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Loalization of high frequeny waves propagating in aloally periodi mediumG. Allaire ∗ L. Friz†November 10, 2009AbstratWe study the homogenization and loalization of high frequeny waves in a loallyperiodi media with period ε. We onsider initial data that are loalized Bloh wavepakets, i.e., that are the produt of a fast osillating Bloh wave at a given frequeny
ξ and of a smooth envelope funtion whose support is onentrated at a point x withlength sale √

ε. We assume that (ξ, x) is a stationary point in the phase spae of theHamiltonian λ(ξ, x), i.e., of the orresponding Bloh eigenvalue. Upon resaling at size√
ε we prove that the solution of the wave equation is approximately the sum of twoterms with opposite phases whih are the produt of the osillating Bloh wave and oftwo limit envelope funtions whih are the solution of two Shrödinger type equationswith quadrati potential. Furthermore, if the full Hessian of the Hamiltonian λ(ξ, x) ispositive de�nite, then loalization takes plae in the sense that the spetrum of eahhomogenized Shrödinger equation is made of a ountable sequene of �nite multipliityeigenvalues with exponentially deaying eigenfuntions.Key words: Homogenization, Bloh waves, loalization.2000 Mathematis Subjet Classi�ation: 35B27, 35J10.1 IntrodutionWe onsider the wave equation in a loally periodi medium with small period ε > 0 andstudy its homogenization, i.e., its limit when ε goes to zero. Our wave equation is





ρε
∂2uε
∂t2

− div (Aε∇uε) = 0 in R+ × RN ,

uε(0) = u0
ε in RN ,

∂uε
∂t

(0) = u1
ε in RN ,

(1)
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where
ρε(x) := ρ

(
x,
x

ε

) and Aε(x) := A
(
x,
x

ε

) (2)and the unknown uε(t, x) is a funtion from R+×RN into C. We assume that the oe�ients
A(x, y) and ρ(x, y) are real and su�iently smooth bounded funtions de�ned on R

N ×T
N ,where TN is the �at unit torus, i.e., the unit ell (0, 1)N equipped with periodi boundaryonditions (see Setion 2 for more preise smoothness assumptions). The initial data u0

ε, u
1
εare highly osillating in resonane with the period ε. More preisely, they are given in termsof so-alled Bloh waves ψn(x, y, ξ)e2iπξn·y where ψn is an eigenfuntion, with orrespondingeigenvalue λn(x, ξ), of the Bloh spetral ell problem [9℄, [22℄

−(divy + 2πiξ)
(
A(x, y)(∇y + 2πiξ)ψn

)
= ρ(x, y)λn(x, ξ)ψn in T

N . (3)By standard arguments of spetral theory, (3) admits a ountable sequene of real inreasingeigenvalues (λn)n≥1, repeating eah value as many times as its multipliity, with orrespond-ing periodi eigenfuntions normalized in L2(TN) by
∫

TN

ρ(x, y)|ψn(x, y, ξ)|2dy = 1. (4)The Bloh parameter ξ is usually interpreted as a redued wave number and the square rootof the eigenvalue is the time frequeny de�ned by
ωn(x, ξ) =

√
λn(x, ξ). (5)Suh Bloh wave initial data are alled high frequeny. In this ontext the homogenizedlimit of (1) an be studied by means of geometri opti method, also alled WKB asymptotiexpansion [9℄, [15℄ (this an be made rigorous by using the notion of semilassial measures,or Wigner transforms [16℄, [17℄). We shall not intend to give a full aount of this theoryhere (we may also refer to setion 6 in [4℄ for a brief review). Rather, we ontent ourselvesby loosely stating that the asymptoti behavior of the solution uε of (1) is given by thesuperposition of two waves, the amplitudes of whih are solutions of Liouville transportequations, and the phases of whih are the solutions of two eikonal equations. Solving theseequations is somehow equivalent to solve, in the phase spae (x, ξ) ∈ RN ×TN , the followingtwo Hamiltonian systems {

ẋ = ∇ξ (±ωn(x, ξ)) ,
ξ̇ = −∇x (±ωn(x, ξ)) ,

(6)where the Hamiltonian ±ωn(x, ξ) is preisely the time frequeny assoiated through (5) tothe nth Bloh eigenvalue of (3) .In the ase of a purely periodi medium, i.e., the oe�ients ρ and A do not depend on x,the Hamiltonian systems (6) simplify onsiderably and the orresponding eikonal equationsfor the phases have expliit global solutions. In suh a ase, one an go beyond the geometriopti time sale and study long time dispersive e�ets for monohromati initial data [4℄,[5℄ (see [13℄ for onstant or smooth oe�ients). Similar dispersive e�ets have also beendesribed in the physis literature [19℄, [24℄. 2



In the present paper we stik to the ase of loally periodi medium, i.e., the oe�ients
ρ and A depend both on x and y. However, we fous on a speial instane of initial data suhthat (6) has a trivial solution and a more preise analysis is required in order to desribe theasymptoti behavior of (1). We onsider initial data whih are onentrating at a ritialpoint (xn, ξn) ∈ RN × TN in the phase spae, i.e.,

∇ξλn(x
n, ξn) = ∇xλn(x

n, ξn) = 0, (7)whih, of ourse, implies the same for the Hamiltonian ∇ξωn(x
n, ξn) = ∇xωn(x

n, ξn) = 0.More preisely, for suh a given ritial point (xn, ξn) and for given funtions v0 ∈ H1(RN)and v1 ∈ H2(RN), we hoose initial data whih are wave pakets or oherent states, i.e.
u0
ε(x) = ψn

(
xn,

x

ε
, ξn
)
e2iπ

ξn·x
ε v0

(
x− xn√

ε

) (8)
u1
ε(x) =

1

ε
ψn

(
xn,

x

ε
, ξn
)
e2iπ

ξn·x

ε v1

(
x− xn√

ε

) (9)where the sale of fousing near xn is exatly √
ε. For the ritial point (xn, ξn) we use thenotation ωn =

√
λn(xn, ξn).Our �rst result (Theorems 3.1 and 3.2) shows that the solution of equation (1) is asymp-totially given by

uε(t, x) ≈ ψn

(
xn,

x

ε
, ξn
)
e2iπ

ξn·x
ε

(
ei

ωnt
ε v+

(
t,
x− xn√

ε

)
+ e−i

ωnt
ε v−

(
t,
x− xn√

ε

))
, (10)where v±(t, z) are the unique solutions of the two homogenized equations





±2i
∂v±

∂t
− div(A∗∇v±) + div(v±B∗z) + c∗v± + v±D∗z · z = 0 in R+ × RN

v±(0, z) = 1
2

(
v0(z) ± 1

iωn
v1(z)

)
in RN

(11)where the tensorial oe�ients are the full Hessian of the time frequeny
A∗ =

1

8π2
∇ξ∇ξωn(x

n, ξn), B∗ =
1

2iπ
∇ξ∇xωn(x

n, ξn), D∗ =
1

2
∇x∇xωn(x

n, ξn),and the onstant c∗ is de�ned by (25). In priniple, a Shrödinger equation as (11), showsthe dispersive nature of the envelope funtions v± in the ansatz (10) (as explained in [4℄).However, the presene of a quadrati potential and a �onvetive� term in (11) hangesdramatially its interpretation.Our seond result is that, if the full Hessian of the Hamiltonian or time frequeny
∇∇ωn(xn, ξn) is positive de�nite (or negative de�nite), then the resolvent of (11) is ompat,implying that (11) admits a ountable family of eigenfuntions, with exponential deay atin�nity and forming an orthonormal basis of L2(RN). In other words, any eigen-mode of(11) is loalized in spae. One an interpret this loalization phenomenon by saying thatthe wave is �trapped� exponentially lose to xn. Physially, this e�et is well-known and3



is e�etively used for trapping light in perturbed photoni rystals [8℄ or �bers [23℄. Ourresults are a partial explanation of this phenomenon sine real photoni rystals feature lineor point defets in periodi geometries while we onsider instead smooth variations, withrespet to x, of the oe�ients of the wave equation.A similar result was already explained in the ontext of quantum mehanis, more pre-isely for solid state physis where a Shrödinger equation with periodi oe�ients desribethe wave funtion of an eletron in a periodi rystal [3℄ (see also [6℄ for the orrespondingeigenvalue problem) . There, loalization is a well-known phenomenon whih is alled An-derson loalization if the periodiity perturbation is random [7℄, [11℄. Loalization an alsoappear for lassial waves (see [14℄ and referene therein). Usually, loalization is obtainedby introduing some randomness in a periodi media. One originality of our work is thatloalization is produed by a deterministi modulation of the periodi oe�ients of the waveequation.Our assumption on the existene of a ritial point (xn, ξn) for the Hamiltonian, theHessian of whih is positive de�nite (or negative de�nite), is reasonable. It happens at leastgenerially at the bottom or top of eah Bloh band. On the other hand we do not requirethe existene of a strit gap, but just of a smooth ritial point of the Hamiltonian.Let us �nish this disussion by emphasizing that we talk about "loalization" only in thease of a positive de�nite (or negative de�nite) full Hessian of the Hamiltonian∇∇ωn(xn, ξn)whih implies pure point spetrum of (11) with exponentially deaying eigenfuntions. Inall other ases, the homogenized equation (11) for the envelope funtion has some essentialspetrum and, therefore, no speial property of loalization of its eigenfuntions. In otherwords, our result of loalization is Proposition 3.6 rather than Theorems 3.1 and 3.2. In ourview, "loalization" should not be onfused with what we may all "onentration", whihmerely means that we an build approximate solutions of the wave equation (1) that have asupport onentrating around a single point in the physial spae. This latter phenomenonof "onentration" an be studied in a more general framework than that of Theorems 3.1and 3.2: in partiular, it may happen with purely periodi oe�ients and an be hekedby simple WKB or Wigner-measure arguments (it orresponds to a zero group veloity
∇ξωn(x

n, ξn) = 0 and and a onstant envelope funtion, as was shown in [17℄). On the otherhand, our type of "loalization" an take plae only with a marosopi modulation of theperiodi oe�ients in (1) and yields a more preise asymptoti behavior of the envelopefuntion than "onentration".The ontent of our paper is as follows. Setion 2 gives some basi properties of Blohwaves and two-sale onvergene, as well as our main assumptions. Our main results arepreisely stated in Setion 3. Setion 4 is devoted to the proof of the required a prioriestimates. Setions 5 and 6 are onerned with the proofs of our onvergene results.2 PreliminariesIn this setion we desribe our notations, state our assumptions and give some preliminaryresults onerning the Bloh spetral problem. The oe�ients A(x, y) and ρ(x, y) are realand uniformly bounded Carathéodory funtions de�ned on RN × TN , i.e., they belong to
L∞(TN ;Cb(R

N)). The density is uniformly bounded from below by a positive onstant,4



ρ(x, y) ≥ ρ0 > 0, and the matrix A is symmetri and uniformly oerive, i.e., there exists
ν > 0 suh that A(x, y)ζ · ζ ≥ ν|ζ |2 for any ζ ∈ RN . Our main assumptions are as follows.Hypothesis H1. There exist xn ∈ RN and ξn ∈ TN suh that(i) λn(xn, ξn) is a simple eigenvalue,(ii) (xn, ξn) is a ritial point of λn(x, ξ), i.e. ∇xλn(x

n, ξn) = ∇ξλn(x
n, ξn) = 0,(iii) the eigenfuntion ψn(xn, ·, ξn) belongs to W 1,∞(TN).Hypothesis H2. The oe�ients A(x, y) and ρ(x, y) are of lass C2 with respet to thevariable x in a neighborhood of x = xn and they admit the following seond-order Taylorexpansion

A(x, y) = A(xn, y) + (x− xn) · ∇xA(xn, y) +
1

2
(x− xn)∇x∇xA(xn, y)(x− xn) + o(|x− xn|2)and similarly for ρ.We denote by ∇∇λn the full Hessian matrix of the funtion λn(x, ξ) evaluated at thepoint (xn, ξn), i.e.

∇∇λn =

[
∇x∇xλn ∇ξ∇xλn
∇ξ∇xλn ∇ξ∇ξλn

]
(xn, ξn).Remark 2.1 Beause of the simpliity assumption H1(i) it is perfetly legitimate to di�er-entiate the eigenvalue λn as muh as we need. Beause of assumption H1(ii) the Hessiansof the eigenvalue λn and of the time frequeny ωn are proportional at the point (xn, ξn), i.e.,

2ωn∇∇ωn = ∇∇λn.Assumption H1(iii) holds true, for example, if the oe�ients A(x, y) and ρ(x, y) arepieewise smooth with respet to y.For the sake of notational simpliity we de�ne
A0(y) := A(xn, y), λn := λn(x

n, ξn), ψn(y) := ψ(xn, y, ξn) and ρ0(y) = ρ(xn, y) (12)and, similarly for the derivatives, we set
A1,h(y) :=

∂A

∂xh
(xn, y), A2,lh(y) :=

∂2A

∂xl∂xh
(xn, y), for l, h = 1, . . . , N.Analogous notation hold for all derivatives of ρ, ψn and λn with respet to the x-variablesand the ξ−variables evaluated at x = xn and ξ = ξn.Reall that we have three spae variables, orresponding to three di�erent sales, x,

y := (x − xn)/ε and z := (x − xn)/
√
ε. For any funtion θ(x, y) de�ned on R

N × T
N , wede�ne

θε(x) := θ
(
x,
x

ε

)
= θ

(
xn +

√
εz,

z√
ε

+
xn

ε

)
:= θ̃ε(z) (13)5



In what follows the symbols divy and ∇y are used to denote the divergene and gradientoperators whih at with respet to the y−variable while div and ∇ will indiate the diver-gene and gradient operators whih at with respet to the x− or z−variable, aording tothe ontext.We introdue the operator An(x, ξ) de�ned for ψ ∈ L2(TN) by
An(x, ξ)ψ := −(divy + 2iπξ)

(
A(x, y)(∇y + 2iπξ)ψ

)
− λn(x, ξ)ρ(x, y)ψ. (14)Under assumptions H1 and H2 we an di�erentiate the Bloh spetral equation (3) in aneighborhood of the point (xn, ξn) in the phase spae [18℄. Denoting by (ek)1≤k≤N theanonial basis of RN , the �rst derivatives satisfy

An(x, ξ)
∂ψn
∂ξk

= 2πiekA(∇y + 2πiξ)ψn + (divy + 2πiξ)(A2πiekψn) + ρ
∂λn
∂ξk

ψn (15)and
An(x, ξ)

∂ψn
∂xl

= (divy + 2πiξ)

(
∂A

∂xl
(∇y + 2πiξ)ψn

)
+
∂ρ

∂xl
λnψn + ρ

∂λn
∂xl

ψn (16)In the same manner we an obtain formulas for the seond order derivatives, namely
An(x, ξ)

∂2ψn

∂xh∂ξk
= (divy + 2πiξ) ∂A

∂xh
(∇y + 2πiξ)∂ψn

∂ξk

+2πiek
∂A
∂xh

(∇y + 2πiξ)ψn + (divy + 2πiξ)( ∂A
∂xh

2πiekψn)

+2πiekA(∇y + 2πiξ)∂ψn

∂xh
+ (divy + 2πiξ)(A2πiek

∂ψn

∂xh
)

+ ∂ρ
∂xh

λn
∂ψn

∂ξk
+ ρ∂λn

∂xh

∂ψn

∂ξk
+ ∂ρ

∂xh

∂λn

∂ξk
ψn + ρ ∂2λn

∂xh∂ξk
ψn + ρ∂λn

∂ξk

∂ψn

∂xh
,

An(x, ξ)
∂2ψn

∂xh∂xl
= (divy + 2πiξ) ∂2A

∂xh∂xl
(∇y + 2πiξ)ψn + ∂2ρ

∂xh∂xl
λnψn + ρ ∂2λn

∂xh∂xl
ψn

+(divy + 2πiξ) ∂A
∂xh

(∇y + 2πiξ)∂ψn

∂xl
+ (divy + 2πiξ) ∂A

∂xl
(∇y + 2πiξ)∂ψn

∂xh

+ ∂ρ
∂xh

λn
∂ψn

∂xl
+ ∂ρ

∂xl
λn

∂ψn

∂xh
+ ρ∂λn

∂xh

∂ψn

∂xl
+ ρ∂λn

∂xl

∂ψn

∂xh
+ ∂ρ

∂xl

∂λn

∂xh
ψn + ∂ρ

∂xh

∂λn

∂xl
ψn,

An(x, ξ)
∂2ψn

∂ξl∂ξk
= 2πielA(∇y + 2πiξ)∂ψn

∂ξk
+ (divy + 2πiξ)A2πiel

∂ψn

∂ξk

+2πiekA(∇y + 2πiξ)∂ψn

∂ξl
+ (divy + 2πiξ)A2πiek

∂ψn

∂ξl

+ρ∂λn

∂ξl

∂ψn

∂ξk
+ ρ∂λn

∂ξk

∂ψn

∂ξl
− 4π2ekAelψn − 4π2elAekψn + ρ ∂2λn

∂ξl∂ξk
ψn.By integrating these equations for the seond order derivatives against ψn, realling thenormalization (4) of the eigenfuntions and taking x = xn, we obtain the following formulasthat will be useful in the sequel.Lemma 2.2 Under assumptions H1 and H2 the following equalities hold:

∫

TN

1

2πi

[
A1,h(∇y + 2πiξn)

∂ψn
∂ξk

· (∇y − 2πiξn)ψn − ρ1,hλn
∂ψn
∂ξk

ψn

]
dy

+

∫

TN

[
A1,hekψn(∇y − 2πiξn)ψn + A0ek

∂ψn
∂xh

· (∇y − 2πiξn)ψn

]
dy

−
∫

TN

[
ekψnA1,h(∇y + 2πiξn)ψn + ekψnA0(∇y + 2πiξn)

∂ψn
∂xh

]
dy

− 1

2πi

∂2λn
∂xh∂ξk

= 0,

(17)6



∫

TN

[
A2,lh(∇y + 2πiξn)ψn · (∇y − 2πiξn)ψn −

(
ρ2,lhλn + ρ

∂2λn
∂xh∂xl

)
|ψn|2

]
dy

+

∫

TN

[
A1,h(∇y + 2πiξn)

∂ψn
∂xl

· (∇y − 2πiξn)ψn − ρ1,hλn
∂ψn
∂xl

ψn

]
dy

+

∫

TN

[
A1,l(∇y + 2πiξn)

∂ψn
∂xh

· (∇y − 2πiξn)ψn − ρ1,lλn
∂ψn
∂xh

ψn

]
dy = 0

(18)
∫

TN

[
2πiekA0(∇y + 2πiξn)

∂ψn
∂ξl

ψn −
(
A02πiek

∂ψn
∂ξl

)
(∇y − 2πiξn)ψn

]
dy

+

∫

TN

[
2πielA0(∇y + 2πiξn)

∂ψn
∂ξk

ψn −
(
A02πiel

∂ψn
∂ξk

)
(∇y − 2πiξn)ψn

]
dy

−
∫

TN

[
4π2ekA0el|ψn|2 + 4π2elA0ek|ψn|2

]
dy

+
∂2λn
∂ξl∂ξk

= 0

(19)
We also reall the variational formulations of ψεn(x) = ψn(x

n, x
ε
, ξn) and of its derivatives.Lemma 2.3 Let ϕ(z) be a smooth ompatly supported funtion de�ned from RN into C.Under assumptions H1 and H2 the following equalities hold:

∫

RN

[
Aε0(∇y + 2πiξn)ψεn · (

√
ε∇− 2πiξn)ϕ(z) − ρε0λ

ε
nψ

ε
nϕ(z)

]
dz = 0, (20)

∫

RN

[
Aε0(∇y + 2πiξn)

∂ψεn
∂ξk

· (
√
ε∇− 2πiξn)ϕ(z) − ρε0λ

ε
n

∂ψεn
∂ξk

ϕ(z)

]
dz

+

∫

RN

[
−2πiekA

ε
0(∇y + 2πiξn)ψεnϕ(z) + Aε02πiekψ

ε
n(
√
ε∇− 2πiξn)ϕ(z)

]
dz = 0,

(21)
∫

RN

[
Aε0(∇y + 2πiξn)

∂ψεn
∂xl

· (
√
ε∇− 2πiξn)ϕ(z) − ρε0λ

ε
n

∂ψεn
∂xl

ϕ(z)

]
dz

+

∫

RN

[
Aε1,l(∇y + 2πiξn)ψεn · (

√
ε∇− 2πiξn)ϕ(z) − ρε1,lλ

ε
nψ

ε
nϕ(z)

]
dz = 0.

(22)We reall the notion of two-sale onvergene [1℄, [20℄ with a small parameter δ > 0 whihwill be equal to √
ǫ in the sequel.Proposition 2.4 Let fδ be a sequene uniformly bounded in L2(RN).(1) There exists a subsequene, still denoted by fδ, and a limit f0(x, y) ∈ L2(RN ×T

N ) suhthat fδ two-sale onverges weakly to f0 in the sense that
lim
δ→0

∫

RN

fδ(x)φ(x, x/δ)dx =

∫

RN

∫

TN

f0(x, y)φ(x, y)dxdyfor all funtions φ(x, y) ∈ L2(RN ;C(TN)).7



(2) Assume further that fδ two-sale onverges weakly to f0 and that
lim
δ→0

‖fδ‖L2(RN ) = ‖f0‖L2(RN×TN ).Then fδ is said to two-sale onverges strongly to its limit f0 in the sense that, if f0 issmooth enough, e.g. f0(x, y) ∈ L2(RN ;C(TN)), we have
lim
δ→0

∫

RN

|fδ(x) − f0(x, x/δ)|2dx = 0.(3) Assume that δ∇fδ is also uniformly bounded in L2(RN)N . Then there exists a subse-quene, still denoted by fδ, and a limit f0(x, y) ∈ L2(RN ;H1(TN )) suh that fδ two-saleonverges weakly to f0(x, y) and δ∇fδ two-sale onverges weakly to ∇yf0(x, y).3 Main ResultsIn order to apply the two-sale onvergene of Proposition 2.4, we �rst need to remove theosillating phase in uε and resale it to the onentration sale √
ε. This is the purpose ofthe hanges of unknowns (23) and (26) whih are neessary to pass to the limit and get thehomogenized equations.Theorem 3.1 Assume that H1 and H2 hold true and that the initial datas u0

ε and u1
ε areof the form (8) and (9), respetively, with v0 ∈ H1(RN) and v1 ∈ H2(RN). De�ne

v+
ε

(
t,
x− xn√

ε

)
= uε(t, x)e

−iωnt
ε e−2iπ ξn·x

ε (23)where uε is the solution of (1). Then v+
ε (t, z) two-sale onverges weakly to ψn(y)v+(t, z)and v+ is the unique solution of the homogenized Shrödinger equation





2i
∂v+

∂t
− div(A∗∇v+) + div(v+B∗z) + c∗v+ + v+D∗z · z = 0 in RN × R+

v+(0, z) = 1
2

(
v0(z) +

1

iωn
v1(z)

)
in RN

(24)where
A∗ =

1

8π2
∇ξ∇ξωn(x

n, ξn), B∗ =
1

2iπ
∇ξ∇xωn(x

n, ξn), D∗ =
1

2
∇x∇xωn(x

n, ξn)and c∗ is given by
c∗ =

∫

TN

[
A(∇y + 2iπξn)ψn ·

∂ψn
∂xk

ek − A(∇y − 2iπξn)
∂ψn
∂xk

· ψnek −A1,k(∇y − 2iπξn)ψn · ψnek
]
dy.(25)A similar result holds true for

v−ε

(
t,
x− xn√

ε

)
= uε(t, x)e

iωnt
ε e−2iπ ξn·x

ε , (26)8



namely, v−ε (t, z) two-sale onverges weakly to ψn(y)v−(t, z), where v− is the unique solutionof the homogenized Shrödinger equation





−2i
∂v−

∂t
− div(A∗∇v−) + div(v−B∗z) + c∗v− + v−D∗z · z = 0 in RN × R+

v−(0, z) = 1
2

(
v0(z) − 1

iωn
v1(z)

)
in RN

(27)
Remark that, if v0 and v1 are real-valued funtions, then we dedue that v− = v+.Theorem 3.1 gives two di�erent limit behaviors for uε, aording to the two di�erent phasesin (23) and (26). However eah of these limits arry only half of the initial data. The nextresult explains that the sum of these two waves is a valid approximation of the solution uεof (1). In other words we now state a strong two-sale onvergene result instead of a weakone as in Theorem 3.1.Theorem 3.2 Assume that H1 and H2 hold true and that v0 ∈ H2(RN) and v1 ∈ H2(RN).If ξn = 0, assume furthermore that





v1 ∈ L1(RN) if N ≥ 3,∫

RN

v1(z) dz = 0 and Fv1 ∈ C0,α(B0) with α > 1 −N/2 if N ≤ 2.
(28)where Fv1(ξ) denotes the Fourier transform of v1(x) and B0 is a small open ball around theorigin. De�ne the ansatz

uapproxε (t, x) = ψn

(
xn,

x

ε
, ξn
)
e2iπ

ξn·x

ε

(
ei

ωnt
ε v+

(
t,
x− xn√

ε

)
+ e−i

ωnt
ε v−

(
t,
x− xn√

ε

))
, (29)where v±(t, z) are the solutions of the two homogenized equations (24) and (27). Then itsatis�es

lim
ε→0

‖uε(t, x) − uapproxε (t, x)‖L2((0,T )×RN )

‖uapproxε (t, x)‖L2((0,T )×RN )

= 0for any �nal time T > 0.Remark 3.3 Theorem 3.2 gives a relative error going to zero. Indeed, it is easily shown,upon resaling at sale √
ε, that ‖uapproxε (t, x)‖L2((0,T )×RN ) is of order εN/4. Atually thisestimate for uapproxε is valid in L2(RN) for almost every time t. However, the error estimaterequires a time integration and is not valid for almost every time t.Remark 3.4 Assumption (28) is tehnial and is used merely in the a priori estimate ofLemma 6.2. We do not know if it is absolutely neessary or not. However the assumptionthat v1 has zero average is reminisent of a similar assumption used to prove that the solutionof the wave equation in a periodi domain is uniformly bounded in L∞(R+ : L2(RN)) (seefor example Setion 2.3.2 in [2℄). 9



Before we prove Theorems 3.1 and 3.2 let us analyze the homogenized Shrödinger equa-tion (24). We de�ne the following unbounded operator ating in L2(RN)

A
∗φ := −div(A∗∇φ) + div(φB∗z) + c∗φ+ φD∗z · z (30)whih already appears in the study of loalization for the Shrödinger equation [3℄ (bewarethat the star symbol in (30) means "homogenized" and not adjoint). We show that (24) orequivalently (27) are well-posed.Proposition 3.5 (Proposition 3.4 in [3℄) The operator A

∗ de�ned in (30) is essentiallyself-adjoint. As a onsequene, there exists a unique solution v+(t, z) of (24) in C(R+;L2(RN )).Furthermore, it satis�es the energy onservation
‖v+(t, ·)‖L2(RN ) = ‖v+(0, ·)‖L2(RN ) ∀t ∈ R

+. (31)Proof. We thank the anonymous referee to point out a �aw in the original proof of thisresult in [3℄ where we ignored the fat that the domain of the unbounded operator A∗ maybe di�erent of that of its adjoint. We thus wrongly onluded that A∗ is self-adjoint while weshall now merely prove that it is essentially self-adjoint, i.e. that its losure is self-adjoint.This last property is enough for our purpose sine it implies that A∗ has a unique self-adjointextension. We brie�y indiate how to modify the proof in [3℄. First, a simple integrationby parts shows that A∗ is symmetri on C∞
0 (RN) beause ( 1

2i
trB∗ + Imc∗

)
= 0. This lastidentity is obtained by a ombination of a formula for c∗, dedued from (15) multiplied by

∂ψn

∂xk
, and another formula for ∇ξ∇xλn, and thus for B∗, dedued from (17) where we plug(15) multiplied by ∂ψn

∂xh
. Seond, we use Theorem X.37, page 197 in volume II of [22℄, to provethat A

∗ is essentially self-adjoint. Introduing the self-adjoint operator N = −∆ + |x|2 + 1,with domain H2(RN) ∩ L2(RN , |x|2dx), we easily hek the assumptions of this theorem,namely that there exists a onstant C > 0 suh that, for any φ ∈ C∞
0 (RN),

‖A
∗φ‖L2(RN ) ≤ C‖Nφ‖L2(RN )and

|〈A∗φ,Nφ〉 − 〈Nφ,A∗φ〉| ≤ C‖N1/2φ‖2
L2(RN ).Third, by semigroup theory [10℄, [21℄, we dedue from the uniqueness of the self-adjointextension of A∗ that there exists a unique solution of (24) in C(R+;L2(RN)), whih may notbelong to C(R+;H1(RN)) if the matrix A∗ is not positive de�nite or positive negative. Theenergy onservation for (24) is just a onsequene of the symmetry of A∗. �Eventually we reall a ompatness result of [3℄ whih is at the root of the loalizationphenomenon.Proposition 3.6 (Proposition 3.5 in [3℄) Assume that the matrix ∇∇ωn is positive def-inite (or equivalently positive negative). Then the resolvent of A∗ is ompat in L2(RN), andthere exists an orthonormal basis (ϕn)n≥1 of eigenfuntions of A

∗ whih deay exponentially,i.e., for eah n there exists a onstant γn > 0 suh that
eγn|z|2ϕn(z), e

γn|z|2∇ϕn(z) ∈ L2(RN). (32)10



Remark 3.7 As we said in the introdution, we mean "loalization" when the homogenizedequations (24) and (27) for the two envelope funtions have pure point spetrum with ex-ponentially deaying eigenfuntions. Therefore, Proposition 3.6 is our result of loalizationrather than Theorems 3.1 and 3.2. In partiular, what we all "loalization" should not beonfused with "onentration" whih we de�ne as the possibility of having sequenes of solu-tions of the wave equation (1) onentrating around a single point in the physial spae. Thislatter phenomenon is provided by Theorems 3.1 and 3.2 but it an be obtained in the simplersetting of purely periodi oe�ients by means of well-known WKB or Wigner-measure argu-ments. In this latter setting, "onentration" means a zero group veloity ∇ξωn(x
n, ξn) = 0and and a onstant envelope funtion: it was already derived in [17℄.The proof of Theorem 3.1 relies on the hange of unknowns (23): it is then possible topass to the two-sale limit in the equation satis�ed by v+

ε (t, z). We introdue the followingnotations
ρ̃ε(z) = ρ

(
xn +

√
εz,

z√
ε

+
xn

ε

) (33)and similar ones for Ãε and ψ̃εn. A simple omputation yields




ρ̃ε
(

2iωn
∂v+

ε

∂t
+ ε

∂2v+
ε

∂t2

)
− (divz +

2iπξn√
ε

) ·
(
Ãε(∇z +

2iπξn√
ε

)v+
ε

)
= ρ̃ε

λn
ε
v+
ε in R

+ × R
N

v+
ε (0) = ψ̃εnv

0 in R
N

∂v+
ε

∂t
(0) =

1

ε
ψ̃εn
(
−iωnv0 + v1

)
in R

N (34)The solution v+
ε (t, z) of (34) satis�es a suitable a priori estimate for using the notion oftwo-sale onvergene.Lemma 3.8 For any �nal time T > 0 there exists C(T ) > 0 independent of ε suh that thesolution of (34) satis�es

‖v+
ε ‖L∞((0,T );L2(RN )) + ε

∥∥∥∥
∂v+

ε

∂t

∥∥∥∥
L∞((0,T );L2(RN ))

+
√
ε
∥∥∇zv

+
ε

∥∥
L∞((0,T );L2(RN )N )

(35)
≤ C(T )

(
‖v0‖H1(RN ) + ‖v1‖H2(RN )

)
.Notations. In the sequel we shall assume without loss of generality that xn = 0. This isalways possible by a simple translation and it simpli�es the writing of many formulas.4 A priori estimates (proof of Lemma 3.8)Although the statement of Lemma 3.8 involves v+

ε , we shall prove an a priori estimate for
uε, the solution of (1). Then, remarking that, by virtue of (23),
εN/4‖v+

ε (t, ·)‖L2(RN ) = ‖uε(t, ·)‖L2(RN ) , εN/4‖ε∂v
+
ε

∂t
(t, ·)‖L2(RN ) = ‖ε∂uε

∂t
(t, ·)−iωuε(t, ·)‖L2(RN ),11



and
εN/4‖

√
ε∇zv

+
ε (t, ·)‖L2(RN )N = ‖ε∇xuε(t, ·) + 2iπξuε(t, ·)‖L2(RN )N ,we easily dedue (35) from the orresponding estimates on uε.In a �rst step we obtain the usual energy onservation by multiplying equation (1) by

∂uε
∂t

and integrating by parts
d

dt
Eε(t) = 0 with Eε(t) =

1

2

∫

RN

[
ρε
∣∣∣∣
∂uε
∂t

∣∣∣∣
2

+ Aε∇uε · ∇uε
]
dx.Sine the initial data u0

ε and u1
ε are de�ned by (8) and (9) respetively, and beause ψnbelongs to L∞(TN ), we dedue

∫

RN

ρε
∣∣∣∣
∂uε
∂t

(0)

∣∣∣∣
2

dx =
εN/2

ε2

∫

RN

ρ

(√
εz,

z√
ε

) ∣∣∣∣ψn
(
z√
ε

)
v1(z)

∣∣∣∣
2

dz ≤ CεN/2−2‖v1‖2
L2(RN ).A similar estimate holds for ∇uε(0) beause assumption H1(iii) tells us that ∇yψn belongsto L∞(TN )N

∫

RN

Aε∇uε(0) · ∇uε(0)dx ≤ CεN/2−2
(
‖v0‖2

L2(RN ) + ε‖∇v0‖2
L2(RN )N

)
,whih implies

Eε(0) ≤ CεN/2−2(‖v0‖2
H1(RN ) + ‖v1‖2

L2(RN )).This is only at this point that we use assumption H1(iii) on the smoothness of ψn. Remarkthat we always have ψn ∈ L∞(TN) by standard ellipti regularity and that we ould havereplaed H1(iii) by an additional regularity of v0 (using integration by parts as in the proofof Lemma 4.1 below). In any ase we obtain
ε

∥∥∥∥
∂uε
∂t

∥∥∥∥
L∞(R+;L2(RN ))

+ ε ‖∇uε‖L∞(R+;L2(RN )N ) ≤ CεN/4(‖v0‖H1(RN ) + ‖v1‖L2(RN )).In a seond step we obtain an estimate for uε in L∞(R+;L2(RN )) following an argumentof [4℄ based on a lassial idea of time regularization. For a given α 6= 0, we introdue a timeprimitive of uε as
Ψε(x, t) = e−αt

[∫ t

0

eαsuε(x, s)ds+ χε(x)

]
, (36)where χε is de�ned as the unique solution in H1(RN ) of the time-independent equation

−div
(
A
(
x,
x

ε

)
∇χε

)
+ α2ρ

(
x,
x

ε

)
χε = αρ

(
x,
x

ε

)
u0
ε − ρ

(
x,
x

ε

)
u1
ε in R

N . (37)A simple omputation shows that Ψε satis�es




ρ
(
x,
x

ε

) ∂2Ψε

∂t2
− div

(
A
(
x,
x

ε

)
∇Ψε

)
= 0 in R+ × RN

Ψε(0) = χε in RN

∂Ψε

∂t
(0) = u0

ε − αχε in RN .

(38)12



The interest of (38) is that its initial data are one order smaller in ε than those of (1) asstated in the following lemma.Lemma 4.1 The solution of (37) satis�es
‖χε‖H1(RN ) ≤ CεN/4(‖v0‖L2(RN ) + ‖v1‖H2(RN )).Postponing for a moment the proof of Lemma 4.1, we are now in a position to prove that

‖uε‖L∞((0,T );L2(RN )) ≤ C(T )εN/4(‖v0‖L2(RN ) + ‖v1‖H2(RN )), (39)whih onludes the proof of Lemma 3.8. Indeed, sine
uε =

∂Ψε

∂t
+ αΨε,the standard energy onservation for (38), together with Lemma 4.1, implies that

∥∥∥∥
∂Ψε

∂t

∥∥∥∥
L∞(R+;L2(RN ))

≤ CεN/4(‖v0‖L2(RN ) + ‖v1‖H2(RN )). (40)Sine Ψε(t) = χε +

∫ t

0

∂Ψε

∂t
(s)ds, we dedue (39).Proof of Lemma 4.1. Without loss of generality we take α = 1. By multiplying (37) by

χε we obtain
∫

RN

(
A
(
x,
x

ε

)
∇χε · ∇χε + ρ

(
x,
x

ε

)
|χε|2

)
dx =

∫

RN

ρ
(
x,
x

ε

)
(u0

ε − u1
ε)χεdx.At �rst, we easily hek that

∫

RN

|ρεu0
εχε|dx ≤ CεN/4‖v0‖L2(RN )‖χε‖L2(RN ).Sine u1

ε = ε−1ψn(x/ε)e
2iπ ξn·x

ε v1(x/
√
ε) we de�ne

∆ε :=

∫

RN

ρ
(
x,
x

ε

)
ψn

(x
ε

)
e2iπ

ξn·x

ε v1

(
x√
ε

)
χε(x)dx.Let us now prove that

|∆ε| ≤ CεN/4+1‖v1‖H2(RN )‖χε‖H1(RN ), (41)By Lemma 4.4 of [4℄ there exists a solution ζ ∈ C2(RN ;C(TN))N of
−divy(ζ(x, y)e2iπξn·y) = ρ(x, y)ψn(y)e

2iπξn·y .Then
ρ
(
x,
x

ε

)
ψn

(x
ε

)
e2iπ

ξn·x

ε = −εdiv [ζ (x, x
ε

)
e2iπ

ξn·x

ε

]
+ εdivxζ (x, x

ε

)
e2iπ

ξn·x

ε13



Using ζ allows us to rewrite
∆ε = ε

∫

RN

[
ζ
(
x,
x

ε

)
e2iπ

ξn·x
ε ·

(
v1

(
x√
ε

)
∇χε(x) +

1√
ε
χε(x)∇v1

(
x√
ε

))]
dx

+ ε

∫

RN

divxζ
(
x,
x

ε

)
e2iπ

ξn·x

ε v1

(
x√
ε

)
χε(x)dx.

(42)The �rst and last term in the right hand side of (42) are of order ε as expeted, but notthe seond term. We therefore perform another integration by parts using the solution
θ ∈ C2(RN ;C(TN ))N

2 of
−divy(θ(x, y)e2iπξn·y) = ζ(x, y)e2iπξ

n·y ,given by another appliation of Lemma 4.4 of [4℄. Thus we obtain
√
ε

∫

RN

ζ
(
x,
x

ε

)
e2iπ

ξn·x

ε · χε(x)∇v1

(
x√
ε

)
dx = ε3/2

∫

RN

θ
(
x,
x

ε

)
e2iπ

ξn·x

ε · ∇
(
χε∇v1

(
x√
ε

))
dx

+ε3/2

∫

RN

divxθ
(
x,
x

ε

)
e2iπ

ξn·x

ε ·
(
χε∇v1

(
x√
ε

))
dx,where all terms an be bounded by Cauhy-Shwarz inequality, using the fat that ζ and θare bounded funtions. It leads to the desired result (41). This ompletes the proof of thelemma. �5 Weak onvergene (proof of Theorem 3.1)For the sake of notational simpliity we now drop the notation ,̃ introdued in (33), whihindiates a funtion of z instead of x. In a �rst step we multiply equation (34) by a testfuntion εφε = εφ

(
t, z,

z√
ε

), where φ(t, z, y) is a smooth, ompatly supported, funtionde�ned on R
+ × R

N × T
N . Integrating by parts and using hypothesis H2 we obtain

−2iωnε

∫ +∞

0

∫

RN

ρεv+
ε

∂φ
ε

∂t
dzdt+ ε2

∫ +∞

0

∫

RN

ρεv+
ε

∂2φ
ε

∂t2
dzdt

−2iωnε

∫

RN

ρεv+
ε (0)φ

ε
(0)dz − ε2

∫

RN

ρεv+
ε (0)

∂φ
ε

∂t
(0)dz + ε2

∫

RN

ρε
∂v+

ε

∂t
(0)φ

ε
(0)dz

+

∫ +∞

0

∫

RN

[
Aε0 + Aε1,h

√
εzh +

1

2
Aε2,lhεzlzh + o(ε)

]
(
√
ε∇ + 2iπξn)v+

ε · (
√
ε∇− 2iπξn)φ

ε
dzdt

−
∫ +∞

0

∫

RN

[
ρε0 + ρε1,h

√
εzh +

1

2
ρε2,lhεzlzh + o(ε)

]
λnv

+
ε φ

ε
dzdt = 0.Remark that the above o(ε) holds true in the L∞(RN)-norm sine the test funtion φ hasompat support in z. From Proposition 2.4, and beause of the a priori estimate (35), thereexist a subsequene and a limit v∗(t, z, y) ∈ L∞(R+;L2(RN ;H1(TN))) suh that v+

ε (t, z) and14



√
ε∇v+

ε (t, z) two-sale onverge to v∗ and ∇yv
∗ respetively. Passing to the two-sale limitin the above equality, we dedue a variational formulation for

−(divy + 2iπξn) (A0(y)(∇y + 2iπξn)v∗) = ρ0λnv
∗By the simpliity of λn (assumptionH1), there exists a salar funtion v+(t, z) ∈ L∞(R+;L2(RN))suh that

v∗(t, z, y) = v+(t, z)ψn(y).In a seond step we multiply equation (34) by the omplex onjugate of
Φε(t, z) = ψεn(z)φ(t, z) +

√
ε

N∑

k=1

(
1

2πi

∂ψεn
∂ξk

∂φ

∂zk
+ zk

∂ψεn
∂xk

φ

)where φ(t, z) is a smooth, ompatly supported, funtion de�ned on R+×RN . We deomposethe resulting variational formulation in several piees and pass to the limit in eah of themseparately.The time derivative terms in (34) yield, �rst, by two suessive integration by parts,
∫ +∞

0

∫

RN

ερε
∂2v+

ε

∂t2
Φεdtdz =

−
∫ +∞

0

∫

RN

ερε
∂v+

ε

∂t

[
ψεn
∂φ

∂t
+
√
ε

N∑

k=1

(
− 1

2πi

∂ψεn
∂ξk

∂2φ

∂t∂zk
+ zk

∂ψεn
∂xk

∂φ

∂t

)]

−
∫

RN

ερε
∂v+

ε

∂t
(0)

[
ψεnφ(0) +

√
ε

N∑

k=1

(
− 1

2πi

∂ψεn
∂ξk

∂φ

∂zk
(0) + zk

∂ψεn
∂xk

φ(0)

)]
=

+

∫ +∞

0

∫

RN

ερεv+
ε

[
ψεn
∂2φ

∂t2
+
√
ε

N∑

k=1

(
− 1

2πi

∂ψεn
∂ξk

∂3φ

∂t2∂zk
+ zk

∂ψεn
∂xk

∂2φ

∂t2

)]

∫

RN

ερεv+
ε (0)

[
ψεn
∂φ

∂t
(0) +

√
ε

N∑

k=1

(
− 1

2πi

∂ψεn
∂ξk

∂2φ

∂t∂zk
(0) + zk

∂ψεn
∂xk

∂φ

∂t
(0)

)]

−
∫

RN

ερε
∂v+

ε

∂t
(0)

[
ψεnφ(0) +

√
ε

N∑

k=1

(
− 1

2πi

∂ψεn
∂ξk

∂φ

∂zk
(0) + zk

∂ψεn
∂xk

φ(0)

)]
=

−
∫

RN

ρε|ψεn|2(−iωnv0 + v1)φ(0) + o(1)

(43)

15



and seond, by a single integration by parts,
2iωn

∫ +∞

0

∫

RN

ρε
∂v+

ε

∂t
Φεdtdz =

−2iωn

∫ +∞

0

∫

RN

ρεv+
ε

[
ψ
ε

n

∂φ

∂t
+
√
ε

N∑

k=1

(
− 1

2πi

∂ψεn
∂ξk

∂2φ

∂t∂zk
+ zk

∂ψεn
∂xk

∂φ

∂t

)]

−2iωn

∫

RN

ρεv+
ε (0)

[
ψ
ε

n(0)φ+
√
ε

N∑

k=1

(
− 1

2πi

∂ψεn
∂ξk

∂φ

∂zk
(0) + zk

∂ψεn
∂xk

φ(0)

)]
=

−2iωn

∫ +∞

0

∫

RN

ρεv+
ε ψ

ε

n

∂φ

∂t
− 2iωn

∫

RN

ρε|ψεn|2v0φ(0) + o(1).

(44)
Passing to the two-sale limit in (43) plus (44) and realling the normalization (4), we �nd

−2iωn

∫ +∞

0

∫

RN

v+∂φ

∂t
dtdz −

∫

RN

(iωnv
0 + v1)φ(0)dz. (45)We further deompose the test funtion Φε as follows

Φε = Φ1
ε + Φ2

ε · z with Φ2
ε =

√
ε

N∑

k=1

∂ψεn
∂xk

φ(t, z)ek.In the remaining terms of the variational formulation of (34), we replae Aε by its Taylorexpansion (aording to assumption H2) and we �rst look to those terms whih are of zeroorder with respet to z. They are
∫ +∞

0

∫

RN

[
Aε0(∇ +

2πiξn√
ε

)v+
ε · ((∇− 2πiξn√

ε
)Φ1

ε + Φ2
ε) −

1

ε
ρε0λnΦ

1
ε

]
dzdt

=

∫ +∞

0

∫

RN

[
1

ε
Aε0(

√
ε∇ + 2πiξn)v+

ε · (∇y − 2πiξn)ψ
ε

nφ− 1

ε
ρε0λnψ

ε

nv
+
ε φ

]
dzdt

− 1

2iπ

∫ +∞

0

∫

RN

[
1√
ε
Aε0(

√
ε∇ + 2πiξn)v+

ε · (∇y − 2πiξn)
∂ψ

ε

n

∂ξk

∂φ

∂zk

− 1√
ε
ρε0λnv

+
ε

∂ψ
ε

n

∂ξk

∂φ

∂zk

]
dzdt

+

∫ +∞

0

∫

RN

1√
ε
Aε0(

√
ε∇ + 2πiξn)v+

ε · ψεn∇φdzdt

+

∫ +∞

0

∫

RN

− 1

2πi
Aε0(

√
ε∇ + 2πiξn)v+

ε · ∂ψ
ε

n

∂ξk
∇ ∂φ

∂zk
dzdt

+

∫ +∞

0

∫

RN

Aε0(
√
ε∇ + 2πiξn)v+

ε · ∂ψ
ε

n

∂xk
φekdzdt.

(46)
16



Using equation (20) with ϕ = v+
ε φ and equation (21) with ϕ = v+

ε

∂φ

∂zk
we rewrite the �rsttwo integrals in the right hand side of (46) as follows

∫ +∞

0

∫

RN

− 1√
ε
Aε0(∇y − 2πiξn)ψ

ε

n · v+
ε ∇φdzdt

+

∫ +∞

0

∫

RN

[
1

2πi
Aε0(∇y − 2πiξn)

∂ψ
ε

n

∂ξk
· v+

ε ∇
∂φ

∂zk
+

1√
ε
Aε0ek · v+

ε

∂φ

∂zk
(∇y − 2πiξn)ψ

ε

n

− 1√
ε
Aε0ψ

ε

nek · (
√
ε∇ + 2πiξn)

(
v+
ε

∂φ

∂zk

)]
dzdt.Combining the above terms with the other terms in (46) and passing to the two-sale limitin (46) yields

∫ +∞

0

∫

RN

∫

TN

[
1

2πi
A0ψn(∇y − 2πiξn)

∂ψn
∂ξk

− 1

2πi
A0
∂ψn
∂ξk

(∇y + 2πiξn)ψn − A0|ψn|2ek
]

·v+∇ ∂φ

∂zk
dydzdt

+

∫ +∞

0

∫

RN

∫

TN

A0(∇y + 2iπξn)ψn ·
∂ψn
∂xk

v+φekdydzdt. (47)By equation (19) the �rst integral of (47) is equal to
∫ +∞

0

∫

RN

A∗∇v+∇φdzdt, (48)while the seond integral of (47) ontributes to the �rst term in formula (25) for c∗.Next, we onsider the terms whih are linear in z in the variational formulation of (34)
∫ +∞

0

∫

RN

[
Aε0(∇ +

2πiξn√
ε

)v+
ε · (z∇Ψ

2

ε) −
1

ε
ρε0λnv

+
ε Ψ

2

εz

]
dzdt

+

∫ +∞

0

∫

RN

[
Aε1,k

√
εzk(∇ +

2πiξn√
ε

)v+
ε · ((∇− 2πiξn√

ε
)Ψ1

ε + Ψ2
ε)

]
dzdt =

∫ +∞

0

∫

RN

[
1√
ε
Aε0(

√
ε∇ + 2πiξn)v+

ε · (∇y − 2πiξn)
∂ψ

ε

n

∂xk
φzk −

1√
ε
λnρ

ε
0v

+
ε

∂ψ
ε

n

∂xk
φzk

]
dzdt

+

∫ +∞

0

∫

RN

[
1√
ε
Aε1,k(

√
ε∇ + 2πiξn)v+

ε · (∇y − 2πiξn)ψ
ε

nφzk −
1√
ε
λnρ

ε
1,kv

+
ε ψ

ε

nφzk

]
dzdt

+

∫ +∞

0

∫

RN

[
Aε0(

√
ε∇ + 2πiξn)v+

ε · ∂ψ
ε

n

∂xk
∇φzk + Aε1,k(

√
ε∇ + 2πiξn)v+

ε · ψεn∇φzk
]
dzdt

− 1

2πi

∫ +∞

0

∫

RN

[
Aε1,h(

√
ε∇ + 2πiξn)v+

ε · (∇y − 2πiξn)
∂ψ

ε

n

∂ξk

∂φ

∂zk
zh − λnρ

ε
1,hv

+
ε

∂ψ
ε

n

∂ξk

∂φ

∂zk
zh

]
dzdt

+

∫ +∞

0

∫

RN

[
√
εAε1,h(

√
ε∇ + 2πiξn)v+

ε ·
(
− 1

2πi

∂ψ
ε

n

∂ξk
∇ ∂φ

∂zk
+
∂ψ

ε

n

∂xk
φek

)
zh

]
dzdt. (49)17



By equation (22) with ϕ = v+
ε φzk, and sine ∇(φzk) = φek + zk∇φ, the sum of the �rst twointegrals in the right hand side of (49) gives

−
∫ +∞

0

∫

RN

(
Aε0(∇y − 2πiξn)

∂ψ
ε

n

∂xk
· v+

ε ∇(φzk) + Aε1,k(∇y − 2πiξn)ψ
ε

n · v+
ε ∇(φzk)

)
dzdt.(50)Therefore passing to the two-sale limit in (49) we have

−
∫ +∞

0

∫

RN

∫

TN

[
A0(∇y − 2πiξn)

∂ψn
∂xk

· v+ψnφek + A1,k(∇y − 2πiξn)ψn · v+ψnφek

]
dydzdt

−
∫ +∞

0

∫

RN

∫

TN

[
A0(∇y − 2πiξn)

∂ψn
∂xk

· v+ψnzk∇φ+ A1,k(∇y − 2πiξn)ψn · v+ψnzk∇φ
]
dydzdt

+

∫ +∞

0

∫

RN

∫

TN

[
A0(∇y + 2πiξn)ψn · v+∂ψn

∂xk
zk∇φ+ A1,k(∇y + 2πiξn)ψn · v+ψnzk∇φ

]
dydzdt

− 1

2πi

∫ +∞

0

∫

RN

∫

TN

[
A1,h(∇y + 2πiξn)ψn · (∇y − 2πiξn)

∂ψn
∂ξk

v+zh
∂φ

∂zk

−λnρ1,hv
+ψn

∂ψn
∂ξk

∂φ

∂zk
zh

]
dydzdt. (51)By equation (17) it follows that the last integral in (51) is equal to

∫ +∞

0

∫

RN

∫

TN

[
A1,hψnek · (∇y − 2πiξn)ψn + A0ψnek · (∇y − 2πiξn)

∂ψn
∂xh

]
v+zh

∂φ

∂zk
dydzdt

−
∫ +∞

0

∫

RN

∫

TN

[
A1,hψnek · (∇y + 2πiξn)ψn + A0

∂ψn
∂xh

ek · (∇y + 2πiξn)ψn

]
v+zh

∂φ

∂zk
dydzdt

−
∫ +∞

0

∫

RN

∫

TN

1

2πi

∂2λn
∂xh∂ξk

|ψn|2v+zh
∂φ

∂zk
dydzdt. (52)Notie that the �rst and the seond line of (52) anel out with the seond and third line of(51) respetively and therefore (51) redues to

−
∫ +∞

0

∫

RN

∫

TN

[
A0(∇y − 2πiξn)

∂ψn
∂xk

· v+ψnφek + A1,k(∇y − 2πiξn)ψn · v+ψnφek

]
dydzdt

−
∫ +∞

0

∫

RN

1

2iπ

∂2λn
∂xh∂ξk

v+ ∂φ

∂zk
zhdzdt. (53)

18



Finally we onsider all quadrati in z terms in the variational formulation of (34)
1

2

∫ +∞

0

∫

RN

[
Aε2,lhεzlzh(∇ +

2iπξn√
ε

)v+
ε · ((∇− 2iπξn√

ε
)Ψ

1

ε + Ψ
2

ε) − λnρ
ε
2,lhzlzhv

+
ε Ψ

1

ε

]
dzdt

+

∫ +∞

0

∫

RN

[
Aε1,kεzk(∇− 2iπξn√

ε
)v+
ε · (z∇Ψ

2

ε) − λnρ
ε
1,kzkv

+
ε z · Ψ

2

ε

]
dzdt

=
1

2

∫ +∞

0

∫

RN

Aε2,lhεzlzh(
√
ε∇ + 2πiξn)v+

ε · (∇y − 2πiξn)ψ
ε

nφdzdt

+
1

2

∫ +∞

0

∫

RN

Aε1,hzh(
√
ε∇ + 2πiξn)v+

ε · zk(∇y − 2πiξn)
∂ψ

ε

n

∂xk
φdzdt

−
∫ +∞

0

∫

RN

1

2
λnρ

ε
2,lhzlzhv

+
ε ψ

ε

nφdzdt−
∫ +∞

0

∫

RN

λnρ
ε
1,hzhv

+
ε zk

∂ψ
ε

n

∂xk
φdzdt+ o(1) (54)whih give on passing to the two-sale limit

1

2

∫ +∞

0

∫

RN

∫

TN

[
A2,lh(∇y + 2πiξn)ψn · (∇y − 2πiξn)ψn − λnρ2,lhψnψn

]
v+φzlzhdydzdt

+

∫ +∞

0

∫

RN

∫

TN

[
A1,h(∇y + 2πiξn)ψn · (∇y − 2πiξn)

∂ψn
∂xk

− λnρ1,hψn
∂ψn
∂xk

]
v+φzlzhdydzdt.(55)Now using the equation (18) we �nd that (55) redues to

∫ +∞

0

∫

RN

1

2

∂2λn
∂xl∂xh

v+φzlzhdzdt. (56)Summing up together (45), (47), (48), (53) and (56) yields the weak formulation of(24). We know by Proposition 3.5 that (24) admits a unique solution. Therefore, the entiresequene v+
ε , and not merely a subsequene, onverges. Of ourse a symmetri proof worksfor the other sequene v−ε orresponding to the opposite phase. �6 Strong onvergene (proof of Theorem 3.2)Reall that uapproxε has a L2-norm of order εN/4, so we expet the same for uε. Therefore wede�ne the di�erene between them in the sale of the z-variable. In other words we de�ne

rε(t, z) by
rε

(
t,
x√
ε

)
= uε(t, x) − ψn

(x
ε

)
e2iπ

ξn·x

ε

(
e

iωnt
ǫ v+

(
t,
x√
ε

)
+ e

−iωnt
ǫ v−

(
t,
x√
ε

))
. (57)Theorem 3.2 amounts to prove that rε(t, z) onverges strongly to zero in L2((0, T ) × RN).We begin with a tehnial lemma, the proof of whih is postponed for a moment.Lemma 6.1 The solution of (1) satis�es

lim
ε→0

1

εN/2

∫ T

0

∫

RN

ρ
(
x,
x

ε

)
|uε(t, x)|2dx dt = ‖v+‖2

L2((0,T )×RN ) + ‖v−‖2
L2((0,T )×RN ) (58)19



Equipped with Lemma 6.1 we are now able to prove Theorem 3.2. We develop thefollowing norm
∫ T

0

∫

RN

ρ

(√
εz,

z√
ε

)
|rε(t, z)|2dz dt =

1

εN/2

∫ T

0

∫

RN

ρ
(
x,
x

ε

) ∣∣∣∣rε
(
t,
x√
ε

)∣∣∣∣
2

dx dt

=
1

εN/2

∫ T

0

∫

RN

ρ
(
x,
x

ε

)
|uε(t, x)|2dx dt

+
1

εN/2

∫ T

0

∫

RN

ρ
(
x,
x

ε

) ∣∣∣∣ψn
(x
ε

)
v+

(
t,
x√
ε

)∣∣∣∣
2

dx dt

+
1

εN/2

∫ T

0

∫

RN

ρ
(
x,
x

ε

) ∣∣∣∣ψn
(x
ε

)
v−
(
t,
x√
ε

)∣∣∣∣
2

dx dt

− 2

εN/2
R
∫ T

0

∫

RN

ρ
(
x,
x

ε

)
v+
ε (t, x)ψn

(x
ε

)
v+

(
t,
x√
ε

)
dx dt

− 2

εN/2
R
∫ T

0

∫

RN

ρ
(
x,
x

ε

)
v−ε (t, x)ψn

(x
ε

)
v−
(
t,
x√
ε

)
dx dt

+
2

εN/2
R
∫ T

0

∫

RN

ρ
(
x,
x

ε

) ∣∣∣ψn
(x
ε

)∣∣∣
2

v+

(
t,
x√
ε

)
v−
(
t,
x√
ε

)
e

−2iωnt
ε dx dt

(59)
where v+

ε , v
−
ε are de�ned by (23) and (26), while R denotes the real part of a omplexnumber. By virtue of Lemma 6.1 we an pass to the limit in the �rst integral in the righthand side of (59). By using the hanges of variables z =

x√
ε
, and realling that

∣∣∣∣ρ
(√

εz,
z√
ε

)
− ρ

(
0,

z√
ε

)∣∣∣∣ ≤ C min{
√
εz, 1}, (60)it is easy to pass to the limit in the seond and third integrals in the right hand side of (59)to obtain

lim
ε→0

1

εN/2

∫ T

0

∫

RN

ρ
(
x,
x

ε

) ∣∣∣∣ψn
(x
ε

)
v±
(
t,
x√
ε

)∣∣∣∣
2

dx dt = ‖v±‖2
L2((0,T )×RN ).We pass to the two-sale limit in the fourth and �fth integrals in the right hand side of (59)

lim
ε→0

2

εN/2
R
∫ T

0

∫

RN

ρ
(
x,
x

ε

)
v±ε (t, x)ψn

(x
ε

)
v±
(
t,
x√
ε

)
dx dt

= 2R
∫ T

0

∫

RN

∫

TN

ρ0(y)|ψn(y)|2|v±(t, z)|2dy dz dt = 2‖v±‖2
L2((0,T )×RN ).To show that the limit of the last integral in the right hand side of (59) is atually zero wetake advantage of the time osillating phase. We de�ne

Kε(t) =
1

εN/2

∫

RN

ρ
(
x,
x

ε

) ∣∣∣ψn
(x
ε

)∣∣∣
2

v+

(
t,
x√
ε

)
v−
(
t,
x√
ε

)
dx20



whih is a ontinuous funtion of time (beause v± belong to C(R+;L2(RN))) and onvergesuniformly to a ontinuous limit K(t) as ε goes to 0. Therefore, sine ωn 6= 0,
lim
ε→0

∫ T

0

Kε(t) e
−2iωnt

ε dt = 0.We thus obtain
lim
ε→0

∫ T

0

∫

RN

ρ

(√
εz,

z√
ε

)
|rε(t, z)|2dz dt = 2‖v+‖2 + 2‖v−‖2 − 2‖v+‖2 − 2‖v−‖2 = 0whih ompletes the proof of Theorem 3.2. �It remains to prove Lemma 6.1, a long task partitioned in several other lemmas. Themain idea is to use the energy onservations for the ε-osillating wave equation and thehomogenized Shrödinger equations and show that the initial energy of the wave equationonverges to the sum of the initial energies of the two homogenized Shrödinger equations.There are additional tehnial di�ulties. First, the left hand side of (58) does not involvethe energy of the wave equation (1): therefore we rely on the energy of a time primitive of(1) (as introdued in Setion 4) and on an energy equipartition (see Lemma 6.5). Seond,re�ned a priori estimates are neessary and a seond time regularization has to be introdued(see Lemmas 6.4 and 6.2).Let us start by realling the de�nition (36) of the time primitive of the solution uε of (1)

Ψε(x, t) = e−αt
[∫ t

0

eαsuε(x, s)ds+ χε(x)

]
,with χε solution of (37). We know that Ψε is the solution of another wave equation, (38).We improve the a priori estimate of Lemma 4.1 on the initial data χε(x). Surprisingly theresult is di�erent aording to the value of ξn.Lemma 6.2 De�ne the sequene

wε(z) =
1

ε
χε(

√
εz)e

−2iπ ξn·z
√

ε . (61)If ξn 6= 0, it satis�es
√
ε‖∇zwε‖L2(RN ) + ‖wε‖L2(RN ) ≤ C(ξn)

(
‖v0‖L2(RN ) + ‖v1‖H2(RN )

)
, (62)where the onstant C(ξn) does not depend on ε, and it two-sale onverges strongly to

−ψn(y)
λn

v1(z), while √
ε∇wε(z) two-sale onverges strongly to −∇yψn(y)

λn
v1(z).If ξn = 0, it satis�es

√
ε‖∇zwε‖L2(RN ) +

√
ε‖wε‖L2(RN ) ≤ C

(
‖v0‖L2(RN ) + ‖v1‖H2(RN )

)
, (63)where the onstant C(ξn) does not depend on ε, and √

ε∇wε(z) two-sale onverges stronglyto −∇yψn(y)

λn
v1(z). 21



We postpone for a moment the proof of Lemma 6.2 and we introdue the energy funtionalfor Ψε

E(Ψε)(t) =
1

2

∫

RN

(
ρ
(
x,
x

ε

) ∣∣∣∣
∂Ψε

∂t

∣∣∣∣
2

+ A
(
x,
x

ε

)
∇Ψε · ∇Ψε

)
dx.Lemma 6.3 The energy of the initial data satis�es

lim
ε→0

1

εN/2
E(Ψε)(0) =

1

2

(
‖v0‖2

L2(RN ) +
1

ω2
n

‖v1‖2
L2(RN )

)
.Proof. In view of the wave equation (38) we have

E(Ψε)(0) =
1

2

∫

RN

(
ρ
(
x,
x

ε

) ∣∣u0
ε(x) − αχε(x)

∣∣2 + A
(
x,
x

ε

)
∇χε(x) · ∇χε(x)

)
dxBy the hange of variables z =

x√
ε
we rewrite

E(Ψε)(0) =
εN/2

2

∫

RN

(
ρ̃ε
∣∣ũ0
ε(z) − αχ̃ε(z)

∣∣2 +
1

ε
Ãε∇zχ̃ε(z) · ∇zχ̃ε(z)

)
dzwith the notation (33) for ρ̃ε(x) = ρ

(√
εz, z√

ε

) (similarly for other funtions) whih satis�es(60). From Lemma 6.2 we dedue that, as ε goes to 0,
∫

RN

ρ̃ε
∣∣ũ0
ε − αχ̃ε

∣∣2 dz =

∫

RN

ρ̃ε
∣∣∣ψ̃εnv0 − αεwε

∣∣∣
2

dz → ‖v0‖2
L2(RN ),beause, for any value of ξn, √εwε is bounded in L2(RN), and

∫

RN

(
1

ε
Ãε∇zχ̃ε · ∇zχ̃ε

)
dz =

∫

RN

Ãε(
√
ε∇z + 2iπξn)wε · (

√
ε∇z − 2iπξn)wεdzonverges to

1

λ2
n

∫

RN

∫

TN

A0(y)(∇y + 2iπξn)ψn(y) · (∇y − 2iπξn)ψn(y)|v1(z)|2dydz =
1

λn

∫

RN

|v1(z)|2dz,beause of the strong two-sale onvergene of Lemma 6.2 (remark that, when ξn = 0, wedo not need the onvergene of wε). Summing these two limits �nishes the proof of Lemma6.3. �Although Ψε has a �nite non-vanishing energy, as just shown in Lemma 6.3, its amplitudeis asymptotially vanishing (but of ourse not its �rst derivatives).22



Lemma 6.4 For any �nal time T > 0 there exists a onstant C(T ) > 0, independent of ε,suh that
‖Ψε‖L∞((0,T );L2(RN ) ≤ C(T )εN/4+1/2

(
‖v0‖H2(RN ) + ‖v1‖H2(RN )

)
. (64)Proof. As we did in Setion 4 where we introdued a time primitive Ψε of uε, we now iteratethis regularization proedure and introdue a new time primitive Φε of Ψε, de�ned by

Φε(x, t) = e−t
[∫ t

0

etΨε(x, s)ds+ πε

]where πε is the unique solution in H1(RN) of the equation
−div

(
A
(
x,
x

ε

)
∇πε

)
+ ρ

(
x,
x

ε

)
πε = 2ρ

(
x,
x

ε

)
χε − ρ

(
x,
x

ε

)
u0
ε. (65)Then, Φε satis�es





ρ
(
x,
x

ε

) ∂2Φε

∂t2
− div

(
A
(
x,
x

ε

)
∇Φε

)
= 0 in R+ × RN

Φε(0) = πε in R
N

∂Φε

∂t
(0) = χε − πε in RN .

(66)From Lemma 6.2 we know that
‖χε‖L2(RN ) ≤ CεN/4+1/2

(
‖v0‖L2(RN ) + ‖v1‖H2(RN )

)
. (67)Remark that the estimate (67) is optimal when ξn = 0 but is pessimisti when ξn 6= 0 beausethe fator εN/4+1/2 ould be replaed by εN/4+1. However, we do not need this re�nement inthe sequel. Reproduing the arguments of the proof of Lemma 4.1 we an prove that

∣∣∣∣
∫

RN

ρ
(
x,
x

ε

)
u0
επε(x)dx

∣∣∣∣ ≤ CεN/4+1‖v0‖H2(RN )‖πε‖H1(RN ).Therefore, from the energy equality of (65) we dedue
‖πε‖H1(RN ) ≤ CεN/4+1/2(‖v0‖H2(RN ) + ‖v1‖H2(RN )). (68)The standard energy onservation for (66), together with (67) and (68), imply that
∥∥∥∥
∂Φε

∂t

∥∥∥∥ ≤ CεN/4+1/2(‖v0‖H2(RN ) + ‖v1‖H2(RN )) (69)whih, ombined with the relations
Φε(t) = πε +

∫ t

0

∂Φε

∂t
(s)ds and Ψε =

∂Φε

∂t
+ Φε,yields the desired result (64). �We now prove a result on the equipartition of the energy saying that the kineti energyis essentially equal to the deformation energy.23



Lemma 6.5 The following equality holds
∫ T

0

E(Ψε(t)) dt =

∫ T

0

∫

RN

ρ
(
x,
x

ε

) ∣∣∣∣
∂Ψε

∂t

∣∣∣∣
2

dx dt+ o(εN/2).Proof. We multiply equation (38) by Ψε(t, x)φ(t), where φ is a smooth funtion de�ned on
R+. Integrating by parts we obtain

−
∫ T

0

∫

RN

φ(t)ρ
(
x,
x

ε

) ∣∣∣∣
∂Ψε

∂t

∣∣∣∣
2

dxdt+

∫ T

0

∫

RN

φ(t)A
(
x,
x

ε

)
∇Ψε · ∇Ψεdxdt

−
∫ T

0

∂φ

∂t
(t)

∫

RN

ρ
(
x,
x

ε

) ∂Ψε

∂t
Ψεdxdt+

[∫

RN

φ(t)ρ
(
x,
x

ε

) ∂Ψε

∂t
Ψεdx

]T

0

= 0.

(70)From (64) and (40) we have that, for a.e. t ∈ [0, T ],
∣∣∣∣
∫

RN

ρ
(
x,
x

ε

) ∂Ψε

∂t
Ψεdx

∣∣∣∣ ≤ C(T )εN/2+1/2.Thus, (70) an be rewritten as
∫ T

0

φ(t)

[∫

RN

ρ
(
x,
x

ε

) ∣∣∣∣
∂Ψε

∂t

∣∣∣∣
2

dx−
∫

RN

A
(
x,
x

ε

)
∇Ψε · ∇Ψεdx

]
dt = o(εN/2). (71)Taking φ ≡ 1 yields the desired result. �Proof of Lemma 6.1. The limit of the initial energy for the solution Ψε of the waveequation (38) is given by Lemma 6.3 and it oinides with the sum of the initial energies ofthe homogenized Shrödinger equations (24) and (27). Indeed, we have

‖v+(0, ·)‖2
L2(RN ) + ‖v−(0, ·)‖2

L2(RN ) =
1

2

(
‖v0‖2

L2(RN ) +
1

ω2
n

‖v1‖2
L2(RN )

)
= lim

ε→0

1

εN/2
E(Ψε)(0).From this equality, using the energy onservations for the wave equation (38) and the ho-mogenized Shrödinger equations (as proved in Proposition 3.5), we dedue

‖v+(t, ·)‖2
L2(RN ) + ‖v−(t, ·)‖2

L2(RN ) = lim
ε→0

1

εN/2
E(Ψε)(t).Integrating in time and realling the energy equipartition of Lemma 6.5, yields

‖v+‖2
L2((0,T )×RN ) + ‖v−‖2

L2((0,T )×RN ) = lim
ε→0

1

εN/2

∫ T

0

∫

RN

ρ
(
x,
x

ε

) ∣∣∣∣
∂Ψε

∂t

∣∣∣∣
2

dx dt.Finally, realling uε =
∂Ψε

∂t
+ αΨε and using Lemma 6.4 whih says that Ψε onverges to 0in a suitable weighted norm, we obtain

‖v+‖2
L2((0,T )×RN ) + ‖v−‖2

L2((0,T )×RN ) = lim
ε→0

1

εN/2

∫ T

0

∫

RN

ρ
(
x,
x

ε

)
|uε(t, x)|2 dx dt,24



whih is the desired result. �Proof of Lemma 6.2. We begin with the easy ase when ξn 6= 0. From the de�nition (61)of wε we have χε(√εz) = εwε(z)e
−2iπ ξn·z

√
ε whih, upon di�erentiating, yields

(∇xχε)(
√
εz) = (

√
ε∇zwε + 2iπξnwε)e

−2iπ ξn·z
√

ε .From Lemma 4.1 we know that
‖(∇xχε)(

√
εz)‖L2(RN ) ≤ C(‖v0‖L2(RN ) + ‖v1‖H2(RN )).For ξn 6= 0 there exists a positive onstant C(ξn) > 0 (see [12℄) suh that

‖
√
ε∇zwε + 2iπξnwε‖L2(RN ) ≥ C(ξn)(‖

√
ε∇zwε‖L2(RN ) + ‖wε‖L2(RN )) (72)whih implies the desired estimate (62). We now study the two-sale onvergene of thesequene wε, whih is a solution of

−(
√
ε∇ + 2iπξn) ·

(
Aε(

√
ε∇ + 2iπξn)wε

)
+ ε2ρεwε = ρεψεn(εv

0 − v1). (73)We multiply equation (73) by φε = φ

(
z,

z√
ε

), where φ(z, y) is a smooth ompatly sup-ported funtion de�ned on RN × TN . Integrating by parts and using hypothesis H2 yield
∫

RN

[Aε0 + o(1)] (
√
ε∇ + 2iπξn)wε · (

√
ε∇− 2iπξn)φ

ε
dz + ε2

∫

RN

[ρε0 + o(1)]wεφ
ε
dz =

∫

RN

[ρε0 + o(1)]ψεn(εv
0 − v1)φ

ε
dz.(74)Beause of the a priori estimate (62), there exist a subsequene and a limit w0(z, y) ∈

L2(RN ;H1(TN)) suh that wε and √
ε∇wε two-sale onverge weakly to w0 and ∇yw0 re-spetively. Passing to the two-sale limit we obtain

−(divy + 2iπξn)A0(y)(∇y + 2iπξn)w0 = −ρ0(y)v
1(z)ψn(y).By the simpliity of λn, we dedue that w0 is given by

w0(z, y) = −ψn(y)
λn

v1(z),and the uniqueness of this limit implies that the entire sequene onverges. The strong two-sale onvergene is easily obtained by replaing the test funtion φε by wε in (74), passingto the limit in the right hand side whih implies the onvergene of the energies in the lefthand side and thus the strong two-sale onvergene aording to part (2) of Proposition2.4.Now, suppose that ξn = 0. The above proof does not work anymore beause inequality(72) is not valid for ξn = 0. It turns out that wε is not any longer bounded in L2(RN) but25



is preisely of order ε−1/2. To prove this result we an not use simple a priori estimates andwe instead rely on a omparison with a four-term asymptoti expansion. We onstrut atwo-sale asymptoti expansion for a version of (73) with purely periodi oe�ients (themarosopi variable √εz being replaed by 0)
−εdivz (A0

(
z√
ε

)
∇zw

0
ε

)
+ ε2ρ0

(
z√
ε

)
w0
ε = ρ0

(
z√
ε

)
ψn

(
z√
ε

)
(εv0 − v1), (75)where A0 and ρ0 are de�ned by (12). Reall that, by virtue of assumption H2, the di�erenebetween A(

√
εz, z√

ε
) and A0(

z√
ε
) is small (same for ρ) ; see (60). The ansatz for w0

ε is takenas
w̃ε(z) =

w∗(z)√
ε

+ w0(z,
z√
ε
) +

√
εw1(z,

z√
ε
) + εw2(z,

z√
ε
).Plugging it in (75) we obtain the following asade of equations

−divy (A0(y)∇yw
0(z, y) + A0(y)∇zw

∗(z)
)

= −ρ0(y)ψn(y)v
1(z)

−divy(A0(y)∇yw
1(z, y)) = divz(A0(y)∇yw

0(z, y)) + divy(A0(y)∇zw
0)

+divz(A0(y)∇zw
∗(z))

−divy(A0(y)∇yw
2(z, y)) = divz(A0(y)∇yw

1(z, y)) + divy(A0(y)∇zw
1(z, y))

+divz(A0(y)∇zw
0(z, y)) + ρ0(y)ψn(y)v

0(z)The �rst equation allows us to ompute w0(z, y), up to an unknown funtion ŵ0(z),
w0(z, y) = ŵ0(z) −

ψn(y)v
1(z)

λn
+

N∑

i=1

∂w∗

∂zi
(z)χi(y)where χi, i = 1, . . . , N, are the usual periodi solutions of the ell problems

−divy (A(y)(∇yχi + ei)) = 0 in T
N .In order to solve the seond equation, we must �rst hek the following ompatibility ondi-tion divz(AH∇zw

∗(z)) − 1

λn
divz (v1(z)

∫

TN

A(y)∇yψn(y)dy

)
= 0, (76)where AH is the lassial homogenized matrix de�ned by AHei =

∫
TN A(y)(∇yχi + ei)dy.Equation (76) has a unique (up to an additive onstant) solutionw∗(z) in the spaeD1,2(RN) =

{φ ∈ H1
loc(R

N) s.t. ∇φ ∈ L2(RN)N}. It is not obvious however that w∗ belongs to L2(RN).Sine equation (76) has onstant oe�ients, by Fourier analysis we dedue that
|Fw∗(ξ)| ≤ C

|Fv1(ξ)|
|ξ| , (77)where Fφ(ξ) denotes the Fourier transform of φ(x). Assumption (28) (see Remark 3.4for omments) is preisely designed so we an dedue from (77) that indeed w∗ belongs to26



L2(RN). Knowing w∗ we an ompute the solution of the seond equation (up to the additionof an unknown funtion ŵ1(z)) as
w1(z, y) =

N∑

i=1

∂ŵ0

∂zi
(z)χi(y) + w̃1(z, y),where w̃1(z, y) depends on z only linearly through ∇zv

1 and ∇z∇zw
∗ (whih himself dependsonly on ∇zv

1), but not on ŵ0.In order to solve the third equation (for w2), we must �rst hek the following ompati-bility onditiondivz(AH∇zŵ0) + divz ∫
TN

A(y)

[
∇yw̃1 −

ψn
λn

∇zv
1 +

N∑

i=1

χi∇z
∂w∗

∂zi

]
dy = 0whih again admits a unique (up to an additive onstant) solution ŵ0 ∈ D1,2(RN) if v1 ∈

H1(RN). Sine the oe�ients are onstant in the above equation, by Fourier analysis weeasily hek that the L2(RN)-norm of ŵ0 is bounded by the L2(RN)-norm of v1.Sine we proved that both w∗ and ŵ0 belong to H1(RN), it is now obvious that thetwo-sale asymptoti expansion w̃ε satis�es the desired a priori estimate (63), whatever thehoies of the underdetermined additive funtions ŵ1(z) and ŵ2(z)). To obtain the same for
wε we bound their di�erene δε(z) = wε(z) − w̃ε(z) whih satis�es

−εdivz(Aε∇zδε) + ε2ρεδε = ε3/2f εwhere
f ε(z) = −ρ

(
z,

z√
ε

)(
w∗(z) +

√
εw0

(
z,

z√
ε

)
+ εw1

(
z,

z√
ε

)
+ ε3/2w2

(
z,

z√
ε

))

−ε−1/2divz ([A0

(
z√
ε

)
− A

(√
εz,

z√
ε

)]
∇zw̃ε

)

[
−divz (A0(y)∇zw

1(z, y)
)
−
√
εdivz (A0(y)∇zw

2(z, y)
)](

y =
z√
ε

)

[
−divz (A0(y)∇yw

2(z, y)
)
− divy (A0(y)∇zw

2(z, y)
)](

y =
z√
ε

)
.We hek that ∫

RN

f ε δε dz ≤ C
(
‖δε‖L2(RN ) + ε−1/2‖∇δε‖L2(RN )

)beause of assumption H2 and (60). Therefore, we obtain the following inequality
ε‖∇zδε‖2

L2(RN )N + ε2‖δε‖2
L2(RN ) ≤ C

√
ε
(
ε‖δε‖L2(RN ) +

√
ε‖∇δε‖L2(RN )

)whih implies
√
ε‖δε‖L2(RN ) + ‖∇δε‖L2(RN ) ≤ C,27



and, in turn, the desired estimate (63). We pass to the weak two-sale limit in equation (73)with ξn = 0 as before. The strong two-sale onvergene of √ε∇wε is obtained by remarkingthat √ε‖∇δε‖L2(RN ) ≤ C
√
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