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Abstract

We study the impact of asymmetric information on the conditional default prob-
abilities. We suppose that the default is triggered when a fundamental diffusion
process of the firm passes below a random threshold. The managers of the firm have
complete information on both the process and the default threshold, while other
investors on the market only have partial observations. We specify the conditional
survival probabilities under different information structures.

1 Introduction

In the credit risk analysis, the default or survival probability plays an important role in
the pricing and the risk management of credit derivatives. To have a dynamic vision
on these quantities, we need to specify the accessible information, as well as a suitable
modelling framework.

How to model the occurrence of a default event is an important subject from both
economic and financial point of view. There exist a large literature on this issue and
mainly two modelling approaches: the structural one and the reduced-form one. In the
structural approach, where the original idea goes back to the paper of Merton [19], the
default is triggered when a fundamental process X of the firm passes below a threshold
level L. The fundamental process may represent the asset value or the total cash flow
of the firm where the debt value of the firm can also be taken into consideration. This
provides a convincing economic interpretation for this approach. The default threshold L
is in general supposed to be constant or deterministic. Its level is chosen by the managers
of the firm according to some criterions — maximizing the equity value as in [18].

For an agent on the financial market, her vision on the default is quite different: on
one hand, she possesses merely a limited information of the basic data (the process X for
example) of the firm; on the other hand, to deal with financial products written on the
firm, she needs to update the estimations of the default probability in a dynamic manner.



This leads to the reduced-form approach for default modelling where the default arrives
in a more “surprising” way and the model parameters can be daily calibrated by using the
market data such as the CDS spreads.

In this work, we aim to study the information concerning the default threshold L
in the credit analysis, in addition to the partial observation of the process X. This is
related to the insider’s information problems. Indeed, when the managers make decisions
on whether the firm will default or not, he has supplementary information on the default
threshold L compared to an ordinary investor on the market. Financially speaking, this
is also motivated by some recent “technical default events” during the crisis, where the
bankruptcy occurs although the firm is still in a relatively healthy economic situation.

We present our model in the standard setting. Let (£2,.4,P) be a probability space
where A is a o-algebra of 2 representing the total information on the market. We consider
a firm and model its default time as the first time that a continuous time process (X;):>o
(for example the assets value of the firm) reaches some default barrier L, i.e.,

(1.1) T=inf{t: X; <L} where X;> L

with the convention that inf () = 400. Denote by F = (F;);>0 the filtration generated by
the process X, i.e., F; = (X, s < t) VN satisfying the usual conditions where N denotes
the P null sets. Such construction of a default time adapts both to structural approach
and to reduced form approach of the default modelling, according to the specification of
the process X and the threshold L.

In the structural approach models, L is a constant or a deterministic function L(t),
then 7 defined in (1.1) is an F-stopping time as in the classical first passage models.
In the reduced-form approach, the default barrier L is unknown and is described as a
random variable in A (e.g. [17], [7]). We introduce the decreasing process X* defined as
X, =inf{X,, s <t}. Then (1.1) can be rewritten as

(1.2) T =1inf{t: X; = L}.

This formulation gives a general reduced-form model of default. In particular, when the
barrier L is supposed to be independent of F,,, we may recover the Cox-process model.
In addition, we have P(7 > t|F) = P(X] > L|F,). Note that the (H)-hypothesis is
satisfied, that is, P(T > t|F) = P(1 > t|F).

The information asymmetry problems have been studied in the credit risk literature
mostly concerning the process X (see [6, 4, 15, 11, 3, 2]). In a recent work [9], the authors
have been interested in the information on the barrier L. In our paper, we shall consider
several types of agents on the market who have different information on X and on L. Our
approach is mainly based on the theory of enlargement of filtrations. We are interested
in computing conditional default probabilities for these agents and we shall show that the
information level is important for their estimations of default probabilities.

The rest of this paper is organized as follows. In Section 2, we introduce different
information structures for various agents on the market. We shall distinguish the role



of the managers who choose the default barrier L, the insiders who have a supplemen-
tary information on L and the investors who observe the occurrence of the default. We
then make precise in Section 3 the mathematical hypothesis for these cases, using the
language of enlargement of filtrations. Section 4 is devoted to the explicit calculations on
the conditional default probabilities. We then give numerical examples in Section 5 for
illustration.

2 The informational structure

On the financial market, the available information for each agent is various. One market
investor or practitioner may have different information compared to other investors. Fur-
thermore, there is a strong information asymmetry between investors and the managers of
the firm. One important point is that the managers may have information on whether the
firm will default or not, or when the default may happen. We now describe the different
information in these cases concerning the firm.

2.1 Manager and investor: knowledge on the default threshold

In this following, we suppose that the default threshold L in (1.2) is a random variable
and recall that the process X* is decreasing. We assume that L is chosen by the managers
of the firm who hence have the total knowledge on L. The information of X; is contained
in the o-algebra F;. However, the process X* can not give us full information on F;.

We now distinguish two types of agents on the market. The first type is the manager
who has complete information on X and on L. We call the full information on L the
"initial (enlargement) information” on L and we shall precise some technical hypothesis
in the next section. The filtration of the manager’s information is then

QtM :ft\/O'(L)

The filtration GM = (GM);>0 is in fact the initial enlargement of the filtration F with the
random variable L and 7 is a GM-stopping time.

In the credit analysis, the observable credit information on the market is often modelled
by the progressive enlargement G = (G;);>o of IF, that is, let D = (D;);>o be the minimal
filtration which makes 7 a D-stopping time, i.e. D; = D}, with D} = o(r A t), then
Gy = F¢ V D;. In our model (1.2), this is interpreted as

G=FVvo({L <Xi})

and we call this information on L the “progressive information on L”. If one observes G,
at time ¢, it means that he possesses information on F;, together with whether or not
the default has occurred up to t. We see that the filtration (GM),>o represents indeed an
insider’s information of the manager, which is larger than (G;):>o.
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We now consider another type of agent: an investor whose observations on L is partial,
described as the “noisy full information on L”. That is, he observes Ly = f(L,¢€,) with €
being an independant noise perturbing the information L. The filtration of the investor’s
information is then

Gl i=FVo(Ls,s<t).

2.2 Partial observation on the underlying process

The process X driving the default risk is not totally observable for all agents. We suppose
that at date 0, all investors are completely informed on the firm value. Later on, the agents
are differently informed on the process X. Assume in the sequel that the process X is
associated with a standard Brownian motion B (for example, X is a geometric Brownian
motion or the solution of some SDE). Let N denotes the P null sets and we assume that
Fi; = 0(Bs,s <t)VN where F = (F,);>0 represents the information of an investor having
complete information of the fundamental process X. Most investors on the market only
have an incomplete observation described by an auxiliary filtration of IF. In the literature,
there are several ways (noisy or delayed) to describe the incomplete information that we
recall below.

Example 2.1 A structural type model with deterministic barrier is studied in [3]. The
partial information is represented by an auxiliary process 3 depending on some noisy
signal of the process X. The information of an investor observing the noisy signal of X
is represented by the filtration ff =0(8s,8 <t)VN.

Example 2.2 The investors may have a delayed (continuous or discrete) observation of
the fundamental process X, this type of models have been considered, among others, by
[6, 4, 15, 11]. In this case, the observable information is characterized by a sub-filtration
(FP)>0 of F, constructed by either a time change (continuously delayed filtration) or by
a discretely delayed filtration.

In the following, we are particularly interested in the delayed information case. Let

FD _ Fo ift§5(t),
K ft,(;(t) ift > (S(t),

where §(t) is some function on ¢ we shall precise. The above formulation covers the
constant delay time model where 6(¢) = ¢ (see [4], [11]) and the discrete observation

model where §(t) = ¢ — ¢ ™ <t < #{7) where 0 = tJ™ < t{™ < ... <t = T are
the only discrete dates on which the (F;);>o information may be renewed (release dates
of the accounting reports of the firm for example, see [6], [15]). In this case, the investor’s

information is represented by the filtration

GP .= FP v,



3 Three types of side-information on L

In this section, we precise the hypothesis on the three types of side-information on L.
Recall that the default barrier is fixed at date 0 by the manager as the realization of a
random variable L.

3.1 Full information

We suppose in this subsection that the manager knows the barrier L. w-wise from the
beginning. Thus his information is given as

GM = (gt]w)tzo with gf\/[ = ‘7:t V U(L)

As we have mentioned previously, this corresponds to the initial enlargement of the fil-
tration [F with respect to the random variable L. Let us make more precise the nature of
this initial information.

Assumption 3.1 We assume that L is an A-measurable random variable with values in
a Polish space (E,E) which satisfies the assumption :
P(L € -|F)(w) ~P(L € -) for all t for P almost all w € ().

Remark: Assumption 3.1 is satisfied if L is independent of F.

Assumption 3.1 is the standard assumption by Jacod [13, 14]. We denote by PF(w,dr) a

regular version of the conditional law of L given F, and by P’ the law of L. According to
L

Jacod, there exists a measurable version of the conditional density p:(z)(w) = Zg’; (w, )
which is a (F,P)-martingale and for all ¢, p;(L) > 0 P almost surely.

Grorud et al. [10] proved that Assumption 3.1 is equivalent to the existence of a probability
measure equivalent to P and under which for any ¢ > 0, F; and o(L) are independent.
We consider the only one, denoted QF, that is identical to P on F... QF is characterized
by the density process

dP

(3.1) Egel

3.2 Noisy full information

In this subsection, the investors information on the barrier L changes through time.
His knowledge is perturbed by an independent noise, and is getting to him clearer as time
evolves.

Assumption 3.2
Vt, Gl = Nysi(Fu V o(Ls, s <)) where Ly = f(L,€,) with
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o f:R? - R is a given measurable function.
o ¢ = {¢,t >0} is independent of Foo V o(L).
e P(L € |F)(w)~P(Le-) for all t for P almost all w € Q).

If we work on a finite horizon 7', the last two assumptions are
e ={¢&,t < T} is independent of Fr V o(L) and
P(L € -|F)(w) ~P(L € -) for all ¢t € [0, T for P almost all w € €.

€ represents an additional noise that perturbs the knowledge of the barrier L. Therefore
one expects in general that the variance of the noise decreases to zero as time ¢ goes to
infinity.

3.3 Progressive and delayed information

In this subsection, we concentrate on investors who know at each time ¢t whether or not
default has occured. Thus their information is given as the progressive enlargement of
filtration of L with respect to IF:

G= (gt)tzo with Qt = Ft vV O'({T S S},S § t)

Remark: If L is independent of F,, the standard (H )-hypothesis is satisfied:
every (F,P) local martingale is also a (G, P) local martingale.

The delayed information is in fact the progressive enlargement of filtration of L with

respect to FP:
G” = (GP)i=0 with G = FP Vo({r <s},s<t).

4 (Conditional law of default

Our aim is to compute the conditional probabilities of default with respect to different
filtrations. More precisely, we compute P(7 > 6|H,) for all ¢, for all §, where the filtration
(H¢)e>0 describes the accessible information for the investors.

4.1 Full information

Proposition 4.1 If H; = GM is the full information, then under Assumption 3.1 we have

P(r > 0|GM) = pt(lL) [Ep(po(2) x>l Fi)lo=r  if 0 >t
= j otherwise

where py(z)(w) = %(w, r), P (w,dz) being a reqular version of the conditional law of L

given F, and PL being the law of L.



Proof:  The result is trivial for § < ¢t. Otherwise, using the facts that Fy and o(L) are
independent under Q*, that Egr[;57|G] = pi(L), and that Q" is identical to P on Fy,
we have

P(r > 01G) = Ep(lx;>plFiVo(L))

1
= Eor(pe(L)1xssp|F: V o(L
(L) Q (po(L) X9>L’ tVo(L))

- t(L) [EQL (Pe(x)lxg>x’ft)]x:L
1
- (L) [Ee(po(2)1xs 52| Fi)]o=t-

_

=

Remark: If Fy and o(L) are independent under P we obtain the simple formula
P(r > 0|Gi") = B (1L, +oo)),

Pth (dy) being the regular conditional probability of X} given F;.

4.2 Noisy full information

In the sequel, H; = G/ and we consider the particular but useful case in finite horizon
time T" where L, = L + ¢, ¢ = Zr_;, Z being a continuous process with independent
increments whose marginal has density ¢; (example introduced in Corcuera et al. [5]). For
example, ¢, = Wy(r_y) with IV an independent Brownian motion, and ¢ : [0,7] — [0, +00)
a strictly increasing bounded function with ¢(0) = 0.

Proposition 4.2 We assume that H; = G/ is the progressive strong information with
Li=L+¢, ¢ = Zp_y, Z being a continuous process with independent increments whose
marginal has density q;. Then we have

Jz TI(Z)ED’(pG(l)lxg>l|-7:t)QT7t(Lt_l)PtL(dl)
Jr ar—¢(Le—1) P (dl)
fR 1X§>ZQT—t(Lt*l)PtL(dl)
Jr ar—+(Le—1) P (dl)

P(r > 0|G)) = if 0 >t

otherwise

where Pl is a regular version of the conditional law of L given G;.

Proof: Let Ay € Fy and h be a bounded measurable function. Using the independence
of Foue Vo(L) and Z, we have

E (h(L)14,]Gi) = E(W(L)1a,|FV o(Ly) Vo((e =€) s < 1))
= E(h(L)1ay)|FiVo(L+e))

7



Let PE(dl) be the regular conditional probability of L given ;. Then for C' € B(R?),
P((L,L+&) e C|F) = / Lo (l, 2)gri(x — ) PE(dl)dz.
]RQ
Therefore

h(l T—t Lt—l PtL dl
) B(HDIG) = fRfR(q)th(L(t - z)P)tL(dg) )

Hence, if 6 <t we have

Iy _ fR 1Xg>lCIT—t(Lt — ) PE(dI)
]P’(7'>9’gt> - fRQT—t(Lt—l)PtL(dl)

If & > t, we use the following successive conditional expectations

P(r>0FVoll+e)=PP(r>0/FiVo(L+e)Va(l))|FVoll+e)).
Using the fact that € is independent to Fr V o(L), we have

P(r>0FVo(ll+e)Va(l)=P(Xy; >LIFVole)Vo(l)) =P(Xy > L|F,Vo(l)) =:h(L)

where hy(L) = }ﬁ[Ep(pg(l’)]_ x;>z|Ft)]a=1 corresponds to the conditional default proba-

bility for the full information. Therefore

P(r > 0|G]) = Jr I%U)Ep(pe(l)lxpl\}})qT_Lt(Lt — l)PtL(dD.
fR qr—t(Ly — 1) PE(dl)

Remark: This demonstration can be extended at others examples in infinite horizon. For
example, let ¢, = W L) with W an independent Brownian motion, and ¢ : [0,1] —

[0,4+00) a strictly increasing bounded function with g(0) = 0. ¢ is a centered gausian
process with independent increments. Let ¢; be the density of ¢,. We have

Tz 2 Ee(po(D)1x; 1| Fe) g (Le — 1) PF(dl)
I\ _ pt(l) 0
P(T>9‘gt) - qut(Lt—l)PtL(dl)

4.3 Progressive information and the delayed case

The computation in the progressive information case is classical in the literature (e.g.[16,
8, 1]), which we recall below.
Proposition 4.3 If H, = G, = F; V D; is the progressive information, we have

P(r > 0G;) = 1T>t% if 0 >1

= j otherwise.



Proof: Tt is trivial if § < ¢. Otherwise, one has by classical computation in the progressive
enlargement that

P(T > 6| F,) E(Sp|F?)
P =l =Ly ——>
(7‘ > eygt) T>t IP)(T N t’ft) T>t St 5 9 > t

where S; = P(7 > t|F;). In our model, S is given explicitly by S; = P(X; > L|F) =
PE(X;) with PF being the conditional law of L given F;. This leads to the result.

The delayed case is computed similarly.

Corollary 4.4 If H, = GP = FP v Dy, we have

E(PF(X)|FP .
P(r>0167) = Legipiinizm 60>

= 19 otherwise.

Proof: 1t’s trivial for § < t. If § > t, we have similarly as in the previous case

D (T>9| ) (59| ) ( L( *)| )
P(r > 01GP) = Lo 2O ) g EG0lA) | BUXGIF)
(7> 016°) = Leorp = 70y = Y RS 7D) R D)

5 Geometrical brownian example and numerical illus-
trations

We consider in this section explicit examples of independent and dependent default thresh-
old L, where the asset values process X satisfies the Black Scholes model :

dX
—t — jdt +odB,, t>0
Xy

where 1 and o are real constants and B is an F-Brownian motion. For ¢ > 0 and h,[ > 0,
one has ([1, p.69])

-Y! —vh
EP(1X2‘>1 - 1Xf+h>l|ft) = lxps (q)( ;\/E

= 1y ®n(l)

_ vl
)_‘_621,072%@( )/t +l/h))

ov'h

where @ is the standard Gaussian cumulative distribution function and

X 1
Ytlzut+aBt—|—lnTO, with y:u—502.



5.1 Example of an independent default threshold

Corollary 5.1 We assume that the default threshold L independent of Fr. Then if the
asset process X satisfies the Black Scholes model, we have

o Pt+h>71> t!QtM) = 15® (L)

J1 x @, 1, (Dgr—i (Le—1)PE(dl)
° P(t thzr> t|g{) == ?QT—i(Lt*l)PtL(dl) t

&, (HPL(dl
o P(t+h>71>tG) = 17>t%

Dy _ S @150y, hr800) D=Pi—s(0),501) ()P (dl)
o Pt+h27>UG7) = Lot ™1 0y i O)PE (@)

We give numerical comparisons of the conditional probability of default for different in-
formation, in the following binomial example: L independent, L = [; with probability
a, L = Iy with probability (1 — «a), 0 < a < 1, I; < l;. In the simulation, we take the
numerical values: [; = 1,1, = 3,a = 3.

T

manager

— — —progressive | |

— — delayed
©  noisy

0.2
v 4?‘\ "
Lo i
o kS W
[N | U, 1
kil 1 |
[

", h 1
i, . l\‘w/‘h
W R N

I
0 0.1 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09

t—=P(T>71>tH,) firm value

Figure 1: L =1;

Comments : The probabilities of default for a full or noisy full information are quite
different from the ones with respect to the progressive or the delayed information. More
precisely, if L = [;, the manager has fixed the lower value for the default threshold
and thus the probability of default will be lower for the full information than for the
progressive information (see Figure 1). Conversely if L = [, (see Figure 2). In both cases,
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the estimation of the default probability for the noisy full information is between the
estimations for the full and the progressive information. If L is constant (I; = [), the
probabilities of default are the same, whatever the information we consider (see Figure
3). We observe that the variation of the default probabilities is closely related to the
variation of the firm value.

0.7 T T T T T T T T T 9

T T T T T T T T T
— — —progressive
0.6 — — delayed
© noisy
i
0.5f, &
o4t %
byl
T
034, )
VoW
\'*n é“ £
0.2f KT o
o Fapf 4,
) \
0.1f '
0 L L L L Y 3 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t—P(T>7>tH,) firm value
Figure 2: L =
1 T T 6 T T T
0.9 — — —progressive |

— — delayed

- noisy 551

5b

45-

4l

3.5F

L L L L L L 3 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t—=P(T>71>tH,) firm value

Figure 3: [; =[5 : L constant

5.2 Example of a dependent default threshold

Let
(5.1) L= lil[a,+oo[(XA) + lsl[()’a[(XA), A>T, [; <lI,.
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The manager chooses the level of L according to a constant threshold a and to the value
of the asset process X on some given date A (A > T where T is a fixed horizon time,
for example the maturity of the credit derivatives we consider). If X4 > a, the manager
judge the firm on healthy situation and choose the lower barrier [;, otherwise, he will
choose the higher barrier to accelerate the default.

We have explicitely the conditional law of L given F; for ¢t < A,
P(L =1|F) =P(X4 < a|F) = P(ky), P(L=10F)=1—(k)

where @ is the cumulative distribution function of the normal distribution N(0,1) and

K = Ina —In Xg —vA — UBt7 v 102‘
ovVA—t 2
Hence B (k) | — ok
pe(ls) = (k) pe(li) = T— (k)
To compute P(r > t+h|GM) = ;ﬁ[EP(th(l)lXLrﬁl“Ft)]hL’ we use the following lemma

[1]

Lemma 5.2 Fory >0, on the set {T >t}

_y—i_}/tl—i_yh 205~ 2Y; _y_Y;fl_‘_Vh
Y e TR (1t T UR
) ()

where ® is the standard Gaussian cumulative distribution function, Y! = vt+oB; +1n %

and v = p— 30°.

P (Vi = 0. 1xz, 0 F) = @

We then deduce

e the conditional joint law of (Y}, Lxs  ~|%)

e the conditional joint law (pi4n (), 1x; , >1|F%)
More precisely, for 6 > t,

1
P(r > 0|G) = 1{L:zs}mE(q’(kG)1{X§*>ls}

1
Fo)t L=y E((1—-® (ko)) Ly 51,3 F2)-

D (k)

O00) = (1) where () = 8 (2E) o

E(P(ko)x; -1,

Fi) = E(g, (ws)l(yls)po’ft)-
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Denote by Fig,,(y) == ]P)(Yels =Y, 1X$>ls

Fi) and fi,,(y) = ,%Ft,e,zs (y), then

(5.2) E(®(ko)lx;>1,

F) = E(gn, (Y2 ) Lytyo0lF) = Lo, / 0. (9) foon. (1)dy.
0

This gives the conditional default probability for the full information. The result for the
noisy information is then straightforward, using Proposition 4.2. The progressive and
delayed case is a classical computation. We have similar observations to those of the
previous section with the numerical results.

6 Conclusions

We have investigated the impact of different information levels on the conditional default
probabilities. The conditional survival probability plays an important role in the pricing
of credit derivatives (we refer the interested reader to a forthcoming work of Hillairet and
Jiao [12]). For example let us consider a defaultable bond with zero recovery, that is, the
buyer of the bond receives 1 euro if there is no default and zero otherwise. Then the price
of such a product is given exactly as the conditional survival probability with respect to
the accessible information. Furthermore, in the credit risk analysis, one often calls the
default intensity (or the default spread) as the instantaneous default probability

1
= 1i — < .S.
At Al%r_r}o At]P’(t <71 <t+At/H;), a.s

We observe immediately that the conditional default probability is the key term to com-
pute this quantity.

In the literature, the information on the value process of the firm has been thoroughly
studied. However, only few works concentrate on the default threshold. Our results show
that the information on the default threshold also have a significant impact in the credit
risk analysis and deserve to be studied in more details.
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