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Abstract

We investigate iterative methods for solving transport linear systems of partially ionized plas-
mas. We consider the situations of weak and strong magnetic fields as well as nonequilibrium and
the linear systems are investigated in their natural constrained singular symmetric form. Station-
ary iterative techniques are considered with a new more singular formulation of the transport linear
systems as well as orthogonal error algorithms. The more singular formulation is derived from an
expansion of generalized inverses into dyadic products of conjugate directions. Numerical tests are
performed with high temperature air and show that iterative techniques lead to fast and accurate
evaluation of multicomponent transport coefficients for all ionization levels and magnetic field in-
tensities. We obtain in particular low cost accurate approximations of multicomponent diffusion
matrices in partially ionized plasmas.

1 Introduction

Ionized magnetized reactive gas mixtures have many practical applications such as laboratory plasmas,
high-speed gas flows, lean flame stabilization or atmospheric phenomena [6, 10, 11, 13, 14, 23, 26,
53]. This motivates kinetic theory investigations and the derivation of macroscopic plasma equations.
Applications of the Chapman-Enskog theory to partially ionized mixtures in weak and strong magnetic
fields and in a regime where there is only one temperature have been discussed in particular by Chapman
and Cowling [11], Ferziger and Kaper [23], Braginsky [6], Kaneko [38], Bruno, Capitelli and Dangola
[8], for monatomic species, and Giovangigli and Graille [30, 32] for polyatomic species. Mixtures
of monatomic gases at thermodynamic nonequilibrium with multitemperature transport arising from
electron/ions mass ratio asymptotics have been investigated by Petit and Darrozes [52], Chmieleski and
Ferziger [12], Braginsky [6, 7], Magin and Degrez [43] and a comprehensive multiscale kinetic theory
has recently been presented by Graille, Magin and Massot [35].

The conservation equations for partially ionized plasmas derived in these various regimes involve
transport fluxes, that is, diffusive mass fluxes, viscous tensors or heat fluxes. These transport fluxes,
on the other hand, are expressed in terms of transport coefficients and macroscopic variable gradients.
Detailed modeling of multicomponent plasmas thus requires the evaluation of transport coefficients
which are functions of the state variables p, T , and y1, . . . ,yn and of the intensity of the magnetic
field B.

Evaluation of the transport coefficients, however, requires solving linear systems associated with
linearized Boltzmann equations [11, 54, 23, 42, 8, 9, 30, 32, 35, 47]. The corresponding transport
linear systems can be obtained in their natural constrained singular symmetric form for all the regimes
considered [11, 54, 23, 30, 32, 35]. Since the size of these systems can be relatively large and since
transport properties have to be evaluated at each computational cell in space and time, transport
property evaluation by direct numerical inversions may become computationally expensive and the use
of iterative techniques constitutes an interesting and appealing alternative.

A systematic development of a mathematical and numerical theory of iterative algorithms for eval-
uating transport coefficients of nonionized polyatomic gas mixtures has been given by Ern and Gio-
vangigli [28, 15, 19]. Various algorithms have been proven to be convergent by using the mathematical
properties of linearized Boltzmann collision operators, the structure of usual variational approximation
spaces associated with species perturbed distribution functions, and the theory of iterative methods
for constrained singular symmetric linear systems [28, 15, 19]. All transport coefficients have been
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expressed as convergent series and the resulting algorithms have been found to be efficient especially
for numerical simulation of multidimensional reactive flows with complex chemistry [15, 18, 17, 19, 20].

Extensions of these techniques to partially ionized mixtures have further been investigated by
Giovangigli and Graille [30, 32, 33] in weak and strong magnetic fields and Garćıa Muñoz [26] for
nonequilibrium planetary atmospheres. The linear systems in strong magnetic fields are then complex
with an imaginary part proportional to the intensity of the magnetic field. Generalized conjugate
gradient techniques as well as stationary iterative methods have been discussed [30, 32, 33]. Station-
ary methods for multicomponent diffusion matrices in multitemperature planetary atmospheres have
also been investigated by Garćıa Muñoz [26]. The numerical experiments performed by Garćıa Muñoz
[26] have shown in particular that the convergence rates of stationary iterative methods deteriorate as
ionization levels increase. Similar results have been reported by Giovangigli and Graille who investi-
gated transport coefficients in magnetized plasmas [32]. The purpose of this paper is now to derive
new transport algorithms which converge rapidly for all ionization levels and magnetic field intensities
and to perform comprehensive numerical tests with high temperature air to asses the accuracy of the
resulting approximate coefficients.

We first review the mathematical structure of the transport linear systems in various regimes.
We consider the situations of weak and strong magnetic fields as well as that of thermodynamic
nonequilibrium. We subsequently discuss stationary iterative methods, generalized conjugate gradient
techniques, and perform numerical tests with high temperature air.

For stationary methods, we discuss the solution of transport linear systems in terms of generalized
inverses with prescribed range and nullspace [2, 4, 27, 28, 15, 19, 33] and present convergence theorems
for constrained singular symmetric systems [39, 44, 48, 4, 41, 28, 19, 33]. We next introduce an
expansion of symmetric generalized inverses into conjugate directions and recast the transport linear
systems into more singular formulations. We similarly introduce an expansion of complex symmetric
generalized inverses into conjugate directions—spanned by real vectors—and recast the magnetized
transport linear systems into more singular formulations. These more singular formulations are then
used to define new stationary algorithms. The main idea is that the more singular formulations will
yield projected iterative algorithms with better convergence rates.

We next investigate generalized conjugate gradient techniques such as orthogonal residuals algo-
rithms [37, 34, 41, 21, 22, 25, 24, 19, 33] and also discuss the link between the more singular formulations
and search directions. It is found that the more singular formulations constrain the first search direc-
tions of orthogonal residuals algorithms. The difference between the conjugate expansion of complex
symmetric matrices and Hermite type orthogonal residuals algorithms is also addressed.

Numerical experiments are performed with high temperature air for varying ionization levels and
magnetic field intensities. The air mixture is constituted by the eleven species N2, O2, NO, N, O, N+

2 ,
O+

2 , NO+, N+, O+, and e. Numerical tests are first conducted for stationary iterative techniques in
order to evaluate first order and higher order multicomponent diffusion matrices. Both isotropic and
magnetized nonisotropic mixtures are considered. The numerical experiments confirm the fast con-
vergence rates of the new stationary algorithms for all ionization levels and magnetic field intensities.
In particular, accurate low cost approximations are obtained for multicomponent diffusion matrices in
partially ionized mixtures. Numerical tests are then performed with generalized conjugate gradient
algorithms in order to evaluate thermal conductivities and species diffusion velocities for varying ion-
ization levels and magnetic field intensities. The numerical tests confirm the good convergence rate of
generalized conjugate gradient techniques independently of ionization levels and magnetic field inten-
sities. The numerical tests with high temperature air thus show that iterative techniques lead to low
cost accurate evaluations of multicomnent transport coefficients in partially ionized plasmas.

The transport linear systems and their mathematical structure is investigated in Sections 2 and 3
for isotropic and anisotropic mixtures, respectively, and in Section 4 for thermodynamic nonequilib-
rium. Stationary iteratives algorithms are investigated in Section 5 and generalized conjugate gradient
algorithms in Section 6. Applications to diffusion matrices are presented in Section 7 and applications
to thermal conductivities and Stefan-Maxwell equations in Section 8.
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2 Transport linear systems in isotropic mixtures

We summarize in this section the transport fluxes and transport linear systems for polyatomic reactive
gas mixtures at thermodynamic equilibrium in weak magnetic fields [54, 11, 23, 15, 30].

2.1 Transport fluxes

The transport fluxes derived from the kinetic theory of gases can be written in the form [11, 23, 54, 29]

Π = −κ(∇·v)I − η
(
∇v + (∇v)t − 2

3η(∇·v)I
)

(2.1)

vi = −
∑

j∈S

Dijdj − θi∇ log T, i ∈ S, (2.2)

q = −λ̂∇T − p
∑

i∈S

θidi +
∑

i∈S

ρhiyivi, (2.3)

where Π denotes the viscous tensor, ∇ = (∂x, ∂y, ∂z)
t the usual differential operator, I the unit tensor

in three dimensions, κ the volume viscosity, η the shear viscosity, v the mass averaged flow velocity,
vi, i ∈ S, the species diffusion velocities, Dij , i, j ∈ S, the multicomponent diffusion coefficients, di,
i ∈ S, the species diffusion driving forces, θi, i ∈ S, the species thermal diffusion coefficients, T the
absolute temperature, S = {1, . . . , ns} the species indexing set, ns the number of species, q the heat

flux vector, λ̂ the partial thermal conductivity, p the pressure, ρ the density, hi, i ∈ S, the species
enthalpy per unit mass, and yi, i ∈ S, the species mass fractions. Note incidentally that the ratio κ/η
is not small for polyatomic gases as taken for granted in most books on fluid dynamics and its impact
is investigated in [5]. The vectors di, i ∈ S, incorporate the effects of various state variable gradients
and external forces and are given by

di =
∇pi

p
−

niqi

p
(E + v∧B), i ∈ S, (2.4)

where pi, i ∈ S, denotes the species partial pressures, ni, i ∈ S, the species molar densities, qi, i ∈ S,
the species molar charges, E the electric field, and B the magnetic field. Alternatively, the diffusion
velocities and the heat flux vector may be written in terms of the species thermal diffusion ratios χi,
i ∈ S, and the thermal conductivity λ [54]

vi = −
∑

j∈S

Dij(dj + χj∇ log T ), i ∈ S, (2.5)

q = −λ∇T + p
∑

i∈S

χivi +
∑

i∈S

ρhiyivi. (2.6)

The various transport coefficients required in order to evaluate the transport fluxes are thus the volume
viscosity κ, the shear viscosity η, the diffusion matrix D = (Dij)i,j∈S , and either the thermal diffusion

vector θ = (θ1, . . . , θns)t and the partial thermal conductivity λ̂, or else the thermal diffusion ratios
vector χ = (χ1, . . . , χns)t, and the thermal conductivity λ. The corresponding governing equations
expressing the conservation of species mass, momentum and energy are omitted for brevity and we
refer to [11, 23, 54, 29] for more details.

2.2 Transport linear systems

The transport linear systems obtained from the kinetic theory take on either the nonsingular form

Ga = b, (2.7)

or else the constrained singular form {
Ga = b,
〈a, g〉 = 0,

(2.8)

where G denotes the system matrix, b the right-hand side, g the constraint vector and 〈, 〉 the Euclidean
scalar product [11, 54, 23, 15]. Both systems are typically associated with the evaluation of a transport
coefficient µ = 〈a, b′〉 where b′ is a given vector.
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System Size Constraint Evaluation

Haη = bη ns — η = 〈aη, bη〉

Kaκ = bκ ns + np 〈aκ, k〉 = 0 κ = 〈aκ, bκ〉

K[01]a
κ
[01] = bκ

[01] np — κ[01] = 〈aκ
[01], b

κ
[01]〉

LaDk = bDk 2ns + np 〈aDk , Y 〉 = 0 Dkl = 〈aDk , bDl〉

L[e]a
Dk

[e] = bDk

[e] 2ns 〈aDk

[e] , Y [e]〉 = 0 D[e]kl = 〈aDk

[e] , b
Dl

[e]〉

∆aDk
[00] = bDk

[00] ns 〈aDk
[00], y〉 = 0 D[00]kl = 〈aDk

[00], b
Dl
[00]〉

La
bλ = b

bλ 2ns + np 〈a
bλ, Y 〉 = 0 λ̂ = (p/T )〈a

bλ, b
bλ〉

θk = −〈a
bλ, bDk〉

Λaλ = bλ ns + np — λ = (p/T )〈aλ, bλ〉
χ = L00λaλ

L[e]a
bλ
[e] = b

bλ
[e] 2ns 〈a

bλ
[e], Y [e]〉 = 0 λ̂[e] = (p/T )〈a

bλ
[e], b

bλ
[e]〉

θ[e]k = −〈a
bλ
[e], b

Dk

[e] 〉

Λ[e]a
λ
[e] = bλ

[e] ns — λ[e] = (p/T )〈aλ
[e], b

λ
[e]〉

χ[e] = L00λ
[e] aλ

[e]

Table 1: Typical transport linear systems for isotropic gases.

The transport linear systems are derived from a variational procedure used to solve constrained
systems of linearized Boltzmann integral equations. For each transport coefficient, various transport
linear systems can be considered, corresponding to different choices of the variational approximation
space. The standard choices as well as some reduced transport linear systems are presented in Table 1.
In this table, the first column contains the system Ga = b; the second, the size of the system n where
ns denotes the number of species and np denotes the number of polyatomic species in the mixture; the
third, the constraint 〈a, g〉 = 0; and the last, the expression of the associated transport coefficient µ.
The transport coefficients corresponding to the largest variational space have been denoted by µ, and
the ones associated with a reduced variational space have been denoted by µ[x], where x stands for a
simple symbol associated with the reduced variational space. The explicit expressions for all of the
system matrices, right-hand sides, and constraint vectors can be found in [15].

For nonionized mixtures the reduced systems yield approximations for the transport coefficients
which are generally within a few percent accuracy of the transport coefficients obtained with the
standard systems [15, 18]. The accuracy of the corresponding coefficients deteriorates for ionized
mixtures since the convergence of the Chapman-Enskog expansion is known to be slower [11, 23, 6,
10]. An extreme situation is that of the electrical conductivities which require higher order diffusion
coefficients to compensate for the cancellation of significative digits [23, 6, 32].

2.3 Mathematical structure

We introduce some notation associated with the transport linear systems and then define the sparse
transport matrix. For x, y ∈ Rn, x = (x1, . . . , xn)t, y = (y1, . . . , yn)t, the scalar product 〈x, y〉 is given
by 〈x, y〉 =

∑
1≤k≤n xkyk. For x ∈ Rn, x 6= 0, we denote x⊥ = { y ∈ Rn; 〈x, y〉 = 0 }. We denote by

Rn,n the set of square matrices of size n, and for G ∈ Rn,n, we write Gt the transpose of G, N(G)
the nullspace of G, and R(G) the range of G. We denote I the unit tensor in Rn,n and for x ∈ Rn,
diag

(
x1, . . . , xn

)
denotes the diagonal matrix of Rn,n whose diagonal elements are xk, 1 ≤ k ≤ n. For

x, y ∈ R
n, the tensor product matrix x⊗y is given by x⊗y = (xkyl)1≤k,l≤n.

The sparse transport matrix db(G) is a submatrix formed by diagonals of blocks of G. This matrix
has been introduced in [15] and is important from a theoretical as well as practical point of view. It
can be used as a splitting matrix for stationary methods as well as a preconditionner for generalized
conjugate gradients algorithms. The definition of the matrix db(G) is reminded in Appendix A.

The matrices G and db(G) have a general mathematical structure inherited from the properties of
Boltzmann linearized collision operators and the properties of usual variational approximation spaces
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associated with the transport linear systems [15]. In order to simplify the presentation, we frequently
assume in this paper that the number of species is ns ≥ 3. For the nonsingular systems, one can
establish that

(G1) The matrices G, 2db(G) − G, and db(G) are symmetric positive definite for ns ≥ 1.

On the other hand, for the singular systems, one can establish that

(G2) The matrix G is symmetric positive semi-definite and its nullspace is N(G) = Rz. The nullspace
vector z, the constraint vector g and the right member b are such that 〈z, g〉 6= 0 and 〈z, b〉 = 0.
The matrices 2db(G) − G and db(G) are symmetric positive definite for ns ≥ 3.

The consequences of (G1-G2) are discussed in Section 5, and, in particular, the transport linear systems

are well posed. The singular systems can also be recast into the nonsingular form a =
(
G + αg⊗g

)−1
b

where α > 0 and the matrix G + αg⊗g is symmetric positive definite.

3 Transport linear systems in nonisotropic mixtures

We summarize in this section the transport fluxes and transport linear systems for polyatomic reactive
gas mixtures at thermodynamic equilibrium in strong magnetic fields [11, 23, 6, 30, 32].

3.1 Transport fluxes

In the presence of strong magnetic fields, the transport fluxes are not anymore isotropic [11, 23, 6, 30,
32]. In order to express this anisotropy, we introduce some convenient notation. Denoting by B the
magnetic field, B = ‖B‖ the magnetic field intensity, we define the unitary vector B = B/B and for
any three dimensional vector x the associated vectors

x‖ = (x·B)B, x⊥ = x − x‖, x⊙ = B∧x.

The vectors x‖, x⊥ and x⊙ are mutually orthogonal and obtained from x by applying the linear
operators B⊗B, I −B⊗B and R(B) where R(B) is the rotation matrix such that R(B)x = B∧x for
any vector x.

In strong magnetic fields, the viscous tensor Π is found in the form

Π = −κ(∇·v) I − η1S − η2

(
R(B)S − SR(B)

)
− η3

(
B

tSB B⊗B − R(B)SR(B)
)

−η4

(
SB⊗B + B⊗BS − 2B

tSBB⊗B
)
− η5

(
B⊗BSR(B) − R(B)SB⊗B

)
, (3.1)

where S = ∇v + ∇vt − 2
3 (∇·v) I, κ is the volume viscosity, and ηj , 1 ≤ j ≤ 5, the shear viscosities.

The species diffusion velocities vi, i ∈ S, are found in the form

vi = −
∑

j∈S

(
D

‖
ijd

‖
j + D⊥

ijd
⊥
j + D⊙

ijd
⊙
j

)
−
(
θ
‖
i (∇ log T )‖ + θ⊥i (∇ log T )⊥ + θ⊙i (∇ log T )⊙

)
, (3.2)

where D
‖
ij , D⊥

ij , and D⊙
ij , i, j ∈ S, are the species diffusion coefficients parallel, perpendicular and

transverse to the magnetic field, and θ
‖
i , θ⊥i , θ⊙i , i ∈ S, the species thermal diffusion coefficients

parallel, perpendicular and transverse to the magnetic field. The heat flux q can be written similarly
in the form

q = −
(
λ̂‖(∇T )‖ + λ̂⊥(∇T )⊥ + λ̂⊙(∇T )⊙

)
− p

∑

i∈S

(
θ
‖
i d

‖
i + θ⊥i d

⊥
i + θ⊙i d

⊙
i

)
+
∑

i∈S

ρyihivi, (3.3)

where λ̂‖, λ̂⊥, and λ̂⊙ are the partial thermal conductivities parallel, perpendicular and transverse to
the magnetic field.
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Systems Size Constraint Coefficients

Haη1 = bη ns — η1 + iη2 = 1
2
〈aη1 + aη2, bη〉

(H + 2iH ′)aη2 = bη η1 + η3 = 〈aη1, bη〉

(H + iH ′)aη3 = bη η4 + iη5 + η1 + iη2 = 〈aη3, bη〉

(L + iL′)aDj = bDj 2ns + np 〈aDj , Y 〉 = 0 D⊥
ij + iD⊙

ij = 〈aDj , bDi〉

(∆ + i∆′)a
Dj

[00] = b
Dj

[00] ns 〈a
Dj

[00], y〉 = 0 D⊥
[00]ij + iD⊙

[00]ij = 〈a
Dj

[00], b
Di
[00]〉

(L + iL′)a
bλ = b

bλ 2ns + np 〈a
bλ, Y 〉 = 0 bλ⊥ + ibλ⊙ = (p/T )〈a

bλ, b
bλ〉

θ⊥
i + iθ⊙

i = −〈a
bλ, bDi〉

(Λ + iΛ′)aλ = bλ ns + np — λ⊥ + iλ⊙ = (p/T )〈aλ, bλ〉
χ⊥ + iχ⊙ = L00λaλ

(Λ[e] + iΛ′
[e])a

λ
[e] = bλ

[e] ns — λ⊥
[e] + iλ⊙

[e] = (p/T )〈αλ
[e], b

λ
[e]〉

χ⊥
[e] + iχ⊙

[e] = L00λ
[e] aλ

[e]

Table 2: Typical Transport Linear Systems for nonisotrpic gases

The species diffusion velocities and the heat flux can also be rewritten in terms of the thermal

diffusion ratios χ
‖
i , χ⊥

i , and χ⊙
i , i ∈ S, and the thermal conductivities λ‖, λ⊥, and λ⊙ [30]

vi = −
∑

j∈S

D
‖
ij

(
d
‖
j + χ

‖
j (∇ log T )‖

)
−
∑

j∈S

D⊥
ij

(
d
⊥
j + χ⊥

j (∇ log T )⊥ + χ⊙
j (∇ log T )⊙

)

−
∑

j∈S

D⊙
ij

(
d
⊙
j + χ⊥

j (∇ log T )⊙ − χ⊙
j (∇ log T )⊥

)
, (3.4)

q = −
(
λ‖(∇T )‖ + λ⊥(∇T )⊥ + λ⊙(∇T )⊙

)
+ p

∑

i∈S

(χ
‖
i v

‖
i + χ⊥

i v⊥
i + χ⊙

i v⊙
i ) +

∑

i∈S

ρiyihivi. (3.5)

3.2 Transport linear systems

The transport linear systems associated with transport coefficients parallel to the magnetic field are
real and identical to that of isotropic mixtures already investigated in Section 2. These system are
not further considered in this section. On the other hand, the tranport linear systems associated
with anisotropic coefficients are complex, vector products with the magnetic field having been replaced
by multiplications with imaginary numbers [23, 30]. The transport linear systems obtained from the
kinetic theory take on either the regular form

(G + iG′)a = b, (3.6)

or else the constrained singular form {
(G + iG′)a = b,
〈a, g〉 = 0,

(3.7)

where i2 = −1, G, G′ ∈ Rn,n denotes the system matrices, b ∈ Rn the right-hand side, g ∈ Rn the
constraint vector, and 〈, 〉 the Hermitian scalar product. Both systems are typically associated with
the evaluation of the transport coefficient µ⊥ + iµ⊙ = 〈a, b′〉, where b′ ∈ Rn is a given vector.

The transport linear systems corresponding to the first usual Sonine/Wang-Chang Uhlenbeck poly-
nomial expansions are presented in Table 2. The successive approximations in the Chapman-Enskog
expansion of transport coefficients are still known to converge more slowly in plasmas than in neu-
tral mixtures [6, 8, 10]. Note that the variational framework for a direct evaluation of the thermal
conductivity and the thermal diffusion ratios [16, 15] has been generalized to the anisotropic case [33].
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3.3 Mathematical Structure

We introduce some notation associated with the complex transport linear systems. For x, y ∈ Cn, x =
(x1, . . . , xn)t, y = (y1, . . . , yn)t, the Hermitian scalar product 〈x, y〉 is given by 〈x, y〉 =

∑
1≤k≤n xkyk

and the nondegenerate nondefinite bilinear symmetric form (x, y) naturally associated with complex
symmetric matrices is given is given by (x, y) =

∑
1≤k≤n xkyk. The real x and imaginary y parts

x, y ∈ R, of a complex number z ∈ C, z = x + iy, are written x = ℜz and y = ℑz. When A is a real
linear subspace A ⊂ Rn, we denote by A + iA the corresponding complex linear space {z ∈ Cn, z =
x + iy, x, y ∈ A}. If A is a real subspace, we denote by A⊥ the orthogonal complement with respect
to the Euclidean product whereas when B is a complex subspace, we denote by B⊥ the orthogonal
complement with respect to the nondegenerate bilinear form (, ). Note that if B has a basis of real
vectors, the orthogonal complement is equivalently defined with the Hermitian scalar product. This
is notably the case with the constraint 〈a, g〉 = 0 which can also be written (a, g) = 0 since g is real.
When a, b ∈ Cn, the tensor product matrix a⊗b has components akbl, 1 ≤ k, l ≤ n and for any x ∈ Cn

we have a⊗b x = a(b, x).
The following results have been obtained from the properties of Boltzmann linearized operators

under general assumptions on the variational approximation spaces [30, 32]. For the nonsingular
systems, the matrix G satisfies (G1) whereas the imaginary part is such that

(G′
1) The matrix G′ is real diagonal.

On the other hand, for the singular systems, the matrix G satisfies (G2) wheras the imaginary part is
such that

(G′
2) The matrix G′ is real and given by G′ = QD′P where P and Q are the projector matrices

Q = P t = I − g⊗z/〈z, g〉 and D′ is diagonal.

Note that the matrix G′ is symmetric and that G′N(G) = 0 in such a way that the nullspaces of G
and G′ are compatible [30, 32, 33]. The consequences of (G1-G2) are investigated in Section 5. In
particular, the transport linear systems are well posed, and the singular systems can also be cast into

the nonsingular form a =
(
G + iG′ + αg⊗g

)−1
b where the matrix G + αg⊗g is symmetric positive

definite for any real number α > 0 [15, 33].

4 Transport linear systems at thermodynamic nonequilibrium

We summarize in this section the transport fluxes and the transport linear systems in the situation
of thermodynamic nonequilibrium. These results are obtained in a kinetic framework when both the
Knudsen number and the electron mass simultaneously go to zero [35]. The species S = H∪ {e} must
then be partitioned between the heavy species H and the electrons e and the proper convection velocity
is the heavy species velocity vh [35].

4.1 Heavy species transport fluxes

In the limit of zero electron mass, there is not anymore polarization effects for the heavy species and
the corresponding transport fluxes can be written [35]

Πh = −κ(∇·vh)I − η
(
∇vh + (∇vh)t − 2

3 (∇·vh)I
)
, (4.1)

vi = −
∑

j∈H

Dijd̂j − θi∇ log Th, i ∈ H, (4.2)

qh = −λ̂h∇Th − ph

∑

i∈H

θhid̂i +
∑

i∈H

ρhiyivi, (4.3)

where Πh is the heavy species viscous tensor, I the unit tensor in three dimensions, vh the heavy
species mass averaged flow velocity, vi, i ∈ H, the heavy species diffusion velocities, d̂i, i ∈ H, the
heavy species effective diffusion driving forces, Th the heavy species temperature, H the set of heavy
species indices, qh the heavy species heat flux, hi, i ∈ H, the heavy species enthalpy per unit mass,
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and yi, i ∈ H, the heavy species mass fractions. The vectors d̂i incorporate the effects of various state
variable gradients and external forces and are given by

d̂i =
∇pi

ph

−
niqi

ph

(E + vh∧B) −
niF ie

ph

, i ∈ H, (4.4)

where pi, i ∈ H, denotes the heavy species partial pressures, ph the heavy species total pressure, qi,
i ∈ H, the heavy species molar charges, and F ie, i ∈ H, the average force of electrons acting on the
ith heavy species. This force can be expanded in the form

F ie = −pe

(
α
‖
ked

‖
e + α⊥

ked
⊥
e + α⊙

ked
⊙
e + χ

‖
ke∇ log T ‖

e

+ χ⊥
ke∇ log T⊥

e + χ⊙
ke∇ log T⊙

e

)
, i ∈ H, (4.5)

where pe is the electron partial pressure, and α
‖
ie, α⊥

ie, α⊙
ie, χ

‖
ie, χ⊥

ie and χ⊙
ie are second order coupling

coefficients [35]. Alternatively, the heavy species diffusion velocities and heat flux may be written in
terms of the heavy species thermal diffusion ratios χi, i ∈ H, and the heavy species thermal conductivity
λh as follows [35]

vi = −
∑

j∈H

Dij(d̂j + χj∇ log Th), i ∈ H, (4.6)

qh = −λh∇Th + ph

∑

i∈H

χivi +
∑

i∈H

ρhiyivi. (4.7)

4.2 Electron transport fluxes

The electron transport fluxes present polarization effects in the presence of strong magnetic fields. The
second order electron diffusion velocities are found in the form [35]

ve = −D‖
eed

‖
e − D⊥

eed
⊥
e − D⊙

eed
⊙
e − θ‖e (∇ log Te)

‖ − θ⊥e (∇ log Te)
⊥

−θ⊙e (∇ log Te)
⊙ −

∑

i∈H

(
α
‖
ied

2‖
i + α⊥

ied
2⊥
i + α⊙

ied
2⊙
i

)
, (4.8)

where D
‖
ee, D⊥

ee and D⊙
ee are the electron diffusion coefficients parallel, perpendiclar and transverse to

the magnetic field, and θ
‖
e , θ⊥e and θ⊙e the electron thermal diffusion coefficients parallel, perpendicular

and transverse to the magnetic field. In these equation, the electron diffusion driving force de and the
second order diffusion driving forces d

2
i , i ∈ H, are given by

d̂e =
∇pe

pe
−

neqe

pe
(E + vh∧B), d

2
i = −nivi, i ∈ H. (4.9)

Similarly, the electron heat flux can be decomposed in the form

qe = −λ̂‖
e(∇Te)

‖ − λ̂⊥
e (∇Te)

⊥ − λ̂⊙
e (∇Te)

⊙ − pe

(
θ‖ed

‖
e + θ⊥e d

⊥
e + θ⊙e d

⊙
e

)

−pe

∑

i∈H

(
χ
‖
ied

2‖
e + χ⊥

ied
2⊥
e + χ⊙

ied
2⊙
e

)
+ ρeheve, (4.10)

where λ̂
‖
e , λ̂⊥

e and λ̂⊙
e are the electron partial thermal conductivities parallel, perpendicular and trans-

verse to the magnetic field. Similar expressions can also be written in terms of the thermal diffusion
ratios and the electron thermal conductivity but are omitted for the sake of brevity [35].

4.3 Transport linear systems

The kinetic theory investigations of Graille, Magin and Massot [35] have shown that the transport
linear systems associated with the heavy species are similar to that of isotropic mixtures investigated
in the Section 2 with the indexing set S replaced by H. In particular, these systems share the same
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mathematical structure as investigated in the Section 2 and there is not anymore anisotropy for the
heavy species. On the other hand, the small transport linear systems associated with electrons are
similar to that of the nonisotropic mixtures obtained in Section 3 without singularities [35].

Since we are interested in iterative solutions of the transport linear systems associated with a large
number of species, only the mathematical structure of the transport linear systems associated with the
heavy species and similar to that presented in Section 2 is therefore relevant in the nonequilibrium
case. We do repeat the corresponding table of transport linear systems since they formally corresponds
to changing the indexing set S into H.

5 Generalized inverses and stationary iterative techniques

We first relate the solution of transport linear systems to generalized inverses with prescribed range and
nullspace [28, 15, 19, 30, 33]. We next review projected stationary iterative techniques in order to solve
constrained singular symmetric systems and to evaluate symmetric generalized inverses [28, 15, 19, 33].
These techniques are especially suited to the evaluation of diffusion matrices which may be expanded
as convergent matrix series as investigated in Section 7. We next introduce an expansion of symmetric
generalized inverses into dyadic products of conjugate direction and the corresponding more singular
formulations of the transport linear systems. Both isotropic real systems and anisotropic complex
systems are considered. The more singular formulations will then be used in conjunction with stationary
projected iterative algorithms.

5.1 Generalized inverses and transport linear systems

In order to encompass the various structures of transport linear systems, either regular or singular as
depending on transport coefficients and either real or complex as depending on magnetization, and also
for future use, we introduce a common framework. We denote by K either R or C, and for A ∈ Kn,n

we denote by R(A) and N(A) the range and nullspace of the matrix A. For any complementary spaces
R ⊕ S = Kn, PR,S denote the projector onto R parallel to S. We denote by 〈x, y〉 =

∑
1≤k≤n xkyk

the Hermitian scalar product between x, y ∈ Cn or the Euclidean scalar product when x, y ∈ Rn and
by (x, y) =

∑
1≤k≤n xkyk the nondegenerate nondefinite bilinear form between x, y ∈ Cn naturally

associated with symmetric complex matrices. The tensor product matrix a⊗b has components akbl,
1 ≤ k, l ≤ n, so that a⊗b x = a(b, x) for a, b, x ∈ C

n. The real x and imaginary y parts x, y ∈ R, of a
complex number z ∈ C, z = x + iy, are written x = ℜz and y = ℑz. When A is a real linear subspace
A ⊂ Rn, we denote by A + iA the corresponding complexification {z ∈ Cn, z = x + iy, x, y ∈ A}.
If A is a real subspace, we denote by A⊥ the orthogonal complement with respect to the Euclidean
product. When B is a complex subspace, we denote by B⊥ the orthogonal complement with respect to
the nondegenerate bilinear form (, ) and when B has a basis of real vectors, the orthogonal complement
is equivalently defined with the Hermitian scalar product.

The transport linear systems associated with partially ionized gas mixtures can be written in the
general form {

Ga = b,
a ∈ C,

(5.1)

where G ∈ Kn,n, C is a linear subspace of Kn, and a, b ∈ Kn are vectors. More specifically, in the
isotropic case, we have K = R, G = G, and either C = Rn in the regular case or else N(G) = Rz and
C = g⊥ in the singular case. In the nonisotropic case, we have K = C, G = G + iG′, and either C = Cn

in the regular case or else N(G) = Cz and C = g⊥ + ig⊥ in the singular case. All common properties
between the real and complex cases will be written in terms of K. When it is necessary to distinguish
between these two situations, we will separately treat the real and complex cases. We will need the
following result on generalized inverses with prescribed range and nullspace [2, 4, 29].

Proposition 5.1. Let G ∈ K
n,n be a matrix and let C and S be two subspaces of K

n such that
N(G) ⊕ C = Kn and R(G) ⊕ S = Kn. Then there exists a unique matrix Z such that GZG = G,
ZGZ = Z, N(Z) = S, and R(Z) = C. The matrix Z is called the generalized inverse of G with prescribed
range C and nullspace S and is also such that GZ = PR(G),S and ZG = PC,N(G).
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The well posedness of the transport linear systems (5.1) is obtained in the following proposition and
its solution a is related to generalized inverses [28, 15, 19, 33]. First order multicomponent diffusion
matrices will notably be expressed as generalized inverses of Stefan-Maxwell like matrices [28, 15, 30, 33]

Proposition 5.2. Let G ∈ Kn,n be a matrix and C be a subspace of Kn. The constrained linear system
(5.1) is well posed, i.e., admits a unique solution a for any b ∈ R(G), if and only if

N(G) ⊕ C = K
n. (5.2)

In this situation, for any subspace S such that R(G) ⊕ S = Kn, the solution a can be written a = Zb,
where Z is the generalized inverse of G with prescribed range C and nullspace S.

In the real isotropic case the nullspace of the matrix G = G is obtained from (G1-G2) so that
N(G) = {0} in the regular case whereas N(G) = Rz in the singular case. In the complex case, the
nullspace of the matrix G = G + iG′ is obtained in the following proposition where we use classical
notation on complexifications [33].

Lemma 5.3. Let G = G + iG′ where G, G′ are real symmetric matrices, G is positive semi-definite
and G′N(G) = 0. Then N(G) = N(G) + iN(G) and R(G) = N(G)⊥ + iN(G)⊥. Moreover, for any
subspace C ⊂ Rn complementary to N(G), denoting C = C + iC the complexification of C, we have
N(G) ⊕ C = Cn and PC,N(G) = PC,N(G).

In the complex case, we thus have N(G) = {0} in the regular case and N(G) = Cz in the singular
case. The well posedness condition is then easily obtained in the real and complex cases since the
constraint vector g is such that 〈z, g〉 6= 0 in such a way that Rz ∩ g⊥ = {0} in the isotropic case
and Cz ∩ (g⊥ + ig⊥) = {0} in the magnetized case. A further property is that the proper generalized
inverses can be taken to be symmetric [19, 33]. We simultaneously investigate the real and complex
case in the following proposition.

Proposition 5.4. Let G = G+iG′ where G, G′ are real symmetric matrices, G is positive semi-definite
and G′N(G) = 0. Let C = C + iC where C ⊂ Rn is a subspace complementary to N(G). Let Z be the
generalized inverse of G with prescribed nullspace N(Z) = C⊥ + iC⊥ and range R(Z) = C + iC. Then
the matrix Z is symmetric and is the unique symmetric generalized inverse of G with range C, that
is, the unique symmetric matrix L such that LGL = L, GLG = G and R(L) = C. Upon decomposing
Z = Z + iZ ′, where Z, Z ′ ∈ Rn,n, Z and Z ′ are symmetric matrices, Z is positive semi-definite,
Z ′N(Z) = 0 and N(Z) = C⊥. In the real case G = G, we have G′ = Z ′ = 0 and the generalized
inverse Z = Z is real. The matrix Z is the unique symmetric generalized inverse of G with range C.
Furthermore, denoting by z1, . . . , zp a real basis of N(G), where p = dim

(
N(G)

)
≥ 1, there exist real

vectors g1, . . . , gp spanning C⊥ such that 〈gi, zj〉 = δij, 1 ≤ i, j ≤ p. Then for any positive numbers
αi, βi, 1 ≤ i ≤ p, such that αiβi = 1, 1 ≤ i ≤ p, we have

Z = (G +
∑

1≤i≤p

αi gi⊗gi)
−1 −

∑

1≤i≤p

βi zi⊗zi, (5.3)

and the real part G+
∑

1≤i≤p αi gi⊗gi of the matrix G+
∑

1≤i≤p αi gi⊗gi is symmetric positive definite.
Therefore, for b ∈ R(G), the solution a of (5.1) obtained from Proposition 5.2 also satisfies the regular
system

(G +
∑

1≤i≤p

αi gi⊗gi)a = b, (5.4)

and we also have PC,N(G) = PC,N(G) = I −
∑

1≤i≤p zi⊗gi.

Considering then the transport linear systems in the real case (2.8) the proper generalized inverse
Z of G is the one with range g⊥ and nullspace Rg and we then have GZ = I − g⊗z/〈g, z〉 and
ZG = I − z⊗g/〈g, z〉. Considering the transport linear systems in the complex case (3.7) the proper
generalized inverse Z of G = G + iG′ is the one with range g⊥ + ig⊥ and nullspace Cg and we have
GZ = I − g⊗z/〈g, z〉 and ZG = I − z⊗g/〈g, z〉. This propostion also shows that there exist symmetric
regular formulations of the transport linear systems. However, the singular formulations are more
suited to iterative techniques [15].
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5.2 Projected iterative algorithms

For a matrix T ∈ Cn,n, σ(T) and ρ(T) denote respectively the spectrum and the spectral radius of
T, and we also define γ(T) = max{ |λ|; λ ∈ σ(T), λ 6= 1 }. A matrix T is said to be convergent
when limi→∞ Ti exists—not necessarily being zero [48]—and we have the following characterization
[50, 44, 48, 4, 29].

Proposition 5.5. A matrix T ∈ Cn,n is convergent if and only if either ρ(T) < 1 or ρ(T) = 1,
1 ∈ σ(T), γ(T) < 1, and T has only elementary divisors corresponding to the eigenvalue 1, that is,
N(I − T) ∩ R(I − T) = {0}.

Next, for a matrix G ∈ Cn,n, the decomposition

G = M − W, (5.5)

is a splitting if the matrix M is invertible. In order to solve the linear system Ga = b, where b ∈ Cn,
the splitting (5.5) induces the iterative scheme

zi+1 = Tzi + M−1b, i ≥ 0, (5.6)

where T = M−1W. Assuming that b ∈ R(G), we have M−1b ∈ R(I − T), and the behavior of the
sequence of iterates (5.6) is given in the next lemma [44, 4].

Lemma 5.6. Let T ∈ Kn,n and let c ∈ Kn such that c ∈ R(I − T). Then the iterative scheme
zi+1 = Tzi + c, i ≥ 0, converges for any z0 ∈ Kn if and only if T is convergent. In this situation,
the limit limi→∞ zi = z∞ is given by z∞ = z̄∞ + PN(I−T),R(I−T)z0 where z̄∞ is the unique solution of
(I − T)z̄∞ = c such that z̄∞ ∈ R(I − T).

We are now interested in solving the constrained singular system (5.1) by stationary iterative
techniques. These techniques provide iterates which depend linearly on the right-hand side b, and
this property may be important for some applications, as for instance for multicomponent diffusion
matrices. For a given splitting G = M − W and for b ∈ R(G), assuming that the iteration matrix
T = M−1W is convergent, the iterates (5.6) will converge for any z0. When the matrix G is singular,
we have ρ(T) = 1 since Tz = z for z ∈ N(G), and neither the iterates { zi; i ≥ 0 } nor the limit z∞ are
guaranteed to be in the constrained space C. In order to overcome these difficulties, we use a projected
iterative scheme [28, 19]

z′i+1 = PTz′i + PM−1b, i ≥ 0, (5.7)

where P = PC,N(G) is the projector matrix onto the subspace C along N(G). All the corresponding
iterates { z′i; i ≥ 0 } then satisfy the constraint z′i ∈ C. The spectral radius of the iteration matrix
PT associated with (5.7) can be estimated by using a theorem of Neumann and Plemmons [48] or
the following result of Ern and Giovangigli [19, 33]. This theorem establishes that the spectral radius
ρ(PT) of PT is equal to γ(T) when T is convergent.

Theorem 5.7. Let T ∈ Kn,n be a matrix such that R(I − T) ∩ N(I − T) = {0}. Let C be a subspace
complementary to N(I − T), i.e., such that N(I − T)⊕ C = Kn, and let also P be the oblique projector
matrix onto the subspace C along N(I − T). Then we have

σ(PT) =

{(
σ(T)\{1}

)
∪ {0}, if N(I − T) 6= {0},

σ(T), if N(I − T) = {0},

and the matrices T and P satisfy the relation PT = PTP. In addition, if λ and x 6= 0 are such such
that Tx = λx, then y = Px is an eigenvector for the product PT associated with the eigenvalue λ, that
is, PTy = λy.

In order to obtain convergent iteration matrices—and therefore convergent projected iterative
scheme for the transport linear systems in the real case—we may use Keller’s theorem [39].

Theorem 5.8. Let G ∈ Rn,n be a symmetric matrix and let G = M −W be a splitting such that M is
symmetric and M + W is positive definite. Then T = M−1W is convergent if and only if G is positive
semi-definite.
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Combining then Keller’s theorem, the spectral Theorem 5.7, and the mathematical structure re-
sulting from the kinetic theory of gases, we may use in the real situation the splitting matrices

M = db(G) + diag(σ1, . . . , σn), (5.8)

where db(G) is the sparse transport matrix and σ1, . . . , σn are any nonnegative factors. Indeed, since
M +W = 2db(G)−G+2diag(σ1, . . . , σn), we deduce that M +W is positive definite from (G1-G2), and
Keller’s theorem can be used. The convergence of projected iterative algorithms and the asymptotic
expansion of generalized inverses are then obtained as detailled in the following [19]. On the other
hand, in the complex case, in order to obtain an iterative scheme with convergence properties valid for
any matrix G′, we may include the full imaginary part iG′ of G in the splitting matrix M

M = db(G) + diag(σ1, . . . , σn) + iG′, (5.9)

so that W = G − M is real and if M = M + iG′ then G = M − W is a splitting of the symmetric
positive semi-definite matrix G. This can be done in practice since the resulting matrix M = M + iG′

is easily expressed in terms of the inverse of M + iD′ when G′ is in the form G′ = QD′P [33]. Note
that Keller’s theorem cannot be applied directly as in the real case [19] since G is not Hermitian when
G′ is nonzero. The convergence and properties of the projected iterative algorithms (5.7) when applied
to the real or complex symmetric constrained singular systems (5.1) are summarized in the following
proposition [19, 33].

Theorem 5.9. Let G = G + iG′ where G, G′ are real symmetric matrices, G is positive semi-definite
and G′N(G) = 0. Let C ⊂ R

n be a subspace complementary to N(G) and let C be the complexification of
C. Consider a splitting G = M −W , assume that M is symmetric and that M +W is positive definite,
so that M is also symmetric positive definite. Define M = M + iG′, G = M−W, so that W = W , and
T = M−1W, T = M−1W . Let P = P be the oblique projector matrix onto the subspace C along N(G).
Let also b ∈ R(G), z0 ∈ Cn, z′0 = Pz0, and consider for i ≥ 0 the iterates zi+1 = Tzi + M−1b as in
(5.6) and z′i+1 = PTz′i + PM−1b as in (5.7). Then z′i = Pzi for all i ≥ 0, the matrices T, PT, T , and
PT are convergent, ρ(T ) = ρ(T) = 1 when dim

(
N(G)

)
≥ 1, ρ(PT) = γ(T) < 1, ρ(PT ) = γ(T ) < 1,

and
γ(T) ≤ γ(T ), (5.10)

so that the convergence rate is never worse in the case G′ 6= 0. Moreover, we have the following limits

lim
i→∞

z′i = P( lim
i→∞

zi) = a, (5.11)

where a is the unique solution of (5.1). Each partial sum Zi =
∑

0≤j≤i−1(PT)jPM−1Pt, i ≥ 1, is
symmetric and limi→∞ Zi = Z where

Z =
∑

0≤j<∞

(PT)jPM−1Pt, (5.12)

is the symmetric generalized inverse of G with prescribed nullspace N(Z) = C⊥+iC⊥ and range R(Z) =
C = C+iC. Similar properties hold in the real case where G′ = Z ′ = 0 and Z =

∑
0≤j<∞(PT )jPM−1P t

is real and is the generalized inverse of G with prescribed range R(Z) = C and nullspace N(Z) = C⊥,
and each iterate Zi =

∑
0≤j<i−1(PT )jPM−1P t is positive semi-definite with R(Zi) = C.

The projected iterative algorithms applied to the transport linear systems have been successful for
accurate evaluation of multicomponent diffusion matrices in nonionized gas mixtures [28, 15, 17, 19, 18].
When applied to partially ionized mixtures, these algorithms have been found efficient at law ionization
levels [26, 33]. The convergence rates are also insensitive to the intensity of the magnetic when the
whole complex part iG′ is included in the splitting matrix M = M + iG′ as shown by the estimate
(5.10).

However, as investigated by Garćıa Muñoz [26] for planetary atmosphere and reported by Gio-
vangigli and Graille for high temperature air [33], the corresponding convergence rates deteriorate
when ionization levels increase. The solution of this problem requires introducing new formulations of
the transport linear systems investigated in the following section. The stationary projected iterative
algorithms will then be performed with the new formulations.
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5.3 Generalized inverses and conjugate directions

We consider in this section the transport linear system in the real singular case (2.8) under assumption
(G2). This situation is notably associated with isotropic multicomponent diffusion matrices. The
complex case associated with nonisotropy will be investigated in the next section.

We expand in this section the matrix G and the symmetric generalized inverse Z with nullspace
Rg and range g⊥ into dyadic products of conjugate directions. By truncating these expansions, we
reformulate the transport linear systems and the corresponding generalized inverse problem in the real
singular situation. The main idea is that a more singular formulation is required since by increasing
the nullspace of the matrices G and Z we increase that of the projector matrix P and we may decrease
the spectral radius of the corresponding product PT .

For the sake of notational simplicity, we will write z1 = z and g1 = g in this section. The matrix G
is symmetric positive demi-definite, N(G) = Rz1, and defining Z as the generalized inverse of G with
prescribed nullspace N(Z) = Rg1 and range R(Z) = g⊥1 , and letting Q = P t = I − g1⊗z1/〈g1, z1〉, we
have the relations

GZ = Q, ZG = P. (5.13)

We know from Theorem 5.4 that Z is symmetric and positive semi-definite. We now select z∗2 ∈ Rn

such that z∗2 /∈ Rz1 and define

z2 = z∗2 −
〈z∗2, g1〉

〈z1, g1〉
z1, g2 = Gz2. (5.14)

Note that 〈z2, g2〉 > 0 since 〈z2, g2〉 = 〈z2, Gz2〉 and z2 /∈ N(G) = Rz1, and by construction we have
〈z2, g1〉 = 0 and 〈z1, g2〉 = 0, so that g2 /∈ Rg1. We then introduce

G2 = G −
g2⊗g2

〈z2, g2〉
, Z2 = Z −

z2⊗z2

〈z2, g2〉
, (5.15)

P2 = I −
z1⊗g1

〈z1, g1〉
−

z2⊗g2

〈z2, g2〉
, Q2 = I −

g1⊗z1

〈z1, g1〉
−

g2⊗z2

〈z2, g2〉
, (5.16)

and by a direct calculation we obtain that

G2Z2 = Q2, Z2G2 = P2. (5.17)

The expression

〈G2x, x〉 =
〈
G
(
x − 〈x,g2〉

〈z2,g2〉
z2

)
, x − 〈x,g2〉

〈z2,g2〉
z2

〉
, (5.18)

further yields that G2 is positive semi-definite and N(G2) = span{z1, z2}. Indeed, if G2x = 0 we obtain

that x − 〈x,g2〉
〈z2,g2〉

z2 ∈ Rz1 and x ∈ span{z1, z2} and conversely we have z1, z2 ∈ N(G2) by construction.

Proceeding similarly for Z2, we obtain that Z2 is positive semi-definite and N(Z2) = span{g1, g2}. We
thus deduce that Z2 is the generalized inverse of G2 with prescribed nullspace N(Z2) = span{g1, g2}
and range R(Z2) = span{g1, g2}

⊥, and G2 is the generalized inverse of Z2 with prescribed nullspace
N(G2) = span{z1, z2} and range R(G2) = span{z1, z2}

⊥. Letting a2 = Z2b, b2 = Q2b, we further
obtain after some algebra the new transport linear system

{
G2a2 = b2,

〈a2, g1〉 = 〈a2, g1〉 = 0.
(5.19)

Thanks to 〈z1, g2〉 = 〈z2, g1〉 = 0, 〈z1, g1〉 > 0, and 〈z2, g2〉 > 0, it is easily checked that N(G2) ⊕
span{g1, g2}

⊥ = R
n and b2 ∈ R(G2) by contruction so that we deduce from Proposition 5.2 that the

system (5.19) is well posed. Therefore, its unique solution is given by a2 = Z2b and the solution of the
original system a can be written

a = a2 +
〈z2, b〉

〈z2, b〉
z2. (5.20)

The main idea is that the projected iterative algorithm applied to the more singular system (5.19)
will involve a matrix P2T2 with a lower spectral radius than PT by properly tuning z2. As a typical
exemple, assume for instance that z2 is an eigenvector for T associated with an eigenvalue nearby unity
1 − ǫ where ǫ > 0 so that Gz2 = ǫMz2 with z2 6= 0. From Theorem 5.7 we know that 1 − ǫ is also an
eigenvalue of the matrix PT with eigenvector P z2 and that all nonzero eigenvalue of PT are similarly
nonunity eigenvalues of T . Then z2 can be taken of order unity but g2 = Gz2 = ǫMz2 is small, say
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O(ǫ). Then from (5.15) G − G2 = O(ǫ) and Z − Z2 = O(1/ǫ), and we may let for the sake of the
argument M2 ≃ M1 = M , W2 ≃ W1 = W . Furthermore, it is established in [33] that

γ(Ti) = sup
{ |〈Wix, x〉|

〈Mix, x〉
; x ∈ R

n, x 6= 0, 〈Mizj , x〉 = 0, 1 ≤ j ≤ i
}
, (5.21)

where i = 1, 2. As a consequence, we see that the bad eigenvalue 1 − ǫ of T associated with the
vector z2 is now eliminated when estimating γ(T2) since it has been made an exact singularity of G2.
More specifically, the relevant vectors to be considered for γ(T2) are now orthogonal to Mz2 = g2/ǫ
and this excludes z2. In addition, from Theorem 5.7, all eigenvectors of P2T2 associated with nonzero
eigenvalues are projections P2w2 of eigenvectors w2 of T2 in such a way that all components of such
eigenvectors of T2 along span{z1, z2} are killed by P2.

Remark 5.10. The identity (5.21) is easily established by considering the new scalar product 〈〈x, y〉〉 =
〈Mx, y〉, x, y ∈ Rn. With respect to this scalar product, the matrix T = M−1W is then symmetric
since

〈〈Tx, y〉〉 = 〈MTx, y〉 = 〈Wx, y〉 = 〈M−1Mx, Wy〉 = 〈Mx, Ty〉 = 〈〈x, T y〉〉.

As a direct application of spectral properties of symmetric matrices, we know that T has a complete
set of real eigenvectors orthogonal with respect to 〈〈 , 〉〉. In addition, the eigenspace associated with the
eigenvalue 1 is the eigenspace N(I − T ) = N(G), 〈〈Tx, x〉〉 = 〈Wx, x〉, 〈〈x, x〉〉 = 〈Mx, x〉, and (5.21)
easily follows [33].

Generalizing these ideas, we now expand the matrices G and Z into tensor products of conjugate
directions and introduce the corresponding more singular formulations of the transport linear systems.

Theorem 5.11. Assume that G is symmetric positive semi-definite, N(G) = Rz, 〈z, g〉 6= 0, and let
Z be the generalized inverse of G with nullspace Rg and range g⊥. Let z∗i , 1 ≤ i ≤ n, be a basis of
Rn with z∗1 = z, and define for convenience z1 = z∗1 = z, g1 = g, G1 = G, Z1 = Z, P1 = P , Q1 = Q,
G0 = G1 + g1⊗g1/〈z1, g1〉, and Z0 = Z1 + z1⊗z1/〈z1, g1〉. Define then inductively for k ≥ 1 the vectors

zk = z∗k −
∑

1≤j≤k−1

〈z∗k, gj〉

〈zj , gj〉
zj , gk = Gk−1zk, (5.22)

the linear operators

Gk = Gk−1 −
gk⊗gk

〈zk, gk〉
, Zk = Zk−1 −

zk⊗zk

〈zk, gk〉
, (5.23)

and the projectors

Qk = I −
∑

1≤i≤k

gi⊗zi

〈zi, gi〉
, Pk = I −

∑

1≤i≤k

zi⊗gi

〈zi, gi〉
. (5.24)

Then the vectors zi, gi, 1 ≤ i ≤ n, is such that 〈zi, gi〉 > 0, span{z1, . . . , zi} = span{z∗1, . . . , z
∗
i },

gi = Gi−1zi, zi = Zi−1gi, 1 ≤ i ≤ n, 〈zi, gj〉 = 0 if i 6= j, 1 ≤ i, j ≤ n. Moreover, for any 0 ≤ k ≤ n
we have the relations

GkZk = Qk, ZkGk = Pk, (5.25)

where Pk is the projector onto span{g1, . . . , gk}
⊥ parallel to span{z1, . . . , zk}, Qk is the projector onto

span{z1, . . . , zk}
⊥ parallel to span{g1, . . . , gk}, and P0 = Q0 = I, G0Z0 = Z0G0 = I, Gn = Zn =

Pn = Qn = 0. In addition, for any 0 ≤ k ≤ n, Gk and Zk are symmetric positive semi-definite,
N(Gk) = span{z1, . . . , zk}, R(Gk) = span{z1, . . . , zk}

⊥, Zk is the generalized inverse of Gk with pre-
scribed nullspace N(Zk) = span{g1, . . . , gk} and range R(Zk) = span{g1, . . . , gk}

⊥, and Gk is the gen-
eralized inverse of Zk with nullspace N(Gk) = span{z1, . . . , zk} and range R(Gk) = span{z1, . . . , zk}

⊥.
Finally, we have gi = Gzi, zi = Zgi, 2 ≤ i ≤ n, g⊥ = span{z2, . . . , zn}, the directions zi, 2 ≤ i ≤ n,
are conjugate for G, the directions gi, 2 ≤ i ≤ n are conjugate for Z, and we have the decompositions

G =
∑

2≤j≤n

gi⊗gi

〈zi, gi〉
, Z =

∑

2≤j≤n

zi⊗zi

〈zi, gi〉
, (5.26)

I =
∑

1≤j≤n

gi⊗zi

〈zi, gi〉
=

∑

1≤j≤n

zi⊗gi

〈zi, gi〉
. (5.27)
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Proof. The proof is established by induction and we have already established the properties of z2, g2,
G2, Z2, P2 and Q2. Assume now that k steps of the procedure have been taken and that 2 ≤ k < n
and consider the vector zk+1 defined from (5.22). From this definition we obtain that 〈zk+1, gl〉 = 0
for 1 ≤ l ≤ k and it is easily checked that span{z1, . . . , zk+1} = span{z∗1, . . . , z

∗
k+1}. Defining gk+1 =

Gkzk+1 we obtain that 〈gk+1, zl〉 = 0 for 1 ≤ l ≤ k, since R(Gk) = span{z1, . . . , zk}
⊥, and similarly

that zk+1 = Zkgk+1 since zk+1 ∈ span{g1, . . . , gk}
⊥ and ZkGk = I −

∑
1≤i≤k zk⊗gk/〈zk, gk〉 from

the induction hypothesis. Moreover, 〈zk+1, gk+1〉 > 0 since z∗k+1 and thus zk+1 does not belong to
N(Gk) = span{z1, . . . , zk} and this also show that gk+1 6∈ span{g1, . . . , gk}. Upon defining Gk+1 and
Zk+1 from (5.23) these matrices Gk+1 and Zk+1 are symmetric and from

〈Gk+1x, x〉 =
〈
Gk

(
x −

〈x,gk+1〉
〈zk+1,gk+1〉

zk+1

)
,
(
x −

〈x,gk+1〉
〈zk+1,gk+1〉

zk+1

)〉
, (5.28)

we deduce that Gk+1 is positive semi-definite since Gk is positive semi-definite. Moreover we easily
deduce that N(Gk+1) = span{z1, . . . , zk+1} since N(Gk) = span{z1, . . . , zk}. Similarly, Zk+1 is pos-
itive semi-definite with N(Zk+1) = span{g1, . . . , gk+1}. A direct calculation also yields Gk+1Zk+1 =
Qk+1 and Zk+1Gk+1 = Pk+1 and it is straightforward to check that and Pk+1 is the projector onto
span{g1, . . . , gk+1}

⊥ parallel to span{z1, . . . , zk+1}, and Qk+1 is the projector onto span{z1, . . . , zk+1}
⊥

parallel to span{g1, . . . , gk+1}. As a consequence, Zk+1 is the generalized inverse of Gk+1 with pre-
scribed nullspace span{g1, . . . , gk+1} and range span{g1, . . . , gk+1}

⊥ and Gk+1 is the generalized in-
verse of Zk+1 with prescribed nullspace span{z1, . . . , zk+1} and range span{z1, . . . , zk+1}

⊥. The relation
G0Z0 = I is also established directly from the definitions of G0, Z0, and GZ = I − g1⊗z1/〈g1, z1〉.

The induction is therefore established and since N(Gn) = N(Zn) = Rn we deduce that Gn =
Zn = Pn = Qn = 0. Thanks to the relations (5.23) and Gn = 0 we next obtain that G =∑

2≤j≤n gk⊗gk/〈zk, gk〉 and similarly that Z =
∑

2≤j≤n zk⊗zk/〈zk, gk〉. These relation also implies
(5.27) from G0Z0 = I.

In addition, since dim
(
span{z2, . . . , zn}) = n − 1 and 〈g, zl〉 = 0, 2 ≤ l ≤ n, we deduce that

g⊥ = span{z2, . . . , zn}. Moreover, we have 〈gk, zl〉 = 0 for 2 ≤ k < l ≤ n, and gk = Gk−1zk. However,
Gk−1zk = Gzk thanks to the relations (5.23) in such a way that 〈Gzk, zl〉 = 0 for 2 ≤ k < l ≤ n and
thus for 2 ≤ k, l ≤ n and k 6= l, and the directions zk, 2 ≤ k ≤ n are conjugate for G. The proof for Z
and the directions gk, 2 ≤ k ≤ n is similar and the proof is complete.

In the following corollary we obtain the proper generalization of the transport linear systems (2.8)
and (5.19) corresponding respectively to k = 1 and k = 2.

Corollary 5.12. Keeping the notation of the preceding theorem, and letting bk = Qkb, the linear
system {

Gkak = bk,
〈ak, gl〉 = 0, 1 ≤ l ≤ k,

(5.29)

is well posed, its solution is ak = Zkb, and we have the expansion

a = ak +
∑

1≤l≤k

〈zk, b〉

〈zk, gk〉
zk, (5.30)

where a = a1 is the unique solution of Ga = b such that 〈a, g〉 = 0.

Proof. From Theorem 5.11 we know that N(Gk) = span{z1, . . . , zk} and the constraint space associated
with (5.29) is span{g1, . . . , gk}

⊥. These spaces are respectively of dimension k and n − k and their
intersection is zero

span{z1, . . . , zk} ∩ span{g1, . . . , gk}
⊥ = {0}.

Indeed, if z = α1z1+· · ·+αkzk and 〈z, gl〉 = 0, 1 ≤ l ≤ k, we directly obtain that αl = 0, 1 ≤ l ≤ k since
〈zi, gl〉 = 0 if i 6= l and 〈zi, gi〉 > 0 for 1 ≤ i ≤ k. This shows that N(Gk) ⊕ span{g1, . . . , gk}

⊥ = Rn

and (5.29) is well posed. From the relation GkZk = Qk and bk = Qkb we directly obtain that ak = Zkb
and from the relations between the generalized inverses Zk, k ≥ 1, we obtain (5.30).
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5.4 Conjugate directions in the anisotropic situation

We consider in this section the transport linear system in the complex singular case (3.7) under assump-
tions (G2)(G

′
2). In this situation, the matrix G is in the form G = G + iG′, where G, G′ are symmetric,

G positive demi-definite, N(G) = Rz, G′z = 0, and we define Z as the generalized inverse of G + iG′

with prescribed nullspace N(Z) = Cg and range R(Z) = g⊥ + ig⊥. We then have the relations

GZ = Q, ZG = P, (5.31)

where Q = P t = I − g⊗z/〈g, z〉, and we know from Theorem 5.4 that Z is symmetric. However, the
conjugate direction expansion cannot be performed as easily as in the real case. Indeed, the nondegen-
erate bilinear form (z, z′) =

∑
1≤i≤n ziz

′
i naturally associated with complex symmetric matrices is not

definite in Cn. As a consequence, we may encounter breakdowns arising from zero scalar product in
the decomposition into conjugate directions. In order to avoid such problems we will use the special
structure of the matrices G and restrict the vectors z∗i , 1 ≤ i ≤ n, to be real vectors.

Theorem 5.13. Assume that G is symmetric positive semi-definite, G′ is symmetric, z, g ∈ Rn,
N(G) = Rz, G′z = 0, G = G + iG′, 〈z, g〉 6= 0, and let Z be the generalized inverse of G with
nullscace Cg and range g⊥ + ig⊥. Let z∗i , 1 ≤ i ≤ n, be a basis of Rn with z∗1 = z, and define for
convenience z1 = z∗1 = z, g1 = g, G1 = G, Z1 = Z, Q1 = Q, P1 = P , G0 = G1 + g1⊗g1/(z1, g1), and
Z0 = Z1 + z1⊗z1/(z1, g1). Define then inductively for k ≥ 1 the vectors

zk = z∗k −
∑

1≤j≤k−1

(z∗k, gj)

(zj , gj)
zj , gk = Gk−1zk, (5.32)

the linear operators

Gk = Gk−1 −
gk⊗gk

(zk, gk)
, Zk = Zk−1 −

zk⊗zk

(zk, gk)
, (5.33)

and the projectors

Qk = I −
∑

1≤i≤k

gi⊗zi

(zi, gi)
, Pk = I −

∑

1≤i≤k

zi⊗gi

(zi, gi)
. (5.34)

Then the sequence of vectors zi, gi, 1 ≤ i ≤ n, is such that ℜ(zi, gi) > 0, span{z1, . . . , zi} =
span{z∗1, . . . , z

∗
i }, gi = Gi−1zi, zi = Zi−1gi, 1 ≤ i ≤ n, (zi, gj) = 0 if i 6= j, 1 ≤ i, j ≤ n. More-

over, for any 0 ≤ k ≤ n we have the relations

GkZk = Qk, ZkGk = Pk, (5.35)

where Pk is the projector onto span{g1, . . . , gk}
⊥ parallel to span{z1, . . . , zk}, Qk is the projector onto

span{z1, . . . , zk}
⊥ parallel to span{g1, . . . , gk}, and P0 = Q0 = I, G0Z0 = Z0G0 = I, Gn = Zn = Pn =

Qn = 0. In addition, for any 0 ≤ k ≤ n, Gk and Zk are symmetric, N(Gk) = span{z1, . . . , zk}, R(Gk) =
span{z1, . . . , zk}

⊥, the matrix ℜ(Gk) is positive semi-definite and N
(
ℜ(Gk)

)
= span{z1, . . . , zk}, and

N
(
ℜ(Gk)

)
⊂ N

(
ℑ(Gk)

)
. Moreover, Zk is the generalized inverse of Gk with prescribed nullspace

N(Zk) = span{g1, . . . , gk}, and range R(Zk) = span{g1, . . . , gk}
⊥. Conversely, Gk is the generalized in-

verse of Zk with prescribed nullspace N(Gk) = span{z1, . . . , zk}, and range R(Gk) = span{z1, . . . , zk}
⊥.

Finally, we have gi = Gzi, zi = Zgi, 2 ≤ i ≤ n, g⊥ = span{z2, . . . , zn}, the directions zi, 2 ≤ i ≤ n,
are conjugate for G whereas the directions gi, 2 ≤ i ≤ n, are conjugate for Z, and we have the decom-
positions

G =
∑

2≤j≤n

gi⊗gi

(zi, gi)
, Z =

∑

2≤j≤n

zi⊗zi

(zi, gi)
, (5.36)

I =
∑

1≤j≤n

gi⊗zi

(zi, gi)
=

∑

1≤j≤n

zi⊗gi

(zi, gi)
. (5.37)

Proof. The proof is established by induction on k as in the real case and the main idea in order to
avoid breakdowns is to use the fact that any subspace F ⊂ Cn spanned by real vectors is such that
F = F as in the proof of the positivity of the real part of diagonal coefficients in a complex Choleski
method [33].

We have already defined z1 = z∗1 = z and z2 and g2 are easily constructed as in the real case by
letting

z2 = z∗2 −
(z∗2, g1)

(z1, g1)
z1, g2 = Gz2. (5.38)
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Then we have z2 ∈ Rn, g2 ∈ Cn, (z2, g1) = 0, (g2, z1) = (Gz2, z1) = (z2, Gz1) = 0, ℜ(z2, g2) =
〈Gz2, z2〉 6= 0 since z2 /∈ N(G) = Rz1. Moreover Zg2 = ZGz2 = z2 since (z2, g1) = 0 and obviously
span{z1, z2} = span{z∗1, z

∗
2}. Defining then G2, Z2, P2, and Q2, from (5.33)(5.34) with k = 2 a direct

calculation yields the relations G2Z2 = Q2, Z2G2 = P2, and it is straighforward to check that P2 is
the projector onto span{g1, g2}

⊥ parallel to span{z1, z2}, and Q2 is the projector onto span{z1, z2}
⊥

parallel to span{g1, g2}. Moreover, since N(G) = Cz1 and by construction

G2x = G

(
x − (Gz2,x)

(z2,Gz2)
z2

)
,

we deduce that G2x = 0 implies x ∈ span{z1, z2} and conversely G2z1 = G2z2 = 0 so that N(G2) =
span{z1, z2}. This now implies that R(G2) = span{z1, z2}

⊥ and proceeding similarly we obtain that
N(Z2) = span{g1, g2} and R(Z2) = span{g1, g2}

⊥.
Assume then that k steps of the procedure have been taken where 2 ≤ k < n and consider the

vector zk+1 defined from (5.32). From this definition we obtain that (zk+1, gl) = 0 for 1 ≤ l ≤ k, and it
is easily established that span{z∗1, . . . , z

∗
k+1} = span{z1, . . . , zk+1}. Defining gk+1 = Gkzk+1 we obtain

that (gk+1, zl) = 0 for 1 ≤ l ≤ k, since R(Gk) = span{z1, . . . , zk}
⊥, and similarly that zk+1 = Zkgk+1

since zk+1 ∈ span{g1, . . . , gk}
⊥ and ZkGk = I−

∑
1≤i≤k zk⊗gk/(zk, gk) from the induction hypothesis.

We now establish that ℜ(zk+1, gk+1) > 0 and this will also prove that gk+1 6∈ span{g1, . . . , gk}. Indeed,
we have (gk+1, zk+1) = (Gkzk+1, zk+1) so that (gk+1, zk+1) = (Gkzk+1, z

∗
k+1) since (gk+1, zl) = 0,

1 ≤ l ≤ k, and similarly (gk+1, zk+1) = (Gkzk+1, zk+1) since zk+1 − z∗k+1 ∈ span{z∗1, . . . , z
∗
k} and

thus zk+1 − z∗k+1 ∈ span{z∗1, . . . , z
∗
k} since z∗1, . . . , z

∗
k are real vectors. We have thus established that

(gk+1, zk+1) = (Gkzk+1, zk+1) = 〈Gkzk+1, zk+1〉 and we may now use Gkzk+1 = Gzk+1 which is a
consequence of (5.33) and (zk+1, gl) = 0, 1 ≤ l ≤ k, to obtain that (gk+1, zk+1) = 〈Gzk+1, zk+1〉. We
may now use the identity ℜ〈Gz, z〉 = 〈Gx, x〉 + 〈Gy, y〉 valid for z ∈ C

n, x, y ∈ R
n, z = x + iy to

conclude that ℜ(gk+1, zk+1) > 0 since zk+1 6∈ Cz1 for k ≥ 1.
Upon defining Gk+1 and Zk+1 from (5.33), Gk+1 and Zk+1 are symmetric and the nullspace of Gk+1

is easily deduced from that of Gk as in the special case k = 1. We thus deduce the range of Gk+1 and we
can proceed similarly for Zk+1. A direct calculation also yields Gk+1Zk+1 = Qk+1 and Zk+1Gk+1 = Pk+1

and it is straightforward to check that and Pk+1 is the projector onto span{g1, . . . , gk+1}
⊥ parallel to

span{z1, . . . , zk+1}, and Qk+1 is the projector onto span{z1, . . . , zk+1}
⊥ parallel to span{g1, . . . , gk+1}.

As a consequence, Zk+1 is the generalized inverse of Gk+1 with prescribed nullspace span{g1, . . . , gk+1}
and range span{g1, . . . , gk+1}

⊥ and Gk+1 is the generalized inverse of Zk+1 with prescribed nullspace
span{z1, . . . , zk+1} and range span{z1, . . . , zk+1}

⊥. The relation G0Z0 = I is also established directly
from the definitions of G0, Z0, and GZ = I − g1⊗z1/(g1, z1).

The induction is therefore established, aside from the positivity properties of ℜ(Gk), and since
N(Gn) = N(Zn) = Cn we deduce that Gn = Zn = Pn = Qn = 0. From Gn = 0 and (5.33) we deduce
that G =

∑
2≤j≤n gk⊗gk/(zk, gk) and similarly that Z =

∑
2≤j≤n zk⊗zk/(zk, gk). These relations

finally implies the expansions (5.37) from G0Z0 = I.
We now show that ℜ(Gk) is positive definite with nullspace span{z1, . . . , zk}. To establish this

property, we will prove that
(
ℜ(Gk)z, z

)
≥ 0 when z ∈ R

n and that
(
ℜ(Gk)z, z

)
= 0 if and only if z ∈

span{z∗1, . . . , z
∗
k}. An easy induction first establishes that span{g1, . . . , gk} = span

{
G0(z

∗
1), . . . , G0(z

∗
k)
}
,

thanks to gk = Gk−1zk = G0zk and zk − z∗k ∈ span{z∗1, . . . , z
∗
k−1}. As a consequence,

span{z∗1, . . . , z
∗
k} ⊕ span

{
G0(z

∗
1), . . . , G0(z

∗
k)
}⊥

= C
n,

and for any z ∈ Cn we may write z =
∑

1≤i≤k αiz
∗
i +w where (w, gl) = 0, 1 ≤ l ≤ k, and

(
w, G0(z

∗
l )
)

= 0,

1 ≤ l ≤ k. After some algebra, upon denoting γ the inverse of the matrix
(
(z∗i , G(z∗j )

)
1≤i,j≤k

, we

obtain that w =
(
I −

∑
1≤i,j≤k γijz

∗
i ⊗G0(z

∗
j )
)
z. We now have the properties that Gkz = Gkw and

that Gkw = G0w in such a way that Gkz = G0w and Gk = G0 −
∑

1≤i,j≤k γijG0(z
∗
i )⊗G0(z

∗
j ). In

addition (Gkz, z) = (G0w, z) but since w − z ∈ span{z∗1, . . . , z
∗
k} we also have w − z ∈ span{z∗1, . . . , z

∗
k}

when z ∈ Rn and thus (Gkz, z) = (G0w, w) = 〈G0w, w〉 when z ∈ Rn. Now if w = a + ib we have
ℜ〈G0w, w〉 = 〈G0a, a〉+〈G0b, b〉 where G0 = G+g1⊗g1/〈z1, g1〉 is positive definite so that ℜ(Gkz, z) ≥ 0
when z ∈ Rn and it is zero if and only if w = 0. Finally, the properties gi = Gzi, zi = Zgi, 2 ≤ i ≤ n,
g⊥ = span{z2, . . . , zn}, and the fact that the directions zi, 2 ≤ i ≤ n, are conjugate for G and the
directions gi, 2 ≤ i ≤ n, are conjugate for Z, are established as in the real case and the proof is
complete.

Corollary 5.14. Keeping the notation of the preceding theorem, and letting bk = Qkb, the linear system
{

Gkak = bk,
(ak, gl) = 0, 1 ≤ l ≤ k,

(5.39)
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is well posed, its solution is ak = Zkb, and we have the expansion

a = ak +
∑

1≤l≤k

(zk, b)

(zk, gk)
zk, (5.40)

where a = a1 is the unique solution of Ga = b such that 〈a, g〉 = 0.

Proof. The proof is similar to that of the real case.

As a special important case we have

G2 = G − g2⊗g2/(z2, g2), Z2 = Z − z2⊗z2/(z2, g2), (5.41)

and
G2Z2 = Q2, Z2G2 = P2. (5.42)

Moreover, Z2 is the generalized inverse of G2 with prescribed nullspace N(Z2) = span{g1, g2} and range
R(Z2) = span{g1, g2}

⊥, and G2 is the generalized inverse of Z2 with prescribed nullspace N(G2) =
span{z1, z2} and range R(G2) = span{z1, z2}

⊥. Letting a2 = Z2b, b2 = Q2b, we obtain the new
transport linear system {

G2a2 = b2,

(a2, g1) = (a2, g1) = 0.
(5.43)

This system is well posed and its unique solution is given by a2 = Z2b and the solution of the original
system a can be written

a = a2 +
(z2, b)

(z2, b)
z2. (5.44)

We now investigate more closely the structure of the matrices ℜ(G2) and ℑ(G2). We evaluate the
matrix ℜ(G2) and establish that ℑ(G2) shares a similar form with ℑ(G1) = G′ when the later matrix
reads G′ = QD′P . After some lengthy algebra, thanks to z2 ∈ Rn, one can indeed establish that

ℜ(G2) = G −
Gz2⊗Gz2

〈Gz2, z2〉
+

r2⊗r2

〈Gz2, z2〉m2
,

ℑ(G2) =
(
I − s1⊗z1 − s2⊗z2

)
D′
(
I − z1⊗s1 − z2⊗s2

)
,

where D′ is the diagonal matrix such that G′ = QD′P , m2 = (Gz2, z2)
2 + (G′z2, z2)

2, and where

r2 = (G′z2, z2)Gz2 − (Gz2, z2)G
′z2,

s1 =
g1

〈z1, g1〉
s2 =

mGz2 + (Gz2, z2)Gz2 + (G′z2, z2)G
′z2

m
(
m + (Gz2, z2)

) .

These expressions greatly simplify when (G′z2, z2) = 0 and then m = (Gz2, z2) which is often the case
in practice as discussed in Section 7. Thanks to the special structure of ℑ(G2), the inverse of a matrix
in the form M + iℑ(G2), where M ∈ Rn,n is symmetric positive definite, is easily expressed in terms of
the inverse of M + iD′ as described in [33].

6 Orthogonal residual algorithms

Conjugate gradients-type methods—used with preconditioning—are among the most effective iterative
procedures for solving Hermitian systems [37, 41, 34]. Projected conjugate gradients methods have
been introduced in particular to solve real symmetric constrained singular semi-definite systems aris-
ing from multicomponent transport [28, 15, 19]. For general linear systems, however, one cannot obtain
short recurrence algorithms which globally minimize some error norm over the corresponding Krylov
subspaces unless the matrix has certain rather special spectral properties [21]. Complex symmetric
systems have been investigated motivated by electromagnetic applications [22, 24, 25, 3, 32, 33]. In
particular, projected orthogonal residuals have been investigated in order to solve the complex sym-
metric constrained singular systems arising from magnetized multicomponent transport [22, 32, 33].
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These algorithms reduce to projected conjugate gradients methods in the absence of magnetization,
that is, when the imaginary part of the system matrix vanishes.

We investigate in this section the links between orthogonal residuals techniques and the expansions
into conjugate directions obtained in the previous section. We establish that projected orthogonal
residuals algorithms applied to the more singular formulations of the transport linear systems are
equivalent to constraining the first search directions.

6.1 Projected orthogonal directions

We present in this section a projected orthogonal residuals method for constrained singular linear
systems arising from multicomponent transport [33]. We consider again a matrix in the form G = G+iG′

where G, G′ are real symmetric matrices, G is positive semi-definite and G′N(G) = 0, a vector b ∈ R(G),
a subspace C ⊂ Rn complementary to N(G) and C the complexification of C. This algorithms is
associated to the particular choice B = A in the paper of Faber and Manteuffel on orthogonal errors
methods in such a way that the errors are computable [22]. Note that the projector onto C parallel to
N(G)+ iN(G) = N(G+ iG′) coincide with the projector onto C parallel to N(G) and is denoted by P.

Assuming that M ∈ Rn,n is hermitian positive definite, the projected preconditioned orthogonal
residuals algorithm can be described as follows. Let z0 ∈ Cn, be an initial guess, z′0 = Pz0, r′0 =
b − Gz′0, p′0 = PM−1r′0. If 〈Gp′0, p

′
0〉 = 0 we stop at step 0, whereas if 〈Gp′0, p

′
0〉 6= 0 we define

σ′
0 = 〈r′0, p

′
0〉/〈Gp′0, p

′
0〉, ν′

00 = 〈GM−1Gp′0, p
′
0〉/〈Gp′0, p

′
0〉, and p′1 = PM−1Gp′0 − ν′

00p
′
0, z′1 = z′0 + σ′

0p
′
0,

and r′1 = r′0 − σ′
0Gp′0. Assume now by induction that for k ≥ 1 we have defined {p′i}0≤i≤k, {z′i}0≤i≤k,

{r′i}0≤i≤k, with
∏

0≤i≤k−1〈Gp′i, p
′
i〉 6= 0, r′i = b − Gz′i, 0 ≤ i ≤ k, and

〈M−1r′i, r
′
j〉 = 0, 0 ≤ j < i ≤ k, (6.1)

〈Gp′i, p
′
j〉 = 0, 0 ≤ j < i ≤ k, (6.2)

〈r′i, p
′
j〉 = 0, 0 ≤ j < i ≤ k, (6.3)

Ki = span(r′0, . . . , r
′
i), = span(r′0, . . . , (GM−1)ir′0), 0 ≤ i ≤ k,

K′
i = span(p′0, . . . , p

′
i) = PM−1Ki, Ki = HK′

i, 0 ≤ i ≤ k, (6.4)

where dim(Ki) = i + 1 for 0 ≤ i ≤ k − 1 and where H = I −
∑

1≤i,j≤p γijzi⊗Mzj and (γij)1≤i,j≤p

is the inverse of the matrix
(
〈Mzi, zj〉

)
1≤i,j≤p

and dim(Ki) = dim(K′
i) = i + 1 for 0 ≤ i ≤ k − 1.

Then 〈Gp′k, p′k〉 = 0 if and only if r′k = 0 and in this situation we stop at step k. On the other hand if
〈Gp′k, p′k〉 6= 0 we introduce the solution ν′

k0, . . . , ν
′
kk of the linear systems




〈Gp′0, p
′
0〉

〈Gp′0, p
′
1〉 〈Gp′1, p

′
1〉

...
...

. . .

〈Gp′0, p
′
k〉 〈Gp′1, p

′
k〉 . . . 〈Gp′k, p′k〉







ν′
k0

ν′
k1
...

ν′
kk


 =




〈GM−1Gp′k, p′0〉
〈GM−1Gp′k, p′1〉

...
〈GM−1Gp′k, p′k〉


 , (6.5)

σ′
k = 〈r′k, p′k〉/〈Gp′k, p′k〉 and we set

p′k+1 = PM−1Gp′k −
∑

0≤j≤k

ν′
kjp

′
j , z′k+1 = z′k + σ′

kp′k, r′k+1 = r′k − σ′
kGp′k. (6.6)

Theorem 6.1. The projected preconditioned orthogonal residuals algorithm is well defined and con-
verges in at most rank(G) steps towards the unique solution a of Ga = b and a ∈ C. Moreover, the
iterates z′k, k ≥ 1, are the projections of the iterates zk, k ≥ 1, of the corresponding unprojected
algorithm [33].

When the magnetic part G′ vanishes and G = G is positive semi-definite we recover the projected
version of the conjugate gradient algorithm [22, 19].

Remark 6.2. The preceding algorithm correspond to the unpreconditioned version applied to a the
system rewritten in the form {

B−1GB−∗(B∗a) = B−1b,
B∗a ∈ B∗C,

(6.7)
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where B is an invertible matrix, B∗ its adjoint and B−∗ the inverse of the adjoint. The resulting
algorithm is then rewritten with the help of the hermitian matrix M = BB∗. In order to precondition
the orthogonal residuals algorithm one may also consider the following reformulation of (5.1)

{
B−1GB−1(Ba) = B−1b,
Ba ∈ BC,

(6.8)

where B is an invertible matrix. The corresponding iterative scheme is more complex than the algorithm
associated with (6.7) and is not guarantee to converge.

6.2 Conjugate directions versus conjugate gradients

When applied to a symmetric positive semi-definite matrix G the projected orthogonal residuals al-
gorithm yield the projected conjugate gradient algorithm for singular systems [22, 33]. Starting form
x0 = 0, the approximate solution is then obtained in the form

p′0
〈p′0, r

′
0〉

〈Gp′0, p
′
0〉

+ · · · + p′l
〈p′l, r

′
l〉

〈Gp′l, p
′
l〉

,

where l + 1 is the dimension of the subspace spanned by the vectors Gkb, k ≥ 0. Thanks to the
symmetry of G we then have the classical relations 〈p′l, r

′
l〉 = 〈p′l, r

′
0〉 = 〈p′l, b〉 in such a way that the

generalized inverse Z is approximated in the form

p′0⊗p′0
〈Gp′0, p

′
0〉

+ · · · +
p′l⊗p′l

〈Gp′l, p
′
l〉

,

over the Krylov subspace span{b, . . . , Glb}. An important difference with the expansion into conjugate
directions (5.26) obtained in Theorem 5.11 in therefore that the fixed subspaces span{z1, . . . , zk},
k ≥ 1, which are independent of b, are now replaced by the Krylov subspaces span{b, . . . , Gib}, i ≥ 0.
Moreover, the algorithm associated with the expansion (5.26) is linear whereas orthogonal residuals
algorithms are non linear. Finally, we further obtain with the orthogonal residuals algorithm the
important relations 〈M−1r′i, r

′
j〉 = 0, 0 ≤ i, j ≤ l. Since the expansion associated with the more

singular formulation is associated with a decomposition of Z in the form

Z =
z2⊗z2

〈Gz2, z2〉
+ Z2,

we conclude that using the more singular formulation with projected conjugate gradients would con-
strain the first projected search direction p′0 to be the vector z2 and the subsequent directions would
then chosen in the Krylov subspaces associated with G2.

Similarly, in the complex magnetized case, starting from z0 = 0, the approximate solution is then
obtained in the form

p′0
〈p′0, r

′
0〉

〈Gp′0, p
′
0〉

+ · · · + p′l
〈p′l, r

′
l〉

〈Gp′l, p
′
l〉

, (6.9)

where l + 1 is the dimension of the subspace spanned by the vectors Gkb, k ≥ 0. When G is not
Hermitian, we do not have a simple relation between 〈p′i, r

′
i〉 and 〈p′i, r

′
0〉, i ≥ 1, where r′0 = Pb = b.

However, when z2 is a real vector, we have (Gz2, z2) = 〈Gz2, z2〉 and we may still interpret the first term
of the expansion

Z =
z2⊗z2

(Gz2, z2)
+ Z2,

as the first term of an expansion contraining the first projected search direction p′0 to be the real
direction z2.

After some algebra, one can further establish, by induction on i, expressions in the form

〈r′i, p
′
i〉 = 〈r′0, p

′
i〉 −

∑

0≤j≤i−1

αij〈r
′
0, p

′
j〉,

where the complex coefficients αij , 1 ≤ i ≤ l, 0 ≤ j ≤ i − 1, involve the quantities 〈Gp′k, p′l〉, 0 ≤ k ≤
l ≤ i − 1. This yields expansions of the generalized inverse Z of G in the form

∑

1≤i≤l

( pi⊗pi

〈Gp′i, p
′
i〉

−
∑

0≤j≤i−1

αij

pi⊗pj

〈Gp′i, p
′
i〉

)
, (6.10)
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over the Krylov subspace span{b, . . . , Glb}. In other words, since the orthogonal residuals algorithm
needs to use a positive definite scalar product, the Hermitian scalar product has been used. The price
to pay in then that only half of the conjugacy relations are generally satisfied, since G is symmetric
but not Hermitian, and the resulting expansion of Z is more complex than the expansions obtained
in a symmetric framework in Theorem 5.13. However, the orthogonal residuals algorithm is guarantee
to converge at variance with the symmetric expansion (5.36) which has been restricted to directions
spanned by real vectors. In addition, only the expansion (6.9) is used in practice, not the resulting
matrix expression (6.10).

Remark 6.3. The orthogonality relations between residuals do not necessarily hold when the search
directions are in prescribed subspaces as in Theorems 5.11 and 5.13. Letting for instance

A =

(
1 1
1 2

)
p0 =

(
1
0

)
b =

(
0
1

)

we obtain for x0 = 0 that r0 = b and σ0 = 〈r0, p0〉/〈Ap0, p0〉 = 0 so that r1 = r0 and 〈r1, r0〉 > 0.

7 Application to diffusion matrices

Numerical simulation of reactive flows with complex chemistry and detailed transport requires to
evaluate diffusion fluxes. When only the species diffusion velocities are to be evaluated—and not the
diffusion matrices—Stefan-Maxwell type equations can be solved by using either a projected conjugate
gradient method or—in the complex case—a projected orthogonal residuals algorithm as investigated
in Section 8. Only the diffusion velocities are required when an explicit time marching technique is
use to compute a multicomponent flow for instance. More generally, when fractional steps are used,
the diffusion velocities are also sufficient—that is, the diffusion coefficient matrices are not needed—if
the ‘diffusion time step’ is taken to be explicit. On the other hand, when an implicit time marching
method is used, the diffusion coefficients are then to be evaluated. We thus investigate in this section
the use of stationary iterative techniques in order to evaluate multicomponent diffusion matrices.

We first discuss the expansions of diffusion matrices obtained by using the theory of projected
iterative algorithms for constrained singular systems and the natural formulation of the transport
linear systems. We then discuss the new expansions associated with the more singular formulations of
the transport linear systems. We consider the first order diffusion in the isotropic case and then in the
nonisotropic magnetized case. We subsequently consider the higher order diffusion matrices which are
important in plasma modeling especially in order to evaluate the electrical conductivities.

In order to asses the accuracy of the resulting algorithms, numerical experiments are performed
with high temperature air. The correponding mixture is constituted by the ns = 11 species N2, O2,
NO, N, O, N+

2 , O+
2 , NO+, N+, O+, and e. The Thermodynamic properties have been estimated from

Gupta, Yos, Thomson and Lee [36] and the collision integrals from Wright, Bose, Palmer, and Levin
[55]. We have considered typical mixtures in the form

xN2 = xO2 = xNO = xN = xO = 0.2(1 − 10x)

xN+
2

= xO+
2

= xNO+ = xN+ = xO+ = x, xe = 5x,

where xA is the mole fraction of species A, the ionization parameter x is such that 0 ≤ x ≤ 0.1, and the
ionization level or degree is xe = 5x. The accuracy of the asymptotic expansions is investigated as de-
pending on the ionization parameter x and on the intensity of the magnetic field B. The corresponding
mass fractions are denoted by y1, . . . ,yns and are such that yk > 0, k ∈ S, and

∑
k∈S yk = 1. In all the

numerical experiments, the pressure is taken to be p = 0.1 atm and the temperature T = Th = 10000
K. Using other pressures or temperature would not significantly modify the accuracy of the asymptotic
expansions.

21



7.1 The real first order matrix

We investigate in this section the evaluation of the first order diffusion matrix D[00]. The corresponding
ns systems presented in Table 1 are of size n = ns and written in the form

{
∆aDk

[00] = bDk
[00]

〈aDk
[00], y〉 = 0,

k ∈ S, (7.1)

and the first order diffusion coefficients are then evaluated from

D[00]kl = 〈aDk
[00]

, bDl
[00]

〉, k, l ∈ S. (7.2)

The Stefan-Maxwell matrix ∆ can be written in the form [11, 23, 28, 29]

∆kk =
∑

l∈S
l 6=k

xkxl

Dkl

, ∆kl = −
xkxl

Dkl

, k, l ∈ S, k 6= l,

where x1, . . . ,xns are the species mole fractions and Dkl, k, l ∈ S, are the species binary diffusion
coefficients. This matrix ∆ is symmetric positive definite with nullspace N(∆) = Ru, R(∆) = u⊥,
where u ∈ Rns

is given by u = (1, . . . , 1)t, 2diag(∆) − ∆ is positive definite and ∆ is a singular
M-matrix [49, 28]. The right hand sides bDk

[00] are given by

bDk
[00] = ek − y, k ∈ S,

where ek, k ∈ S, are the standard basis vectors of Rns

and y is the mass fractions vector y =
(y1, . . . ,yns)t in such a way that bDk

[00]i = δki − yi, i, k ∈ S. Since bDk
[00] ∈ R(∆), k ∈ S, and

〈u, y〉 = 1, the transport linear systems (7.1) are well posed and from D[00]kl = 〈∆bDk
[00], b

Dl
[00]〉 and

the symmetry of ∆, we deduce the symmetry of D[00]. We also have D[00]kl = 〈aDk
[00], b

Dl
[00]〉 = 〈aDk

[00], e
l〉

since 〈aDk
[00], y〉 = 0 in such a way that D[00]kl = aDk

[00]l = aDl

[00]k. Thanks these relations and to lin-
earity, the transport linear systems (7.1) imply the matrix relations ∆D[00] = Q, and D[00]y = 0
where Q = I − y⊗u = [bD1

[00], . . . , b
Dns

[00] ]. Since D[00]y = 0 and D[00] is symmetric we next obtain that
R(D[00]) ⊂ y⊥. In addition, since D[00] and ∆ are symmetric, we deduce from ∆D[00] = Q upon trans-
posing that D[00]∆ = P so that R(P ) = y⊥ ⊂ R(D[00]) and thus R(D[00]) = y⊥ and N(D[00]) = Ry.
Multiplying on the right ∆D[00] = Q by ∆ and on the left by D[00] we finally obtain that ∆D[00]∆ = ∆
and D[00]∆D[00] = D[00] since ∆u = 0, ∆ = ∆t, and D[00]y = 0. Therefore, D[00] is the generalized
inverse of ∆ with prescribed nullspace Ry and range y⊥ [27, 28, 19]. In particular, for any a > 0 we
have D[00] = (∆ + ay⊗y)−1 − (1/a)u⊗u.

As a direct application of Section 5, from the convergence of the projected iterative algorithm
applied to (7.1), or equivalently from the expansion of generalized inverses (5.12), we deduce that upon
using the splitting ∆ = M − W , with M = D where

D = diag
( ∆11

1 − y1
, . . . ,

∆ns,ns

1 − yns

)
, (7.3)

and letting T = M−1W and P = Qt = I − u⊗y, we have the convergent asymptotic expansion

D[00] =
∑

0≤j<∞

(PT )jPM−1P t. (7.4)

In the first term PM−1P t the matrix M−1 corresponds to the Hischfelder-Curtiss approximation and
the projector operation P to the addition of a species independent mass conservation corrector [51, 28].
In other words, if d = (d1, . . . , dns)t is a constrained diffusion driving force vector whose components
sum up to zero, we have d = P td, so that v = (v1, . . . ,vns)t is given by v = −M−1d + u〈y, d〉 where
−M−1d is the Hirschfelder-Curtiss approximation and u〈y, d〉 a species independent mass conservation
corrector [51]. However, the next approximation of D[00] with two terms is more interesting since it is
much more accurate and still yields (ns)2 coefficients within O

(
(ns)2

)
operations [28, 20].

The rescaled errors of the various iterates associated with the classical expansion (7.4) are presented
in Figure 1 for the ionization parameters x = 10−4, x = 10−3, and x = 10−2. These errors are calculated
with the Frobenius matrix norm ‖A‖2 =

∑
1≤i,j≤n a2

ij and rescaled by the initial error. We can see
that the convergence rates deteriorate as the ionization parameter x increases as first investigated by
Garcia Muñoz [26]. In particular, the convergence rate for x = 10−2, one of the worse case encountered,
is not satisfactory.
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Figure 1: Reduced errors of first order diffusion matrix classical approximations for various ionized
mixures; x = 10−4, • x = 10−3, and N x = 10−2
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Figure 2: Reduced errors of first order diffusion matrix new approximations for various ionized mixures;
x = 10−4, • x = 10−3, and N x = 10−2

We also investigated a splitting matrix M taking into account the line and column corresponding
to the electron in ∆. This matrix M is defined by Mij = Dij if i 6= ns and j 6= ns, and Mij = ∆ij

otherwise. However, it only marginally improved the bad convergence rates observed with increasing
ionization levels, suggesting that the small coefficients in ∆ and the large coefficient in D[00] associated
with electron [31] is not at the origin of the problem. This has been confirmed by investigating the
heavy species first order diffusion matrix associated with non equilibrium models—where the electron
species is suppressed—which yielded similar results as those presented in Figure 1.

In order to improve the convergence rates for increasing ionization levels, we have used the more
singular formulation (5.17) with the vector u∗2 defined by (u2)

∗
k = 1 if k ∈ I and (u2)

∗
k = 0 otherwise,

where I denotes the set of ionized species. Letting yc =
∑

k∈I yk the resulting vector u2 is such
that (u2)k = 1 − yc if k ∈ I and (u2)k = −yc otherwise. We then define u1 = u, y1 = y, y2 = ∆u2,
∆2 = ∆−y2⊗y2/〈u2, y2〉 (D[00])2 = D[00]−u2⊗u2/〈u2, y2〉, and we have ∆2(D[00])2 = Q2, N

(
(D[00])2

)
=

span{y1, y2}, Q2 = Q − u2⊗y2/〈u2, y2〉. The more singular formulation associated with (7.1) can then
be written {

∆2(a
Dk
[00])2 = (bDk

[00])2,〈
(aDk

[00])2, y1

〉
=
〈
(aDk

[00])2, y2

〉
= 0,

k ∈ S, (7.5)

where (bDk
[00])2 = Q2b

Dk
[00] and (D[00])2 can equivalently be defined by

(D[00])2kl =
〈
(aDk

[00]
)2, (b

Dl
[00]

)2
〉

= 0, k, l ∈ S.

We now set ∆2 = M2 − W2 with M2 = D2 where

D2 = diag
( (∆2)11

1 − (y1)1 − (y2)1
, . . . ,

(∆2)ns,ns

1 − (y1)ns − (y2)ns

)
, (7.6)

and when all mass fractions are positive the coefficients (∆2)kk and (Q2)kk = 1−(y1)k−(y2)k are always
positive, provided there are at least two neutral and two ionized species. Upon letting T2 = M−1

2 W2
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Figure 3: Reduced errors of heavy species first order diffusion matrix approximations for x = 10−2; •
classical expansion, new expansion with ∆2

and P2 = Qt
2 = I− u1⊗y1/〈u1, y1〉− u2⊗y2/〈u2, y2〉, and thanks to Theorem 5.9 and (5.12) we have the

expansion

D[00] =
u2⊗u2

〈u2, y2〉
+

∑

1≤j<∞

(P2T2)
jP2M

−1
2 P t

2 . (7.7)

The resulting errors of the successive approximations are presented in Figure 2 for the ionization
parameters x = 10−4, x = 10−3, and x = 10−2. These results show the much better convergence
behavior of the modified iterates (7.7). Using a more singular formulation with the matrices ∆3 and
(D[00])3 and a nullspace of dimension 3 did not significantly improved the convergence rates since
after elimination of the worse eigenvalue of T there remains a group of several ‘quasi largest’ similar
eigenvalues in T2 which cannot be taken into account with one single extra nullspace vector.

An eigenvalue analysis reveals that there is indeed one relatively isolated bad eigenvalue of the
matrix T associated with (7.4). The corresponding eigenvector further suggests the use of the vector
u∗2 defined by (u2)

∗
k = 1 if k ∈ I and (u2)

∗
k = 0 otherwise. This eigenvalue may be associated with

the small values of the binary diffusion coefficients between positively charged ions. This explains why
bad convergence rates are still observed for the heavy species diffusion matrices. Finally, in Figure
3 are presented the errors associated with the classical and new expansions of the heavy species first
order diffusion matrices for x = 10−2. This figure shows that the modified iterates also improve the
convergence rates for the heavy species first order diffusion matrices. Similar results have also been
found for other choices of the mixture mole fractions.

Remark 7.1. The modified diffusion matrix D[00] + αu⊗u can be used instead of D[00] to improve
the structure of Jacobian matrices of discretized systems of equations when all the mass fractions are
considred as independent unknowns and to suppress artificial singularities [27, 29].

7.2 The complex first order matrix

We investigate in this section the evaluation of the first order magnetized diffusion matrix D⊥
[00]

+iD⊙
[00].

The first order diffusion matrix parallel to the magnetic field D
‖
[00] can be evaluated as in the previous

section and is not further discussed. The corresponding ns systems presented in Table 2 are of size
n = ns and written in the form

{
(∆ + i∆′)aDk

[00] = bDk
[00]

〈aDk
[00], y〉 = 0,

k ∈ S, (7.8)

where where i2 = −1 and ∆′ is the magnetized part of the complex Stefan-Maxwell matrix. This matrix
is in the form ∆′ = (I − y⊗u)D′(I − u⊗y) and D′ is the diagonal matrix such that D′

kk = nkqkB/p
where B denotes the intensity of the magnetic field, nk, k ∈ S, the species mole per unit volume, qk,
k ∈ S, the species molar charges, and by p the pressure [32]. The first order diffusion coefficients are
then evaluated from

D⊥
[00]kl + iD⊙

[00]kl = 〈aDk
[00], b

Dl
[00]〉, k, l ∈ S. (7.9)
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Figure 4: Reduced errors of first order magnetized diffusion matrix new approximations for various
ionized mixures and B = 103; x = 10−4, • x = 10−3, and N x = 10−2

The symmetry properties of D⊥
[00]

and D⊙
[00] as well as the nullspace and range of D⊥

[00]kl + iD⊙
[00]kl

are derived as in the real case and the details are omitted. Furthermore, as in the isotropic case, the
transport linear systems imply the matrix relations (∆+i∆′)(D⊥

[00]
+iD⊙

[00]) = Q and (D⊥
[00]

+iD⊙
[00])y = 0.

The matrix ∆+i∆′ is such that N(∆+i∆′) = Cu, R(∆+i∆′) = u⊥+iu⊥ and it is easily established
that D⊥

[00] + iD⊙
[00] is the generalized inverse of ∆ + i∆′ with prescribed nullspace Cy and range y⊥. In

addition, for any α > 0, we have D⊥
[00]

+ iD⊙
[00] = (∆ + i∆′ + αy⊗y)−1 − (1/α)u⊗u.

As a direct application of the stationary iterative algorithms introduced in Section 5, we deduce
that, upon using the splitting ∆+i∆′ = M−W where M = D+i∆′ and D is the diagonal matrix (7.3)
such that Dkk = ∆kk/(1− yk), and letting T = M−1W and P = P = I − u⊗y, we have the convergent
asymptotic expansion

D⊥
[00] + iD⊙

[00] =
∑

0≤j≤∞

(PT)jPM−1Pt.

Furthermore, since ∆′ = (I − y⊗u)D′(I − u⊗y), where D′ is diagonal, the inverse of M = D + i∆′

can easily be expressed in terms of the inverse of the diagonal matrix D + iD′ in such a way that the
iterates are easily evaluated [32, 33]. Various approximations can then be obtained by truncating this
convergent series. The first approximation PM−1Pt generalizes the Hirschfelder-Curtiss approximation
with a mass corrector to the magnetized case [32]. The errors associated with the classical expansion
are similar to that of Figure 1 and are omitted.

In order to improve the convergence rates for increasing ionization levels, we have used the more
singular formulation (5.42) with the vector (u2)k = 1−yc if k ∈ I and (u2)k = −yc otherwise. Defining
u1 = u, y1 = y, y2 = (∆+i∆′)u2, (∆+i∆′)2 = (∆+i∆′)−y2⊗y2/(u2, y2), and (D⊥

[00]+iD⊙
[00])2 = (D⊥

[00]+

iD⊙
[00]) − u2⊗u2/〈u2, y2〉, we have (∆ + i∆′)2(D

⊥
[00]

+ iD⊙
[00])2 = Q2, N

(
(D⊥

[00]
+ iD⊙

[00])2
)

= span{y1, y2},
where Q2 = Q − u2⊗y2/〈u2, y2〉. The more singular formulation can then be written in the form

{
(∆ + i∆′)2(a

Dk
[00])2 = (bDk

[00])2,〈
(aDk

[00])2, y1

〉
=
〈
(aDk

[00])2, y2

〉
= 0,

k ∈ S, (7.10)

and (D⊥
[00]

+ iD⊙
[00])2 can equivalently be defined by

(D⊥
[00] + iD⊙

[00])2kl =
〈
(aDk

[00])2, (b
Dl
[00])2

〉
= 0, k, l ∈ S.

Upon letting (∆ + i∆′)2 = M2 − W2 and M2 = D2 + i∆′ where D2 is the diagonal matrix (7.6), and
T2 = M

−1
2 W2, P2 = Qt

2 = I − u1⊗y1/〈u1, y1〉 − u2⊗y2/〈u2, y2〉, we have the expansion

D⊥
[00]

+ iD⊙
[00]

=
u2⊗u2

(u2, y2)
+

∑

1≤j<∞

(P2T2)
jP2M

−1
2 Pt

2. (7.11)

The errors corresponding to the new expansion are presented in Figure 4. The errors are calculated
with the complex Frobenius matrix norm ‖A‖2 =

∑
1≤i,j≤n |aij |

2 and are rescaled by the initial error.
These results show the much better convergence behavior of the modified iterates (7.7). Finally, similar
results have been found for other choices of the mixture mole fractions.
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Figure 5: Reduced errors of higher order diffusion matrix new approximations for various ionized
mixures; x = 10−4, • x = 10−3, and N x = 10−2

7.3 Higher order diffusion matrices

We investigate in this section the evaluation of higher order approximations of diffusion matrices, also
accounting for the energy of the molecules. The corresponding ns linear systems presented in Table 1
are of size n = 2ns + np, where np denotes the number of polyatomic species of the mixture, and can
be written in the form {

LaDk = bDk

〈aDk , Y 〉 = 0,
k ∈ S. (7.12)

The diffusion coefficients are then given by

Dkl = 〈aDk , bDl〉, k, l ∈ S. (7.13)

The coefficents of the matrix L are intricate expressions involving collision integrals and internal energy
relaxation times that are detailed in references [15, 32]. The matrix L is symmetric positive definite,
N(L) = RU , R(L) = U⊥, and 2db(L)−L is positive definite when ns ≥ 3. Upon partitionning R2ns+np

into Rns

×Rns+np

, the nullspace vector U , the contraint vector Y , and the right hand sides bDk , k ∈ S,
are given by

U =

(
u

0

)
, Y =

(
y

0

)
, bDk =

(
bDk
[00]

0

)
, k ∈ S, (7.14)

where 0 denote the vector with zero components in Rns+np

, and u, y, bDk
[00], k ∈ S, have been defined

in the previous section in connection with the first order diffusion matrix. The right hand sides bDk ,
k ∈ S, can also be written

bDk = ek − Y , k ∈ S.

where ek, k ∈ S, are the standard basis vectors of Rn = R2ns+np

. Since bDk ∈ R(L), k ∈ S, and
〈U , Y 〉 = 1, the transport linear systems (7.12) are well posed and from Dkl = 〈LbDk , bDl〉 and the
symmetry of L, we deduce the symmetry of D. We also have Dkl = 〈aDk , bDl〉 = 〈aDk , el〉 since
〈aDk , Y 〉 = 0 in such a way that Dkl = aDk

l = aDl

k , 1 ≤ k, l ≤ ns.
Upon defining the blocks aD = [aD1 , . . . , aDns ] and bD = [bD1 , . . . , bDns ] the linear systems imply the

matrix relations L aD = bD, and Y taD = 0. We introduce the projectors Q = Pt = In − Y ⊗U , the
rectangular matrix Π, and we have the block decompositions

aD =

(
D

X

)
, bD =

(
Q

O

)
, Π =

(
Ins

O

)
, Q =

(
Q Ot

O Ins+np

)
, (7.15)

where O denotes the zero matrix in Rns+np,ns

, X a nonzero matrix in Rns+np,ns

, and Is the unit matrix
of size s.

We next introduce the generalized inverse Z of L with nullspace Y and range Y ⊥ which satisfies
LZ = Q, Z L = P , N(Z) = RY , and R(Z) = Y ⊥, and we also know that aDk = ZbDk , k ∈ S. As a
consequence, we have the relations

bD = QΠ, aD = ZΠ, (7.16)
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Figure 6: Reduced errors of higher order diffusion matrix classical • L, new L2, and H L3 expansions
for x = 10−2

since aD = ZbD = ZQΠ = ZΠ, and the higher order coefficients are given by D = ΠtaD = ΠtZΠ.
Projected stationary iterative algorithms can be used for solutions of (7.12) by using splittings in

the form L = M−W with M = db(L)+diag(σ1, . . . , σn) [15]. We then have the convergent asymptotic
expansion

aD =
∑

0≤j≤∞

(PT )jPM−1bD, (7.17)

and the higher order matrix D is then evaluated from D = ΠtaD. The iterates (aD)j , j ≥ 0, satisfy
(aD)j+1 = PT (aD)j + PM−1bD and only involve the product of the matrix PT ∈ R2ns+np,2ns+np

by
(aD)j ∈ R2ns+np,ns

. The iterates can also be deduced from the expansion (5.12) of generalized inverse
Z since aD = ZbD and bD = QbD. Since bD = QΠ, these relations also imply the identity

D = Πt
( ∑

0≤j≤∞

(PT )jPM−1Pt
)
Π,

but the iterates must be taken on the block aD prior to evaluate D.
In order to improve the convergence rates for increasing ionization levels, we have used the more

singular formulation (5.17) with the vector U2 defined by

U2 =

(
u2

0

)
(7.18)

where u2 ∈ Rns

has been defined for the first order matrices (u2)k = 1 − yc if k ∈ I and (u2)k = −yc

otherwise where yc =
∑

k∈I yk. Upon letting U1 = U , Y1 = Y , Y2 = LU2, L2 = L − Y2⊗Y2/〈U2, Y2〉,
Z2 = Z−U2⊗U2/〈U2, Y2〉, and aD

2 = aD−U2⊗u2/〈U2, Y2〉, we have L2Z2 = Q2, aD

2 = Z2b
D, bD

2 = Q2b
D,

N(Z2) = span{Y1, Y2}, Q2 = Q− Y2⊗U2/〈U2, Y2〉, and the more singular formulation can be written

{
L2a

Dk

2 = bDk

2 ,

〈aDk

2 , Y1〉 = 〈aDk

2 , Y2〉 = 0,
k ∈ S. (7.19)

Letting L2 = M2−W2, M2 = db(L2)+diag(σ1, . . . , σn), where σi, 1 ≤ i ≤ n, are nonnegative weights,
T2 = M−1

2 W2 and P2 = Qt
2 = I − U1⊗Y1/〈U1, Y1〉 − U2⊗Y2/〈U2, Y2〉, we have the expansion

aD

2 =
∑

0≤j≤∞

(P2T2)
jP2M

−1
2 bD

2 , (7.20)

and finally D = u2⊗u2/〈U2, Y2〉 + ΠtaD

2 or equivalently

D =
u2⊗u2

〈U2, Y2〉
+ Πt

∑

1≤j<∞

(P2T2)
jP2M

−1
2 Pt

2 Π. (7.21)

Only these modified formulations yield satisfactory results for all ionization levels. The resulting
errors of the successive approximations of D are presented in Figure 5 for the ionization parameters
x = 10−4, x = 10−3, and x = 10−2. These results show that the good convergence rates observed
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Figure 7: Reduced errors of higher order magnetized diffusion matrix new approximations for various
ionized mixures and B = 103; x = 10−4, • x = 10−3, and N x = 10−2

for first order matrices also hold for higher order matrices. The improvement of the convergence rates
is exhibited in Figure 6 where the convergence history of the expansions obtained from L and L2

are presented. We have also experimented an even more singular formulation with the matrix L3 and
various vectors U3 but no significant improvements have been obtained. The errors presented on Figure
6 corresponds to the vector U3 = (0ns , u2, 0np)t.

In the magnetized case, we have to solve the ns complex systems

{
(L + iL′) aDk = bDk ,
(aDk , Y ) = 0,

k ∈ S, (7.22)

where L′ = (I − Y ⊗U ) L′(I − U⊗Y ), and L′ is a diagonal matrix such that L′
kk = nkqkB/p, for k ∈ S,

L′
ns+k,ns+k = 5

2nkqkB/p, for k ∈ S, and L′
2ns+k,2ns+k = cint

k mknkqkB/Rp, for k ∈ P , where R is

the gas constant, mk the molar mass of the kth species, and cint
k the internal specific heat per unit

mass of the kth species. The matrix L = L + iL′ is complex symmetric, N(L + iL′) = CU , and
R(L + iL′) = U⊥ + iU⊥. Introducing the generalized inverse Z of L + iL′ with nullspace CY and
nullspace Y ⊥ we have as in the real case the relations bD = QΠ, aD = ZΠ. Upon using splittings in the
form L + iL′ = M− W with M = db(L) + iL′ + diag(σ1, . . . , σn), we obtain from the general results of
Section 5 similar expansions

D⊥ + iD⊙ = Π
( ∑

0≤j≤∞

(PT)jPM−1Pt
)
Πt,

but the convergence rates of these expansions decrease as ionization levels increase. As in the real
case, we have to use a more singular formulation in order to obtain a better convergence behavior for
higher ionization levels. These expansions are similar to real case and the details are omitted. The
resulting errors of the successive approximations of D⊥ + iD⊙ are presented in Figure 7 for B = 103

and x = 10−4, x = 10−3, and x = 10−2. These results show that the good convergence rates observed
for isotropic higher order matrices also hold for magnetized higher order matrices.

The higher order effects usually have a minor impact on the diffusion matrix of neutral species
mixtures [15]. They have a more important impact, however, on ionized mixtures. Our numerical

test for high temperature air have shown that the relative error in matrix norms ‖D‖ − D
‖
[00]‖/‖D

‖‖,

‖D⊥−D⊥
[00]‖/‖D

⊥‖, and ‖D⊙−D⊙
[00]‖/‖D

‖‖, can be large for ionization levels above 10−3. In addition,

higher order effects due to the energy of the molecules are always important, even for weakly ionized
mixtures, in order to evaluate the electrical conductivities [23, 6, 8, 9, 10].

8 Application to thermal conductivity and Stefan-Maxwell

equations

We investigate in this section iterative techniques in order to evaluate the thermal conductivity coeffi-
cients and the species diffusion velocities. Both problems can be solved by using generalized conjugate
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Figure 8: Reduced errors for conjugate gradient approximate thermal conductivities λ and various
ionized mixtures; x = 10−4, • x = 10−3, and N x = 10−2

gradient techniques. We consider both the isotropic case as well as the nonisotropic magnetized case.
In order to asses the accuracy of the resulting algorithms, numerical experiments are again performed
with high temperature air. In contrast with stationary techniques, it is found that generalized conju-
gate gradient techniques are efficient for all ionization levels and magnetic field intensities. Using the
more singular formulations only introduce a shift in the convergence history.

8.1 Transport linear systems associated with λ and χ

The linear system associated with the thermal conductivity presented in Table 1 is of size n = ns + np

and written in the form
Λaλ = bλ, (8.1)

where the coefficients of the matrix Λ are intricate expressions that are detailed in reference [15].
This system can directly be obtained from a variational formulation in the isotropic as well as in the
magnetized case [16, 32]. The matrix Λ is symmetric positive definite [15] and the thermal conductivities
and the thermal diffusion ratios are evaluated from the following products

λ =
p

T
〈aλ, bλ〉, χ = L00λaλ, (8.2)

where L00λ is the upper right block of L of size ns × (ns + np) in such a way that L has the bloc
decomposition

L =

(
∆ L00λ

Lλ00 Λ

)
. (8.3)

The coefficients of the matrices L00λ and L00λ = (L00λ)t are given in [15] and the rescaled thermal

diffusion ratios χ̃ are also obtained from the rescaled version L̃00λ of the block L00λ [20]. More

specifically, if L̃00λ is the matrix such that diag(x1, . . . ,xns)L̃00λ = L00λ then we have xiχ̃i = χi,

i ∈ S, where χ̃ is evaluated from χ̃ = L̃00λaλ.
In the nonisotropic case, the linear system associated with the thermal conductivities presented in

Table 2 is written in the form
(Λ + iΛ′)aλ = bλ, (8.4)

where Λ′ is the diagonal matrix given by (Λ′)kk = 5
2nkqkB/p, for k ∈ S, and (Λ′)ns+k,ns+k =

cint
k mknkqkB/Rp, for k ∈ P , where R is the gas constant, mk the molar mass of the kth species,

and cint
k the internal specific heat per unit mass of the kth species. The thermal conductivities and the

thermal diffusion ratios are given by the following products

λ⊥ + iλ⊙ =
p

T
〈aλ, bλ〉, χ⊥ + iχ⊙ = L00λaλ, (8.5)

and the rescaled thermal diffusion ratios are similarly obtained from the rescaled block L̃00λ [20].
In the numerical experiments, the matrices Λ, Λ′ and L00λ have been evaluated following the

approximations presented in [20]. The rotational relaxation times for internal energy of the polyatomic
ionized molecules have been approximated as the relaxation time of the corresponding neutral molecules
[1]. The isotropic systems (8.1) have been solved with a projected conjugate gradients technique and
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Figure 9: Reduced errors for orthogonal residuals approximate thermal conductivities λ‖, λ⊥, and λ⊙

and x = 10−2

the magnetized systems (8.4) by using a projected orthogonal residuals technique. In both situations,
a diagonal preconditionning matrix has been used. In Figure 8 are presented the convergence history
for various values of the ionization parameter x = 10−4, x = 10−3, and x = 10−2 and without
magnetization. The errors are defined by |λ − λk|/λ where λ is the thermal conductivity and λk the
kth iterate. In Figure 9 are presented the convergence history for x = 10−2 and B = 103 for λ = λ‖,
λ⊥, and λ⊙. The errors are defined similarly by |λ‖ − λ‖k|/λ‖, |λ⊥ − λ⊥k|/λ⊥, and |λ⊙ − λ⊙k|/|λ⊙|.
These figures shows the good behavior of the generalized conjugate gradient techniques independently
of the ionization level and of the magnetic field intensity.

These numerical simulations with partially ionized air have also shown that three iterations are
generally required in order to evaluate the thermal diffusion ratios with a good accuracy, whereas two
iterates are generally sufficient for the thermal conductivities.

8.2 Stefan-Maxwell equations

When only the species diffusion velocities are required—and not the diffusion coefficients—some type
of Stefan-Maxwell equations can be solved by using orthogonal residuals algorithms. The particular
form of the Stefan-Maxwell equations depends on the order of accuracy of the diffusion velocities and
on magnetization. As a general rule, the Stefan-Maxwell equations are easily derived from the tranport
linear systems upon multiplying on the right by the proper diffusion driving force vectors.

In the real isotropic case, multiplying on the right the system (7.1) by the species diffusion driving
forces vector dk, and summing over k, letting v[00] = (v[00]1, . . . ,v[00]ns)t, d = (d1, . . . , dns)t, and using
v[00]i = −

∑
j∈S D[00]ijdj , we obtain the classical Stefan-Maxwell relations

{
−∆v[00] = d − y

∑
l∈S dl,

〈v[00], y〉 = 0.
(8.6)

One may equivalently multiply the matrix form ∆D[00] by d = (d1, . . . , dns)t. The right hand side
Qd = d − y

∑
l∈S dl is the constrained diffusion driving forces vector whose components di − yi〈d, u〉,

i ∈ S, sum up to zero. The corresponding equations with Soret effect are obtained in a similar way
by using the modified the diffusion driving forces vector d + χ∇ log T where χ = (χ1, . . . , χns)t is
the thermal diffusion ratio vector. The Stefan-Maxwell equation can then be solved by a projected
conjugate gradient method in each spatial direction [15].

In the nonisotropic case, a complex form of the Stefan-Maxwell equations is similarly obtained
[32] by multiplying the system (7.8) on the right by the complex vector d

⊥
k − id⊙

k and summing over
k ∈ S. Letting v⊥

[00]
= (v⊥

[00]1, . . . ,v
⊥
[00]ns)t, and v⊙

[00] = (v⊙
[00]1, . . . ,v

⊙
[00]ns)t, the complex form of the

Stefan-Maxwell equations is found in the form

{
−(∆ + i∆′)(v⊥

[00]
− iv⊙

[00]) = d
⊥ − id⊙ − y

∑
l∈S(d⊥

l − id⊙
l ),

〈v⊥
[00] − iv⊙

[00], y〉 = 0.
(8.7)

The proper modifications of the complex Stefan-Maxwell equations in the presence of Soret effect
correspond to including the temperature gradient terms in the diffusion driving forces as discussed
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Figure 10: Reduced errors for conjugate gradient approximate diffusion velocities v and various ionized
mixtures; x = 10−4, • x = 10−3, and N x = 10−2
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Figure 11: Reduced errors for conjugate gradient approximate nonisotropic diffusion velocities with
x = 10−2; v‖, • v⊥, and N v⊙

in [33]. The nonisotropic magnetized Stefan-Maxwell equation can then be solved by an orthogonal
residuals method in each spatial direction [33].

Indeed, the Stefan-Maxwell relations between the velocity vectors v[00]1, . . . ,v[00]ns and the diffusion
driving force vectors d1, . . . , dns which are vectors of R3, only involve scalar coefficients, they may be
decomposed on the canonical basis of R3, and it is then sufficient to consider the case of scalar diffusion
velocities v[00]1, . . . , v[00]ns and scalar diffusion driving forces d1, . . . , dn, real for isotropic systems, and
complex for magnetized systems.

In the numerical tests, we have arbitrary selected a scalar diffusion driving force proportional
to the charge per unit volume (x1q1, . . . ,xnsqns)t. Other arbitrary selected diffusion driving forces
have yield similar convergence behavior. In Figure 10 are presented the convergence history without
magnetization B = 0 for the various ionization parameters x = 10−4, x = 10−3, and x = 10−2. The
errors are defined by ‖v[00]−vk

[00]
‖/‖v[00]‖ where v[00] = (v[00]1, . . . , v[00]ns)t is the scalar diffusion velocity

vk
[00] = (vk

[00]1, . . . , v
k
[00]ns)t the kth iterate, and ‖a‖ denotes the Euclidean norm of a ∈ Rn. Similarly, in

Figure 11 are presented the convergence history for x = 10−2 and B = 103 for v[00] = v
‖
[00], v⊥

[00], and v⊙
[00].

The errors are defined similarly by ‖v
‖
[00] − v

k‖
[00]‖/‖v

‖
[00]‖, ‖v

⊥
[00] − vk⊥

[00]‖/‖v
⊥
[00]‖, and ‖v⊙

[00] − vk⊙
[00]‖/‖v

⊙
[00]‖.

These figures show the good behavior of the generalized conjugate gradient techniques independently
of the ionization rate and of the intensity of the magnetic field.

Finally in Figure 12 are presented the convergence history of the conjugate gradient method without
magnetization B = 0 for x = 10−2 with the classical are the more singular formulation. The more
singular formulation is easily obtained from (7.5) upon multiplying on the right by the diffusion driving
forces dk and summing over k ∈ S. Upon defining (v[00])2 = −(D[00])2d, it is easily obtained that

{
−∆2(v[00])2 = Q2d,〈
(v[00])2, y1

〉
=
〈
(v[00])2, y2

〉
= 0.

(8.8)

We see that the conjugate gradient method is able to solve the linear system in its original form and

31



0 2 4 6 8
10–8

10–6

10–4

10–2

100

Iteration
E

rr
o
r

Figure 12: Reduced errors for conjugate gradient approximate diffusion velocities v for x = 10−2 with
the classical and the new • formulations of the transport linear systems

that there is simply a shift of one iterate in the error estimates in agreement with the fact that with
the more singular formulation there is one additional already prescribed search direction.

Higher order Stefan-Maxwell equations are easily derived from the transport linear systems but
can also be rewritten in terms of Schur complements. In the isotropic case, the higher order Stefan-
Maxwell equations are obtained by either multiplying the linear system (7.12) on the right by dk and
then summing over k ∈ S, or equivalently by multiplying the matrix form LaD = bD on the right by
d = (d1, . . . , dns)t. Upon defining v = −aDd, in such a way that vl = −aD

l d, 1 ≤ l ≤ 2ns + np, we
have v∈ (R3)n and the higher order Stefan-Maxwell equations are found in the form

{
−Lv = bDd,
〈v, Y 〉 = 0.

(8.9)

Upon partitionning (R3)2ns+np

into (R3)ns

× (R3)ns+np

and similarly R
2ns+np

into R
ns

× (R3)ns+np

we have the block decompositions

v =

(
v

r

)
, bDd =

(
Qd

0

)
, Y =

(
y

0

)
, (8.10)

so that v = Πt
v and 〈v, Y 〉 = 〈v, y〉 = 0 where v = (v1, . . . ,vns)t and the diffusion velocities are

defined as vi = −
∑

j∈S Dijdj . Moreover, using the block decomposition (8.3) of the matrix L, and

that of v, we obtain that ∆v + L00λr = Qd and Lλ00v + Λr = 0. We may then write r = −Λ−1Lλ00v
and finally eliminate r to obtain the alternative form involving only the velocity vector v

−
(
∆ − L00λΛ−1Lλ00

)
v = Qd. (8.11)

These equations show that, in comparison with the first order velocities v[00], the higher order diffusion
velocities v require to modify the matrix ∆ by the corrective terms L00λΛ−1Lλ00. Schur complements
have also been investigated by Muckenfusss and Curtiss [46] and Monchick, Munn, and Mason [45].
However, from a numerical point of view, evaluating the product of the matrix ∆−L00λΛ−1Lλ00 by a
vector is costly since it requires solving a linear system with the matrix Λ. Therefore, iterative methods
are more conveniently designed with the matrix L than with the Schur complement ∆−L00λΛ−1Lλ00.
In other words, since Λ is a full matrix, the formulation (8.9) with the enlarged velocity vector v is
more interesting for iterative techniques than the alternative formulation (8.11) only involving v.

The corresponding modifications required in order to take into account Soret effects simply core-
ponds to adding the temperature gradients terms in the diffusion driving forces [32]. These higher order
Stefan-Maxwell equations have been generalized to the complex nonisotropic case including Soret effects
but the details are omitted [32]. The convergence rates observed for the higher order Sefan-Maxwell
equations has been found similar to that of first order Stefan-Maxwell equations.

Finally note that higher order Stefan-Maxwell equations for mixtures of monatomic gases have also
been investigated by Kolesnikov and Tirsky by using vectorial perturbed distribution functions [40].
More specifically, instead of deriving the usual transport linear systems that are next multiplied by the
proper diffusion driving forces, it is also possible to consider vectorial species perturbed distribution
functions and next to derive the transport linear systems for the diffusion velocities as elegantly done

32



by Kolesnikov and Tirsky. The resulting higher order Stefan-Maxwell linear equation derived from
both methods are easily shown to be equivalent after some matrix manipulations.

9 Conclusion

We have investigated iterative algorithms for solving transport linear systems in partially ionized mul-
ticomponent flows. Stationary algorithms as well as generalized conjugate gradient techniques have
been considered. New stationary iterative algorithms have been introduced by considering sequences
of generalized inverses with nullspaces of increasing dimensions. The resulting algorithms yield low
cost accurate approximations of the transport coefficients and are relevant to multicomponent mul-
tidimensional numerical simulations. The accuracy of the resulting algorithms have been assesed by
comprehensive numerical tests with high temperature air.

A Bloc structure of the transport linear systems

The transport linear systems are derived from a variational procedure used to solve constrained sys-
tems of linearized Boltzmann integral equations. The finite dimensional functional space used in the
variational procedure can generally be written A = span{ ξrk, (r, k) ∈ B }, where ξrk, (r, k) ∈ B, are
basis functions. Here B denotes the set of basis function indices which has n elements. In the notation
(r, k) the index k refers to the species and the index r to the function type that is considered. The
basis functions ξrk are generally expressed in terms of the Laguerre-Sonine polynomials and the Wang
Chang and Uhlenbeck polynomials in the internal energy, thus accounting for the polyatomic nature
of the molecules [15].

The set B can be used as a natural indexing set and the components of any vector x ∈ Rn are then
denoted by x = (xr

k)(r,k)∈B. We can correspondingly write G = (Grs
kl )(r,k),(s,l)∈B the coefficients of the

matrix G. For any function type r, we consider the subset Sr ⊂ S given by Sr = { k ∈ S, (r, k) ∈ B }
and we denote by nr the number of elements of Sr. Note that Sr may differ from S since some types
of functions do not appear for certain species. For instance, functions in the internal energy must not
be considered for the monatomic species. The transport linear system matrix G = (Grs

kl )(r,k),(s,l)∈B

in Rn,n can then be partitioned into the blocks Grs = (Grs
kl )k∈Sr , l∈Ss

of size nr∗ns. For instance,
for the thermal conductivity, the indexing set is given by Bλ = {10}×S ∪ {01}×P , where P is
the set of polyatomic species indices, and Bλ has n = ns + np elements. Thus, the system matrix
Λ ∈ R

ns+np,ns+np

admits the block-decomposition

Λ =

(
Λ1010 Λ1001

Λ0110 Λ0101

)
,

with Λ1010 ∈ Rns,ns

, Λ1001 ∈ Rns,np

, Λ0110 ∈ Rnp,ns

, and Λ0101 ∈ Rnp,np

. The matrix
(
diag(Grs)

)
kl

=
Grs

klδkl, (r, k), (s, l) ∈ B, is defined as the diagonal of the rectangular block Grs.
The sparse transport matrix is then formed by the diagonals of all the rectangular blocks Grs of G.

This matrix is denoted by db(G) ∈ Rn,n and can be written

db(G)rs
kl = Grs

kl δkl, (r, k), (s, l) ∈ B, (A.1)

where δkl is the Kronecker symbol. With respect to the matrix Λ for instance, we have the block
decomposition

db(Λ) =

(
diag(Λ1010) diag(Λ1001)

diag(Λ0110) diag(Λ0101)

)
.

The matrices G and db(G) have a general mathematical structure inherited from the properties of
the Boltzmann linearized collision operator and the properties of the variational approximation spaces
associated with the transport linear systems [15].
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B Zero mass fractions

Zero mass fractions lead to artificial singularities in the transport linear systems which are eliminated
by considering rescaled versions of the original systems [15]. Provided the diffusion matrix is replaced

by the flux diffusion matrix D̃kl = ykDkl, k, l ∈ S, it is proven in [15] that all the transport coefficients
are smooth rational functions of the mass fractions and admit finite limits when some mass fractions
become arbitrarily small. Moreover, the iterative algorithms obtained for positive mass fractions can
be rewritten in terms of a rescaled system matrix that is still defined for nonnegative mass fractions
and yield the same sequence of iterates [15]. This result establishes rigorously the validity of a common
practice in numerical calculations, which consists in evaluating transport properties of a given gas
mixture by first adding to all the species mass fractions a very small number, typically lower than the
machine precision.

Even though the singularities disapear by using the flux diffusion matrix C = diag(y1, . . . ,yns)D we
have still evaluated the numerical errors with the Frobenius norm of the original symmetric diffusion
matrices D. However, similar convergence behavior have been observed with the errors measured
trough the matrix C.
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