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Abstract

This paper deals with the homogenization of a second order parabolic
operator with a large nonlinear potential and periodically oscillating
coefficients of both spatial and temporal variables. Under a centering
condition for the nonlinear zero-order term, we obtain the effective
problem and prove a convergence result. The main feature of the ho-
mogenized equation is the appearance of a non-linear convection term.
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1 Introduction

We consider the homogenization of a reaction-diffusion equation with a large
non-linear reaction term in periodic porous media. We assume that the
coefficients of the equations are periodically oscillating in both space and
time with a parabolic (or diffusive) scaling; namely, the spatial period is e and
temporal period is €2, ¢ being a small positive parameter. The corresponding
Cauchy problem reads

1

P(g)atuez diV(@(g, ;—Q)Vu5> + gg<§, %,us(x, t)) in R"x(0,7),

uf(x,0) = ug(x) € L*(R™),

(1)
where g is the initial data, and the coefficients a(y, s), p(y) and g(y, s, u) are
1-periodic in y and s. The unknown u° is the concentration of some chem-
ical species diffusing in a porous medium of porosity p(y), with diffusivity
a(y,s) and reacting with the background medium (for example by absorp-
tion/desorption) through the nonlinear term g(y,s,u). The fact that the
coefficients vary periodically in time can be interpreted as a crude modelling
of some exterior forcing (like another chemical reaction). In addition to usual
assumptions on the coefficients (see the next section for details), we make
the crucial assumption on centering of the nonlinear term, namely we assume

that, for each u € R,

/‘M%&M%MZO

[0’1]n+1
This condition can be interpreted as a local equilibrium of the reaction for any
concentration level, which allows us to expect a non-trivial limit, as € goes
to zero. Our main result is the convergence of the sequence u® of solutions
of problem (1) to the unique solution of the following homogenized problem

(see Theorem 3 for the exact statement):

{ dyu = div(aVu) + F(u) - Vu+ V(u) inR"x(0,7), o)

u(z,0) = up(z) € L*(R™),
2



where the effective velocity F'(u) and effective potential V(u) are explicit
non-linear functions defined in terms of correctors or solutions of the so-
called cell problems. There are two interesting features of the above effective
operator. The first one is the appearance of the first order term in the limit
operator, even if the original equation is formally self-adjoint. This effect is
due to the time oscillation of the coefficients in (1). Indeed, if the coefficients
do not depend on the temporal variable s, then simple computations show
that the velocity F'(u) vanishes, see Remark 4 below.

The second feature is that, in contrast with the original equation which
has nonlinearity only in the zero order term, the limit operator also includes
a nonlinear first order term, in other words the nonlinearity can jump to
the next higher order term. This asymptotic phenomenon is well-known in
physics and mechanics. For several models it has also been justified in the
mathematical literature, see for instance [10].

The fact that convection can arise from the homogenization of a purely
diffusion-reaction problem is already known and has several interesting appli-
cations. This effect was first discovered in nuclear reactor physics in [9] and
later rigorously justified by homogenization arguments in [6], [7]. It is also
an important phenomena in reactive transport through porous media where
convection can be enhanced by chemical reactions [3], [4], [11], [12]. Finally,
it is an explanation for the origin of bio-motors [14]. On the other hand,
the transmission of the nonlinearity from the reactive term in the original
equation (1) to the convective term in the effective equation (2) is another
evidence of the strong coupling between convection and chemical reactions
in reactive transport through porous media.

Large zero-order terms have already been homogenized in the linear case
when they scale like 1/ [5]. In such a case the factorization technique allows
us to separate a periodically oscillating part ¢ (z/¢) of solutions so that the

remaining part u® /vy (z/c) has a regular behaviour, see [2], [4], [8]. However,



this technique fails to work if the problem under consideration is nonlinear.

On the contrary, for linear equations with centered zero order term of
order 1/e, solutions exhibit a regular asymptotic behaviour (see, for instance,
[5], Chapter 1, Section 12). The goal of the present paper is to prove an
homogenization result for equations with a nonlinear potential.

The paper is organized as follows. In section 2 we introduce the problem
and specify the conditions on the coefficients of equation (1). Section 3
is aimed at obtaining uniform a priori estimates. In Sections 4 and 5 we
characterize the two-scale limit of solutions, define the limit problem and
prove the convergence result. Finally, in Section 6 the properties of the limit
problem are studied. It is shown, in particular, that this problem has a

unique solution.

2 Statement of the problem

Instead of (1) we consider a slightly more general initial boundary value
problem
p<§)8tu5: div(a(f, é)Vue) + %g(%, ;—2, ua(x,t)) in Qx(0,7),
u*(z,t) =0 on 0Qx(0,7T),
uf(z,0) = up(z) € LX(Q),

(3)
in a Lipschitz domain ) C R", for some given final time 7" > 0. Notice that
the domain ) might be either bounded or unbounded. In the case () = R"”
problem (3) turns into problem (1).

We assume that the coefficients of (3) satisfy the following properties:

A1l. Uniform ellipticity. The matrix a;; is real, not necessary symmetric,

positive definite: there exists A > 0 such that

laij|| oo niny < AT 1< 4,5 <m,



A2.

A3.

A4.

A5.

A6.

ai;(y, 8)6& > AP for all (s,y) € R ¢ e R™
Positivity. There exists A > 0 such that

A <ply) <At forally € R™.

Periodicity. The density p(y) is [0, 1]™-periodic, and the entries of the
matrix a(s,y) are [0, 1]" " -periodic. Without loss of generality we as-

sume that

/ p(y)dy = 1.
[0,1]"

Here and in the sequel Y stands for the periodicity cell [0, 1]*. We also
denote Y = [0, 1]".

Centering condition. We assume that, for any u € R,

<g> = / 9(y, s,u)dsdy = 0.

[071}n+1

Lipschitz continuity. We assume that there exists a finite constant
0 < C < +oo such that, for any y,s € [0,1]"" and u € R,
0ug(y, s,u)| < C,
—1
10ug(y, 5,u1) = Dug(y, s,us)| < Clur — us| (1 + fus| + Juaf) .

The last bound implies that, for all y, s € [0, 1], the function d,g(y, s, -)

belongs to W1°°(R), and, moreover,

In particular, A5 is fulfilled if g(y, s, u) is two times differentiable in u,
82
and |55y, 5,u)| < C(L+ fu)) ™"

Equilibrium condition. We assume that 0 is a possible solution of (1)
or (3), i.e.,
g(y,5,0)=0  forally,se[0, 1]



In a standard way one can show that under the above assumptions for
each € > 0 problems (1) and (3) have a unique solution u°, moreover u® €
L*(0,T; HY(Q)) N C(0,T; L*(Q). However, due to the presence of the factor
1/e in front of the zero order term in the studied equation, the standard
energy estimates are not uniform in €. In the next section we improve these

estimates and show that uniform in € a priori estimates hold.

3 A priori estimates and compactness

We begin this section by obtaining uniform a priori energy estimate for the
solution u®. In the sequel, ) stands either for R", as in the case of problem
(1), or for a Lipschitz open subset of R", in the case of the boundary-value

problem (3).

Lemma 1. Under assumptions A1.-A6. the following estimates hold true

[ ll2omm@y <€, l[ulle=rirz@) < C
with a constant C' which does not depend on ¢.

Proof. The desired estimate relies on the following representation of the large

nonlinear potential term

(3 ) = av[o(Z )] +en()afe(50)

3uC¥<E t u€> -Vu® — 6p<§>3u§<§,ue>8tu5

gl e?’

(4)

with
S

G(s.u) = / g(ruydr,  gls,u) = / oy, 5, u)dy, (5)

0 v
and G(y, s,u)=V,R(y,s,u) with R defined as the solution of

AyR(y, s, u)= g(y,s,u)—p(y)g(s,u) in Y,
R(y, s,u) is Y — periodic iny.



The right hand side of (6) has zero average in Y so R exists and is unique

up to an additive function of variables s and u (which does not matter in

the definition of GG). This representation can be checked by straightforward

computations. By construction and due to A5 and A6, we have

Cls,u) < Clul, 1005, 0)| < C, 10,85, w)—0,C(s, ua)| < —12 =2l
1+ |uq| + |us]

and

G(y,s,u) < Clul,  [0.G(y,s,u)| < C,

C]ul _UQ‘
8uG 99 _8uG PR S -
‘ (y S ul) (y S u2)’ 1—}—"&1’—}—"&2’

In particular, %(s,u) belongs to L>((0,1) x R), and ‘%@(s,u)} <C(1+
Jul) =

Multiplying equation (3) by uf, integrating the resulting relation over
the cylinder @ x (0,¢) and making use of representation (4), we get after
straightforward rearrangements

t

(D@ de+ [ [a(Z2) V(e s) - Vur(a, 5) duds
2/ <5> // <5 € )

Q 0Q
. ¢
= 5/p(%)(uoydaﬂ%—//G(g,g—i,ua) -Vus(x, s) dxds
Q 0Q
it _
- 6/G<8—2, ua(a:,t)>u5(a:,t) dx + 8/,0<§>G(O,U()(x))u0(x) de  (7)
Q Q
t t
+€ /p(%)@(é,us(x,s))ﬁtus(a:,s) dxds—i—//auG(g,%,us)-Vususdxds
0Q 0Q

—l—e//p(g)@u@(g%, u®(z, s)) (8tu5(x, s))us(:ﬂ, s)dxds = I1+ 1o+ 13+ 14+ 15+ 1+ 1.
The terms on the right-hand side can be estimated as follows

¢
I < A Huoll72), || < C/O/Q [u®| [Vu®| dads,

7



| Is] + |I4| < Cc‘(llus(- 22 + lluollzzig))

|Is| =€ ,ut(x, s))atue(x, s)dxds

62

t

:g’//@(i,u (x ,s)){div(a(g,g—i)VUE( ))—i—lg(x,;,u (x,s))}dxds’

0Q
C<5HVUEH%2(Qx(o,T)) + HUEH%Q(QX(O,T)))

(with no boundary terms because G(s,0) = 0),
| < Cllwll 2@y IV 2@ 0.1
¢ _ /3 T S
|I;| = 6’ // 8uG<—2,u5(x,s)>u5(a:, s)div(a(=, ) Vu'(z, s)) dxds)jt
£ e

—l—’//aG —, u(, 3)) (8,82,u (x,s))us(x,s)dxdsl
< Ce||Vu HLQ(QX(O,T)) + CHuaH%Q(QX(O,T))‘

Substituting these bounds in (7), we obtain

t

/p(%)(us(av,t))2 dx+//a<§,;—2>Vus(a:, s) - Vu®(z, s) dxds

Q 0@
t
2 2
SOMﬂm@+C{/wwwﬁwm@%

+ [ IVl s + [ 10 9) o s

This yields the desired bound by a standard application of Gronwall’s lemma.
O

In the case of an unbounded domain () we also need to show that the

solution u® remains localized in space as € — 0.

Lemma 2. In the case of Cauchy problem (1) or unbounded domain Q in

(3), for any 6 > 0 there exists R = R(0) such that, uniformly in e,

HUEHLQ({IGQ:|x|2R}) <.



Proof. Let ¢r be a continuous, piecewise linear function pp : RT — R
such that pr(r) =0 for r < R, ¢r(r) =1 for r > 2R, and ¢'(r) = 1/R for

€ (R,2R). We denote pr(x) = ¢(|x|), multiply equation (1) by ¢r(x)u®(z)
and integrate the resulting relation over the set R™ x (0,7). After simple

rearrangements this yields

/SDR(:L*)(UE(:U,T) dx+//gDR (x,t)Vu(x,t) - Vu(z,t) dedt
Q 0 Q

= %/@R(x)(uo(a:)) //u (z,t)Vu(x,t) - Vog(x) dedt
Q 0 @
+ / / {u*(z,t)G*(2,t) - Vor(x) + pr(2)G(x,t) - Vu(z,t)} dadt
//ch (x,t)0,G* (x,t) - Vu(x,t)dxdt (8)

—l—e// 2) {G (2, 1) 0puf (x, 1) + u (2, 1)0,G (v, 8)0u (2, 1)} pr(x)dwdt

~ [ F@IF @ (e Dhpnla) do += [ @) (@, 0)un(w)pnle) do
Q Q
here a°(z,t) and p°(x) stand for a(x/e,t/e*) and p(x/¢), respectively, and

(1) = G(L, 5o wt)), G let) =G5, wen),

. —/t
0uG (x,1) = 8uG<€—2,u (x,t)).
Considering the assumptions on g and the definition of pr, we get

h g g g C € O
'//u (x,t)a®(x)Vu(z,t) - Vor(x) dxdt' < EHU 12001 Q) < o
0 Q

3| Q

C
]// 1) Vien(e) dodt| < G ornian < G
0

9



'//@R(x)Ge(a:,t)-Vue(x,t) dxdt‘ Su//ch\Vu5|2dxdt
0 Q 0 Q
C
—i——//goR]uE]Zda:dt,
H -

'//@R(x)ua(x,t)ﬁuGa(x,t)-Vua(x,t) dxdt‘ < u//ch\Vu5|2dxdt
0 Q 0 Q

+€//g03\u5\2dxdt
H -

6/,05($)§E(ZE, T)u(z, 7)er(x) dx| < Ce /(ue(x, ) ¢r(z) dv
Q Q
with an arbitrary p > 0; here we have also used the bounds |0,G(y, s,u)| < C

and |G(y, s,u)| < Clu|. It remains to estimate the integral on the right-hand
side of (8) which contains the time derivative of . To this end we use the

original equation (1). This gives

G (z, )0 (x, ) pr(x )dxdt‘ <

G (z,t)pp(z)div (a®(z, t)Vus(z, 1)) dxdt'

+‘ /T/GE(“)wR(fv)ge(x,t) dacdt' <
0 Q

gc// () [V () Sl (0] [V, )]+ o)l (o, )}
0

< C% + C’//{apR(x)|Vu5(a:,t)\2 + or(x)u (2, )]*} dudt.
0 Q

Similarly,

or(@)us(2,1)0,G (x,t)0us (2, t) drdt

10



< C% + C’//{sgoR(x)\Vue(x,t)F + or(@)u (2, )]*} ddt.
0Q

Combining the above estimates and choosing an appropriate value of pu, say

= 1/4, we conclude that for all sufficiently small € > 0 the inequality holds

/ pr()(u (z, 7)) dr + / / or(2)| VU (z,t)? dedt <
Q 0 Q

< C/QDR(.I)(’LLO(IL’))Zd.T—F%—FC//QDR(.T)‘UE(.I,t)’Zd.Idt
Q 0 @

From this estimate the desired statement follows by Gronwall’s lemma. [

The previous two statements are not sufficient for obtaining the compact-
ness of {u®} in L*(Q x (0,T)). We need in addition a uniform estimate for

the modulus of continuity of {u°}.

Lemma 3. For any ¢ € C5°(Q) and any T > 0 there exist ¢; > 0 and c3 > 0
such that for all v > 0 the inequality holds
sup (07Ut (- t2), @) 12 (@) — (PTUT (1), @) 12| < i/ + ok

0<t1<t2<T
ta—t1 <y

Proof. We have

to
(U (1), D)1y — (PP (1 11), D)) = / / o i dadt
t1 Q

to
t1 Q

to
- 5/0590(65(1’7 ty) — G (x, t1)) dr + ¢ // p°0,G O dadt.
Q t1 Q
The last term on the right-hand side can be rearranged as follows

to to
6// P 0,G PO dadt = — // 0,G a*Vuf - Ve dadt
1 Q i1 Q
11



to to
82 —E& —€
—€ // gpr a*Vu® - Vut dxdt — // 0g°0,G dxdt.

1 Q 1 Q
Recalling the estimate of Lemma 1 and the properties of G, one derives from

the above relations that
[(P7u (- t2), @) 2@) — (PTu (5 t0), ©) 2] < Clo)Vita — tilluf| 20,10
+eC (o) w1220 1.1y < Cl0) (V2 =t +¢),
and the required bound follows. O
We proceed with the compactness result.

Lemma 4. The family (u).~o is relatively compact in the space L*(Q X

(0,7)).

Proof. The fact that the estimates of Lemmata 1-3 imply the compactness of
u® has been proved in [10]. For the sake of completeness we simply explain the
main idea of the proof. Introducing a smooth orthonormal basis (e; (x))i>1

of L*(Q), we use the representation

us(x> t) = Z O‘j(t)ej(x)’ O‘j(t) = (us(" t)> ej)LQ(Q)>
and denote
ui(a,t) =Y a;te;(x),  Uyle,t)= > ajt)e(x).
j=1 j=N+1

From the estimates of Lemma 1 it follows that ||UX || r2(gx(0,1)) goes to zero as
N — oo uniformly in €. Then one can derive from Lemma 3 and, in the case
of unbounded domain @, Lemma 2, that uy is compact in L*(Q x (0,T)) for
any NN. This implies the desired compactness. The reader can find a detailed

proof in [10]. O

12



4 'Two-scale convergence and correctors

In this section we study the two-scale limits of u® and its gradient, and intro-
duce the correctors required for passing to the limit in the original problem.

As a first step we apply the two-scale compactness arguments (see [1,
13]). It follows from Lemmata 1,4 that there exist a subsequence and limits
u(x,t) € L*((0,T); H(Q)), w € L*(Qx(0,T); LZ(0,1; H(Y))) (the symbol
# indicates periodicity of the corresponding functions) such that, along this

subsequence,

u® — u(x,t) in L*(Q x (0,T)) strongly, (9)

e—0

Vu - Vou(z,t) + Vyw(z,t,y,s) in the sense of two-scale convergence.
(10)
Notice that w is defined up to an arbitrary additive function of z, ¢ and s.

In order to fix its choice, we assume that

ow)y ™ [ oyt toy.s) dy=o (1)

Denote g(yu S, u) = g(yu S, u) _p(y) <g(7 S, U)>ya which satisfies <§(7 S, u)>y =0
since (p), = 1. The rest of this section is devoted to the proof of the following

characterization of w.

Lemma 5. The function w is a solution of the boundary value problem

p(y)0sw = divy (aly, s)(Vyw + Vou(z, b)) + gy, s,u(z,t)) inY
. o (12)
(y,s) — w is Y-periodic.

Proof. We first check that (12) is well-posed. According to [8], equation (12)
has a Y-periodic solution which is unique up to an additive constant. Thus,
under the normalization condition fy p(y)w(y, s, u)dyds = 0, the solution of
(12) is unique. Moreover, due to the definition of g, integrating (12) with
respect to the spatial variable y, we find that condition (11) is also fulfilled

by this solution of (12).

13



Let us now establish (12) by passing to the limit in the equation for u®

with a test function of the form

& = ol 0 (2, 5)

g’ g2

with ¢ € C5°(Q x (0,T)) and ¢ € C([0,1]"") such that(py), = 0 for any
s. By virtue of the last condition, there is a smooth periodic vector-function
U = ¥(y,s) such that div,U = pyp. Differentiating in s gives div,0;¥ =

pOstp. After straightforward rearrangements we obtain
T T
—€ //psuswsﬁtgodxdt—//usgpdiv(ﬁsklfs)dxdt
0Q 0Q

_5// ) (O (z t))cp(x,t)w(f,%)dxdt

g &

T T
= —¢ // Yea“Vu® - Vo drdt — // pa*Vu -V, h° dxdt+// Y g° drdt;
0Q 0Q 0Q

t
here and later on we use the notation ¢)° = zb(f, —2), 0¥ = 0,V (y, s)
5

Vyb® = Vyi(y, 3)‘
y=z/c,s=t/e?
Lebesgue theorem, the difference (g° —g(x/e, t/e ,u(x,t))) converges to zero

y:$/a,s:t/52,
t
and ¢° = g(— —,u’(x,t)). Notice that by the

) 2 )
in L*(Q x (0,T)). Integrating by parts, passing to the limit as ¢ — 0, and

considering the properties of g, we get

hm // eVus - 0,V dadt + hm // u*V - 0, V¢ dadt

T
—/// aly, s)(Vu+ Vyw(z,t,y, s))e(z, )V (y, s) dydsdudt
0QYy
T

+///so(x,t)¢(y,S)g(y,s,U(x,t))dydsd:rdt-

0QYy

14



Making further transformations yields

/T / / p(a,t)(Vu+ Vyw(e,t,y,s)) - 0¥ (y, s) dydsdadt

0QYy
T
+/// u(z,t)Vo(z,t) - 0,V (y, s) dydsdzdt
0QYy
T
= /// a(y,s)(Vu—i—Vyw(x,t,y,s))gp(x,t)vyw(y,3) dydsdzdt
oYy

+7//90(%15)1&(3/,S)Q(y,sw(w,t))dydsdwdt-
0QYy

The second integral on the left-hand side is equal to zero, and, since ¢ is an

arbitrary test function, we end up with the following relation

/Vyw -0,V dyds = — /(Vggu + V,w) - aVyy dyds
y y

+/¢(y,S)g(y,s,U(fv,t))dyds,
y

which holds for almost all (z,t) € @ x (0,T). The integral on the left-hand

side can be rewritten as follows

/Vyw -0,V dyds = /divy‘llasw dyds = /p¢asw dyds.
y y Yy

Finally, we get

/¢(y, s){p(y)dsw(x,t,y, s)—divy (aly, s)(Vyw(z,t,y, s) + Vou(z,t))) } dyds
y

- /¢(978)9(y,8,U(a:,t))dyds —0
y

15



for almost all (z,t) € @ x (0,7") and for any ¢ = ¢(y, s) such that (py), =0

for all s. Considering the definition of g, we conclude that
/w(y, s){p(y)0sw(z, t,y, s)—divy(a(y, s)(Vyw(z,t,y, s) +Vu(z,t)))}dyds
y

- /¢(y,8)§(y78,u(x,t))dyds —0
y

(13)
It is straightforward to check that the last identity also holds true for any
periodic ¥ = 9(s). Indeed, since [, p(y)w(z,t,y, s)dy = 0, then

[ﬁ@W@JWﬁW@@MyZQ

and thus [, p(y)0sw(z,t,y, s)Y(s) dy = 0. Finally, since any Y-periodic func-

tion ¥ (y, s) can be represented as

U(y,s) = 1y, s) +Pa(s)

with
¢m$=/mww%$m, 1y, 8) = D(y, 8) — (),

then the relation (13) holds for any ¢ € CZ(Y), which implies that w is a
solution of (12). O

Remark 1. By linearity of (12) it is straightforward to check that its solution
satisfies

w(y, s, z,t) = x(y,s) - Vu(z, t) + wi(y, s, u(z,t)) (14)
with x and wy being Y-periodic solutions of the following problems
pOsx — divy(aV,x) = divya, (px(-,8))y =0 for all s, (15)
and

paswl(y? 8? 'LL) - divy(gvywl(ya 8? 'LL)) = g(ya Sa 'LL),

16
(pwi(-,s,u))y, =0 for all s,u € R. (16)

16



5 Passage to the limit

The goal of this section is to derive the effective macroscopic model and to
prove the convergence result, namely Theorem 3.

For this aim we multiply equation (1) (or (3)) by a smooth function
¢ = @(z,t) which is compactly supported in R™ x [0,T") (respectively, in
@ %x [0,T)), integrate the resulting relation over R™ x [0,7") and pass to the

two-scale limit as ¢ — 0. After straightforward rearrangements this yields

// (2, )0hp (. 1) dxdt—/uo( Yo, 0) da

0O R"

/ / / a(y, s)(Vyx(y, s) + 1) Vu(z,t) - V(, t) dedtdyds

OR"™Y

/// a(y, s)Vywi(y, s, u(z,t)) — G(y, s, u(x,1))) - Vo(z, t) dedtdyds

OR™Y

// Gy, s,u(z, 1) (Vyx(y, s)+1) Vu(z, t)+V,wi (y, s, u(z,t)))p(z, t) dedtdyds

—|—l1m5// ,us(a:,t))atus(x,t)jtﬁt [@(;—Q,UE(x,t))]}go(a:,t) dxdt;

0 R

here I stands for the unit n X n matrix, and, as above (see Section 3),
asé(svu) = <9('=37u)>ya <6(7U)>S = 07 and diVG(y,s,u) - g(y,s,u) -
p(W){g(-,s,u))y, (G(-,s,u)), = 0. We transform further the last term on

the right-hand side as follows

liir(lje//p(g){&L@(é,ue(aﬁ,t))@tua(x,t)jtat [G(;Q,ua(x,t)ﬂ}go(a:,t) dxdt;

0 Rn
T
=1 faétftast t) dxdt =
=lime [ [ p*(@)0.G( 5w (2.8) ) (@, )l ) dedt =
0 R"™
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e—0
0 R

T
. —(t . Tt .
_hmg//auG<g,u (x,t))a(g,g)Vu (,t)-Ve(z,t)dedt

T

, Pt . vt 5 .

—ll_r%e//gp(x,t)%G<g,u (x,t))a(g,g—Q)Vu (x,t)-Vus(x,t) dedt
0 Rr

—hm// xtaG poll u(z, t)) ( ol (:U,t))dxdt

0 Rn

/// (2, 8)0,G (s, u(@,1))g(y, s, u(x, ) dvdtdyds.

0R™Y
Combining the above relations we arrive at the following limit equation

// uOpp drdt — /uocp // aVu-Vedzdt

0 R™ 0 Rn

—/T// a(y, s)Vywi(y, s, u(x,t))-Vo(z,t) dedtdyds

0RmY
—l—O/Rly/auf](y,s,u(x,t))(x(y,s) Vu(z, t) +wi(z, y, u(z, 1)) (z, t) dedtdyds

/// ,4)0,G (s, u(w,1))g(y, s, u(w,t)) dedtdyds

OR"Y

with @ the usual homogenized tensor, defined by a = (a(V,x + I))y, and

9(y,s,u) = g(y,s,u) — p(y)(g(-, s,u)),. If we denote

Fl(u) :/&(y>s)vyw1(y’3au)dydsa F2(u) :/aug(y>5>u)X(ya3)dyd3a
Yy y

Fy(w) = [ 0300500y, dyds. Fia) = [ 2G(s, gl widyds,
y y
then the limit equation takes the form
Oyu = div(aVu) + divFy (u) — Fa(u) - Vu — Fy(u) — Fy(u),
u(z,t) =0 on 0Q x (0,7, (17)

u(z,0) = uloéx) in Q.



The Dirichlet boundary condition on 0Q) come from the fact that the sequence
u® is weakly converging in the space L*((0,7); H}(Q)). Of course, there is
no such boundary condition if the domain @) is the entire space R".

We summarize the above statements in the following proposition.

Proposition 2. Under hypotheses A1-A6 the sequence u® of solutions of
problem (1) or (3) is relatively compact in the space L*(Q x (0,T)). Any

subsequential limit of u® is a solution of the limit problem (17).

6 Properties of the effective equation

This section is aimed at proving the uniqueness of the solution of the homog-
enized problem (17). For this we shall prove that all nonlinearities in (17)
are Lipschitz continuous. The desired uniqueness will then easily follow.

It is clear from their very definitions that the functions F}(u) is Lipschitz

continuous while Fy(u) is uniformly bounded and Lipschitz continuous:
[F1(u1) = Fi(u2)| < Clur —uaf,  [Fa(uz)| < C,
|Fi(u1) — Fi(ug)| < Clug —ug| for all ug, uy € R.

The case of F3 and F} is slightly more involved.

Lemma 6. Under the assumptions A1-A6 the functions F3 and F, are

Lipschitz continuous.

Proof. As an immediate consequence of definition (5) of G we have

|G(s,u)] < Clu|, [0,G(s,u)] <C,

\Ul —U2|

0,G(s,u1) — 0,G(5,u)| < C - .
0uGs, ) e AN
If 0,G is differentiable in u, then the latter inequality implies that

10,0,G(s,u)] < C(1+ |ul)™".
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In this case,
2. (90 5.00,8(s.w) | < €,

and thus
‘g(z% S, ul)aua(sv ul) - g(ya S, u2)8u§(s, UQ)‘ < C‘ul - u2|‘ (18)

In the general case (18) can be obtained by means of smoothing 9,G. Clearly,
(18) implies the desired Lipschitz continuity of Fy. The Lipschitz continuity

of F3 can be justified in exactly the same way. O
We proceed with our main result.

Theorem 3. Under assumptions A1-A6 the sequence (uf).~g of solutions
of problem (1) converges, as € — 0, in the space L*(Q x (0,T)) towards the
unique solution of problem (17).

Proof. The convergence has been proved in the preceding section. The
uniqueness of the solution of (17) follows from Lemma 6 by means of Gron-
wall’s theorem. By uniqueness of the limit the entire sequence converges

without any extraction of a subsequence. O

Remark 4. If the coefficients of equation (1) or (3) do not depend on the
temporal variable but only on the spacial variables, then 0, F)(u) — Fo(u) =0
so that the effective equation does not contain first order terms. Indeed, for
a = a(y) and g = g(y,u) the functions x and wy, defined in Remark 1, are

solutions of the elliptic equations

—divy(a(y)Vyx(y)) = divya(y)
and
—div,(a(y)Vywi(y,u)) = gy, u) (19)
respectively. Thus, we have
OuF(w) — o) = [ al),0n(v.udy — [ Buglsu)x(u)dy.

Y Y
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Differentiating (19) in u we get

—div,(a(y)V, 0w (y, w)) = 0ug(y, u).

Therefore,

/ Oug(y, u)x(y)dy = — / divy(a(y)V,0,wi(y, u))x (y)dy

Y

=— / Auw1 (y, u)divy (aly)Vyx(y))dy = / w1 (y, w)divy(a(y))dy

—— [ 49,205, 0)ds,
Y
and the desired relation 0,F(u) — Fy(u) = 0 follows.
Remark 5. The two-scale limit of the gradient Vu® is given by (10) with w

specified in (14)-(16).
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