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Abstra
tWe study the pri
ing of 
redit derivatives with asymmetri
 information. Themanagers have 
omplete information on the value pro
ess of the �rm and on thedefault threshold, while the investors on the market have only partial observations,espe
ially about the default threshold. Di�erent information stru
tures are distin-guished using the framework of enlargement of �ltrations. We spe
ify risk neutralprobabilities and we evaluate default sensitive 
ontingent 
laims in these 
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1 Introdu
tionThe modelling of a default event is an important subje
t from both e
onomi
 and �nan
ialpoint of view. There exist a large literature on this issue and mainly two modellingapproa
hes: the stru
tural one and the redu
ed-form one. In the stru
tural approa
h,where the original idea goes ba
k to the pioneer paper of Merton [22℄, the default istriggered when a fundamental pro
ess X of the �rm passes below a threshold level L.The fundamental pro
ess may represent the asset value or the total 
ash �ow of the �rmwhere the debt value of the �rm 
an also be taken into 
onsideration. This providesa 
onvin
ing e
onomi
 interpretation for this approa
h. The default threshold L is ingeneral supposed to be 
onstant or deterministi
. Its level is 
hosen by the managers ofthe �rm a

ording to some 
riterions � maximizing the equity value for example as in[21℄.For an agent on the �nan
ial market, the vision on the default is quite di�erent: onone hand, he possesses merely a limited information of the basi
 data (the pro
ess X forexample) of the �rm; on the other hand, to deal with �nan
ial produ
ts written on the�rm, he needs to update his estimations of the default probability in a dynami
 manner.This leads to the redu
ed-form approa
h for default modeling where the default arrives ina more �surprising� way and the model parameters 
an be daily 
alibrated by using themarket data su
h as the CDS spreads.The default time 
onstru
ted in the 
lassi
al stru
tural approa
h is a stopping timewith respe
t to the �ltration F generated by the fundamental pro
ess. The intensity ofsu
h predi
table stopping times does not exist. In the 
redit risk literature, it is alsointerpreted by the fa
t that the default intensity (or the 
redit spread) tends to zero whenthe time to maturity de
reases to zero (we shall make pre
ise the meanings of these twointensities later on). The links between the stru
tural and the intensity approa
hes havebeen investigated in the literature. If the default threshold L is a random variable insteadof 
onstant or deterministi
, then the default time admits the intensity. One importantexample is the well known Cox pro
ess model introdu
ed in [20℄ where L is supposed to bean exponentially distributed random variable independent with F (see also [9℄). Another
lass of models is the in
omplete information models (e.g. [8, 6, 18, 5, 4℄) where theagent only has a partial observation of the fundamental pro
ess X and thus his availableinformation is represented by some sub�ltration of F. The intensity 
an then be dedu
edfor the sub�ltration.In this paper, we are interested in the impa
t of information a

essibility of an agent onthe pri
ing of 
redit derivatives. In parti
ular, we aim to study the information 
on
erningthe default threshold L in addition to the partial observation of the pro
ess X. This 
asehas been studied in [11℄ where investors anti
ipate the distribution of L (following forexample the Beta distribution) whose parameters are 
alibrated through market data. Ourapproa
h is di�erent and is related to the insider's information problems. Indeed, whenthe managers make de
isions on whether the �rm will default or not, he has supplementaryinformation on the default threshold L 
ompared to an ordinary investor on the market.2



Fa
ing the �nan
ial 
risis, this study is also motivated by some re
ent �te
hni
al defaultevents�, where the bankrupt
y o

urs although the �rm is still 
apable to repay its debts.We present our model in the standard setting. Let (Ω,A,P) be a probability spa
ewhi
h represents the �nan
ial market. We 
onsider a �rm and model its default time asthe �rst time that a 
ontinuous time pro
ess (Xt)t≥0 rea
hes some default barrier L, i.e.,(1.1) τ = inf{t : Xt ≤ L} where X0 > Lwith the 
onvention that inf ∅ = +∞. Denote by F = (Ft)t≥0 the �ltration generated bythe pro
ess X, i.e., Ft = σ(Xs, s ≤ t)∨N satisfying the usual 
onditions where N denotesthe P null sets. Su
h 
onstru
tion of a default time adapts to both the stru
tural approa
hand the redu
ed form approa
h of the default modelling, a

ording to the spe
i�
ation ofthe pro
ess X and the threshold L.In the stru
tural approa
h models, L is a 
onstant or a deterministi
 fun
tion L(t),then τ de�ned in (1.1) is an F-stopping time as in the 
lassi
al �rst passage models. In theredu
ed-form approa
h, the default barrier L is unknown and is des
ribed as a randomvariable in A. We introdu
e the de
reasing pro
ess X∗ de�ned as
X∗

t = inf{Xs, s ≤ t}.Then (1.1) 
an be rewritten as(1.2) τ = inf{t : X∗
t = L}.This formulation gives a general redu
ed-form model of default (see [9℄). In parti
ular,when the barrier L is supposed to be independent of F∞, then

P(τ > t|F∞) = P(X∗
t > L|F∞) = FL(X∗

t ),where FL denotes the distribution fun
tion of L. Note that the (H)-hypothesis is satis�edin this 
ase, that is, P(τ > t|F∞) = P(τ > t|Ft). We may also re
over the Cox-pro
essmodel using a similar 
onstru
tion.In most papers 
on
erning the information-based 
redit models, the pro
ess X ispartially observed, making an impa
t on the 
onditional default probabilities and on the
redit spreads. In this paper, we let L to be a random variable and take into 
onsiderationthe information on L. Su
h information modelling is 
losely related to the enlargement of�ltrations theory. Generally speaking, the information of a manager is represented by theinitial enlargement of the �ltration (Ft)t≥0 and the information of an investor is modelledby the progressive enlargement of (Ft)t≥0 or of some of its sub�ltration. We shall also
onsider the 
ase of an insider who may have some extra knowledge on L 
ompared to aninvestor and whose knowledge is however perturbed 
ompared to the manager.The rest of this paper is organized as follows. In Se
tion 2, we introdu
e the pri
ingproblem and the di�erent information stru
tures for various agents on the market, notably3



the information on the default barrier L. We shall distinguish the role of the manager,the investor and the insider, who have di�erent level of information on L. In su

essivelySe
tions 3, 4 and 5, we make pre
ise the mathemati
al hypothesis for these 
ases, usingthe languages of enlargement of �ltrations. We also dis
uss the risk-neutral probabilitiesin ea
h 
ase for further pri
ing purposes. In order to distinguish the impa
t of the di�erent�ltrations from the impa
t of the di�erent pri
ing probabilities, we �rst give the pri
e of a
ontingent 
laim under the histori
al probability measure P for ea
h information in Se
tion3, 4, 5, the 
al
ulus under the 
orresponding pri
ing (or "risk-neutral") probability beingdone in the last se
tion. Finally, we end the last se
tion with numeri
al illustrations.2 Pri
ing framework and information stru
turesOn the �nan
ial market, the available information for ea
h agent is various. There ex-ists in general information asymmetry between di�erent market investors, and moreoverbetween the managers of a �rm and the investors. In parti
ular, the managers may haveinformation on whether the �rm will default or not, or when the default may happen.The pri
ing of 
redit-sensitive derivative depends strongly on the information �ow of theagent. We begin by introdu
ing the general pri
ing prin
iple and then we pre
ise di�erentinformation.2.1 General pri
ing prin
ipleWe �x in the sequel a probability spa
e (Ω,A,P) and a �ltration F = (Ft)t≥0 of A,representing the default-free information. Let τ be a stri
tly positive and �nite randomtime on (Ω,A,P), modelling the default time. The information �ow of the agent isdes
ribed by a �ltration H = (Ht)t≥0 su
h that τ is an H-stopping time, that is, all agentsobserve at time t whether the default has o

urred or not. Without loss of generality,we assume that all the �ltrations we 
onsider satisfy the usual 
onditions of 
ompletenessand right-
ontinuity.We des
ribe a general 
redit-sensitive derivative 
laim of maturity T as in [2℄, by atriplet (C,G, Z) where C is an FT -measurable random variable representing the paymentat the maturity T if no default o

urs before the maturity, G is an F-adapted, 
ontinuouspro
ess of �nite variation with G0 = 0 and represents the dividend payment, Z is an
F-predi
table pro
ess and represents the re
overy payment at the default time τ .The triplet for a CDS, viewed by a prote
tion buyer, satisfy C = 0, Gt = −κt and
Z = 1 − α where κ is the spread of CDS and α is the re
overy rate of the underlyingname. The triplet for a defaultable zero-
oupon satisfy C = 1, G = 0 and Z = 1 − α.The value pro
ess of the 
laim at time t < τ ∧ T is given by(2.1) Vt = RtEQ

[
CR−1

T 11{τ>T} +

∫ T

t

11{τ>u}R
−1
u dGu + Zτ11{τ≤T}R

−1
τ

∣∣∣Ht

]4



where Q denotes the pri
ing probability measure whi
h we shall pre
ise later, and R isthe dis
ount fa
tor pro
ess. We note that both the �ltration and the pri
ing probabilitydepend on the information level of the agent.In the 
redit risk analysis, one often tries to establish a relationship between the market�ltration and the default-free one. The main advantage is that the default-free �ltration isoften supposed to have ni
e regularity 
onditions, while the global market �ltration whi
h
ontains the default information is often di�
ult to work with dire
tly. Indeed, due tothe default information, the pro
esses adapted to the global �ltration have in general ajump at the default time (ex
ept in the stru
tural approa
h) and this makes it di�
ultto propose expli
it models in this �ltration. In our model with insider's information, weneed to make pre
ise the �ltration H = (Ht)t≥0 in (2.1) for di�erent types of agents. Ourobje
tive, similar as mentioned above, is to establish a pri
ing formula with respe
t tothe default-free �ltration in ea
h 
ase.2.2 Information stru
turesWe now des
ribe the di�erent information �ows and the 
orresponding �ltration H fordi�erent agents on the market. Re
all that the default time is modelled by
τ = inf{t : X∗

t = L},where L is a random variable and X∗ is the in�mum pro
ess of an F-adapted pro
ess
X. We assume that L is 
hosen by the managers of the �rm who hen
e have the totalknowledge on L. The information of X∗

t is 
ontained in the σ-algebra Ft. However, thepro
ess X∗ 
an not give us full information on Ft.
• Manager's information.The manager has 
omplete information on X and on L. The �ltration of the manager'sinformation, denoted by GM = (GM

t )t≥0, is then
GM

t := Ft ∨ σ(L).Note that GM is in fa
t the initial enlargement of the �ltration F with respe
t to L andwe 
all it the full information on L. It is obvious that τ is a GM -stopping time. We shallpre
ise some te
hni
al hypothesis in the next se
tion.
• Investor's information.In the 
redit risk literature, the a

essible information on the market is often modelledby the progressive enlargement G = (Gt)t≥0 of F. More pre
isely, let D = (Dt)t≥0 be theminimal �ltration whi
h makes τ a D-stopping time, i.e. Dt = D0

t+ with D0
t = σ(τ ∧ t),then

Gt = Ft ∨ Dt.In our model (1.2), this is interpreted as Gt = Ft ∨ σ({L ≤ X∗
t }) and we 
all this infor-mation the progressive (enlargement) information on L. Together with the information5



�ow of the �ltration (Ft)t≥0, an investor who observes the �ltration (Gt)t≥0 knows at time
t whether or not the default has o

urred up to t and the default time τ on
e it o

urs.We see that the manager's information GM

t is larger than Gt.
• Investor's in
omplete information.In many in
omplete information 
redit risk models, the pro
ess X driving the defaultrisk is not totally observable for the investors. In this paper, we will only 
onsider theexample of a delayed information on X : the information of su
h an investor is des
ribedby a progressive enlargement GD = (GD

t )t≥0 of a delayed �ltration of F, where
GD

t := Ft−δ(t) ∨ Dt,and δ(t) being a fun
tion valued in [0, t] su
h that t − δ(t) is in
reasing. The aboveformulation 
overs the 
onstant delay time model where δ(t) = δ (see [6℄, [13℄) and thedis
rete observation model where δ(t) = t − t
(m)
i and t(m)

i ≤ t < t
(m)
i+1, 0 = t

(m)
0 < t

(m)
1 <

· · · < t
(m)
m = T being the dis
rete dates on whi
h the (Ft)t≥0 information may be renewed(for example, the release dates of the a

ounting reports of the �rm, see [8℄, [18℄).

• Insider's information.Finally, we shall 
onsider the insiders who have as supplementary information a partialobservation on L 
ompared to the investor's information Gt. Namely, the agent has theknowledge on a noisy default threshold: (Lt)t≥0, Ls = f(L, ǫs) with ǫ being an indepen-dent noise perturbing the information on L. The 
orresponding information �ow is thenmodelled by GI = (GI
t )t≥0 where

GI
t := Ft ∨ σ(Ls, s ≤ t) ∨ Dt.Noti
e that GI

t = Gt ∨ σ(Ls, s ≤ t). We 
all this information the �noisy full information�on L. It is a su

essive enlargement of Ft, �rstly by the noised information of the defaultthreshold and then by the default o

urren
e information.For the di�erent types of information des
ribed above, we observe that the followingrelations hold:
GM ⊃ GI ⊃ G ⊃ GD.They 
orrespond to the pri
ing �ltration H in (2.1) for di�erent agents on the market.We shall 
on
entrate on the pri
ing problem with the above �ltrations and we begin bymaking pre
ise the mathemati
al hypothesis on these types of information on L, withwhi
h we introdu
e the risk-neutral probabilities Q in ea
h 
ase.3 Full informationIn this se
tion, we work with the manager information �ow GM = F ∨ σ(L), whi
h is aninitial enlargement of the �ltration F. Re
all that the default barrier is �xed at date 0 bythe manager as the realization of a random variable L. We assume in addition that the�ltration F is generated by a Brownian motion B.6



3.1 Initial enlargement of �ltrationIn the theory of initial enlargement of �ltration, it is standard to work under the followingdensity hypothesis due to Ja
od [16, 17℄.Assumption 3.1 We assume that L is an A-measurable random variable with values in
R, whi
h satis�es the assumption :

P(L ∈ ·|Ft)(ω) ∼ P(L ∈ ·), ∀t ≥ 0, P − a.s..Remark: Ja
od has shown that, if Assumption 3.1 is ful�lled, then any F-lo
al martingaleis a GM -semimartingale.We denote by PL
t (ω, dx) a regular version of the 
onditional law of L given Ft and by

PL the law of L (under the probability P). A

ording to [17℄, there exists a measurableversion of the 
onditional density(3.1) pt(x)(ω) =
dPL

t

dPL
(ω, x)whi
h is an (F,P)-martingale and hen
e 
an be written as

pt(x) = p0(x) +

∫ t

0

βs(x)dBs, ∀x ∈ Rfor some F-predi
table pro
ess (βt(x))t≥0. Moreover, the fa
t that PL
t is equivalent to PLimplies that P-almost surely pt(L) > 0. Let us introdu
e the F-predi
table pro
ess ρMwhere ρM

t (x) = βt(x)/pt(x), the density pro
ess pt(L) satis�es the following sto
hasti
di�erential equation
dpt(L) = pt(L)ρM

t (L)dBt.Note that (B̃M
t := Bt −

∫ t

0
ρM

s (L)ds, t ≥ 0) is a (GM ,P)-Brownian motion.It is proved in [12℄ that Assumption 3.1 is satis�ed if and only if there exists a proba-bility measure equivalent to P and under whi
h F∞ := ∪t≥0Ft and σ(L) are independent.The probability PL de�ned by the density pro
ess
EPL

[ dP

dPL

∣∣GM
t

]
= pt(L)is the only one that is identi
al to P on F∞.We introdu
e the pro
ess Y M by(3.2) Y M = E

(
−

∫ ·

0

ρM
s (L)dB̃M

s

)
,where E denotes the Doléans-Dade exponential. We assume in addition that Y M is a

(GM ,P)martingale. A straightforward 
omputation yields d((Y M
t )−1) = (Y M

t )−1ρM
t (L)dBt.7



Thus, Y M
t = 1

pt(L)
, that is, Y M

t is the Radon-Nikodym density of the 
hange of probability
PL with respe
t to P on GM

t . The pro
ess Y M is important in the study of risk-neutralprobabilities on GM . Indeed, let φ be the pri
e pro
ess of a default-free �nan
ial in-strument. It is an F-adapted pro
ess whi
h is an F-lo
al martingale under 
ertain Frisk-neutral probability Q (whi
h is equivalent to P). In general φ is not an (GM ,Q)-lo
almartingale. However, if we de�ne a new probability measure QM by
dQM = Y M

t dQ on GM
t ,then any (F,Q)-lo
al martingale is an (GM ,QM)-lo
al martingale. In parti
ular, B isa (GM ,QM)-Brownian motion. Moreover, one has the following martingale represen-tation property by [1℄: if A is a (GM ,QM )-lo
al martingale, then there exists ψ ∈

L1
loc(B,G

M ,QM) su
h that
At = A0 +

∫ t

0

ψsdBs.This shows that the market is 
omplete for the manager.3.2 Pri
ing with full informationWe 
onsider now the pri
ing problem with the manager's information �ow H = GM andwe assume Assumption 3.1. In order to distinguish the impa
t of di�erent �ltrations andthe impa
t of di�erent pri
ing measures, we �rst assume that the pri
ing probability is
P for all agents. The result under QM , the risk-neutral probability for the manager, is
omputed in Se
tion 6 by a 
hange of probability measure.Our obje
tive is to establish the pri
ing formula for the manager with respe
t to thedefault-free �ltration F. We begin by giving the following useful result.Proposition 3.1 For any θ ≥ t and any positive Fθ ⊗ B(R)-measurable fun
tion φθ(·),one has(3.3) EP[φθ(L)11{τ>θ} | GM

t ] =
1

pt(L)
EP[φθ(x)pθ(x)11{X∗

θ
>x} | Ft]x=Lwhere pt(x) is de�ned in (3.1).Proof: Let PL be the equivalent probability measure of P of density pt(L)−1 on GM

t . Byusing the fa
ts that Fθ and σ(L) are independent under PL and that PL is identi
al to Pon F∞, we have
EP[φθ(L)11{τ>θ} | GM

t ] = EP[φθ(L)11{X∗

θ
>L} | Ft ∨ σ(L)]

= pt(L)−1EPL[φθ(L)pθ(L)11{X∗

θ
>L}|Ft ∨ σ(L)]

= pt(L)−1EPL[φθ(x)pθ(x)11{X∗

θ
>x}|Ft]x=L

= pt(L)−1EP[φθ(x)pθ(x)11{X∗

θ
>x}|Ft]x=L.

(3.4) 8



2Remark: If Fθ and σ(L) are independent under P, then pt(x) ≡ 1, we obtain the simplerformula
EP[φθ(L)11{τ>θ} | GM

t ] = EP[φθ(x)11{X∗

θ
>x}|Ft]x=L.Proposition 3.2 We keep the notation of Se
tion 2 and de�ne FM

t (x) := pt(x)11{X∗

t
>x}.The value pro
ess of the 
ontingent 
laim (C,G, Z) given the full information (GM

t )t≥0 is(3.5) V M
t = 11{τ>t}

Ṽ M
t (L)

pt(L)where(3.6) Ṽ M
t (L) = RtEP

[
CR−1

T FM
T (x) +

∫ T

t

FM
s (x)R−1

s dGs −
∫ T

t

ZsR
−1
s dFM

s (x)

∣∣∣∣Ft

]

x=L

.Proof: Using Proposition 3.1, the �rst part of (2.1) is given by
RtEP

[
C11{τ>T}R

−1
T |GM

t

]
=

Rt

pt(L)
EP

[
CR−1

T pT (x)11{X∗

T
>x}|Ft

]
x=L

.Let's see the third term
RtEP

[
ZτR

−1
τ 11{t<τ≤T}|GM

t

]
.We begin by assuming that Z is a stepwise F-predi
table pro
ess as in [2℄, that is Zu =∑n

i=0 Zi11ti<u≤ti+1
for t < u ≤ T where t0 = t < · · · < tn+1 = T and Zi is Fti-measurablefor i = 0, · · · , n. We have

EP

[
Zτ11{t<τ≤T}|GM

t

]

=
n∑

i=0

(
1

pt(L)
EPL

[
Zipti(L)11{ti<τ}|GM

t

]
− 1

pt(L)
EPL

[
Zipti+1

(L)11{ti+1<τ}|GM
t

])

=

n∑

i=0

1

pt(L)

(
EP

[
Zipti(x)11{X∗

ti
>x}|Ft

]
− EP

[
Zipti+1

(x)11{X∗

ti+1
>x}|Ft

])

x=L

=
1

pt(L)
EP

[
n∑

i=0

Zi

(
pti(x)11{X∗

ti
>x} − pti+1

(x)11{X∗

ti+1
>x}

)
|Ft

]

x=L

.We de�ne FM
t (x) = pt(x)11{X∗

t
>x}. For x �xed, 11{X∗

t
>x} is de
reasing and right 
ontinuous,and a

ording to [17℄, (ps(x))s≥0 is an (F,P)-martingale. Thus (FM

t (x))t≥0 is a nonnegative
(F,P)-supermartingale, and we may deal with its right-
ontinuous modi�
ation with �niteleft-hand limits. Therefore

EP

[
Zτ11{t<τ≤T}|GM

t

]
= − 1

pt(L)
EP

[
n∑

i=0

Zi(F
M
ti+1

(x) − FM
ti

(x))|Ft

]

x=L

= − 1

pt(L)
EP

[∫ T

t

ZudF
M
u (x)|Ft

]

x=L

.9



Finally, we get the third term of (2.1) by approximating (ZuR
−1
u )u by a suitable sequen
eof stepwise F-predi
table pro
esses :

RtEP

[
ZτR

−1
τ 11{t<τ≤T}|GM

t

]
= − Rt

pt(L)
EP

[ ∫ T

t

ZuR
−1
u dFM

u (x)|Ft

]
x=L

.The se
ond term of (2.1) 
an be de
omposed in two parts as follows
RtEP

[ ∫ T

t

11{τ>u}R
−1
u dGu| GM

t

]

= RtEP

[
11{τ>T}

∫ T

t

R−1
u dGu + 11{t<τ≤T}

∫ τ

t

R−1
u dGu| GM

t

]

=
Rt

pt(L)
EP

[
pT (x)11{X∗

T
>x}

∫ T

t

R−1
u dGu −

∫ T

t

∫ u

t

R−1
s dGsdF

M
u (x)|Ft

]

x=L
.Putting the three terms all together leads to

V M
t =

Rt

pt(L)
EP

[
FM

T (x)

(
CR−1

T +

∫ T

t

R−1
u dGu

)
−

∫ T

t

(
ZsR

−1
s +

∫ s

t

R−1
u dGu

)
dFM

s (x)

∣∣∣∣Ft

]

x=L

.The equality (3.5) then follows by an integration by part. 24 Progressive information4.1 Pri
ing with progressive enlargement of �ltrationThe progressive information on L 
orresponds to the standard information modelling inthe 
redit risk literature where an investor observes the default event when it o

urs.Re
all that
G = (Gt)t≥0 with Gt = Ft ∨ Dt,where Dt = D0

t+, D0
t = σ(τ ∧ t). The pri
ing formula (2.1) when Ht is Gt is well known.We re
all it brie�y below and we refer to [2, 3℄ for a proof.Re
all that the G-
ompensator of τ (under the probability P) is the G-predi
tablein
reasing pro
ess ΛG su
h that the pro
ess (11{τ≤t} − ΛG

t , t ≥ 0) is a (G,P)-martingale.The pro
ess ΛG 
oin
ides on the set {t ≤ τ} with an F-predi
table pro
ess ΛF, 
alled the
F-
ompensator of τ . We de�ne St := P(τ > t | Ft) = P(X∗

t > L | Ft), whi
h is the Azémasupermartingale of τ . The following result is 
lassi
al (see [19, 2, 10℄).Proposition 4.1 For any θ ≥ t and any Fθ-measurable random variable φθ, one has(4.1) EP[φθ11{τ>θ} | Gt] = 11{τ>t}
EP[φθSθ | Ft]

St

.10



where St := P(τ > t | Ft). The value pro
ess for an investors given the progressive infor-mation �ow G is(4.2) Vt = 11{τ>t}
Rt

St

EP

[
R−1

T STC +

∫ T

t

R−1
u SudGu −

∫ T

t

R−1
u ZudSu

∣∣∣∣Ft

]
.Remark 4.1 It is interesting to note the similitude between the 
ase of manager (Propo-sition 3.2) and the 
ase of investor (Proposition 4.1). Comparing the pri
ing formulas(3.5),(3.6) and (4.2), we observe that FM plays a similar role in the full information 
aseas S does in the progressive information 
ase.The pri
ing formula for delayed information �ow is similar sin
e GD is the progressiveenlargement of FD with respe
t to τ and FD is a sub-�ltration of F. The only di�eren
eis that St and Rt are not FD

t -measurable.Proposition 4.2 For any θ ≥ t and any Fθ-measurable random variable φθ, one has(4.3) EP[φθ11{τ>θ} | GD
t ] = 11{τ>t}

EP[φθSθ|FD
t ]

EP[St|FD
t ]The value pro
ess for a delay-informed investors is(4.4) V D

t =
11{τ>t}

E[St|FD
t ]

EP

[
Rt

RT

STC +

∫ T

t

Rt

Ru

SudGu −
∫ T

t

Rt

Ru

ZudSu

∣∣∣∣FD
t

]
.4.2 Intensity hypothesisIn the redu
ed-form approa
h of 
redit risk modelling, the standard hypothesis is theexisten
e of the intensity of default time τ . We say that τ has an F-intensity if its

F-
ompensator ΛF is absolutely 
ontinuous with respe
t to the Lebesgue measure, thatis, there exists an F-adapted pro
ess λF (
alled the F-intensity of τ under P) su
h that
(11{τ≤t} −

∫ t∧τ

0
λF

sds, t ≥ 0) is a (G,P)-martingale. The intensity hypothesis implies that τavoids the F-predi
table stopping times and that τ is G totally ina

essible.Under the intensity hypothesis, the Doob-Meyer de
omposition of the supermartingale
S has the expli
it form: the pro
ess (St+

∫ t

0
Suλ

F
udu, t ≥ 0) is an F-martingale. The pri
ingformulae (4.2) and (4.4) 
an be written as

Vt =
11{τ>t}Rt

St

EP

[
R−1

T STC +

∫ T

t

R−1
u SudGu +

∫ T

t

R−1
u ZuSuλ

F
udu

∣∣∣∣Ft

]
,(4.5)

V D
t =

11{τ>t}

E[St|FD
t ]

EP

[
Rt

RT

STC +

∫ T

t

Rt

Ru

SudGu +

∫ T

t

Rt

Ru

ZuSuλ
F
udu

∣∣∣∣FD
t

]
.(4.6)Note that the intensity does not always exist. For example, in the stru
tural modelwhere L is deterministi
, τ is a F predi
table stopping time. Hen
e its intensity does11



not exist. It is in general a di�
ult problem to determine the existen
e of the intensitypro
ess (see [13℄, [14℄ for a detailed dis
ussion).In 
ontrast to the notion of intensity as above, the default intensity in the 
reditanalysis is often referred as the instantaneous probability of default at time t 
onditionedon some �ltration (Ht)t≥0:
λt = lim

∆t→0

1

∆t
P(t < τ ≤ t+ ∆t|Ht) a.s.Under Aven's 
onditions (see [13℄, [14℄), the two intensities 
oin
ide. But this is not truein general. For example, in the 
lassi
al stru
tural model, the default intensity equalsto zero. However, the intensity pro
ess does not exist in this 
ase. The default intensitywhen Ht = FD

t has been studied in many papers su
h as [8, 6, 18, 13℄, the default intensityis stri
tly positive in the delayed information 
ase. We note that in the full information
ase where Ht = GM
t , we en
ounter the same situation as in the stru
tural model: thedefault intensity equals to zero sin
e L is GM

t -measurable.5 Noisy full informationIn this se
tion, we 
onsider the insider's information �ow. Re
all that the insider has aperturbed information on the barrier L whi
h 
hanges through time. We assume thatthe perturbation is given by an independent noise, and is getting 
learer as time evolves.To be more pre
ise, the noised barrier is modeled by a pro
ess (Lt = f(L, ǫt))t≥0, where
f : R2 → R is a given Borel measurable fun
tion, and ǫ is a pro
ess independent of F∞.The information �ow GI = (GI

t )t≥0 of the insider is then given by
GI

t := Ft ∨ σ(Ls, s ≤ t) ∨ Dt.5.1 Perturbed initial enlargement of �ltrationWe �rstly make pre
ise the mathemati
al assumptions in this 
ase. We introdu
e anauxiliary �ltration FI = (F I
t )t≥0 de�ned as

F I
t := Ft ∨ σ(Ls, s ≤ t).Note that GI is a progressive enlargement of FI by the information on the default. The�ltration FI has been studied in [7℄ under Assumption 3.1. It has ni
e properties similarlyto the �ltration GM . With the notation of Se
tion 3.1, assume that ρI

t := EP[ρ
M
t (L)|F I

t ]satis�es ∫ ∞

0
|ρI

t |dt < +∞ P-a.s. Then the pro
ess B̃I de�ned as B̃I
t := Bt −

∫ t

0
ρI

sds is an
(FI ,P)-Brownian motion. Moreover, the Doléans-Dade integral

Y I
· = E(−

∫ ·

0

ρI
sdB̃

I
s )12



is a positive (FI ,P)-lo
al martingale. We assume that Y I is an (FI ,P)-martingale andde�ne the probability measure QI by
dQI = Y I

t dQ on F I
twhere Q is an equivalent probability of P. Then any (F,Q)-lo
al martingale is an (FI ,QI)-lo
al martingale. In parti
ular, B is an (FI ,PI)-Brownian motion.5.2 Pri
ing with noisy informationWe now 
onsider the pri
ing problem for the insider information �ow GI . We shall fo
uson the parti
ular but useful 
ase:

Lt = L+ ǫt,where ǫ is a 
ontinuous pro
ess independent of F∞∨σ(L) and is of ba
kwardly independentin
rements whose marginal has a density with respe
t to the Lebesgue measure (examplein [7℄ and [15℄). We say that a pro
ess ǫ has ba
kwardly independent in
rements if for all
0 ≤ s ≤ t ≤ θ, the random variable ǫs − ǫt is independent to ǫθ. For example, if one takes
ǫt = Wg(T−t) with W an Brownian motion, and g : [0, T ] → [0,+∞) a stri
tly in
reasingbounded fun
tion with g(0) = 0, then ǫ is a pro
ess on [0, T ] whi
h has ba
kwardlyindependent in
rements. Another example with in�nite horizon is ǫt = Wg( 1

t+1
), where

g : [0, 1] → [0,+∞) a stri
tly in
reasing bounded fun
tion with g(0) = 0.To 
ompute the pri
ing formula (2.1) for the insider where Ht = GI
t , our strategy isto 
ombine the results in the two previous se
tions using the auxiliary �ltration FI . Morepre
isely, we present �rstly in Proposition 5.1 a result for the �ltration FI whi
h is similarto the one in Proposition 3.1 for the �ltration GM . We then use it to obtain the pri
ingformula in Theorem 5.1. In fa
t, sin
e GI is the progressive enlargement of FI , applying(4.2) leads to the value pro
ess for insiders:(5.1) V I

t =
11{τ>t}Rt

SI
t

EP

[
R−1

T SI
TC +

∫ T

t

R−1
u SI

udGu −
∫ T

t

R−1
u ZudS

I
u

∣∣∣∣F I
t

]where SI
t := EP[11{τ>t}|F I

t ]. In the rest of the se
tion, we aim to give a reformulationof (5.1) as a 
onditional expe
tation with respe
t to the default-free �ltration F. It isinteresting to remark that although the formula (5.2) in Proposition 5.1 seems to be
ompli
ated, the �nal result (5.6) is given in a simple and 
oherent form similarly as forthe full and progressive information.We assume Assumption 3.1 in the sequel, that is, the 
onditional probability law of Lgiven Ft has a density pt(·) with respe
t to the un
onditioned probability law of L.Proposition 5.1 We assume Assumption 3.1. Let ǫ be a 
ontinuous pro
ess, independentof F∞∨σ(L), and with ba
kwardly independent in
rements su
h that the probability law of
ǫt has a density qt(·) with respe
t to the Lebesgue measure. For any t ≥ 0, let Lt = L+ ǫt13



and F I
t = Ft ∨ σ(Ls, s ≤ t). Then, for any θ ≥ t and any positive Fθ ⊗ B(R)-measurablefun
tion φθ(·), one has(5.2) EP[φθ(Lθ)11{τ>θ}|FI

t ] =

∫∫
EP[φθ(u + y)pθ(l)11{X∗

θ
>l}|Ft]u=Lt

qt(Lt − l)µt,θ(dy)PL(dl)
∫

R
pt(l)qt(Lt − l)PL(dl)where PL is the probability law of L, µt,θ is the probability law of ǫθ − ǫt. For any

Fθ-measurable φθ, one has
EP[φθ11{τ>θ}|F I

t ] =

∫
EP[φθpθ(l)11{X∗

θ
>l}|Ft]qt(Lt − l)PL(dl)∫

R
pt(l)qt(Lt − l)PL(dl)

.Proof: Sin
e ǫ has ba
kwardly independent in
rement and is independent of Fθ ∨ σ(L),one has
EP[φθ(Lθ)11{τ>θ}|F I

t ] = EP[φθ(L+ ǫθ)11{X∗

θ
>L}|F ∨ σ(Lt) ∨ σ(ǫs − ǫt, s ≤ t)]

= EP[φθ(L+ ǫθ)11{X∗

θ
>L}|F ∨ σ(Lt)].

(5.3)By the independen
e of Fθ ∨ σ(L) and ǫ, we obtain
EP

[
φθ(Lθ)11{τ>θ}|Ft ∨ σ(Lt) ∨ σ(L)

]

= EP

[
φθ(Lθ)11{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)

]

=

∫

R

EP[φθ(Lt + y)11{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)]µt,θ(dy)

=

∫

R

EP

[
φθ(L+ z + y)11{X∗

θ
>L}|Ft ∨ σ(L)

]
z=ǫt

µt,θ(dy)

= pt(L)−1

∫

R

EP[φθ(x+ y + z)pθ(x)11{X∗

θ
>x} | Ft]x=L

z=ǫt

µt,θ(dy),where the last equality 
omes from Proposition 3.1. In the rest of the proof, we denoteby
Ht(L,Lt) := pt(L)−1

∫

R

EP[φθ(u+ y)pθ(x)11{X∗

θ
>x} | Ft] x=L

u=Lt

µt,θ(dy).By de�nition and similar argument as for (5.3), one has
EP[φθ(Lθ)11{τ>θ}|F I

t ] = EP[Ht(L,Lt)|Ft ∨ σ(Lt) ∨ σ((ǫt − ǫs), s ≤ t)]

= E [Ht(L,Lt)|Ft ∨ σ(Lt)] .Let PL
t (dl) be the regular 
onditional probability of L given Ft. Then for U ∈ B(R2),

P ((L,Lt) ∈ U |Ft) =

∫

R2

11U(l, x)qt(x− l)PL
t (dl)dxTherefore(5.4) E

[
Ht(L,Lt)|F I

t

]
=

∫
R
Ht(l, Lt)qt(Lt − l)PL

t (dl)∫
R
qt(Lt − l)PL

t (dl)
.14



By the equality PL
t (dl) = pt(l)P

L(dl), we obtain the desired result. The se
ond equalityis obtained in a similar way. 2As a 
onsequen
e of Proposition 5.1, the 
onditional expe
tation EP[11{τ>t}|F I
t ] 
an bewritten as SI

t (Lt), where SI
t (·) is the Ft ⊗ B(R)-measurable fun
tion de�ned as(5.5) SI
t (x) =

∫
R

11{X∗

t
>l}pt(l)qt(x− l)PL(dl)∫

R
pt(l)qt(x− l)PL(dl)

.In the following result, we 
ompute (5.1) as F-
onditional expe
tations.Theorem 5.1 We keep the notations and assumptions of Proposition 5.1 and re
all that
GI

t = F I
t ∨ Dt. Then the value pro
ess for the noisy full information �ow GI is given by(5.6) V I

t =
11{τ>t}∫

R
FM

t (l)qt(Lt − l)PL(dl)

∫
Ṽ M

t (l)qt(Lt − l)PL(dl)where Ṽ M and FM are de�ned in Proposition 3.2.Proof: To obtain results with respe
t to Ft, we shall 
al
ulate respe
tively the threeterms of (5.1) using Proposition 5.1. Let Nt(x) :=
∫

R
11{X∗

t
>l}pt(l)qt(x − l)PL(dl) =∫

R
FM

t (l)qt(x− l)PL(dl). Firstly,
EP[

C

RT

11{τ>T}|GI
t ] = 11{τ>t}

EP[
C

RT

11{τ>T}|F I
t ]

EP[11{τ>t}|F I
t ]

=
11{τ>t}

Nt(Lt)

∫
EP

[ C
RT

FM
T (l)|Ft

]
qt(Lt−l)PL(dl)where the se
ond equality 
omes from Proposition 5.1. Se
ondly, using the same argument,

EP[

∫ T

t

11{τ>θ}
dGθ

Rθ

|GI
t ] =

∫ T

t

EP[11{τ>θ}
dGθ

Rθ

|GI
t ]

=
11{τ>t}

Nt(Lt)

∫ ∫ T

t

EP[F
M
θ (l)

dGθ

Rθ

|Ft]qt(Lt − l)PL(dl)Thirdly, similar as in the proof of Proposition 3.2, we assume Zu =
∑n

i=0 Zi11ti<u≤ti+1
for

t < u ≤ T where t0 = t < · · · < tn+1 = T and Zi is Fti-measurable for i = 0, · · · , n. Wehave
EP

[
Zτ11{t<τ≤T}|GI

t

]

=
11{τ>t}

SI
t

n∑

i=0

EP

[
Zi11{ti<τ} − Zi11{ti+1<τ}|F I

t

]

=
11{τ>t}

Nt(Lt)

∫ n∑

i=0

(
EP

[
Zipti(x)11{X∗

ti
>x}|Ft

]
−EP

[
Zipti+1

(x)11{X∗

ti+1
>x}|Ft

])
qt(Lt − l)PL(dl)

=
11{τ>t}

Nt(Lt)

n∑

i=0

∫
EP

[
n∑

i=0

Zi

(
FM

ti
(l) − FM

ti+1
(l)

)
|Ft

]
qt(Lt − l)PL(dl)

= − 11{τ>t}

Nt(Lt)

∫
EP

[∫ T

t

ZudF
M
u (l)|Ft

]
qt(Lt − l)PL(dl)15



We get the third term by approximating (ZuR
−1
u )u by a suitable sequen
e of stepwise

F-predi
table pro
esses :
EP

[
ZτR

−1
τ 11{t<τ≤T}|GI

t

]
= − 11{τ>t}

Nt(Lt)

∫
EP

[ ∫ T

t

Zu

Ru

dFM
u (l)|Ft

]
qt(Lt − l)PL(dl).We 
ombine the three terms to 
omplete the proof. 26 Risk-neutral pri
ing and numeri
al illustrations6.1 Pri
ing under di�erent probabilitiesTo evaluate a 
redit derivative, both the pri
ing �ltration and the 
hoi
e of risk-neutralprobability measures depend on the information level of the market agent. In the previousse
tions, we have 
omputed the pri
ing formula (2.1) for di�erent information �ltrationunder the same histori
al probability measure. In the following, our obje
tive is to takeinto a

ount the pri
ing probabilities for ea
h type of information.We have made pre
ise di�erent pri
ing probabilities. First of all, we assume that apri
ing probability Q is given with respe
t to the �ltration F of the fundamental pro
ess

X. Usually, we 
hoose Q su
h that X is an (F,Q) lo
al martingale. Sin
e we shallfo
us on the 
hange of probability measures due to the di�erent sour
es of informationsand on its impa
t on the pri
ing of 
redit derivatives, we may assume, without loss ofgenerality, the histori
al probability P to be the ben
hmark pri
ing probability Q on F.For the same reason, we will 
onsider the same pri
ing probability for the �ltration Fand its progressive enlargement G.1 Given the pri
ing probability Q on F (and thus on
G), the pri
ing probability for the manager is QM where dQM

dQ
= Y M(L) with Y M(L) =

E(−
∫ .

0
ρM

s (L)(dBs − ρM
s (L)ds)) (see Subse
tion 3.1) and for the noisy full information is

QI where dQI

dQ
= Y I with Y I = E(−

∫ .

0
ρI

s(dBs − ρI
sds)) (see Subse
tion 5.1). We also take

Q as the pri
ing probability for the delayed information be
ause the delayed information
ase is more 
ompli
ated : indeed, the notion of a FD Brownian motion is a widelyopen question that we do not want to investigate here and we assume that the pri
ingprobability for the delayed 
ase is the same as for the progressive information.The following proposition gives the pri
e of a 
redit derivative for the full and thenoisy information if we take into a

ount not only the enlargement of �ltration but alsothe 
hange of pri
ing probability due to this insiders' information. Sin
e we take P as thepri
ing measure, note that for the investors with progressive or delayed information, thereis no 
hange of pri
ing probability, so the results of Propositions 4.1 and 4.2 still hold.1In general, a (F, Q) lo
al martingale is not ne
essarily a (G, Q) lo
al martingale ex
ept under (H)hypothesis. However, sin
e all the �ltrations we 
onsider 
ontains the progressive enlargement, we preferto 
on
entrate on the 
hange of probabilities due to di�erent sour
es of information and we keep the samepri
ing probability for F and G. 16



Proposition 6.1 We assume Assumption 3.1.1) De�ne FQM

t (l) = 11{X∗

t
>l}. Then the value pro
ess of a 
redit sensitive 
laim (C,G, Z)for the manager's full information under the risk neutral probability measure QM is givenby

V QM

t = RtEP

[
CR−1

T FQM

T (x) +

∫ T

t

FQM

s (x)R−1
s dGs −

∫ T

t

ZsR
−1
s dFQM

s (x) |Ft

]
x=L

.2) Let ǫ be a 
ontinuous pro
ess with ba
kwardly independent in
rements su
h that theprobability law of ǫt has a density qt(·) w.r.t. the Lebesgue measure. Then the valuepro
ess for the insider's noisy full information under QI is given by(6.1) V QI

t =
11{τ>t}∫

R
FM

t (l)qt(Lt − l)PL(dl)

∫
Ṽ QI

t (l)qt(Lt − l)PL(dl)wherẽ
V QI

t (l) = RtEP

[
CR−1

T F I
t,T (u, l) +

∫ T

t

F I
t,θ(u, l)R

−1
θ dGθ −

∫ T

t

R−1
θ ZθdF

I
t,θ(u, l)|Ft

]
u=Lt

,

F I
t,θ(u, l) = E

(∫ θ

t

∫
ρI

θ(u+ y)µt,θ(dy)dBu

)−1

FM
θ (l).To prove the se
ond assertion of the above proposition, we need the following lemmawhi
h is an extension of Proposition 5.1. We give the proof of Proposition 6.1 afterwards.Lemma 6.1 We keep the notations and assumptions of Proposition 5.1. Then, for any

θ ≥ t and any Fθ-measurable φθ, one has
EP[Y

I
θ φθ11{τ>θ}|F I

t ] = Y I
t

∫
EP[φθF

I
t,θ(u, l) | Ft]u=Lt

qt(Lt − l)PL(dl)∫
R
pt(l)qt(Lt − l)PL(dl)

,where PL is the probability law of L, µt,θ is the probability law of ǫθ − ǫt and F I
t,θ(u, l) isde�ned in Proposition 6.1.Proof: First, let us re
all, that Y I

T = E(
∫ T

0
ρI

udBu)
−1 and ρI

t = E(ρM
t (L)|F I

t ) =
R

ρM
t

(l)qt(Lt−l)P L
t

(dl)
R

qt(Lt−l)P L
t

(dl)
= ρI

t (Lt). (Y I
t )t≥0 is an (FI ,P) martingale. Sin
e ǫ has ba
kwardlyindependent in
rement and is independent of Fθ ∨ σ(L), one has

EP[φθY
I
θ 11{τ>θ}|F I

t ] = Y I
t EP[φθE(

∫ θ

t

ρI
u(Lu)dBu)

−111{X∗

θ
>L}|F ∨ σ(Lt) ∨ σ(ǫs − ǫt, s ≤ t)]

= Y I
t EP[φθE(

∫ θ

t

ρI
u(L+ ǫu)dBu)

−111{X∗

θ
>L}|F ∨ σ(Lt)].

17



By the independen
e of Fθ ∨ σ(L) and ǫ, we obtain
EP

[
φθE(

∫ θ

t

ρI
u(L+ ǫu)dBu)

−111{τ>θ}|Ft ∨ σ(Lt) ∨ σ(L)

]

= EP

[
φθE(

∫ θ

t

ρI
u(L+ ǫu)dBu)

−111{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)

]

=

∫

R

EP[φθE(

∫ θ

t

∫
ρI

u(Lt + y)µt,θ(dy)dBu)
−111{X∗

θ
>L}|Ft ∨ σ(ǫt) ∨ σ(L)]

=

∫

R

EP

[
φθE(

∫ θ

t

∫
ρI

u(L+ z + y)µt,θ(dy)dBu)
−111{X∗

θ
>L}|Ft ∨ σ(L)

]

z=ǫt

= pt(L)−1

∫

R

EP[φθpθ(x)E(

∫ θ

t

∫
ρI

u(L+ z + y)µt,θ(dy)dBu)
−111{X∗

θ
>x} | Ft]x=L

z=ǫt

,where the last equality 
omes from Proposition 3.1. The rest of the proof is similar to theone of Proposition 5.1 , with
Ht(L,Lt) := pt(L)−1

∫

R

EP[φθpθ(x)E(

∫ θ

t

∫
ρI

u(u+ y)µt,θ(dy)dBu)
−111{X∗

θ
>x} | Ft] x=L

u=Lt

.

2Proof: 1) For the full manager, the proof is similar as the one of Proposition 3.2 : bynoting that Q is 
hosen to be P, the probability measure QM 
oin
ides with PL de�ned inSe
tion 3.1. Thus, the end of the proof of Proposition 3.2 still holds, using FQM

t = 11{X∗

t
>l}instead of FM

t .2) For the noisy information, dQI

dP
= Y I

T with Y I
T = E(

∫ T

0
ρI

udBu)
−1 and ρI

t = ρI
t (Lt).Let Nt(x) =

∫
R

11{X∗

t
>l}pt(l)qt(x − l)PL(dl) =

∫
R
FM

t (l)qt(Lt − l)PL(dl) and F I
t,θ(u, l) =

E(
∫ θ

t

∫
ρI

θ(u + y)µt,θ(dy)dBu)
−1pθ(l)11{X∗

θ
>l}. For T , l and u �xed, (F I

t,T (u, l))0≤t≤T is anonnegative (F,P)-supermartingale, and we may deal with its right-
ontinuous modi�
a-tion with �nite left-hand limits. Firstly,
EQI [

C

RT

11{τ>T}|GI
t ] = 11{τ>t}

EQI [ C
RT

11{τ>T}|F I
t ]

QI [τ > t|F I
t ]

= 11{τ>t}

EP[
C

RT

Y I
T 11{τ>T}|F I

t ]

EP[11{τ>t}Y I
t |F I

t ]be
ause on the event {τ > t}, dQI

dP
|GI

t
= dQI

dP
|FI

t
= Y I

t . Thus
EQI [

C

RT

11{τ>T}|GI
t ] =

11{τ>t}

Nt(Lt)

∫
EP

[ C
RT

F I
t,T (u, l)|Ft

]
u=Lt

qt(Lt − l)PL(dl)

18



where the se
ond equality 
omes from Lemma 6.1. Se
ondly, using the same argument,
EQI [

∫ T

t

11{τ>θ}
dGθ

Rθ

|GI
t ] = 11{τ>t}

∫ T

t

EQI [11{τ>θ}
dGθ

Rθ

|F I
t ]

QI [τ > t|F I
t ]

= 11{τ>t}

∫ T

t

EP[Y
I
θ 11{τ>θ}

dGθ

Rθ

|F I
t ]

EP[Y I
t 11{τ>θ}|F I

t ]

=
11{τ>t}

Nt(Lt)

∫
EP

[ ∫ T

t

F I
t,θ(u, l)

dGθ

Rθ

|Ft

]
u=Lt

qt(Lt − l)PL(dl)Thirdly, we assume Zu =
∑n

i=0 Zi11ti<u≤ti+1
for t < u ≤ T where t0 = t < · · · < tn+1 = Tand Zi is Fti-measurable for i = 0, · · · , n. We have

EQI

[
Zτ11{t<τ≤T}|GI

t

]

11{τ>t}

EQI

[
Zτ11{t<τ≤T}|F I

t

]

QI [τ > t|F I
t ]

=
11{τ>t}

Nt(Lt)

∫ n∑

i=0

(
EP

[
ZiY

I
ti
11{X∗

ti
>x}|Ft

]
−EP

[
ZiY

I
ti+1

11{X∗

ti+1
>x}|Ft

])
u=Lt

qt(Lt − l)PL(dl)

=
11{τ>t}

Nt(Lt)

n∑

i=0

∫
EP

[
n∑

i=0

Zi

(
F I

ti,T
(u, l) − F I

ti+1,T (u, l)
)
|Ft

]

u=Lt

qt(Lt − l)PL(dl)

= − 11{τ>t}

Nt(Lt)

∫
EP

[∫ T

t

ZsdF
I
s,T (u, l)|Ft

]

u=Lt

qt(Lt − l)PL(dl)We 
on
lude in the same way as in Proposition 3.2.6.2 Numeri
al examplesWe present numeri
al examples to illustrate the pri
ing formulas obtained previously. Weshall 
onsider the following binomial model for the default barrier L.Example 6.2 (Binomial Model)Let L be a random variable taking two values li, ls ∈ R, li ≤ ls su
h that
P(L = li) = α, P(L = ls) = 1 − α (0 < α < 1).Note that L is independent of (Ft)t≥0.We suppose that the asset values pro
ess X satis�es the Bla
k S
holes model :

dXt

Xt

= µdt+ σdBt, t ≥ 0.19



It is 
lassi
al in this model to 
al
ulate 
onditional probabilities ([2, Cor3.1.2℄). In fa
t,for t ≥ 0 and h, l > 0,
EP(11{X∗

t
>l} − 11{X∗

t+h
>l}|Ft) = 11{X∗

t
>l}

(
Φ

(−Y l
t − νh

σ
√
h

)
+ e2νσ−2YtΦ

(−Y l
t + νh

σ
√
h

))where Φ is the standard Gaussian 
umulative distribution fun
tion and
Y l

t = νt+ σBt + ln
X0

l
, with ν = µ− 1

2
σ2.This formula will allow us to obtain expli
it pri
ing results in the binomial default barriermodel.We give numeri
al 
omparisons of the value pro
ess of a defaultable bond for di�erentinformation, in Example 6.2 with the numeri
al values: li = 1, ls = 3, α = 1

2
. We have�xed a very small 
onstant delayed time, whi
h makes the pri
ing results for the delayedinformation very 
lose to the ones for the progressive information. We present in ea
h�gure two graphs, one being the dynami
 pri
e of a defaultable bond with zero re
overyrate in the s
enario of the �rm value presented in the se
ond graph.In the s
enario of Figure 1, the manager has �xed the lower value for the default thresh-old. So he estimates smaller default probability and thus higher pri
e for the defaultablebond, 
ompared to the ones estimated by other agents on the market. We observe in ad-dition that insider with noisy information has a better estimation of the pri
e 
omparedto the investors with progressive or delayed information.
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e of the defaultable bond �rm valueFigure 1: L = liWe observe similar phenomena in Figure 2: the manager has �xed the upper value forthe default threshold and thus estimates higher probability of default and smaller pri
eof the defaultable bond. Note that in the parti
ular 
ase where L is 
onstant (li = ls),the pri
e of the defaultable bond are the same, whatever the information we 
onsider.20
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e of the defaultable bond �rm valueFigure 2: L = ls7 Con
lusionWe have modelled the di�erent levels of default information by several types of enlarge-ment of �ltrations, leading also to di�erent pri
ing probability measures. We have takeninto a

ount these two aspe
ts in the pri
ing of 
redit derivatives and obtained in all the
ases 
oherent formulas given with respe
t to the �default-free� referen
e �ltration. Wehave 
ompared �nally the pri
ing results by numeri
al illustrations.Referen
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