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1 IntrodutionThe modelling of a default event is an important subjet from both eonomi and �nanialpoint of view. There exist a large literature on this issue and mainly two modellingapproahes: the strutural one and the redued-form one. In the strutural approah,where the original idea goes bak to the pioneer paper of Merton [22℄, the default istriggered when a fundamental proess X of the �rm passes below a threshold level L.The fundamental proess may represent the asset value or the total ash �ow of the �rmwhere the debt value of the �rm an also be taken into onsideration. This providesa onvining eonomi interpretation for this approah. The default threshold L is ingeneral supposed to be onstant or deterministi. Its level is hosen by the managers ofthe �rm aording to some riterions � maximizing the equity value for example as in[21℄.For an agent on the �nanial market, the vision on the default is quite di�erent: onone hand, he possesses merely a limited information of the basi data (the proess X forexample) of the �rm; on the other hand, to deal with �nanial produts written on the�rm, he needs to update his estimations of the default probability in a dynami manner.This leads to the redued-form approah for default modeling where the default arrives ina more �surprising� way and the model parameters an be daily alibrated by using themarket data suh as the CDS spreads.The default time onstruted in the lassial strutural approah is a stopping timewith respet to the �ltration F generated by the fundamental proess. The intensity ofsuh preditable stopping times does not exist. In the redit risk literature, it is alsointerpreted by the fat that the default intensity (or the redit spread) tends to zero whenthe time to maturity dereases to zero (we shall make preise the meanings of these twointensities later on). The links between the strutural and the intensity approahes havebeen investigated in the literature. If the default threshold L is a random variable insteadof onstant or deterministi, then the default time admits the intensity. One importantexample is the well known Cox proess model introdued in [20℄ where L is supposed to bean exponentially distributed random variable independent with F (see also [9℄). Anotherlass of models is the inomplete information models (e.g. [8, 6, 18, 5, 4℄) where theagent only has a partial observation of the fundamental proess X and thus his availableinformation is represented by some sub�ltration of F. The intensity an then be deduedfor the sub�ltration.In this paper, we are interested in the impat of information aessibility of an agent onthe priing of redit derivatives. In partiular, we aim to study the information onerningthe default threshold L in addition to the partial observation of the proess X. This asehas been studied in [11℄ where investors antiipate the distribution of L (following forexample the Beta distribution) whose parameters are alibrated through market data. Ourapproah is di�erent and is related to the insider's information problems. Indeed, whenthe managers make deisions on whether the �rm will default or not, he has supplementaryinformation on the default threshold L ompared to an ordinary investor on the market.2



Faing the �nanial risis, this study is also motivated by some reent �tehnial defaultevents�, where the bankrupty ours although the �rm is still apable to repay its debts.We present our model in the standard setting. Let (Ω,A,P) be a probability spaewhih represents the �nanial market. We onsider a �rm and model its default time asthe �rst time that a ontinuous time proess (Xt)t≥0 reahes some default barrier L, i.e.,(1.1) τ = inf{t : Xt ≤ L} where X0 > Lwith the onvention that inf ∅ = +∞. Denote by F = (Ft)t≥0 the �ltration generated bythe proess X, i.e., Ft = σ(Xs, s ≤ t)∨N satisfying the usual onditions where N denotesthe P null sets. Suh onstrution of a default time adapts to both the strutural approahand the redued form approah of the default modelling, aording to the spei�ation ofthe proess X and the threshold L.In the strutural approah models, L is a onstant or a deterministi funtion L(t),then τ de�ned in (1.1) is an F-stopping time as in the lassial �rst passage models. In theredued-form approah, the default barrier L is unknown and is desribed as a randomvariable in A. We introdue the dereasing proess X∗ de�ned as
X∗

t = inf{Xs, s ≤ t}.Then (1.1) an be rewritten as(1.2) τ = inf{t : X∗
t = L}.This formulation gives a general redued-form model of default (see [9℄). In partiular,when the barrier L is supposed to be independent of F∞, then

P(τ > t|F∞) = P(X∗
t > L|F∞) = FL(X∗

t ),where FL denotes the distribution funtion of L. Note that the (H)-hypothesis is satis�edin this ase, that is, P(τ > t|F∞) = P(τ > t|Ft). We may also reover the Cox-proessmodel using a similar onstrution.In most papers onerning the information-based redit models, the proess X ispartially observed, making an impat on the onditional default probabilities and on theredit spreads. In this paper, we let L to be a random variable and take into onsiderationthe information on L. Suh information modelling is losely related to the enlargement of�ltrations theory. Generally speaking, the information of a manager is represented by theinitial enlargement of the �ltration (Ft)t≥0 and the information of an investor is modelledby the progressive enlargement of (Ft)t≥0 or of some of its sub�ltration. We shall alsoonsider the ase of an insider who may have some extra knowledge on L ompared to aninvestor and whose knowledge is however perturbed ompared to the manager.The rest of this paper is organized as follows. In Setion 2, we introdue the priingproblem and the di�erent information strutures for various agents on the market, notably3



the information on the default barrier L. We shall distinguish the role of the manager,the investor and the insider, who have di�erent level of information on L. In suessivelySetions 3, 4 and 5, we make preise the mathematial hypothesis for these ases, usingthe languages of enlargement of �ltrations. We also disuss the risk-neutral probabilitiesin eah ase for further priing purposes. In order to distinguish the impat of the di�erent�ltrations from the impat of the di�erent priing probabilities, we �rst give the prie of aontingent laim under the historial probability measure P for eah information in Setion3, 4, 5, the alulus under the orresponding priing (or "risk-neutral") probability beingdone in the last setion. Finally, we end the last setion with numerial illustrations.2 Priing framework and information struturesOn the �nanial market, the available information for eah agent is various. There ex-ists in general information asymmetry between di�erent market investors, and moreoverbetween the managers of a �rm and the investors. In partiular, the managers may haveinformation on whether the �rm will default or not, or when the default may happen.The priing of redit-sensitive derivative depends strongly on the information �ow of theagent. We begin by introduing the general priing priniple and then we preise di�erentinformation.2.1 General priing prinipleWe �x in the sequel a probability spae (Ω,A,P) and a �ltration F = (Ft)t≥0 of A,representing the default-free information. Let τ be a stritly positive and �nite randomtime on (Ω,A,P), modelling the default time. The information �ow of the agent isdesribed by a �ltration H = (Ht)t≥0 suh that τ is an H-stopping time, that is, all agentsobserve at time t whether the default has ourred or not. Without loss of generality,we assume that all the �ltrations we onsider satisfy the usual onditions of ompletenessand right-ontinuity.We desribe a general redit-sensitive derivative laim of maturity T as in [2℄, by atriplet (C,G, Z) where C is an FT -measurable random variable representing the paymentat the maturity T if no default ours before the maturity, G is an F-adapted, ontinuousproess of �nite variation with G0 = 0 and represents the dividend payment, Z is an
F-preditable proess and represents the reovery payment at the default time τ .The triplet for a CDS, viewed by a protetion buyer, satisfy C = 0, Gt = −κt and
Z = 1 − α where κ is the spread of CDS and α is the reovery rate of the underlyingname. The triplet for a defaultable zero-oupon satisfy C = 1, G = 0 and Z = 1 − α.The value proess of the laim at time t < τ ∧ T is given by(2.1) Vt = RtEQ

[
CR−1

T 11{τ>T} +

∫ T

t

11{τ>u}R
−1
u dGu + Zτ11{τ≤T}R

−1
τ

∣∣∣Ht

]4



where Q denotes the priing probability measure whih we shall preise later, and R isthe disount fator proess. We note that both the �ltration and the priing probabilitydepend on the information level of the agent.In the redit risk analysis, one often tries to establish a relationship between the market�ltration and the default-free one. The main advantage is that the default-free �ltration isoften supposed to have nie regularity onditions, while the global market �ltration whihontains the default information is often di�ult to work with diretly. Indeed, due tothe default information, the proesses adapted to the global �ltration have in general ajump at the default time (exept in the strutural approah) and this makes it di�ultto propose expliit models in this �ltration. In our model with insider's information, weneed to make preise the �ltration H = (Ht)t≥0 in (2.1) for di�erent types of agents. Ourobjetive, similar as mentioned above, is to establish a priing formula with respet tothe default-free �ltration in eah ase.2.2 Information struturesWe now desribe the di�erent information �ows and the orresponding �ltration H fordi�erent agents on the market. Reall that the default time is modelled by
τ = inf{t : X∗

t = L},where L is a random variable and X∗ is the in�mum proess of an F-adapted proess
X. We assume that L is hosen by the managers of the �rm who hene have the totalknowledge on L. The information of X∗

t is ontained in the σ-algebra Ft. However, theproess X∗ an not give us full information on Ft.
• Manager's information.The manager has omplete information on X and on L. The �ltration of the manager'sinformation, denoted by GM = (GM

t )t≥0, is then
GM

t := Ft ∨ σ(L).Note that GM is in fat the initial enlargement of the �ltration F with respet to L andwe all it the full information on L. It is obvious that τ is a GM -stopping time. We shallpreise some tehnial hypothesis in the next setion.
• Investor's information.In the redit risk literature, the aessible information on the market is often modelledby the progressive enlargement G = (Gt)t≥0 of F. More preisely, let D = (Dt)t≥0 be theminimal �ltration whih makes τ a D-stopping time, i.e. Dt = D0

t+ with D0
t = σ(τ ∧ t),then

Gt = Ft ∨ Dt.In our model (1.2), this is interpreted as Gt = Ft ∨ σ({L ≤ X∗
t }) and we all this infor-mation the progressive (enlargement) information on L. Together with the information5



�ow of the �ltration (Ft)t≥0, an investor who observes the �ltration (Gt)t≥0 knows at time
t whether or not the default has ourred up to t and the default time τ one it ours.We see that the manager's information GM

t is larger than Gt.
• Investor's inomplete information.In many inomplete information redit risk models, the proess X driving the defaultrisk is not totally observable for the investors. In this paper, we will only onsider theexample of a delayed information on X : the information of suh an investor is desribedby a progressive enlargement GD = (GD

t )t≥0 of a delayed �ltration of F, where
GD

t := Ft−δ(t) ∨ Dt,and δ(t) being a funtion valued in [0, t] suh that t − δ(t) is inreasing. The aboveformulation overs the onstant delay time model where δ(t) = δ (see [6℄, [13℄) and thedisrete observation model where δ(t) = t − t
(m)
i and t(m)

i ≤ t < t
(m)
i+1, 0 = t

(m)
0 < t

(m)
1 <

· · · < t
(m)
m = T being the disrete dates on whih the (Ft)t≥0 information may be renewed(for example, the release dates of the aounting reports of the �rm, see [8℄, [18℄).

• Insider's information.Finally, we shall onsider the insiders who have as supplementary information a partialobservation on L ompared to the investor's information Gt. Namely, the agent has theknowledge on a noisy default threshold: (Lt)t≥0, Ls = f(L, ǫs) with ǫ being an indepen-dent noise perturbing the information on L. The orresponding information �ow is thenmodelled by GI = (GI
t )t≥0 where

GI
t := Ft ∨ σ(Ls, s ≤ t) ∨ Dt.Notie that GI

t = Gt ∨ σ(Ls, s ≤ t). We all this information the �noisy full information�on L. It is a suessive enlargement of Ft, �rstly by the noised information of the defaultthreshold and then by the default ourrene information.For the di�erent types of information desribed above, we observe that the followingrelations hold:
GM ⊃ GI ⊃ G ⊃ GD.They orrespond to the priing �ltration H in (2.1) for di�erent agents on the market.We shall onentrate on the priing problem with the above �ltrations and we begin bymaking preise the mathematial hypothesis on these types of information on L, withwhih we introdue the risk-neutral probabilities Q in eah ase.3 Full informationIn this setion, we work with the manager information �ow GM = F ∨ σ(L), whih is aninitial enlargement of the �ltration F. Reall that the default barrier is �xed at date 0 bythe manager as the realization of a random variable L. We assume in addition that the�ltration F is generated by a Brownian motion B.6



3.1 Initial enlargement of �ltrationIn the theory of initial enlargement of �ltration, it is standard to work under the followingdensity hypothesis due to Jaod [16, 17℄.Assumption 3.1 We assume that L is an A-measurable random variable with values in
R, whih satis�es the assumption :

P(L ∈ ·|Ft)(ω) ∼ P(L ∈ ·), ∀t ≥ 0, P − a.s..Remark: Jaod has shown that, if Assumption 3.1 is ful�lled, then any F-loal martingaleis a GM -semimartingale.We denote by PL
t (ω, dx) a regular version of the onditional law of L given Ft and by

PL the law of L (under the probability P). Aording to [17℄, there exists a measurableversion of the onditional density(3.1) pt(x)(ω) =
dPL

t

dPL
(ω, x)whih is an (F,P)-martingale and hene an be written as

pt(x) = p0(x) +

∫ t

0

βs(x)dBs, ∀x ∈ Rfor some F-preditable proess (βt(x))t≥0. Moreover, the fat that PL
t is equivalent to PLimplies that P-almost surely pt(L) > 0. Let us introdue the F-preditable proess ρMwhere ρM

t (x) = βt(x)/pt(x), the density proess pt(L) satis�es the following stohastidi�erential equation
dpt(L) = pt(L)ρM

t (L)dBt.Note that (B̃M
t := Bt −

∫ t

0
ρM

s (L)ds, t ≥ 0) is a (GM ,P)-Brownian motion.It is proved in [12℄ that Assumption 3.1 is satis�ed if and only if there exists a proba-bility measure equivalent to P and under whih F∞ := ∪t≥0Ft and σ(L) are independent.The probability PL de�ned by the density proess
EPL

[ dP

dPL

∣∣GM
t

]
= pt(L)is the only one that is idential to P on F∞.We introdue the proess Y M by(3.2) Y M = E

(
−

∫ ·

0

ρM
s (L)dB̃M

s

)
,where E denotes the Doléans-Dade exponential. We assume in addition that Y M is a

(GM ,P)martingale. A straightforward omputation yields d((Y M
t )−1) = (Y M

t )−1ρM
t (L)dBt.7



Thus, Y M
t = 1

pt(L)
, that is, Y M

t is the Radon-Nikodym density of the hange of probability
PL with respet to P on GM

t . The proess Y M is important in the study of risk-neutralprobabilities on GM . Indeed, let φ be the prie proess of a default-free �nanial in-strument. It is an F-adapted proess whih is an F-loal martingale under ertain Frisk-neutral probability Q (whih is equivalent to P). In general φ is not an (GM ,Q)-loalmartingale. However, if we de�ne a new probability measure QM by
dQM = Y M

t dQ on GM
t ,then any (F,Q)-loal martingale is an (GM ,QM)-loal martingale. In partiular, B isa (GM ,QM)-Brownian motion. Moreover, one has the following martingale represen-tation property by [1℄: if A is a (GM ,QM )-loal martingale, then there exists ψ ∈

L1
loc(B,G

M ,QM) suh that
At = A0 +

∫ t

0

ψsdBs.This shows that the market is omplete for the manager.3.2 Priing with full informationWe onsider now the priing problem with the manager's information �ow H = GM andwe assume Assumption 3.1. In order to distinguish the impat of di�erent �ltrations andthe impat of di�erent priing measures, we �rst assume that the priing probability is
P for all agents. The result under QM , the risk-neutral probability for the manager, isomputed in Setion 6 by a hange of probability measure.Our objetive is to establish the priing formula for the manager with respet to thedefault-free �ltration F. We begin by giving the following useful result.Proposition 3.1 For any θ ≥ t and any positive Fθ ⊗ B(R)-measurable funtion φθ(·),one has(3.3) EP[φθ(L)11{τ>θ} | GM

t ] =
1

pt(L)
EP[φθ(x)pθ(x)11{X∗

θ
>x} | Ft]x=Lwhere pt(x) is de�ned in (3.1).Proof: Let PL be the equivalent probability measure of P of density pt(L)−1 on GM

t . Byusing the fats that Fθ and σ(L) are independent under PL and that PL is idential to Pon F∞, we have
EP[φθ(L)11{τ>θ} | GM

t ] = EP[φθ(L)11{X∗

θ
>L} | Ft ∨ σ(L)]

= pt(L)−1EPL[φθ(L)pθ(L)11{X∗

θ
>L}|Ft ∨ σ(L)]

= pt(L)−1EPL[φθ(x)pθ(x)11{X∗

θ
>x}|Ft]x=L

= pt(L)−1EP[φθ(x)pθ(x)11{X∗

θ
>x}|Ft]x=L.

(3.4) 8



2Remark: If Fθ and σ(L) are independent under P, then pt(x) ≡ 1, we obtain the simplerformula
EP[φθ(L)11{τ>θ} | GM

t ] = EP[φθ(x)11{X∗

θ
>x}|Ft]x=L.Proposition 3.2 We keep the notation of Setion 2 and de�ne FM

t (x) := pt(x)11{X∗

t
>x}.The value proess of the ontingent laim (C,G, Z) given the full information (GM

t )t≥0 is(3.5) V M
t = 11{τ>t}

Ṽ M
t (L)

pt(L)where(3.6) Ṽ M
t (L) = RtEP

[
CR−1

T FM
T (x) +

∫ T

t

FM
s (x)R−1

s dGs −
∫ T

t

ZsR
−1
s dFM

s (x)

∣∣∣∣Ft

]

x=L

.Proof: Using Proposition 3.1, the �rst part of (2.1) is given by
RtEP

[
C11{τ>T}R

−1
T |GM

t

]
=

Rt

pt(L)
EP

[
CR−1

T pT (x)11{X∗

T
>x}|Ft

]
x=L

.Let's see the third term
RtEP

[
ZτR

−1
τ 11{t<τ≤T}|GM

t

]
.We begin by assuming that Z is a stepwise F-preditable proess as in [2℄, that is Zu =∑n

i=0 Zi11ti<u≤ti+1
for t < u ≤ T where t0 = t < · · · < tn+1 = T and Zi is Fti-measurablefor i = 0, · · · , n. We have

EP

[
Zτ11{t<τ≤T}|GM

t

]

=
n∑

i=0

(
1

pt(L)
EPL

[
Zipti(L)11{ti<τ}|GM

t

]
− 1

pt(L)
EPL

[
Zipti+1

(L)11{ti+1<τ}|GM
t

])

=

n∑

i=0

1

pt(L)

(
EP

[
Zipti(x)11{X∗

ti
>x}|Ft

]
− EP

[
Zipti+1

(x)11{X∗

ti+1
>x}|Ft

])

x=L

=
1

pt(L)
EP

[
n∑

i=0

Zi

(
pti(x)11{X∗

ti
>x} − pti+1

(x)11{X∗

ti+1
>x}

)
|Ft

]

x=L

.We de�ne FM
t (x) = pt(x)11{X∗

t
>x}. For x �xed, 11{X∗

t
>x} is dereasing and right ontinuous,and aording to [17℄, (ps(x))s≥0 is an (F,P)-martingale. Thus (FM

t (x))t≥0 is a nonnegative
(F,P)-supermartingale, and we may deal with its right-ontinuous modi�ation with �niteleft-hand limits. Therefore

EP

[
Zτ11{t<τ≤T}|GM

t

]
= − 1

pt(L)
EP

[
n∑

i=0

Zi(F
M
ti+1

(x) − FM
ti

(x))|Ft

]

x=L

= − 1

pt(L)
EP

[∫ T

t

ZudF
M
u (x)|Ft

]

x=L

.9



Finally, we get the third term of (2.1) by approximating (ZuR
−1
u )u by a suitable sequeneof stepwise F-preditable proesses :

RtEP

[
ZτR

−1
τ 11{t<τ≤T}|GM

t

]
= − Rt

pt(L)
EP

[ ∫ T

t

ZuR
−1
u dFM

u (x)|Ft

]
x=L

.The seond term of (2.1) an be deomposed in two parts as follows
RtEP

[ ∫ T

t

11{τ>u}R
−1
u dGu| GM

t

]

= RtEP

[
11{τ>T}

∫ T

t

R−1
u dGu + 11{t<τ≤T}

∫ τ

t

R−1
u dGu| GM

t

]

=
Rt

pt(L)
EP

[
pT (x)11{X∗

T
>x}

∫ T

t

R−1
u dGu −

∫ T

t

∫ u

t

R−1
s dGsdF

M
u (x)|Ft

]

x=L
.Putting the three terms all together leads to

V M
t =

Rt

pt(L)
EP

[
FM

T (x)

(
CR−1

T +

∫ T

t

R−1
u dGu

)
−

∫ T

t

(
ZsR

−1
s +

∫ s

t

R−1
u dGu

)
dFM

s (x)

∣∣∣∣Ft

]

x=L

.The equality (3.5) then follows by an integration by part. 24 Progressive information4.1 Priing with progressive enlargement of �ltrationThe progressive information on L orresponds to the standard information modelling inthe redit risk literature where an investor observes the default event when it ours.Reall that
G = (Gt)t≥0 with Gt = Ft ∨ Dt,where Dt = D0

t+, D0
t = σ(τ ∧ t). The priing formula (2.1) when Ht is Gt is well known.We reall it brie�y below and we refer to [2, 3℄ for a proof.Reall that the G-ompensator of τ (under the probability P) is the G-preditableinreasing proess ΛG suh that the proess (11{τ≤t} − ΛG

t , t ≥ 0) is a (G,P)-martingale.The proess ΛG oinides on the set {t ≤ τ} with an F-preditable proess ΛF, alled the
F-ompensator of τ . We de�ne St := P(τ > t | Ft) = P(X∗

t > L | Ft), whih is the Azémasupermartingale of τ . The following result is lassial (see [19, 2, 10℄).Proposition 4.1 For any θ ≥ t and any Fθ-measurable random variable φθ, one has(4.1) EP[φθ11{τ>θ} | Gt] = 11{τ>t}
EP[φθSθ | Ft]

St

.10



where St := P(τ > t | Ft). The value proess for an investors given the progressive infor-mation �ow G is(4.2) Vt = 11{τ>t}
Rt

St

EP

[
R−1

T STC +

∫ T

t

R−1
u SudGu −

∫ T

t

R−1
u ZudSu

∣∣∣∣Ft

]
.Remark 4.1 It is interesting to note the similitude between the ase of manager (Propo-sition 3.2) and the ase of investor (Proposition 4.1). Comparing the priing formulas(3.5),(3.6) and (4.2), we observe that FM plays a similar role in the full information aseas S does in the progressive information ase.The priing formula for delayed information �ow is similar sine GD is the progressiveenlargement of FD with respet to τ and FD is a sub-�ltration of F. The only di�ereneis that St and Rt are not FD

t -measurable.Proposition 4.2 For any θ ≥ t and any Fθ-measurable random variable φθ, one has(4.3) EP[φθ11{τ>θ} | GD
t ] = 11{τ>t}

EP[φθSθ|FD
t ]

EP[St|FD
t ]The value proess for a delay-informed investors is(4.4) V D

t =
11{τ>t}

E[St|FD
t ]

EP

[
Rt

RT

STC +

∫ T

t

Rt

Ru

SudGu −
∫ T

t

Rt

Ru

ZudSu

∣∣∣∣FD
t

]
.4.2 Intensity hypothesisIn the redued-form approah of redit risk modelling, the standard hypothesis is theexistene of the intensity of default time τ . We say that τ has an F-intensity if its

F-ompensator ΛF is absolutely ontinuous with respet to the Lebesgue measure, thatis, there exists an F-adapted proess λF (alled the F-intensity of τ under P) suh that
(11{τ≤t} −

∫ t∧τ

0
λF

sds, t ≥ 0) is a (G,P)-martingale. The intensity hypothesis implies that τavoids the F-preditable stopping times and that τ is G totally inaessible.Under the intensity hypothesis, the Doob-Meyer deomposition of the supermartingale
S has the expliit form: the proess (St+

∫ t

0
Suλ

F
udu, t ≥ 0) is an F-martingale. The priingformulae (4.2) and (4.4) an be written as

Vt =
11{τ>t}Rt

St

EP

[
R−1

T STC +

∫ T

t

R−1
u SudGu +

∫ T

t

R−1
u ZuSuλ

F
udu

∣∣∣∣Ft

]
,(4.5)

V D
t =

11{τ>t}

E[St|FD
t ]

EP

[
Rt

RT

STC +

∫ T

t

Rt

Ru

SudGu +

∫ T

t

Rt

Ru

ZuSuλ
F
udu

∣∣∣∣FD
t

]
.(4.6)Note that the intensity does not always exist. For example, in the strutural modelwhere L is deterministi, τ is a F preditable stopping time. Hene its intensity does11



not exist. It is in general a di�ult problem to determine the existene of the intensityproess (see [13℄, [14℄ for a detailed disussion).In ontrast to the notion of intensity as above, the default intensity in the reditanalysis is often referred as the instantaneous probability of default at time t onditionedon some �ltration (Ht)t≥0:
λt = lim

∆t→0

1

∆t
P(t < τ ≤ t+ ∆t|Ht) a.s.Under Aven's onditions (see [13℄, [14℄), the two intensities oinide. But this is not truein general. For example, in the lassial strutural model, the default intensity equalsto zero. However, the intensity proess does not exist in this ase. The default intensitywhen Ht = FD

t has been studied in many papers suh as [8, 6, 18, 13℄, the default intensityis stritly positive in the delayed information ase. We note that in the full informationase where Ht = GM
t , we enounter the same situation as in the strutural model: thedefault intensity equals to zero sine L is GM

t -measurable.5 Noisy full informationIn this setion, we onsider the insider's information �ow. Reall that the insider has aperturbed information on the barrier L whih hanges through time. We assume thatthe perturbation is given by an independent noise, and is getting learer as time evolves.To be more preise, the noised barrier is modeled by a proess (Lt = f(L, ǫt))t≥0, where
f : R2 → R is a given Borel measurable funtion, and ǫ is a proess independent of F∞.The information �ow GI = (GI

t )t≥0 of the insider is then given by
GI

t := Ft ∨ σ(Ls, s ≤ t) ∨ Dt.5.1 Perturbed initial enlargement of �ltrationWe �rstly make preise the mathematial assumptions in this ase. We introdue anauxiliary �ltration FI = (F I
t )t≥0 de�ned as

F I
t := Ft ∨ σ(Ls, s ≤ t).Note that GI is a progressive enlargement of FI by the information on the default. The�ltration FI has been studied in [7℄ under Assumption 3.1. It has nie properties similarlyto the �ltration GM . With the notation of Setion 3.1, assume that ρI

t := EP[ρ
M
t (L)|F I

t ]satis�es ∫ ∞

0
|ρI

t |dt < +∞ P-a.s. Then the proess B̃I de�ned as B̃I
t := Bt −

∫ t

0
ρI

sds is an
(FI ,P)-Brownian motion. Moreover, the Doléans-Dade integral

Y I
· = E(−

∫ ·

0

ρI
sdB̃

I
s )12



is a positive (FI ,P)-loal martingale. We assume that Y I is an (FI ,P)-martingale andde�ne the probability measure QI by
dQI = Y I

t dQ on F I
twhere Q is an equivalent probability of P. Then any (F,Q)-loal martingale is an (FI ,QI)-loal martingale. In partiular, B is an (FI ,PI)-Brownian motion.5.2 Priing with noisy informationWe now onsider the priing problem for the insider information �ow GI . We shall fouson the partiular but useful ase:

Lt = L+ ǫt,where ǫ is a ontinuous proess independent of F∞∨σ(L) and is of bakwardly independentinrements whose marginal has a density with respet to the Lebesgue measure (examplein [7℄ and [15℄). We say that a proess ǫ has bakwardly independent inrements if for all
0 ≤ s ≤ t ≤ θ, the random variable ǫs − ǫt is independent to ǫθ. For example, if one takes
ǫt = Wg(T−t) with W an Brownian motion, and g : [0, T ] → [0,+∞) a stritly inreasingbounded funtion with g(0) = 0, then ǫ is a proess on [0, T ] whih has bakwardlyindependent inrements. Another example with in�nite horizon is ǫt = Wg( 1

t+1
), where

g : [0, 1] → [0,+∞) a stritly inreasing bounded funtion with g(0) = 0.To ompute the priing formula (2.1) for the insider where Ht = GI
t , our strategy isto ombine the results in the two previous setions using the auxiliary �ltration FI . Morepreisely, we present �rstly in Proposition 5.1 a result for the �ltration FI whih is similarto the one in Proposition 3.1 for the �ltration GM . We then use it to obtain the priingformula in Theorem 5.1. In fat, sine GI is the progressive enlargement of FI , applying(4.2) leads to the value proess for insiders:(5.1) V I

t =
11{τ>t}Rt

SI
t

EP

[
R−1

T SI
TC +

∫ T

t

R−1
u SI

udGu −
∫ T

t

R−1
u ZudS

I
u

∣∣∣∣F I
t

]where SI
t := EP[11{τ>t}|F I

t ]. In the rest of the setion, we aim to give a reformulationof (5.1) as a onditional expetation with respet to the default-free �ltration F. It isinteresting to remark that although the formula (5.2) in Proposition 5.1 seems to beompliated, the �nal result (5.6) is given in a simple and oherent form similarly as forthe full and progressive information.We assume Assumption 3.1 in the sequel, that is, the onditional probability law of Lgiven Ft has a density pt(·) with respet to the unonditioned probability law of L.Proposition 5.1 We assume Assumption 3.1. Let ǫ be a ontinuous proess, independentof F∞∨σ(L), and with bakwardly independent inrements suh that the probability law of
ǫt has a density qt(·) with respet to the Lebesgue measure. For any t ≥ 0, let Lt = L+ ǫt13



and F I
t = Ft ∨ σ(Ls, s ≤ t). Then, for any θ ≥ t and any positive Fθ ⊗ B(R)-measurablefuntion φθ(·), one has(5.2) EP[φθ(Lθ)11{τ>θ}|FI

t ] =

∫∫
EP[φθ(u + y)pθ(l)11{X∗

θ
>l}|Ft]u=Lt

qt(Lt − l)µt,θ(dy)PL(dl)
∫

R
pt(l)qt(Lt − l)PL(dl)where PL is the probability law of L, µt,θ is the probability law of ǫθ − ǫt. For any

Fθ-measurable φθ, one has
EP[φθ11{τ>θ}|F I

t ] =

∫
EP[φθpθ(l)11{X∗

θ
>l}|Ft]qt(Lt − l)PL(dl)∫

R
pt(l)qt(Lt − l)PL(dl)

.Proof: Sine ǫ has bakwardly independent inrement and is independent of Fθ ∨ σ(L),one has
EP[φθ(Lθ)11{τ>θ}|F I

t ] = EP[φθ(L+ ǫθ)11{X∗

θ
>L}|F ∨ σ(Lt) ∨ σ(ǫs − ǫt, s ≤ t)]

= EP[φθ(L+ ǫθ)11{X∗

θ
>L}|F ∨ σ(Lt)].

(5.3)By the independene of Fθ ∨ σ(L) and ǫ, we obtain
EP

[
φθ(Lθ)11{τ>θ}|Ft ∨ σ(Lt) ∨ σ(L)

]

= EP

[
φθ(Lθ)11{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)

]

=

∫

R

EP[φθ(Lt + y)11{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)]µt,θ(dy)

=

∫

R

EP

[
φθ(L+ z + y)11{X∗

θ
>L}|Ft ∨ σ(L)

]
z=ǫt

µt,θ(dy)

= pt(L)−1

∫

R

EP[φθ(x+ y + z)pθ(x)11{X∗

θ
>x} | Ft]x=L

z=ǫt

µt,θ(dy),where the last equality omes from Proposition 3.1. In the rest of the proof, we denoteby
Ht(L,Lt) := pt(L)−1

∫

R

EP[φθ(u+ y)pθ(x)11{X∗

θ
>x} | Ft] x=L

u=Lt

µt,θ(dy).By de�nition and similar argument as for (5.3), one has
EP[φθ(Lθ)11{τ>θ}|F I

t ] = EP[Ht(L,Lt)|Ft ∨ σ(Lt) ∨ σ((ǫt − ǫs), s ≤ t)]

= E [Ht(L,Lt)|Ft ∨ σ(Lt)] .Let PL
t (dl) be the regular onditional probability of L given Ft. Then for U ∈ B(R2),

P ((L,Lt) ∈ U |Ft) =

∫

R2

11U(l, x)qt(x− l)PL
t (dl)dxTherefore(5.4) E

[
Ht(L,Lt)|F I

t

]
=

∫
R
Ht(l, Lt)qt(Lt − l)PL

t (dl)∫
R
qt(Lt − l)PL

t (dl)
.14



By the equality PL
t (dl) = pt(l)P

L(dl), we obtain the desired result. The seond equalityis obtained in a similar way. 2As a onsequene of Proposition 5.1, the onditional expetation EP[11{τ>t}|F I
t ] an bewritten as SI

t (Lt), where SI
t (·) is the Ft ⊗ B(R)-measurable funtion de�ned as(5.5) SI
t (x) =

∫
R

11{X∗

t
>l}pt(l)qt(x− l)PL(dl)∫

R
pt(l)qt(x− l)PL(dl)

.In the following result, we ompute (5.1) as F-onditional expetations.Theorem 5.1 We keep the notations and assumptions of Proposition 5.1 and reall that
GI

t = F I
t ∨ Dt. Then the value proess for the noisy full information �ow GI is given by(5.6) V I

t =
11{τ>t}∫

R
FM

t (l)qt(Lt − l)PL(dl)

∫
Ṽ M

t (l)qt(Lt − l)PL(dl)where Ṽ M and FM are de�ned in Proposition 3.2.Proof: To obtain results with respet to Ft, we shall alulate respetively the threeterms of (5.1) using Proposition 5.1. Let Nt(x) :=
∫

R
11{X∗

t
>l}pt(l)qt(x − l)PL(dl) =∫

R
FM

t (l)qt(x− l)PL(dl). Firstly,
EP[

C

RT

11{τ>T}|GI
t ] = 11{τ>t}

EP[
C

RT

11{τ>T}|F I
t ]

EP[11{τ>t}|F I
t ]

=
11{τ>t}

Nt(Lt)

∫
EP

[ C
RT

FM
T (l)|Ft

]
qt(Lt−l)PL(dl)where the seond equality omes from Proposition 5.1. Seondly, using the same argument,

EP[

∫ T

t

11{τ>θ}
dGθ

Rθ

|GI
t ] =

∫ T

t

EP[11{τ>θ}
dGθ

Rθ

|GI
t ]

=
11{τ>t}

Nt(Lt)

∫ ∫ T

t

EP[F
M
θ (l)

dGθ

Rθ

|Ft]qt(Lt − l)PL(dl)Thirdly, similar as in the proof of Proposition 3.2, we assume Zu =
∑n

i=0 Zi11ti<u≤ti+1
for

t < u ≤ T where t0 = t < · · · < tn+1 = T and Zi is Fti-measurable for i = 0, · · · , n. Wehave
EP

[
Zτ11{t<τ≤T}|GI

t

]

=
11{τ>t}

SI
t

n∑

i=0

EP

[
Zi11{ti<τ} − Zi11{ti+1<τ}|F I

t

]

=
11{τ>t}

Nt(Lt)

∫ n∑

i=0

(
EP

[
Zipti(x)11{X∗

ti
>x}|Ft

]
−EP

[
Zipti+1

(x)11{X∗

ti+1
>x}|Ft

])
qt(Lt − l)PL(dl)

=
11{τ>t}

Nt(Lt)

n∑

i=0

∫
EP

[
n∑

i=0

Zi

(
FM

ti
(l) − FM

ti+1
(l)

)
|Ft

]
qt(Lt − l)PL(dl)

= − 11{τ>t}

Nt(Lt)

∫
EP

[∫ T

t

ZudF
M
u (l)|Ft

]
qt(Lt − l)PL(dl)15



We get the third term by approximating (ZuR
−1
u )u by a suitable sequene of stepwise

F-preditable proesses :
EP

[
ZτR

−1
τ 11{t<τ≤T}|GI

t

]
= − 11{τ>t}

Nt(Lt)

∫
EP

[ ∫ T

t

Zu

Ru

dFM
u (l)|Ft

]
qt(Lt − l)PL(dl).We ombine the three terms to omplete the proof. 26 Risk-neutral priing and numerial illustrations6.1 Priing under di�erent probabilitiesTo evaluate a redit derivative, both the priing �ltration and the hoie of risk-neutralprobability measures depend on the information level of the market agent. In the previoussetions, we have omputed the priing formula (2.1) for di�erent information �ltrationunder the same historial probability measure. In the following, our objetive is to takeinto aount the priing probabilities for eah type of information.We have made preise di�erent priing probabilities. First of all, we assume that apriing probability Q is given with respet to the �ltration F of the fundamental proess

X. Usually, we hoose Q suh that X is an (F,Q) loal martingale. Sine we shallfous on the hange of probability measures due to the di�erent soures of informationsand on its impat on the priing of redit derivatives, we may assume, without loss ofgenerality, the historial probability P to be the benhmark priing probability Q on F.For the same reason, we will onsider the same priing probability for the �ltration Fand its progressive enlargement G.1 Given the priing probability Q on F (and thus on
G), the priing probability for the manager is QM where dQM

dQ
= Y M(L) with Y M(L) =

E(−
∫ .

0
ρM

s (L)(dBs − ρM
s (L)ds)) (see Subsetion 3.1) and for the noisy full information is

QI where dQI

dQ
= Y I with Y I = E(−

∫ .

0
ρI

s(dBs − ρI
sds)) (see Subsetion 5.1). We also take

Q as the priing probability for the delayed information beause the delayed informationase is more ompliated : indeed, the notion of a FD Brownian motion is a widelyopen question that we do not want to investigate here and we assume that the priingprobability for the delayed ase is the same as for the progressive information.The following proposition gives the prie of a redit derivative for the full and thenoisy information if we take into aount not only the enlargement of �ltration but alsothe hange of priing probability due to this insiders' information. Sine we take P as thepriing measure, note that for the investors with progressive or delayed information, thereis no hange of priing probability, so the results of Propositions 4.1 and 4.2 still hold.1In general, a (F, Q) loal martingale is not neessarily a (G, Q) loal martingale exept under (H)hypothesis. However, sine all the �ltrations we onsider ontains the progressive enlargement, we preferto onentrate on the hange of probabilities due to di�erent soures of information and we keep the samepriing probability for F and G. 16



Proposition 6.1 We assume Assumption 3.1.1) De�ne FQM

t (l) = 11{X∗

t
>l}. Then the value proess of a redit sensitive laim (C,G, Z)for the manager's full information under the risk neutral probability measure QM is givenby

V QM

t = RtEP

[
CR−1

T FQM

T (x) +

∫ T

t

FQM

s (x)R−1
s dGs −

∫ T

t

ZsR
−1
s dFQM

s (x) |Ft

]
x=L

.2) Let ǫ be a ontinuous proess with bakwardly independent inrements suh that theprobability law of ǫt has a density qt(·) w.r.t. the Lebesgue measure. Then the valueproess for the insider's noisy full information under QI is given by(6.1) V QI

t =
11{τ>t}∫

R
FM

t (l)qt(Lt − l)PL(dl)

∫
Ṽ QI

t (l)qt(Lt − l)PL(dl)wherẽ
V QI

t (l) = RtEP

[
CR−1

T F I
t,T (u, l) +

∫ T

t

F I
t,θ(u, l)R

−1
θ dGθ −

∫ T

t

R−1
θ ZθdF

I
t,θ(u, l)|Ft

]
u=Lt

,

F I
t,θ(u, l) = E

(∫ θ

t

∫
ρI

θ(u+ y)µt,θ(dy)dBu

)−1

FM
θ (l).To prove the seond assertion of the above proposition, we need the following lemmawhih is an extension of Proposition 5.1. We give the proof of Proposition 6.1 afterwards.Lemma 6.1 We keep the notations and assumptions of Proposition 5.1. Then, for any

θ ≥ t and any Fθ-measurable φθ, one has
EP[Y

I
θ φθ11{τ>θ}|F I

t ] = Y I
t

∫
EP[φθF

I
t,θ(u, l) | Ft]u=Lt

qt(Lt − l)PL(dl)∫
R
pt(l)qt(Lt − l)PL(dl)

,where PL is the probability law of L, µt,θ is the probability law of ǫθ − ǫt and F I
t,θ(u, l) isde�ned in Proposition 6.1.Proof: First, let us reall, that Y I

T = E(
∫ T

0
ρI

udBu)
−1 and ρI

t = E(ρM
t (L)|F I

t ) =
R

ρM
t

(l)qt(Lt−l)P L
t

(dl)
R

qt(Lt−l)P L
t

(dl)
= ρI

t (Lt). (Y I
t )t≥0 is an (FI ,P) martingale. Sine ǫ has bakwardlyindependent inrement and is independent of Fθ ∨ σ(L), one has

EP[φθY
I
θ 11{τ>θ}|F I

t ] = Y I
t EP[φθE(

∫ θ

t

ρI
u(Lu)dBu)

−111{X∗

θ
>L}|F ∨ σ(Lt) ∨ σ(ǫs − ǫt, s ≤ t)]

= Y I
t EP[φθE(

∫ θ

t

ρI
u(L+ ǫu)dBu)

−111{X∗

θ
>L}|F ∨ σ(Lt)].
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By the independene of Fθ ∨ σ(L) and ǫ, we obtain
EP

[
φθE(

∫ θ

t

ρI
u(L+ ǫu)dBu)

−111{τ>θ}|Ft ∨ σ(Lt) ∨ σ(L)

]

= EP

[
φθE(

∫ θ

t

ρI
u(L+ ǫu)dBu)

−111{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)

]

=

∫

R

EP[φθE(

∫ θ

t

∫
ρI

u(Lt + y)µt,θ(dy)dBu)
−111{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)]

=

∫

R

EP

[
φθE(

∫ θ

t

∫
ρI

u(L+ z + y)µt,θ(dy)dBu)
−111{X∗

θ
>L}|Ft ∨ σ(L)

]

z=ǫt

= pt(L)−1

∫

R

EP[φθpθ(x)E(

∫ θ

t

∫
ρI

u(L+ z + y)µt,θ(dy)dBu)
−111{X∗

θ
>x} | Ft]x=L

z=ǫt

,where the last equality omes from Proposition 3.1. The rest of the proof is similar to theone of Proposition 5.1 , with
Ht(L,Lt) := pt(L)−1

∫

R

EP[φθpθ(x)E(

∫ θ

t

∫
ρI

u(u+ y)µt,θ(dy)dBu)
−111{X∗

θ
>x} | Ft] x=L

u=Lt

.

2Proof: 1) For the full manager, the proof is similar as the one of Proposition 3.2 : bynoting that Q is hosen to be P, the probability measure QM oinides with PL de�ned inSetion 3.1. Thus, the end of the proof of Proposition 3.2 still holds, using FQM

t = 11{X∗

t
>l}instead of FM

t .2) For the noisy information, dQI

dP
= Y I

T with Y I
T = E(

∫ T

0
ρI

udBu)
−1 and ρI

t = ρI
t (Lt).Let Nt(x) =

∫
R

11{X∗

t
>l}pt(l)qt(x − l)PL(dl) =

∫
R
FM

t (l)qt(Lt − l)PL(dl) and F I
t,θ(u, l) =

E(
∫ θ

t

∫
ρI

θ(u + y)µt,θ(dy)dBu)
−1pθ(l)11{X∗

θ
>l}. For T , l and u �xed, (F I

t,T (u, l))0≤t≤T is anonnegative (F,P)-supermartingale, and we may deal with its right-ontinuous modi�a-tion with �nite left-hand limits. Firstly,
EQI [

C

RT

11{τ>T}|GI
t ] = 11{τ>t}

EQI [ C
RT

11{τ>T}|F I
t ]

QI [τ > t|F I
t ]

= 11{τ>t}

EP[
C

RT

Y I
T 11{τ>T}|F I

t ]

EP[11{τ>t}Y I
t |F I

t ]beause on the event {τ > t}, dQI

dP
|GI

t
= dQI

dP
|FI

t
= Y I

t . Thus
EQI [

C

RT

11{τ>T}|GI
t ] =

11{τ>t}

Nt(Lt)

∫
EP

[ C
RT

F I
t,T (u, l)|Ft

]
u=Lt

qt(Lt − l)PL(dl)
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where the seond equality omes from Lemma 6.1. Seondly, using the same argument,
EQI [

∫ T

t

11{τ>θ}
dGθ

Rθ

|GI
t ] = 11{τ>t}

∫ T

t

EQI [11{τ>θ}
dGθ

Rθ

|F I
t ]

QI [τ > t|F I
t ]

= 11{τ>t}

∫ T

t

EP[Y
I
θ 11{τ>θ}

dGθ

Rθ

|F I
t ]

EP[Y I
t 11{τ>θ}|F I

t ]

=
11{τ>t}

Nt(Lt)

∫
EP

[ ∫ T

t

F I
t,θ(u, l)

dGθ

Rθ

|Ft

]
u=Lt

qt(Lt − l)PL(dl)Thirdly, we assume Zu =
∑n

i=0 Zi11ti<u≤ti+1
for t < u ≤ T where t0 = t < · · · < tn+1 = Tand Zi is Fti-measurable for i = 0, · · · , n. We have

EQI

[
Zτ11{t<τ≤T}|GI

t

]

11{τ>t}

EQI

[
Zτ11{t<τ≤T}|F I

t

]

QI [τ > t|F I
t ]

=
11{τ>t}

Nt(Lt)

∫ n∑

i=0

(
EP

[
ZiY

I
ti
11{X∗

ti
>x}|Ft

]
−EP

[
ZiY

I
ti+1

11{X∗

ti+1
>x}|Ft

])
u=Lt

qt(Lt − l)PL(dl)

=
11{τ>t}

Nt(Lt)

n∑

i=0

∫
EP

[
n∑

i=0

Zi

(
F I

ti,T
(u, l) − F I

ti+1,T (u, l)
)
|Ft

]

u=Lt

qt(Lt − l)PL(dl)

= − 11{τ>t}

Nt(Lt)

∫
EP

[∫ T

t

ZsdF
I
s,T (u, l)|Ft

]

u=Lt

qt(Lt − l)PL(dl)We onlude in the same way as in Proposition 3.2.6.2 Numerial examplesWe present numerial examples to illustrate the priing formulas obtained previously. Weshall onsider the following binomial model for the default barrier L.Example 6.2 (Binomial Model)Let L be a random variable taking two values li, ls ∈ R, li ≤ ls suh that
P(L = li) = α, P(L = ls) = 1 − α (0 < α < 1).Note that L is independent of (Ft)t≥0.We suppose that the asset values proess X satis�es the Blak Sholes model :

dXt

Xt

= µdt+ σdBt, t ≥ 0.19



It is lassial in this model to alulate onditional probabilities ([2, Cor3.1.2℄). In fat,for t ≥ 0 and h, l > 0,
EP(11{X∗

t
>l} − 11{X∗

t+h
>l}|Ft) = 11{X∗
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>l}

(
Φ

(−Y l
t − νh

σ
√
h

)
+ e2νσ−2YtΦ

(−Y l
t + νh

σ
√
h

))where Φ is the standard Gaussian umulative distribution funtion and
Y l

t = νt+ σBt + ln
X0

l
, with ν = µ− 1

2
σ2.This formula will allow us to obtain expliit priing results in the binomial default barriermodel.We give numerial omparisons of the value proess of a defaultable bond for di�erentinformation, in Example 6.2 with the numerial values: li = 1, ls = 3, α = 1

2
. We have�xed a very small onstant delayed time, whih makes the priing results for the delayedinformation very lose to the ones for the progressive information. We present in eah�gure two graphs, one being the dynami prie of a defaultable bond with zero reoveryrate in the senario of the �rm value presented in the seond graph.In the senario of Figure 1, the manager has �xed the lower value for the default thresh-old. So he estimates smaller default probability and thus higher prie for the defaultablebond, ompared to the ones estimated by other agents on the market. We observe in ad-dition that insider with noisy information has a better estimation of the prie omparedto the investors with progressive or delayed information.

0 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

manager
progressive
delayed
noisy

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8
firm value

dynami prie of the defaultable bond �rm valueFigure 1: L = liWe observe similar phenomena in Figure 2: the manager has �xed the upper value forthe default threshold and thus estimates higher probability of default and smaller prieof the defaultable bond. Note that in the partiular ase where L is onstant (li = ls),the prie of the defaultable bond are the same, whatever the information we onsider.20



0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
manager
progressive
delayed
noisy

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9
firm value

dynami prie of the defaultable bond �rm valueFigure 2: L = ls7 ConlusionWe have modelled the di�erent levels of default information by several types of enlarge-ment of �ltrations, leading also to di�erent priing probability measures. We have takeninto aount these two aspets in the priing of redit derivatives and obtained in all theases oherent formulas given with respet to the �default-free� referene �ltration. Wehave ompared �nally the priing results by numerial illustrations.Referenes[1℄ Amendinger, J., 2000. Martingale Representation Theorems for Initially EnlargedFiltrations, Stohasti Proesses and their Appliations 89, 101-116.[2℄ Bieleki, T.R., Rutkowski, M., 2002. Credit Risk: Modeling, Valuation and Hedg-ing, Springer-Verlag.[3℄ Bieleki, T.R., Jeanblan, M., Rutkowski, M., 2008. Priing and Trading the CreditDefault Swaps in a Hazard Proess Model, Annals of Applied Probability, 18(6),2495-2529.[4℄ Çetin, U., Jarrow, R., Protter, P., Y�ld�r�m, Y., 2004. Modeling redit risk withpartial information, Annals of Applied Probability, 14(3), 1167-1178.[5℄ Coulesu, D., Geman, H., Jeanblan, M., 2006. Valuation of Default sensitivelaims under imperfet Information, Finane and Stohastis.21



[6℄ Collin-Dufresne, P., Goldstein, R., Helwege, J., 2003 Is redit event risk pried?Modelling ontagion via the updating of beliefs, Working Paper, Carnegie MellonUniversity.[7℄ Coruera, J.M., Imkeller, P., Kohatsu-Higa, A., Nualart, D., 2004. Additionalutility of insiders with imperfet dynamial information, Finane and Stohastis,8, 437-450.[8℄ Du�e, D., Lando, D. 2001. Term Strutures of Credit Spreads with InompleteAounting Information, Eonometria, 69, 633-664.[9℄ El Karoui, N., 1999. Modélisation de l'information, Leture Notes, Eole d'étéCEA-EDF-INRIA.[10℄ Elliott, R., Jeanblan, M. and Yor, M., 2000. On models of default risk, Mathe-matial Finane 10, 179-195.[11℄ Gieseke K, Goldberg L. R., 2008. The Market Prie of redit risk : the impat ofAsymmetri Information.[12℄ Grorud, A., Pontier, M., 1998. Insider Trading in a Continuous Time MarketModel, International Journal of Theorial and Applied Finane 1, 331-347.[13℄ Guo, X., Jarrow, R., Zeng, Y., 2008. Credit Risk with Inomplete Information, toappear in Mathematis of Operations Researh.[14℄ Guo, X., Zeng, Y., 2008. Intensity proess and ompensator: a new �ltrationexpansion approah and the Jeulin-Yor theorem, Annal of Applied Probability, 18,120-142.[15℄ Hillairet, C., 2005. Comparison of insiders' optimal strategies depending on thetype of side-information. Stohasti Proesses and Their Appliations 115, 1603-1627.[16℄ Jaod, J., 1979. Calul stohastique et problèmes de martingales, Leture Notes714, Springer-Verlag, New York.[17℄ Jaod, J., 1985. Grossissement Initial, Hypothèse (H') et Théorème de Girsanov,Leture Notes 1118, Springer-Verlag, 15-35.[18℄ Jeanblan, M., Valhev, S., 2005. Partial information and hazard proess, Interna-tional Journal of Theoretial and Applied Finane, 8(6), 807�838.[19℄ Jeulin, J., Yor, M., 1978. Grossissement d'une �ltration et semi-martingales:formules expliites, Séminaire de Probabilités (Strasbourg), 12, 78-97, Springer-Verlag. 22



[20℄ Lando, D., 1998. On Cox proesses and redit risky seurities, Review of Deriva-tives Researh, 2, 99-120.[21℄ Leland, H., 1994. Corporate debt value, bond onvenants and optimal apitalstruture, Journal of Finane 49(4), 1213-1252.[22℄ Merton, R., 1974. On the priing of orporate debt: the risk struture of interestrates, Journal of Finane 29, 449-470.

23


