . . , 4},
such that the following properties hold.

(Nor1) The matrices A0 and Bij have the block structure

A0 =

(
A

I,I

0 0

0 A
II,II

0

)
, Bij =

(
0 0

0 B
II,II

ij

)
.

(Nor2) The matrix B
II,II

ij (W,w) =
∑

i,j∈C B
II,II

ij (W )wiwj is positive definite for W ∈ OW and w ∈ Σ1.

(Nor3) Denoting ∂
x

= (∂x, ∂y)t, we have

T (W,∂
x
W ) =

(
T I (W,∂

x
WII) , T II (W,∂

x
W )
)t

where we have used the vector and matrix block structure induced by the partitioning of {1, . . . , 4} into

I = {1, . . . , n0} and II = {n0 + 1, . . . , 4}, so that we have W = (WI ,WII)
t, for instance.

A sufficient condition for system (4.1) to be recast into a normal form is that the nullspace naturally
associated with dissipation matrices is a fixed subspace of R

4. This is Condition N introduced by
Kawashima and Shizuta. In the following lemma, we establish that the nullspace invariance property
holds for the Saint-Venant system of partial differential equations.

Proposition 4.7. Let V ∈ OV , w = (wx, wy)t ∈ Σ1, and denote

B̃(V,w) =
∑

i,j∈C

B̃ij(V )wiwj .

The nullspace of the matrix B̃ is one-dimensional and given by

N(B̃) = span(1, 0, 0, 0)t,

and we have B̃ijN(B̃) = 0, for i, j ∈ C.
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Proof. According to (4.7) the matrix B̃ is positive semidefinite, so that its nullspace is constituted

by the vectors x of R
4 such that xtB̃x = 0. Denoting x = (xh, xu, xv, xT )t and using (4.7), the null

condition xtB̃x = 0 implies that xT = 0 and xu = xv = 0 and conversely. We have thus obtained that

the nullspace of B̃(V,w) is one-dimensional and spanned by (1, 0, 0, 0)t, and it is thus independent of

V ∈ OV and w ∈ Σ1. Finally, one easily checks that B̃ij(1, 0, 0, 0)t = 0, for i, j ∈ C.

We have thus established the following property

(Edp3) The nullspace of the matrix B̃(V,w) =
∑

i,j∈C B̃ij(V )wiwj does not depend on V and w ∈ Σ1,

dim
(
N(B̃)

)
= 1, and we have B̃ij(V )N(B̃) = 0, i, j ∈ C.

We now investigate normal forms for the system (3.10), or, equivalently, for the system (4.5). Since

the nullspace of the matrix B̃ is spanned by the first canonical basis vector, the invertible matrix P of
Lemma 3.7 of [16] can be taken to be the unit tensor in R

4,4 so that the auxiliary variables are simply
U ′ = U and V ′ = V . Since U ′

I
= UI = (h and V ′

II
= VII = (u, v,−1)/T , we obtain form the general

characterization of normal form the following result.

Theorem 4.8. Any normal form of the system (4.1) is given by a change of variable in the form

W =
(
φI(h), φII

( u
T
,
u

T
,
−1

T

))t
,

where φI and φII are two diffeomorphisms of R and R
3 respectively, and we have

T (W,∂xW ) =
(
0, T II(W,∂x

WII)
)t

We can next use the possibility of mixing the parabolic components—the V ′
II

= VII components—
established in Theorem 4.8, in order to simplify the analytic expression of the normal variable and,
consequently, of the matrix coefficients appearing in the normal form. More specifically, we select the
variable W = Z

W =
(
h, u, v, T

)t
,

easily obtained by combining the V ′
II

= VII components and derive the corresponding normal form of
the governing equations.

Theorem 4.9. The system in the variable W = (WI ,WII)
t, on the open convex set OW = (0,∞) ×

R
2 × (0,∞), with hyperbolic variable

WI = h,

and parabolic variable

WII =
(
u, v, T

)t
,

can be written in the form

A
I,I

0 ∂tWI +
∑

i∈C

A
I,I

i ∂iWI +
∑

i∈C

A
I,II

i ∂iWII = 0, (4.10)

A
II,II

0 ∂tWII +
∑

i∈C

A
II,I

i ∂iWI +
∑

i∈C

A
II,II

i ∂iWII =
∑

i,j∈C

∂i

(
B

II,II

ij ∂jWII

)
+ T II + ΩII , (4.11)

and is of the normal form. The matrix A0 is given by

A0 =
1

T



α 0 0
0 hI 0

0 0 hcv

T


 ,

Denoting by ξ = (ξx, ξy)t an arbitrary vector of R
2, the matrices Ax and Ay are given by

∑

i∈C

Aiξi =
1

T



αv·ξ Sym

αhξ hv·ξ I

0 0 hcv

T v·ξ


 . (4.12)
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Denoting by ξ = (ξx, ξy)t and ζ = (ζx, ζy)t arbitrary vectors of R
2, the dissipation matrices, Bij are

such that

∑

i,j∈C

Bijξiζj =
h

T




0 Sym

02×1 ν(2ξ⊗ζ + ζ⊗ξ + ξ·ζI)

0 01×2
κ

T ξ·ζI


 ,

or equivalently

Bxx =
h

T




0 0 0 0
0 4ν 0 0
0 0 ν 0
0 0 0 κ

T


 , Bxy =

h

T




0 0 0 0
0 0 2ν 0
0 ν 0 0
0 0 0 0


 ,

Byx =
h

T




0 0 0 0
0 0 ν 0
0 2ν 0 0
0 0 0 0


 , Byy =

h

T




0 0 0 0
0 ν 0 0
0 0 4ν 0
0 0 0 κ

T


 .

The term T II is easily evaluated as

T II = −
1

T 2

(
0, Π·∂

x
T, Π:∂

x
v + Q·∂

x
T
)t

,

whereas the source term Ω = (ΩI ,ΩII)
t = (∂WV )t Ω is given by

Ω =
(
0, 0, 0, −

λ∗

T 2
(T − T e)

)t

.

Proof. The calculations are lengthy but straightforward and make use of Theorem 4.5 and Assumptions
(Th1), (Tr1) and (Tr2).

5 Global existence for the Saint-Venant equations

In the previous sections, we have established that the quasilinear Saint-Venant system of partial dif-
ferential equations is symmetrizable and can be written into a normal form so that we have already
established the Properties (Edp1-Edp3). In this section we will first investigate the existence of constant
equilibrium states or Property (Edp4). We will next investigate the corresponding linearized normal
form and linearized source term. We will indeed establish the local dissipativity properties labeled
(Dis1-Dis4) that will insure the asymptotic stability of equilibiruml states [16, 14]. In particular, global
existence of solution around equilibrium states as well as decrease estimates will be obtained for the
quasilinear Saint-Venant system with a temperature equation. We will use the normal variable W = Z
introduced in Theorem 4.9 but other normal variables could be used as well.

5.1 Local dissipative structure

We remind that the source term Ω is given by Ω =
(
0, 0, 0,−λ∗(T − T e)

)t
, where λ∗ is a positive

coefficient and T e > 0 a positive temperature.

Proposition 5.1. Let a height he > 0 and a velocity ve = (ue, ve)t ∈ R
2 be given. Then the state U e

defined by

U e =
(
he, heue, heve, heetot(he, T e)

)t
,

is an equilibirum state

Ω(U e) = 0,

and for this constant stationary state we also have Ze = (he, ue, ve, T e)t.

Selecting arbitrarily Ze = (he, ue, ve, T e)t we have established the following property

(Edp4) There exists a constant equilibrium state U e such that Ω(U e) = 0.

We will denote by V e andW e the equilibrium states in the variables V andW , respectively. In order
to establish a global existence theorem, we further need to investigate the local dissipative structure
of the source term.
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Proposition 5.2. The linearized source term L̃(V e) = −(∂V Ω̃)(V e) at the stationary state V e con-

structed in Proposition 5.1 is given by

L̃(V e) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 λ∗eT e2


 , (5.1)

where λ∗e = λ∗(T e). This matrix L̃(V e) is symmetric positive semidefinite and satisfies

R
(
L̃(V e)

)
= span(0, 0, 0, 1)t,

in such a way that we have Ω
(
U(V )

)
= Ω̃(V ) ∈ R

(
L̃(V e)

)
for all V ∈ OV .

Proof. Evaluating the matrix L̃(V e) is straightforward, L̃(V e) is positive semidefinite, and obviously

R
(
L̃(V e)

)
= span(0, 0, 0, 1)t.

Proposition 5.3. Let U e = U(Ze) with Ze = (he, ue, ve, T e)t be a constant equilibrium state in OU

constructed as in Proposition 5.1. Then there exists a neighborhood V of V e and a positive constant δ
such that

δ
∣∣ Ω̃(V )

∣∣2 ≤ −〈V − V e, Ω̃(V )〉, V ∈ V. (5.2)

Proof. From the expression of V , we obtain

〈V − V e, Ω̃(V )〉 = −
λ∗

TT e
(T − T e)2,

and (5.2) since
∣∣ Ω̃(V )

∣∣2 = λ∗2(T − T e)2 and λ∗ is a positive function.

We have thus established the Properties (Dis3) and (Dis4)

(Dis3) The smallest linear subspace containing the source term vector Ω̃(V ), for all V ∈ OV , is

included in the range of L̃(V ∗e), with L̃ = (∂V W )t L(V ∗e) ∂V W .

(Dis4) There exists a neighborhood of V ∗e, in OV , and a positive constant δ > 0 such that, for any V
in this neighborhood, we have

δ
∣∣Ω̃(V )

∣∣2 ≤ −
〈
V − V ∗e, Ω̃(V )

〉
.

5.2 Linearized normal form

If we linearize the symmetric hyperbolic–parabolic system (4.10)(4.11) around a constant stationary
state W e = (he, ue, ve, T e)t, we obtain the linear symmetric system

A0(W
e)∂tz +

∑

i∈C

Ai(W
e)∂iz =

∑

i,j∈C

Bij(W
e)∂i∂jz − L(W e)z, (5.3)

where the zeroth order term is defined as L(W e) = −(∂W Ω)(W e) and is given by

L(W e) =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 λ∗e


 . (5.4)

Taking into account that (4.10)(4.11) is a normal form, and since the matrix L(W e) is symmetric
positive semi-definite, we obtain that Property (Dis1) is satisfied

(Dis1) The matrix A0(W
e) is symmetric positive definite, the matrices Ai(W

e), i ∈ C, are symmetric,

we have the reciprocity relations
(
Bij(W

e)
)t

= Bji(W
e), i, j ∈ C, and the matrix L(W e) is

symmetric positive semidefinite.

We next have to investigate the existence of compensating matrices Kj , j ∈ C [27, 39, 16]. In the
following proposition, we denote by B(W e, ξ) the matrix B(W e, ξ) =

∑
i,j∈C Bijξiξj .
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Proposition 5.4. For a sufficiently small and positive a, the matrices Kj,j ∈ C, defined by

∑

j∈C

ξjK
j = a




0 ξt 0

−ξ 02×2 02×1

0 01×2 0


 A0(W

e)−1,

where ξ = (ξx, ξy)t, are compensating matrices. In particular, the products KjA0(W
e) are skew-

symmetric and the matrix ∑

i,j∈C

KjAi(W
e)ξiξj +B(W e, ξ),

is positive definite for ξ ∈ Σ1.

Proof. It is obvious by construction that the products KjA0(W
e), j ∈ C, are skew-symmetric. On the

other hand, a direct calculation yields

∑

i,j∈C

ξjK
jAi(W

e)ξi = a




α|ξ|2 (ve
·ξ)ξt 0

−(ve
·ξ)ξ −heξ⊗ξ 02×1

0 01×2 0


 (5.5)

where the superscript e indicates that the corresponding quantity is evaluated atW e. As a consequence,
for ξ ∈ Σ1, and x = (xh, xu, xv, xT )t, we have |ξ| = 1, and there exists β > 0 such that

〈xt,
∑

i,j∈C

ξjK
jAi(W

e)ξix〉 ≥
aα

2

(
x2

h − β(x2
u + x2

v + x2
T )
)
.

Using now Property (Nor2), the matrix

∑

i,j∈C

KjAi(W
e)ξiξj +B(W e, ξ)

is positive definite for ξ ∈ Σ1 and a sufficiently small.

We have thus established (Dis2)

(Dis2) The linearized system is strictly dissipative in the sense that there exists compensating matrices

Kj, j ∈ C.

Remark 5.5. Different formulations can be used in order to establish the strict dissipativity of the
linearized normal form as detailed in [39]. However, we have chosen to directly establish the stronger
Proposition 5.4 which implies the existence of a combined compensating matrix K =

∑
j∈C K

jξj as
discussed by Shizuta and Kawashima [39].

5.3 Global existence and asymptotic stability

In the previous sections, we have established that Properties (Edp1-Edp4) and (Dis1-Dis4) are satis-
fied. Therefore the existence theorems established in References [16, 14] can be applied to the system
(4.10)(4.11) governing shallow water flows or thin viscous sheets over fluid substrates written in the
W = (WI ,WII)

t variable, with the hyperbolic variable

WI = h,

and the parabolic variable

WII =
(
u, v, T

)t
.
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Theorem 5.6. Consider the system (4.10)(4.11) with d = 2, l ≥ [d/2] + 2, and let W 0(x) be such that

W 0 −W e ∈W l
2(R

d).

Then, if ‖W 0−W e‖
l,2

is small enough, there exists a unique global solution to the the Cauchy problem

(4.10)(4.11)

A0∂tW +
∑

i∈C

Ai∂iW =
∑

i,j∈C

∂i

(
Bij∂jW

)
+ T + Ω,

with initial condition

W (0, x) = W 0(x),

such that

WI −W e
I
∈ C0

(
[0,∞);W l

2(R
d)) ∩ C1

(
[0,∞);W l−1

2 (Rd)),

WII −W e
II
∈ C0

(
[0,∞);W l

2(R
d)) ∩ C1

(
[0,∞);W l−2

2 (Rd)), (5.6)

and {
∂

x
WI ∈ L2(0,∞;W l−1

2 (Rd)),

∂
x
WII ∈ L2(0,∞;W l

2(R
d)).

Furthermore, W satisfies the estimate

‖W (t) −W e‖2

l,2
+

∫ t

0

(
‖∂

x
h(τ)‖2

l−1,2
+ ‖∂

x
u(τ)‖2

l,2

+ ‖∂
x
v(τ)‖2

l,2
+ ‖∂

x
T (τ)‖2

l,2

)
dτ ≤ β‖W 0 −W e‖2

l,2
, (5.7)

where β is a positive constant and sup
x∈Rd

∣∣W (t) −W e
∣∣ goes to zero as t→ ∞.

Theorem 5.7. Keeping the assumptions of the preceding theorem, assume that d = 2, l ≥ [d/2] + 3
and W 0−W e ∈W l

2(R
d)∩Lp(Rd) with p ∈ [1, 2). Then, if ‖W (t)−W e‖

l−2,2
+‖W (t)−W e‖

0,p
is small

enough, the unique global solution to the Cauchy problem satisfies for t ∈ [0,∞) the decay estimate

‖W (t) −W e‖
l−2,2

≤ β(1 + t)−γ
(
‖W (t) −W e‖

l−2,2
+ ‖W (t) −W e‖0,p

)
,

where β is a positive constant and γ = d× (1/2p− 1/4).

Remark 5.8. Theorems 5.6 and 5.7 are easily adapted to the situation d = 1, further assuming that
p = 1, or to the situation λ∗e = 0 where T e can then be chosen arbitrarily. Various extra effects like
friction forces or winds effects can also easily be taken into account in Theorem 5.6.

6 A thin viscous sheet model

We investigate in Sections 6 and 7 a three dimensional model of a thin viscous sheet over a fluid
substrate and its two dimensional asymptotic limit.

We first present in Section 6 the three dimensional partial differential equations governing a thin
viscous layer of an incompressible fluid with two free boundaries, an upper fluid/gas boundary and a
lower fluid/substrate boundary. The upper gas may depend on a particular application under concern
and will be denoted by ‘gas’ for the sake of notational simplicity. On the other hand, the fluid substrate
will be modeled by using the hydrostatic approximation. In Section 7 we will perform an asymptotic
analysis and derive the Saint-Venant equations with an energy equation and temperature dependent
transport coefficients from the three dimensional governing equations presented in this section.

There are various examples of such viscous layers over fluid substrates as for instance oil slicks over
water [19] float glasses [35], and atlantic waters over the deeper denser Mediterranean sea in the Strait
of Gibraltar [31].

During the spreading of an oil spill, there exist indeed several regimes where it can be modeled as
a thin viscous sheet over a water substrate [34]. This is notably the case during the gravity/viscous
or viscous/surface-tension spreading regimes [19]. The incompressible oil flow then presents two free
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Figure 1: Schematic of the thin viscous sheet

boundaries, the upper oil/air interface and the lower oil/sea interface. More refined models may also
include other effects like wind dispersion, water currents, shore deposition, evaporation, or dissolution,
in order to describe more realistically oil slick trajectories [34].

In a float glass, molten glass is flowing and floating above molten tin, and is progressively cooled
in order to produced plate glass [35, 20, 21]. This procedure gives the glass sheet a smooth interface
and modern windows are made from float glasses. The incompressible molten glass flow then presents
two free boundaries, the upper glass/gas interface and the lower glass/tin interface. The reducing
atmosphere above the molten glass and the tin bath is typically a mixture of nitrogen and hydrogen
to prevent the oxidation of tin.

On the other hand, in the Strait of Gibtraltar, the denser Mediterranean sea flows below Atlandic
waters penetrating in the Alboran sea. These phenomena may be modeled by using bi-layer Saint-
Venant shallow water equations [31]. More recently, multi-layer Saint-Venant equations have also been
investigated [26, 31, 1, 2].

Nevertheless, we will not discuss a particular application in the following sections since the models
investigated may be applied to quite different situations. We will thus generically denote by ‘fluid’ the
liquid constitutive of the viscous sheet, by ‘gas’ the gas above the sheet, and by ‘substrate’ or ‘fluid
substrate’ the liquid substrate below the sheet.

6.1 Setting of the problem

We consider a three dimensional flow governed by the incompressible Navier-Stokes equations with
temperature dependent transport coefficients. The flow configuration is depicted in Figure 1 with an
upper fluid/gas free boundary and a lower fluid/substrate free boundary. The incompressible fluid
constitutive of the viscous sheet is termed the ‘fluid’, the gas above the viscous sheet is termed the
‘gas’, and the lower fluid constitutive of the substrate is termed the ‘substrate’ or the ‘fluid substrate’.

The equations governing the viscous incompressible fluid can be written in the non conservative
form

∂
x
·v = 0,

ρ∂tv + ρv·∂
x
v + ∂

x
p − ∂

x
·(ηd) = ρg,

ρcv∂tT + ρcvv·∂
x
T − ∂

x
·(λT ) = 1

2ηd:d,

where ∂
x

= (∂x, ∂y, ∂z)
t is the three dimensional gradient vector, ρ the constant density of the in-

compressible fluid, v = (u, v, w)t the three dimensional velocity vector, p the pressure of the three
dimensional glass flow, g = (0, 0, g)t the gravity assumed to be constant and vertical, d = ∂

x
v + ∂

x
vt

the strain tensor, cv the heat capacity per unit mass of the incompressible fluid, η the fluid viscosity
and λ the fluid thermal conductivity of the fluid. We denote by (ex, ey, ez) the canonical basis vectors
associated with the three dimensional cartesian coordinates x = (x, y, z)t. We will denote by Π = −ηd
the viscous tensor, P the pressure tensor P = pI + Π, σ = −P the Cauchy stress tensor, and Q the
heat flux Q = −λ∂

x
T . Note that we use italic fonts in order to denote the asymptotic two dimensional

Saint-Venant model and roman fonts in order to denote the original three dimensional incompressible
Navier-Stokes model. We will assume in the following that the pressure in the fluid is measured relative
to the atmospheric pressure patm for the sake of simplicity.

The boundary conditions are that of free boundaries at the upper fluid/gas interface z = hgas and
at the lower fluid/substrate interface z = hsub. On the top boundary, the fluid particles stay on the
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surface z − hgas = 0 and the usual kinematic condition yields that

w = ∂thgas + u∂xhgas + v∂yhgas,

where we have denoted by v = (u, v, w)t the three components of the velocity vector v. On the other
hand, the dynamic condition at the top free boundary can be written

σ·ngas = σgas·ngas − γf/gCgasngas,

where γf/g is the surface tension between the fluid and gas and Cgas the total curvature of the surface
z = hgas seen from the fluid and given by

Cgas =
∂2

xhgas

(
1 + (∂yhgas)

2
)

+ ∂2
yhgas(1 + (∂xhgas)

2
)
− 2∂xhgas∂yhgas∂

2
xyhgas

(
1 + (∂xhgas)2 + (∂yhgas)2

)3/2
.

In this dynamic boundary condition, the outward normal vector at the fluid/gas interface is given by

ngas =
(
(∂xhgas)

2 + (∂yhgas)
2 + 1

)−1/2
(−∂xhgas,−∂yhgas, 1)t,

and the stress tensor in gas by
σgas·ngas = −patmngas,

where patm denotes the atmospheric pressure.

Remark 6.1. A more general dynamic boundary condition taking into account the spatial variations
of the surface tension γf/g can be written in the form

σ·ngas = σgas·ngas − γf/gCgasngas − (I − ngas⊗ngas)∂x
γf/g,

where ∂
x
γf/g denotes the gradient of the surface tension γf/g. However, for the sake of simplicity, we

will assume in the following that γf/g is a constant.

Similarly, at the lower boundary, z = hsub, the vertical velocity component w is given by

w = ∂thsub + u∂xhsub + v∂yhsub,

and the dynamic condition reads

σ·nsub = σsub·nsub − γf/sCsubnsub,

where γf/s is the surface tension between the fluid and the substrate, Csub the total curvature of the
surface z = hsub seen from the fluid, and

nsub =
(
(∂xhsub)

2 + (∂yhsub)2 + 1
)−1/2

(∂xhsub, ∂yhsub,−1)t,

the outward unit normal vector at the fluid/substrate interface. Thanks to the hydrostatic approxi-
mation, the normal component of the stress tensor in the fluid substrate is given by

σsub·nsub = −psubnsub,

where psub denotes the pressure in the substrate flow given by

psub = patm + ρsubghsub.

From a thermal point of view, at the top and bottom interfaces, we have the boundary conditions

−λ∂
x
T ·ngas = λ∗gas(T − Tgas),

−λ∂
x
T ·nsub = λ∗sub(T − Tsub),

where Tgas and Tsub are given temperatures in the gas and in the substrate flows, respectively, and
where λ∗gas and λ∗sub are the heat exchange coefficients.
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6.2 Rescaled equations

In order to perform an asymptotic analysis of the three dimensional incompressible fluid flow, we need
to specify the order of magnitude of the various terms appearing in the governing equations. To this
purpose, for each quantity φ, we introduce a typical order of magnitude denoted by <φ>. We introduce
in particular a characteristic horizontal length <x> = <y> and vertical length <z> = ǫ<x> where
the aspect ratio ǫ is the small parameter associated with the thickness of the fluid viscous sheet.
We correspondingly introduce a characteristic horizontal velocity <u> = <v> and vertical velocity
<w> = ǫ<u> as well as a characteristic density <ρ> = ρ where ρ is the constant density of the fluid
constitutive of the viscous sheet. Denoting by <η> a characteristic viscosity, the Reynolds number
Re is then given by

Re =
<ρ><u><x>

<η>
. (6.1)

We define the characteristic time from the characteristic length <x> and the characteristic velocity
<u> by letting <t> = <x>/<u>. Denoting by <cv> a typical heat capacity and <λ> a character-
istic heat conductivity of the fluid, the characteristic internal energy is defined by <e> = <cv><T >
and the Prandtl number Pr by

Pr =
<η><cv>

<λ>
. (6.2)

Note that cp = cv for an incompressible fluid and that we may set for instance <cv> = R/m where R
is the perfect gas constant and m the molar mass of the incompressible fluid. We will also denote by
Ec the energy ratio or Eckert number

Ec =
<u>2

<cv><T >
. (6.3)

For a fluid, this number plays a similar rôle as that of the square of the Mach number for a gas. From
these definitions we obtain that <η> = <ρ><u><x>/Re, <e> = <cv><T > = <u>2/Ec and
<λ> = <ρ><u><x><cv>/(RePr). We define the characteristic pressure as <p> = <ρ><u>2

and the Froude number by

Fr =
<u>2

<g><x>
, (6.4)

so that <g> = <u>2/(Fr<x>). Denoting by <γ> a typical surface tension, the capilary number is
defined by

Ca =
<η><u>

<γ>
, (6.5)

so that <γ> = <x><ρ><u>2/ReCa. We also introduce a typical heat exchange coefficient <λ∗>
and the reduced quantity

Ex =
<λ∗><x>

<λ>
. (6.6)

In the asymptotic analysis, performed in the next section, it will be assumed that

Fr = ǫFr, Ca =
Ca

ǫ
, Ex = ǫEx, (6.7)

and that the numbers Re, Pr, Ec, Fr, Ca, and Ex are of zeroth order with respect to ǫ, that is, are finite
as ǫ → 0. Assuming that Ex and 1/Ca are small means that surface tension effects as well as thermal
exchanges are corrective effects. In order to simplify the formal presentation, it will be convenient to
define the modified reduced quantities

η =
η̂

Re
, λ =

λ̂

PrRe
, (6.8)

g =
ĝ

Fr
, γ =

γ̂

ReCa
, λ

∗
=
λ̂∗Ex

PrRe
. (6.9)

These quantities are such that

η = <ρ><u><x>η, λ = <ρ><u><x><cv>λ, (6.10)

γ = ǫ<ρ><u>2<x>γ, g = <u>2g/<x>, (6.11)
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λ∗ = ǫ<ρ><u><cv>λ
∗
, (6.12)

and will simplify the formal presentation of the asymptotic analysis. From the aspect ratio of the thin
viscous sheet, we also deduce that the curvature is typically of the order <C> = ǫ/<x>. We will also
denote by a the density ratio

a =
ρ

ρsub
, (6.13)

where ρ is the density of the incompressible fluid constitutive of the viscous sheet and ρsub the density
of the incompressible substrate fluid.

Remark 6.2. Typical values for density ratios are a ≃ 0.70–0.97 between crude oil and water for oil
slicks, a ≃ 0.35 between glass and tin for float glasses, a ≃ 0.997 between Atlantic and Mediterranean
waters. Typical aspect ratios are ǫ ≃ 10−9–10−6 for oil slicks. and ǫ ≃ 10−3 for float glasses.

Upon defining the reduced quantity φ̂ = φ/<φ> associated with each quantity φ of the fluid model,
we can now estimate the order of magnitude of each term in the governing partial differential equations.
Using the general notation for rescaled variables the reduced equations can be written in the form

∂̂x · v̂ = 0, (6.14)

∂
t̂
v̂ + v̂·∂̂x v̂ + ∂̂x p̂ − ∂̂x ·(ηd̂) = g, (6.15)

ĉv∂ t̂
T̂ + ĉvv̂·∂̂x T̂ − ∂̂x ·(λT̂ ) = Φ, (6.16)

where Φ = 1
2ηd̂:d̂/Ec is the reduced viscous dissipation term. In order to perform an asymptotic

expansion of all the flow variables, it is further necessary to explicit the governing equations in the
horizontal and vertical directions. Upon expanding the flow vector equations and dividing the vertical
momentum equation by the aspect ratio ǫ we obtain that

∂x̂ û+ ∂ŷ v̂ + ∂ẑ ŵ = 0, (6.17)

∂
t̂
û+ û ∂x̂ û+ v̂ ∂ŷ û+ ŵ ∂ẑ û− ∂x̂

(
2η∂x̂ û

)

− ∂ŷ

(
η(∂ŷ û+ ∂x̂ v̂)

)
−

1

ǫ2
∂ẑ

(
η∂ẑ û

)
− ∂ẑ

(
η∂x̂ ŵ

)
+ ∂x̂ p̂ = 0, (6.18)

∂
t̂
v̂ + û ∂x̂ v̂ + v̂ ∂ŷ v̂ + ŵ ∂ẑ v̂ − ∂x̂

(
η(∂ŷ û+ ∂x̂ v̂)

)

− ∂ŷ

(
2η∂ŷ û

)
−

1

ǫ2
∂ẑ

(
η∂ẑ v̂

)
− ∂ẑ

(
η∂ŷ ŵ

)
+ ∂ŷ p̂ = 0, (6.19)

∂
t̂
ŵ + û ∂x̂ ŵ + v̂ ∂ŷ ŵ + ŵ ∂ẑ ŵ − ∂x̂

(
η∂x̂ ŵ

)
−

1

ǫ2
∂x̂

(
η∂ẑ û

)

− ∂ŷ

(
2η∂ŷ ŵ

)
−

1

ǫ2
∂ŷ

(
η∂ẑ v̂

)
−

1

ǫ2
∂ẑ

(
2η∂ẑ ŵ

)
+

1

ǫ2
∂ẑ p̂ =

1

ǫ2
g, (6.20)

and

ĉv∂ t̂
T̂ + ĉvû ∂x̂ T̂ + ĉvv̂ ∂ŷ T̂ + ĉvŵ ∂ẑ T̂ − ∂x̂

(
λ∂x̂ T̂

)

− ∂ŷ

(
λ∂ŷ T̂

)
−

1

ǫ2
∂ẑ

(
λ∂ẑ T̂

)
= Φ, (6.21)

where the reduced viscous dissipation Φ is given by

Φ = 1
2η Ec

(
4(∂x̂ û)

2 + 4(∂ŷ v̂)
2 + 4(∂ẑ ŵ)2 + 2(∂ŷ û+ ∂x̂ v̂)

2

+ 2(1
ǫ∂ẑ v̂ + ǫ∂ŷ ŵ)2 + 2(ǫ∂x̂ ŵ + 1

ǫ∂ẑ û)
2
)
. (6.22)

Remark 6.3. The internal energy per unit mass can also be written e = est +
∫ T

T st cv(τ) dτ and the

total energy per unit mass is given by etot = e + 1
2v·v. The reduced total energy per unit mass êtot

can also be written êtot = êst +
∫ bT

bT st ĉv(τ) dτ + 1
2Ec(û2 + v̂2 + ǫ2ŵ2).
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6.3 Rescaled boundary conditions

Upon using the general notation associated with rescaled variables the reduced kinematic boundary
condition at the top rescaled free boundary ẑ − ĥgas = 0 can be written

ŵ = ∂
t̂
ĥgas + û∂x̂ ĥgas + v̂∂ŷ ĥgas,

whereas the dynamic condition reads

σ̂·n̂gas = σ̂gas·n̂gas − ǫ2γf/gĈgasn̂gas,

where
n̂gas =

(
(ǫ∂x̂ ĥgas)

2 + (ǫ∂ŷ ĥgas)
2 + 1

)−1/2
(−ǫ∂x̂ ĥgas,−ǫ∂ŷ ĥgas, 1)t,

and where the normal component of the stress tensor in gas reads

σ̂gas·n̂gas = −p̂atmn̂gas.

By decomposing the dynamic boundary condition componentwise, we obtain the three equations

ǫp̂∂x̂ ĥgas + η̂
(
2∂x̂ û(−ǫ∂x̂ ĥgas) + (∂ŷ û+ ∂x̂ v̂)(−ǫ∂ŷ ĥgas)

+ 1
ǫ∂ẑ û+ ǫ∂x̂ ŵ

)
= ǫ3γf/gĈgas∂x̂ ĥgas, (6.23)

ǫp̂∂ŷ ĥgas + η̂
(
(∂ŷ û+ ∂x̂ v̂)(−ǫ∂x̂ ĥgas) + 2∂ŷ v̂(−ǫ∂ŷ ĥgas)

+ 1
ǫ∂ẑ v̂ + ǫ∂ŷ ŵ

)
= ǫ3γf/gĈgas∂ŷ ĥgas, (6.24)

− p̂ + η̂
(
(ǫ∂x̂ ŵ + 1

ǫ∂ẑ û)(−ǫ∂x̂ ĥgas) + (ǫ∂ŷ ŵ + 1
ǫ∂ẑ v̂)(−ǫ∂ŷ ĥgas)

+ 2∂ẑ ŵ
)

= −ǫ2γf/gĈgas, (6.25)

where the reduced curvature Ĉgas can be written

Ĉgas =
∂2

x̂ ĥgas

(
1 + ǫ2(∂ŷ ĥgas)

2
)

+ ∂2
ŷ ĥgas(1 + ǫ2(∂x̂ ĥgas)

2
)
− 2ǫ2∂x̂ ĥgas∂ŷ ĥgas∂

2
x̂ ŷ ĥgas

(
1 + ǫ2(∂x̂ ĥgas)2 + ǫ2(∂ŷ ĥgas)2

)3/2
. (6.26)

Similarly, at the reduced free boundary ẑ − ĥsub = 0 between the fluid and the substrate we can
write that

ŵ = ∂
t̂
ĥsub + û∂x̂ ĥsub + v̂∂ŷ ĥsub,

and the dynamic condition reads

σ̂· n̂sub = σ̂sub·n̂sub − ǫ2γf/sĈsubn̂sub,

with
n̂sub =

(
(ǫ∂x̂ ĥsub)2 + (ǫ∂ŷ ĥsub)2 + 1

)−1/2
(ǫ∂x̂ ĥsub, ǫ∂ŷ ĥsub,−1)t.

The normal component of the stress tensor in the fluid substrate reads

σ̂sub·n̂sub = −p̂subn̂sub,

where p̂sub is assumed to be hydrostatic. The dynamic vector boundary condition can be decomposed
componentwise and yields that

− ǫp̂∂x̂ ĥsub + η̂
(
2∂x̂ û(ǫ∂x̂ ĥsub) + (∂ŷ û+ ∂x̂ v̂)(ǫ∂ŷ ĥsub) − 1

ǫ ∂ẑ û

− ǫ∂x̂ ŵ
)

= −
1

a
ĥsubg(ǫ∂x̂ ĥsub) − ǫ3γf/sĈsub∂x̂ ĥsub, (6.27)
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− ǫp̂∂ŷ ĥsub + η̂
(
(∂ŷ û+ ∂x̂ v̂)(ǫ∂x̂ ĥsub) + 2∂ŷ v̂(ǫ∂ŷ ĥsub) − 1

ǫ ∂ẑ v̂

− ǫ∂ŷ ŵ
)

= −
1

a
ĥsubg(ǫ∂ŷ ĥsub) − ǫ3γf/sĈsub∂ŷ ĥsub, (6.28)

p̂ + η̂
(
(1

ǫ∂ẑ û+ ǫ∂x̂ ŵ)(ǫ∂x̂ ĥsub) + (1
ǫ∂ẑ v̂ + ǫ∂ŷ ŵ)(ǫ∂ŷ ĥsub)

− 2∂ẑ ŵ
)

=
1

a
ĥsubg + ǫ2γf/sĈsub. (6.29)

Finally, the rescaled thermal boundary conditions at the top and bottom interfaces, are in the form

−λ
−∂x̂ T̂ (ǫ∂x̂ ĥgas) − ∂ŷ T̂ (ǫ∂ŷ ĥgas) + 1

ǫ∂ẑ T̂
(
(ǫ∂x̂ ĥgas)2 + (ǫ∂ŷ ĥgas)2 + 1

)1/2
= ǫλ

∗

gas(T̂ − T̂gas),

−λ
∂x̂ T̂ (ǫ∂x̂ ĥsub) + ∂ŷ T̂ (ǫ∂ŷ ĥsub) −

1
ǫ∂ẑ T̂

(
(ǫ∂x̂ ĥsub)2 + (ǫ∂ŷ ĥsub)2 + 1

)1/2
= ǫλ

∗

sub(T̂ − T̂sub),

where T̂gas and T̂sub are the rescaled given temperatures in gas and in the substrate flow respectively,

and where λ
∗

gas and λ
∗

sub are the rescaled heat exchange coefficients.

7 Derivation of the Saint-Venant equations

The governing equations presented in Section 2 and investigated in Sections 3–5 are now derived from
an asymptotic analysis of the three dimensional incompressible equations modeling thin viscous sheets
over fluid substrates presented in Section 6.

Asymptotic expansions are a powerful tool for deriving governing equations of multiscale medias.
We refer in particular to the monographs of Milton Van Dyke [43] for asymptotic methods in fluid me-
chanics, Sanchez-Palencia [37] and Benssousan, Lions, and Papanicolaou [4] for asymptotic expansions
in homogenization theory. In the context of thin viscous sheets over fluid substrates we mention in
particular Howell [20, 21] who investigated isothermal flows. Gerbeau and Perthame have revisited the
derivation and validated the Saint-Venant model by a direct numerical comparison with the underlying
incompressible model [13]. Audusse et al have also recently investigated mutilayer media [1, 2].

The two-dimensional Saint-Venant system of partial differential equations with an energy equation
and temperature dependent transport coefficient will be obtained as the zeroth order limit of the three
dimentional incompressible model presented in Section 6. We remind that, in the asymptotic limit,
the fluid parameters Re, Pr, Ec, Fr, Ca, and Ex are assumed to be of zeroth order with respect to ǫ.
The quantities associated with the three dimensional incompressible model are generally denoted by
roman fonts whereas the quantities associated with the Saint-Venant two dimentional asymptotic limit
will be denoted with math italic fonts. The pressure in the three dimensional flow is denoted by p for
instance wheras it will be denoted by p in the two dimensional Saint-Venant limit model.

7.1 Asymptotic expansions

In order to derive the Saint-Venant equations modeling thin viscous sheets over a fluid substrate from
the three dimensional fluid equations described in Section 6, we expand in powers of the small parameter
ǫ2 the fluid variables

û = û0 + ǫ2û2 + O(ǫ4), (7.1)

v̂ = v̂0 + ǫ2v̂2 + O(ǫ4), (7.2)

ŵ = ŵ0 + ǫ2ŵ2+ O(ǫ4), (7.3)

T̂ = T̂0 + ǫ2T̂2 + O(ǫ4). (7.4)

We also expand the free boundaries hgas and hsub and we define

h(t, x, y) = hgas(t, x, y) − hsub(t, x, y), (7.5)
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in such a way that

ĥ = ĥ0 + ǫ2ĥ2 + O(ǫ4), (7.6)

ĥgas = ĥgas0 + ǫ2ĥgas2 + O(ǫ4), (7.7)

ĥsub = ĥsub0 + ǫ2ĥsub2 + O(ǫ4). (7.8)

Note that, after some algebra, only the factor ǫ2 appears in the rescaled equations presented in the
previous Sections 6.2–6.3. The asymptotic expansions (7.1)–(7.8) in terms of ǫ2 are thus natural as
they are in the small Mach number limit [14].

7.2 Zeroth order terms and compressibility

The terms of order ǫ−2 in the û and v̂ governing equations first yield that

∂ẑ (η0∂ẑ û0) = 0,

∂ẑ (η0∂ẑ v̂0) = 0,

where
η0 = η(T̂0).

These relations show that η0∂ẑ û0 and η0∂ẑ v̂0 are constants. However, the ǫ−1 terms in the dynamic
boundary conditions at the fluid/gas and fluid/substrate interfaces yield that ∂ẑ û0 = 0 and ∂ẑ v̂0 = 0
at both interfaces. We thus deduce that ∂ẑ û0 = 0 and ∂ẑ v̂0 = 0 for all ẑ in such a way that

û0 = û0(t̂, x̂, ŷ),

v̂0 = v̂0(t̂, x̂, ŷ).

Similarly, the energy conservation equation yields at order ǫ−2 that

−∂ẑ (λ0∂ẑ T̂0) = η0

(
(∂ẑ û0)

2 + (∂ẑ v̂0)
2
)
,

where
λ0 = λ(T̂0),

in such a way that ∂ẑ (λ0∂ẑ T̂0) = 0 since ∂ẑ û0 = 0 and ∂ẑ v̂0 = 0. Since the ǫ−1 terms of the thermal

boundary conditions yield that λ0∂ẑ T̂0 = 0 at both the fluid/gas and fluid/substrate interfaces, we

again conclude that ∂ẑ T̂0 = 0 for all ẑ in such a way that

T̂0 = T̂0(t̂, x̂, ŷ).

This shows that ĥ0, û0, v̂0, and T̂0—and incidentally η0 and λ0—only depend on (t̂, x̂, ŷ), and ĥ0, û0,

v̂0, and T̂0 will constitute the variables of the resulting Saint-Venant two dimensional model. We will
also denote by v̂0 the two-dimensional velocity vector v̂0 = (û0, v̂0)

t.
On the other hand, from the incompressibility equation at zeroth order we obtain that

∂ẑ ŵ0 = −(∂x̂ û0 + ∂ŷ v̂0),

so that ∂ẑ ŵ0 is independent of ẑ. This shows that ŵ0 is an affine function of ẑ and that

ŵ0(t̂, x̂, ŷ, ĥgas0) − ŵ0(t̂, x̂, ŷ, ĥsub0) = −(∂x̂ û0 + ∂ŷ v̂0)(ĥgas0 − ĥsub0).

From the zeroth order kinematic conditions at ẑ = ĥsub0 and ẑ = ĥsub0 we next deduce that

∂
t̂
(ĥgas0 − ĥsub0) + û0∂x̂ (ĥgas0 − ĥsub0) + v̂0∂ŷ (ĥgas0 − ĥsub0) =

− (∂x̂ û0 + ∂ŷ v̂0)(ĥgas0 − ĥsub0), (7.9)

which finally yields that
∂

t̂
ĥ0 + ∂x̂ (ĥ0û0) + ∂ŷ (ĥ0v̂0) = 0. (7.10)

We have thus obtained a compressible model where the zeroth order height ĥ0 plays the rôle of a
density.
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7.3 Zeroth order pressure

From the zeroth order terms of the normal momentum conservation equation (6.20) we next obtain
that

−∂x̂ (η0∂ẑ û0) − ∂ŷ (η0∂ẑ v̂0) − 2∂ẑ (η0∂ẑ ŵ0) + ∂ẑ p̂0 = g0,

but since ∂ẑ û0 = 0, ∂ẑ v̂0 = 0, ∂ẑ η0 = 0, and ∂2
ẑ ŵ0 = 0, we deduce from this relation that

∂ẑ p̂0 = g0.

This shows that the pressure is hydrostatic since

g0 = g = Cte,

where g = g0 = (0, 0, g0)
t and g0 is negative. The relation ∂ẑ p̂0 = g0 implies that

p̂0(t̂, x̂, ŷ, ẑ) = p̂0(t̂, x̂, ŷ, ĥgas0) + g0(ẑ − ĥgas0),

but the third component of the dynamic condition at the fluid/gas interface also yields at zeroth order

that −p̂0 + 2η0∂ẑ ŵ0 = 0 at ẑ = ĥgas0 in such a way that

p̂0(t̂, x̂, ŷ, ẑ) = 2η0∂ẑ ŵ0 + g0(ẑ − ĥgas0).

On the other hand, the dynamic condition at zeroth order at the fluid/substrate interface gives

−p̂0 + 2η0∂ẑ ŵ0 = − 1
a
ĥsub0g0 at ẑ = ĥsub0 so that

p̂0(t̂, x̂, ŷ, ĥgas0) − p̂0(t̂, x̂, ŷ, ĥsub0) = −
1

a
ĥsub0g0,

and since the pressure at zeroth order is hydrostatic we also have

p̂0(t̂, x̂, ŷ, ĥgas0) − p̂0(t̂, x̂, ŷ, ĥsub0) = g0(ĥgas0 − ĥsub0).

We deduce from these relations that ĥ0 = ĥgas0 − ĥsub0 = − 1
a
ĥsub0 and finally that

ĥgas0 = (1 − a)ĥ0, ĥsub0 = −aĥ0. (7.11)

These conditions (7.11) are easily interpreted as a an equilibrium condition above the substrate bath.

Since the height of the outer free substrate bath is taken to be zero, we have of course ĥgas0 > 0 and

ĥsub0 < 0. Finally, since ∂ẑ ŵ0 = −(∂x̂ û0 + ∂ŷ v̂0) and ĥgas0 = (1 − a)ĥ0, we have established that

p̂0(t̂, x̂, ŷ, ẑ) = −2η0(∂x̂ û0 + ∂ŷ v̂0) + g0

(
ẑ − (1 − a)ĥ0

)
. (7.12)

7.4 Zeroth order momentum equations

The horizontal momentum conservation equations at zeroth order yield

∂
t̂
û0 + û0∂x̂ û0 + v̂0∂ŷ û0 − ∂x̂ (2η0∂x̂ û0) − ∂ŷ

(
η0(∂ŷ û0 + ∂x̂ v̂0)

)

− ∂ẑ (η0∂ẑ û2) − ∂ẑ (η0∂x̂ ŵ0) + ∂x̂ p̂0 = 0, (7.13)

and

∂
t̂
v̂0 + û0∂x̂ v̂0 + v̂0∂ŷ v̂0 − ∂x̂

(
η0(∂ŷ û0 + ∂x̂ v̂0)

)
− ∂ŷ (2η0∂ŷ v̂0)

− ∂ẑ (η0∂ẑ û2) − ∂ẑ (η0∂ŷ ŵ0) + ∂ŷ p̂0 = 0. (7.14)

Integrating the first equation between ĥsub0 and ĥgas0 we obtain that

ĥ0

(
∂

t̂
û0 + û0∂x̂ û0 + v̂0∂ŷ û0 − ∂x̂ (2η0∂x̂ û0)

)
− ĥ0∂ŷ

(
η0(∂ŷ û0 + ∂x̂ v̂0)

)

− η0[[∂ẑ û2 + ∂x̂ ŵ0]] +

∫ bhgas0

bhsub0

∂x̂ p̂0 dẑ = 0, (7.15)
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where, for any function φ of (t̂, x̂, ŷ, ẑ), the bracket [[φ]] denotes the corresponding function of (t̂, x̂, ŷ)
defined by

[[φ]](t̂, x̂, ŷ) = φ
(
t̂, x̂, ŷ, ĥgas0(t̂, x̂, ŷ)

)
− φ

(
t̂, x̂, ŷ, ĥsub0(t̂, x̂, ŷ)

)
. (7.16)

We now use the dynamic boundary condition at zeroth order in the x direction at both interfaces to
get that

p̂0∂x̂ ĥgas0 − 2η0∂x̂ û0∂x̂ ĥgas0 − η0(∂ŷ û0 + ∂x̂ v̂0)∂ŷ ĥgas0

+ η0∂x̂ ŵ0 + η0∂ẑ û2 = 0,

− p̂0∂x̂ ĥsub0 + 2η0∂x̂ û0∂x̂ ĥsub0 + η0(∂ŷ û0 + ∂x̂ v̂0)∂ŷ ĥsub0

− η0∂x̂ ŵ0 − η0∂ẑ û2 =
ĥsub0

a
g0∂x̂ ĥsub0.

By adding these relations we deduce that

η0[[∂ẑ û2 + ∂x̂ ŵ0]] + p̃0∂x̂ ĥ0 − 2η0∂x̂ û0∂x̂ ĥ0

− η0(∂ŷ û0 + ∂x̂ v̂0)∂ŷ ĥ0 = −aĥ0g0∂x̂ ĥ0, (7.17)

where
p̃0 = (1 − a)p̂0(t̂, x̂, ŷ, ĥgas0) + ap̂0(t̂, x̂, ŷ, ĥsub0). (7.18)

From the expression (7.12) of p̂0 we obtain that

p̃0 = −2η0(∂x̂ û0 + ∂ŷ v̂0) − g0aĥ0, (7.19)

so that

η0[[∂ẑ û2 + ∂x̂ ŵ0]] = 2η0∂x̂ û0∂x̂ ĥ0

+ η0(∂ŷ û0 + ∂x̂ v̂0)∂ŷ ĥ0 + 2η0(∂x̂ û0 + ∂ŷ v̂0)∂x̂ ĥ0. (7.20)

Furthermore, we deduce from (7.12) that

∂x̂ p̂0 = −∂x̂

(
2η0(∂x̂ û0 + ∂ŷ v̂0)

)
− (1 − a)∂x̂ ĥ0, (7.21)

and ∂x̂ p̂0 is independent of ẑ. Combining (7.15)(7.20)(7.21), and since ∂x̂ p̂0 is independent of ẑ, we
finally obtain that

ĥ0

(
∂

t̂
û0 + û0∂x̂ û0 + v̂0∂ŷ û0 − ∂x̂ (2η0∂x̂ û0)

)
− ĥ0∂ŷ

(
η0(∂ŷ û0 + ∂x̂ v̂0)

)

− 2η0(∂x̂ û0 + ∂ŷ v̂0)∂x̂ ĥ0 − 2η0∂x̂ û0∂x̂ ĥ0 − η0(∂ŷ û0 + ∂x̂ v̂0)∂ŷ ĥ0

+ ĥ0

(
−∂x̂

(
2η0(∂x̂ û0 + ∂ŷ v̂0)

)
− (1 − a)g0∂x̂ ĥ0

)
= 0. (7.22)

After some algebra this equation can be rewritten in the form

ĥ0∂ t̂
û0 + ĥ0û0∂x̂ û0 + ĥ0v̂0∂ŷ û0 − ∂x̂ (ĥ02η0∂x̂ û0) − ∂ŷ

(
ĥ0η0(∂ŷ û0 + ∂x̂ v̂0)

)

− ∂x̂

(
ĥ02η0(∂x̂ û0 + ∂ŷ v̂0)

)
− 1

2 (1 − a)g0∂x̂ ĥ
2
0 = 0. (7.23)

Using the compressibility equation (7.10) and defining the new pressure

p̂0 = − 1
2 (1 − a)g0 ĥ

2
0 = 1

2 (1 − a)|g0| ĥ
2
0, (7.24)

not to be confused with p̂0, and defining the new viscous tensor

Π0bxbx = −η0ĥ0(4∂x̂ û0 + 2∂ŷ v̂0), Π0bxby = −η0ĥ0(∂ŷ û0 + ∂x̂ v̂0), (7.25)

the equation governing û0 is rewritten in the form

∂
t̂
(ĥ0û0) + ∂x̂ (ĥ0û

2
0) + ∂ŷ (ĥ0û0v̂0) + ∂x̂Π0bxbx + ∂ŷΠ0bxby + ∂x̂ p̂0 = 0. (7.26)

We can proceed similarly for the second horizontal momentum conservation equation which yields
upon integration between ĥsub0 and ĥgas0 that

ĥ0

(
∂

t̂
v̂0 + û0∂x̂ v̂0 + v̂0∂ŷ v̂0 − ĥ0∂x̂

(
η0(∂ŷ û0 + ∂x̂ v̂0)

))
− ∂ŷ (2η0∂ŷ v̂0)

− η0[[∂ẑ v̂2 + ∂ŷ ŵ0]] +

∫ bhgas0

bhsub0

∂ŷ p̂0 dẑ = 0. (7.27)
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We now use the dynamic boundary condition at zeroth order in the y direction at both interfaces to
get that

p̂0∂ŷ ĥgas0 − η0(∂ŷ û0 + ∂x̂ v̂0)∂x̂ ĥgas0 − 2η0∂ŷ v̂0∂ŷ ĥgas0

+ η0∂ŷ ŵ0 + η0∂ẑ v̂2 = 0,

− p̂0∂ŷ ĥsub0 + η0(∂ŷ û0 + ∂x̂ v̂0)∂x̂ ĥsub0 + 2η0∂ŷ v̂0∂ŷ ĥsub0

− η0∂ŷ ŵ0 − η0∂ẑ v̂2 = −
ĥsub0

a
g0∂ŷ ĥsub0.

By adding these relations we deduce that

η0[[∂ẑ v̂2 + ∂ŷ ŵ0]] + p̃0∂ŷ ĥ0 − η0(∂ŷ û0 + ∂x̂ v̂0)∂x̂ ĥ0

− 2η0∂ŷ v̂0∂ŷ ĥ0 = −aĥ0g0∂ŷ ĥ0, (7.28)

so that from (7.18)

η0[[∂ẑ v̂2 + ∂ŷ ŵ0]] = η0(∂ŷ û0 + ∂x̂ v̂0)∂x̂ ĥ0

+ 2η0∂ŷ v̂0∂ŷ ĥ0 + 2η0(∂x̂ û0 + ∂ŷ v̂0). (7.29)

Furthermore, we deduce from (7.12) that

∂ŷ p̂0 = −∂ŷ

(
2η0(∂x̂ û0 + ∂ŷ v̂0)

)
− (1 − a)∂ŷ ĥ0, (7.30)

and ∂ŷ p̂0 is independent of ẑ. Combining (7.27)(7.29)(7.30), and since ∂ŷ p̂0 is independent of ẑ, we
finally obtain that

ĥ0∂ t̂
v̂0 + ĥ0û0∂x̂ v̂0 + ĥ0v̂0∂ŷ v̂0 − ∂x̂

(
ĥ0η0(∂ŷ û0 + ∂x̂ v̂0)

)
− ∂ŷ (ĥ02η0∂ŷ v̂0)

− ∂ŷ

(
ĥ02η0(∂x̂ û0 + ∂ŷ v̂0)

)
− 1

2 (1 − a)g0∂ŷ ĥ
2
0 = 0. (7.31)

Defining
Π0bybx = −η0ĥ0(∂ŷ û0 + ∂x̂ v̂0), Π0byby = −η0ĥ0(2∂x̂ û0 + 4∂ŷ v̂0), (7.32)

the equation governing v̂0 is easily rewritten in the form

∂
t̂
(ĥ0v̂0) + ∂x̂ (ĥ0û0v̂0) + ∂ŷ (ĥ0v̂

2
0) + ∂x̂Π0bybx + ∂ŷΠ0byby + ∂ŷ p̂0 = 0. (7.33)

Upon defining v̂0 = (û0, v̂0)
t, x̂ = (x̂, ŷ)t, and

Π0 =

(
Π0bxbx Π0bxby

Π0bybx Π0byby

)
, (7.34)

both momentum equations can be rewritten in vector form

∂
t̂
(ĥ0v̂0) + ∂̂x·

(
ĥ0v̂0⊗v̂0 + p̂0I

)
+ ∂̂x·Π0 = 0, (7.35)

in such a way that the height ĥ0 plays the rôle of a density and p̂0 the rôle of a pressure for the two
dimensional Saint-Venant model.

7.5 Zeroth order energy equation

Upon using ∂ẑ û0 = ∂ẑ v̂0 = ∂ẑ T̂0 = ∂ẑ λ0 = 0, the energy conservation equation at zeroth order yields
that

ĉv0∂ t̂
T̂0 + ĉv0û0∂x̂ T̂0 + ĉv0v̂0∂ŷ T̂0 − ∂x̂

(
λ0∂x̂ T̂0

)

− ∂ŷ

(
λ0∂ŷ T̂0

)
− ∂ẑ

(
λ0∂ẑ T̂2

)
= Φ0, (7.36)

where the zeroth order viscous dissipation Φ0 is given by

Φ0 = 1
2η0Ec

(
4(∂x̂ û0)

2 + 4(∂ŷ v̂0)
2 + 4(∂x̂ û0 + ∂ŷ v̂0)

2 + 2(∂ŷ û0 + ∂x̂ v̂0)
2
)
. (7.37)
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Integrating the equation (7.36) between ĥsub0 and ĥgas0 we obtain that

ĥ0

(
ĉv0∂ t̂

T̂0 + ĉv0û0∂x̂ T̂0 + ĉv0v̂0∂ŷ T̂0 − ∂x̂ (λ0∂x̂ T̂0)
)
− ĥ0∂ŷ (λ0T̂0)

− ĥ0Φ0 − λ0[[∂ẑ T̂2]] = 0. (7.38)

We now use the thermal boundary condition at zeroth order at both interfaces to get that

−λ0

(
−∂x̂ T̂0∂x̂ ĥgas0 − ∂ŷ T̂0∂ŷ ĥgas0 + ∂ẑ T̂2

)
= λ

∗

0gas(T̂0 − T̂0gas),

−λ0

(
∂x̂ T̂0∂x̂ ĥsub0 + ∂ŷ T̂0∂ŷ ĥsub0 − ∂ẑ T̂2

)
= λ

∗

0sub(T̂0 − T̂0sub),

By adding these equations we obtain that

−λ0[[∂ẑ T̂2]] + λ0∂x̂ T̂0∂x̂ ĥ0 + λ0∂ŷ T̂0∂ŷ ĥ0 = λ
∗

0(T̂0 − T̂0mix), (7.39)

where we have defined

T̂0mix =
λ
∗

0gasT̂0gas + λ
∗

0subT̂0sub

λ
∗

0gas + λ
∗

0sub

,

and
λ
∗

0 = λ
∗

0gas + λ
∗

0sub.

Combining (7.38)(7.39) we obtain that

ĥ0

(
ĉv0∂ t̂

T̂0 + ĉv0û0∂x̂ T̂0 + ĉv0v̂0∂ŷ T̂0

)
− ∂x̂ (ĥ0λ0∂x̂ T̂0)

)

− ∂ŷ (ĥ0λ0T̂0) − ĥ0Φ0 = −λ
∗

0(T̂0 − T̂0mix). (7.40)

Furthemore, the dissipation term ĥ0Φ0 is easily rewritten in the form

ĥ0Φ0 = −EcΠ0:∂̂x v̂0. (7.41)

Denoting the heat loss term by
Ĥ0 = −λ

∗

0(T̂0 − T̂0mix), (7.42)

the internal energy per unit mass by

ê0 = êst +

∫ bT0

bT st

ĉv0(τ̂ ) dτ̂ + 1
2 (1 − a)Ec|g0|ĥ0, (7.43)

and the heat flux vector by
Q0 = (Q0bx,Q0by)t, (7.44)

where
Q0bx = −ĥ0λ0∂x̂ T̂0, Q0by = −ĥ0λ0∂ŷ T̂0, (7.45)

the energy conservation equation is rewritten in the form

ĥ0∂ t̂
ê0 + ĥ0v̂0·∂̂x ê0 + ∂̂x·Q0 + Ecp̂0∂̂x· v̂0 + EcΠ0:∂̂x v̂0 = Ĥ0. (7.46)

Note that the inclusion of the term 1
2 (1−a)Ec|g0|ĥ0 in the internal energy is associated with the pressure

work term Ecp̂0∂̂x· v̂0 in the energy equation thanks to the relation ∂
t̂
ĥ0 + v̂0·∂̂xĥ0 + ĥ0∂̂x· v̂0 = 0.

Finally, upon multiplying the momentum governing equation by the velocity vector v̂0, we obtain the
kinetic energy governing equation, which can be multiplied by Ec and added to the internal energy
governing equation in order to obtain the total energy conservation equation in the form

∂
t̂
(ĥ0ê

tot
0 ) + ∂̂x·

(
(ĥ0ê

tot
0 + Ecp̂0)v̂0

)
+ ∂̂x·(Q0 + EcΠ0· v̂0) = Ĥ0, (7.47)

where
ê tot
0 = ê0 + 1

2Ec(û2
0 + v̂2

0), (7.48)

is the reduced total energy per unit mass.
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7.6 Resulting model

From the previous sections, we can summarize the zeroth order rescaled governing equations in the
form

∂
t̂
ĥ0 + ∂̂x·(ĥ0v̂0) = 0, (7.49)

∂
t̂
(ĥ0v̂0) + ∂̂x·

(
ĥ0v̂0⊗v̂0 + p̂0I

)
+ ∂̂x·Π0 = 0, (7.50)

∂
t̂
(ĥ0ê

tot
0 ) + ∂̂x·

(
(ĥ0ê

tot
0 + Ecp̂0)v̂0

)
+ ∂̂x·(Q0 + EcΠ0· v̂0) = Ĥ0. (7.51)

The pressure p̂0 is given by (7.24), the total energy ê tot
0 by (7.48), and internal energy ê0 by (7.43).

The viscous tensor Π0 is given by (7.25)(7.32), the heat flux Q0 by (7.45) and the heat loss term Ĥ0

by (7.42).
Upon restoring the physical dimensions of the flow quantities t = <x>t̂/<u>, x = <x>x̂,

h0 = ǫ<x>ĥ0, v0 = <u>v̂0, p0 = <h><u>2p̂0, e
tot
0 = <cv><T >ê

tot
0 , Π0 = <h><u>2Π0,

Q0 = <h><u><cv><T >Π0, and H0 = <h><u><cv><T >Ĥ0/<x>, we obtain after some
algebra that

∂th0 + ∂
x
·(h0v0) = 0, (7.52)

∂t(h0v0) + ∂
x
·

(
h0v0⊗v0 + p0I

)
+ ∂

x
·Π0 = 0, (7.53)

∂t(h0e
tot
0 ) + ∂

x
·

(
(h0e

tot
0 + p0)v0

)
+ ∂

x
·(Q0 + Π0·v0) = H0. (7.54)

The scaled thermodynamic relations are

etot0 = e0 + 1
2 (u2

0 + v2
0), (7.55)

e0 = est0 +

∫ T0

T st
0

cv(τ) dτ + 1
2 (1 − a)|g0|h0, (7.56)

p0 = 1
2 (1 − a)|g0|h

2
0. (7.57)

The scaled viscous tensor is given by

Π0 = −ν0h0

(
∂

x
v0 + ∂

x
vt

0 + 2∂
x
·v0 I

)
=

(
Π0xx Π0xy

Π0yx Π0yy

)
, (7.58)

with

Π0xx = −ν0h0(4∂xu0 + 2∂yv0), Π0xy = −ν0h0(∂yu0 + ∂xv0),

Π0yx = −ν0h0(∂yu0 + ∂xv0), Π0xy = −ν0h0(2∂xu0 + 4∂yv0),

where the kinematic viscosity is given by

ν0 =
η(T0)

ρ
. (7.59)

Strictly speaking, only the quantity ρΠ0/h0 is homogeneous to a viscous tensor and Π0/h0 to a
kinematic viscous tensor. Similarly, only the quantity ρp0/h0 is homogeneous to a pressure and p0/h0

to a kinematic pressure. However, the multiplication by h0 is natural in a two dimensional context
since then internal constraints arise through lines and not surfaces. Finally, the heat flux is given by

Q0 = (Q0x,Q0y)t = −κ0h0(∂xT0, ∂yT0)
t, (7.60)

where the kinematic thermal conductivity is given by

κ0 =
λ(T0)

ρ
. (7.61)

Strictly speaking, only the quantity ρQ0/h0 is homogeneous to a heat flux and Q0/h0 to a kinematic
heat flux. On the other hand, the heat loss term reads

H0 = −
λ∗0
ρ

(T0 − T0mix), (7.62)

where λ∗0 = λ∗0gas + λ∗0sub and

T0mix =
λ∗0gasT0gas + λ∗0subT0sub

λ∗0gas + λ∗0sub

. (7.63)

This model (7.52)–(7.63) is exactly the model that we have investigated in Sections 2–5 of this paper.
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Figure 2: A local chart of the free boundary in the xy plane
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Figure 3: Schematic of a slice of the thin viscous sheet free boundary

Remark 7.1. Saint-Venant models with a local energy partial differential equation should not be
confused with isothermal models incorporating a global kinetic energy balance as investigated for
instance by Kanayama [23].

7.7 Boundary conditions

We present in this section typical free boundary conditions associated with thin viscous sheets over
fluid substrates. These boundary conditions are written at the free boundary of the two-dimensional
Saint-Venant model. These boundary conditions are not used in this paper and are only written here
for completeness.

The two-dimensional Saint-Venant equations governing thin viscous sheets have been derived in
the previous sections from the three dimensional incompressible Navier-Stokes equations governing
incompressible fluids. Similarly, the boundary conditions associated with the two dimensional Saint-
Venant model will be derived from the boundary conditions and conservation equations of the three
dimensional model.

Exchanging eventually the rôle of x and y, we may assume that the free boundary can locally be
written in the form x = Xb(t, y). The local geometry of such a free boundary x = Xb(t, y) is depicted
in Figure 2. The boundary conditions associated with the two dimensional Saint-Venant model at
the free boundary x = Xb(t, y) can be decomposed into a kinematic condition, a dynamic momentum
boundary condition, and a thermal boundary condition.

We first investigate the dynamic momentum boundary condition at the free boundary. To this aim,
we consider a slice of the free boundary of the three dimensional incompressible model in the plane
spanned by nb and ez, where nb is the outward unit normal of the free boundary x = Xb in the xy
plane as depicted in Figure 2

nb =
(
1 + (∂yXb)

2
)−1/2(

1,−∂yXb, 0)
)t
. (7.64)

We next define ex̃ = nb and eỹ = ez ∧ ex̃ in such a way that ex̃, eỹ, ez form a direct orthonormal
basis, and we denote by (x̃, ỹ, z) the corresponding coordinates so that x̃ is measured along nb. The
geometry of the corresponding slice in the plane (x̃, z) of the free boundary associated with the three-
dimensional model is presented in Figure 3 where the fluid lay above the substrate. The asymptotic
dynamic boundary condition is obtained upon integrating the horizontal momentum equation in the
domain pqr. Since this domain is assumed to be of size O(ǫ2), all inertial terms will be neglected in
comparison with the force terms that are O(ǫ). The forces acting on this volume are the surface tension
forces, the viscous constraints on pr, and Archemedes’ forces on qr. Note that we only consider the
horizontal momentum equation so that there is no gravity term.
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Since the pressure in the substrate fluid is hydrostatic, and keeping in mind that all pressure are
evaluated relative to the atmospheric pressure, the resultant of Archimedes forces on qr can be written

−

∫

qr

ρsubghsubnsub ds̃sub,

where s̃sub is the arclength along the curve
(
x̃, h̃sub(t, x̃, ỹ)

)
. In this expression, we have denoted

h̃sub(t, x̃, ỹ) = hsub(t, x, y) and nsub the corresponding outward oriented normal vector

nsub =
∂x̃hsubnb − ez√

1 + (∂x̃hsub)2
.

Since the normal vector nsub is oriented downward the arc qr must be oriented from q to r. The
horizontal projection of this Archemedes’ force is easily evaluated as

∫

qr

ρsubghsubnsub·nb ds̃sub = 1
2ρsubg

(
h2

sub(q) − h2
sub(r)

)
, (7.65)

since

nsub·nb =
∂x̃hsub√

1 + (∂x̃hsub)2
, ds̃sub = −

√
1 + (∂x̃hsub)2 dx̃.

On the other hand, the curvatures in the x̃ direction are O(1/ǫ) whereas the curvatures in the ỹ
direction are O(ǫ)—and may be neglected—in such a way that the total curvatures Cgas and Csub may
be approximated as

Cgas =
∂2

x̃hgas
(
1 + (∂x̃hgas)2

)3/2
, Csub =

∂2
x̃hsub

(
1 + (∂x̃hsub)2

)3/2
. (7.66)

Using these expressions, the surface tension forces acting on pqr can be written

∫

pq

∂s̃(γf/gτgas) ds̃gas +

∫

qr

∂s̃(γf/sτsub) ds̃sub,

where τsub is the tangent vector along the arc
(
x̃, h̃sub(t, x̃, ỹ)

)
oriented from q to r, and s̃gas and τgas

are the arclength and tangent vector along the arc
(
x̃, h̃gas(t, x̃, ỹ)

)
oriented from p to q. We have used

in particular the differential relations ∂s̃τgas = Cgasngas and ∂s̃τsub = Csubnsub. Furthermore, since ngas

is upward and the arc pq oriented from p to q, we may assume that at zeroth order τgas(p) = ex̃ = nb.
Similarly, since nsub is downward and the arc qr oriented from q to r, we may assume that at zeroth
order τsub(r) = −ex̃ = −nb. Integrating along the arcs pq and qr, the surface tension forces are thus
found to be

γf/s

(
τsub(r) − τsub(q)

)
+ γf/g

(
τgas(q) − τgas(p)

)
.

We now use the fundamental relation relating the tangent vectors at the triple-point q

−γf/sτsub(q) + γf/gτgas(q) − γg/sτext(q) = 0, (7.67)

where z−hext = 0 denotes the free surface between gas and the fluid substrate, γg/s the surface tension

between gas and the fluid substrate, s a point as depicted on Figure 3,
(
x̃, h̃ext(t, x̃, ỹ)

)
the arc qs

oriented from q to s, and τext the corresponding tangent vector. Since this arc is oriented from q to
s with next oriented upward, we may assume that at zeroth order τext(s) = ex̃ = nb. This relation
(7.67) can be used to simplify the expression of the surface tension forces by eliminating all quantities
associated with the triple point q, provided we can express the tangent vector τext(q). To this aim,
we can use the dynamic equilibrium condition at the gas/substrate interface which states that

σsub·next = σgas·next − Cextγg/snext = σgas·next − ∂s̃(γg/sτext), (7.68)

where Cext is the total curvature of the surface z = hext which may also be approximated as

Cext =
∂2

x̃hext
(
1 + (∂x̃hext)2

)3/2
. (7.69)
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Using that the pressure is hydrostatic in the fluid substrate, we deduce from (7.68) that
∫

qs

ρsubghext next ds̃ext + γg/s

(
τext(q) − τext(s)

)
= 0.

Eliminating the contributions associated with the triple point, the resulting horizontal force on the
control volume pqr is found to be

∫

pr

(pI − ηd)·nb dz − nb

∫

qr

ρsubghsubnsub·nb ds̃sub

− nb

∫

qs

ρsubghextnext·nb ds̃ext − nb(γf/s + γf/g − γg/s).

The horizontal projection of the surface tension force due to the substrate is easily evaluated as
∫

qs

ρsubghextnext·nb ds̃ext = 1
2ρsubg

(
h2

ext(s) − h2
ext(q)

)
, (7.70)

since

next·nb =
∂x̃hext√

1 + (∂x̃hext)2
, ds̃ext =

√
1 + (∂x̃hext)2 dx̃,

and we may chose that the vertical axis in such a way that hext(s) = 0 since pressures are measured
relative to the atmospheric pressure. Upon defining

γ =
γg/s − γf/s − γf/g

ρ
. (7.71)

and using the relations (7.65) and (7.70) the resulting horizontal force on the control volume pqr at
zeroth order reads ∫

pr

(p0I − η0d0)·nb dz − nb

(
1
2ρsub|g0|h

2
sub0(r) + ργ

)
. (7.72)

Since the control volume pqr is of the order of ǫ2, we can neglect the inertial term and write that the
resulting force (7.72) vanishes at zeroth order.

The zeroth order force
∫
pr

(p0I − η0d0)·nb dz can be evaluated from the expression of the zeroth
order strain tensor d0 and of the zeroth order pressure p0. Since the second order tensor d0 restricted
to the plane spanned by ex and ey can be written ∂

x
v0 + ∂

x
vt

0 and is independent of z we directly
obtain upon integration that

∫

pr

η0d0·nb dz = η0h0(∂x
v0 + ∂

x
vt

0)·nb.

On the other hand, from p0 = −2η0(∂xu0 + ∂yv0)+ g0z− (1− a)g0h0, we obtain upon integration that

−

∫

pr

p0 dz = 2η0h0(∂xu0 + ∂yv0) + 1
2ρh

2
0g0.

The last term 1
2ρh

2
0g0 can then be combined with the contribution 1

2ρsub|g0|h
2
ext(r) from (7.72) to form

the pressure term ρp0 = 1
2ρ(1 − a)g0h

2
0 of the two dimensional model. On the other hand, the term

2η0h0(∂xu0 + ∂yv0) will complete the isotropic part of Π0. Upon combining the above relations and
dividing by the fluid density ρ we have finally established the dynamic boundary condition

−
(
p0I + Π0

)
·nb = γnb. (7.73)

where γ = (γg/s − γf/s − γf/g)/ρ.

Remark 7.2. It is interesting to note that in the zeroth order governing equations the surface tensions
do not appear. Surface tensions only play a rôle in the zeroth order dynamic boundary conditions.

We can proceed similarly for the thermal boundary condition by considering the control domain
pqr. We observe then that the heat exchange coefficients are of order O(ǫ) as are the lenghth of the
arcs pq and qr in such a way that

∫

pq

Q0·ngas ds̃gas =

∫

pq

λ∗gas(T0 − Tgas) ds̃gas = O(ǫ2),
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∫

qr

Q0·nsub ds̃sub =

∫

qr

λ∗sub(T0 − Tsub) ds̃sub = O(ǫ2),

where Q0 = −λ0∂x
T0 is the three dimentional zeroth order heat flux. Upon integrating the heat

conservation equation in the domain pqr, we thus obtain at zeroth order that

∫

pr

λ0∂x
T0·nb dz = 0,

and therefore
Q0·nb = 0, (7.74)

where Q0 = −h0λ0∂x
T0 is the zeroth order heat flux for the Saint-Venant model. Finally, since the

free surface x = Xb(t, y) is a streamline of the two-dimensional flow model, we obtain the natural
kinematic condition

u0 = ∂tXb + v0∂yXb.

This boundary condition can equivalently be obtained by integrating the incompressibility condition
∂

x
·v = 0 on the control domain pqr. It is also easily rewritten in the coordinate independent form

(v0 − vb)·nb = 0, (7.75)

where vb = ∂tXb is the velocity of the free boundary and it is well known that the normal velocity
vb·nb is an intrinsic quantity associated with the free boundary.

The boundary conditions for the two-dimensional Saint-Venant model at the free boundary are
finally constituted by the kinematic condition (7.75), the dynamic momentum boundary condition
(7.73), and the thermal condition (7.74).
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site http://cmap.polytechnique.fr/~giovangi

[15] V. Giovangigli and B. Graille, Asymptotic Stability of Equilibrium States for Ambipolar Plasmas,
Math. Mod. Meth. Appl. Sci., 14, (2004), pp. 1361–1399.

[16] V. Giovangigli and M. Massot, Asymptotic Stability of Equilibrium States for Multicomponent
Reactive Flows, Math. Mod. Meth. Appl. Sci., 8, (1998), pp. 251–297.

[17] S.K. Godunov, The Problem of a Generalized Solution in the Theory of Quasilinear Equations
and in Gas Dynamics, Russian Math. Surveys, 17, (1962), pp. 145–156.

[18] G. Hauke, A Symmetric Formulation for Computing Transient Shallow Water Flows, Comp. Meth.
Appl. Mech. Eng., 163, (1998), pp. 111–122.

[19] D. P. Hoult, Oil Spresading on the Sea, Ann. Rev. Fluid Mech., (1972), pp. 341–367.

[20] P. D. Howell, Extensional Thin Layer Flows, PhD Thesis, St. Catherine College, Cambridge
University, (1994).

[21] P. D. Howell, Models for Thin Viscous Sheet, Euro. J. Applied Math., 7, (1996), pp. 1–23.

[22] T. J. R. Hughes, L. P. Franca, and M. Mallet, A New Finite Element Formulation for Computa-
tional Fluid Dynamics: I. Symmetric Forms of the Compressible Euler and Navier-Stokes Equations
and the Second Law of Thermodynamics, Comp. Meth. Appl. Mech. Eng., 54, (1986), pp. 223–234.

[23] H. Kanayama and T. Ushijima, On the Viscous Shallow Water Equations I, Derivation and Con-
servation Laws, Memoirs of Numerical Math., 8/9, (1981/1982), pp. 39–64.

[24] H. Kanayama and T. Ushijima, On the Viscous Shallow Water Equations II, A Linearized System,
Bull. Univ. Electro-Comm., 1, (1988), pp. 347–355.

[25] H. Kanayama and T. Ushijima, On the Viscous Shallow Water Equations III, A Finite Element
Scheme, Bull. Univ. Electro-Comm., 2, (1989), pp. 47–62.

[26] H. Kanayama and H. Dan, A Finite Element Scheme for Two-Layer Viscous Shallow-Water Equa-
tions, Japan J. Indust. Appl. Math., 23, (2006), pp. 163–191.

[27] S. Kawashima, Systems of Hyperbolic-Parabolic Composite Type, with Application to the Equa-
tions of Magnetohydrodynamics, Doctoral Thesis, Kyoto University, (1984).

[28] S. Kawashima and Y. Shizuta, On the Normal Form of the Symmetric Hyperbolic-Parabolic
Systems Associated with the Conservation Laws, Tôhoku Math. J., 40, (1988), pp. 449–464.
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