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Abstract. We prove new global stability estimates for the Gel’fand-Calderon inverse
problem in 3D.

1. Introduction
We consider the equation

—AY+ov(x)p =0, x €D, (1.1)
where
D is an open bounded domain in R?, d>2, dD e C?, ve L>°(D). (1.2)

Equation (1.1) arises, in particular, in quantum mechanics, acoustics, electrodynamics.
Formally, (1.1) looks as the Schrodinger equation with potential v at zero energy.
We consider the map ® such that

g_zf‘ap = 2(¢[,p) (1.3)

for all sufficiently regular solutions v of (1.1) in D = D U dD, where v is the outward
normal to dD. Here we assume also that

0 is not a Dirichlet eigenvalue for the operator — A +4+v in D. (1.4)

The map & is called the Dirichlet-to-Neumann map for equation (1.1) and is considered
as boundary measurements for (physical model described by) (1.1).

We consider the following inverse boundary value problem for equation (1.1):

Problem 1.1. Given @, find v.

This problem can be considered as the Gel’fand inverse boundary value problem for
the Schrodinger equation at zero energy (see [9], [16]). This problem can be also considered
as a generalization of the Calderon problem of the electrical impedance tomography (see
51, 23], [16]).

Concerning results given in the literature on Problem 1.1 (in its Calderon or Gel’fand
form) see [6], [11], [23], [10] (note added in proof), [16], [1], [14], [15], [3], [22], [13], [17],
[19], [12], [4], [21], [20] and references therein.

In particular, in [21] it was shown that the Alessandrini stability estimates of [1]
for Problem 1.1 in dimension d > 3 (see Theorem 2.1 of the next section) admit some
principle improvement. These new stability estimates (see Theorem 2.2 of the next section)
were found in [21] using methods developed in [17], [18], [19]. These methods include, in
particular: (1) the d-approach to inverse ”scattering” at zero energy in dimension d > 3,
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going back to [2], [10], and (2) the reduction of Problem 1.1 to inverse ”scattering” at zero
energy, going back to [16].

However, a complete proof of the aforementioned new stability estimates for
Problem 1.1 in dimension d > 2 was given in [21] in the Born approximation (that is
in the linear approximation near zero potential) only. Besides, a scheme of proof of these
estimates was also mentioned in [21] for potentials with sufficiently small norm in dimension
d = 3. (In this scheme [21] refers, in particular, to results of [19].)

In the present work we give a complete proof of these new stability estimates
(Theorem 2.2 of the next section) in the general (or by other words global) case in dimension
d = 3. In this proof we use, in particular, results of the recent work [20].

2. Stability estimates
As in [21] we assume for simplicity that

D is an open bounded domain in ]Rd, oD e C?,

J (2.1)
veW™HR?Y) for some m > d, suppv C D, d > 2,
where
W RY = {v: 9'v e LYRY), |J| <m}, meNUO, (2.2)
where
ollu(x)
Je(Nuo)?, |J Jiy 0v(x) = —F——-
€ 1= Z 83: . .8xjd
Let
_ J
ol = mase 1070l s (23
Let
||A|| denote the norm of an operator (2.4)
A: L>®(0D) — L*°(0D). .
We recall that if vy, vy are potentials satisfying (1.2), (1.3), where D is fixed, then
®; — &y is a compact operator in L°°(9D), (2.5)

where ®1, ®5 are the DtN maps for vy, vy respectively, see [16], [17]. Note also that
(2.1) = (1.2).

Theorem 2.1 (variation of the result of [1]). Let conditions (1.4), (2.1) hold for
potentials vi and va, where D is fived, d > 3. Let ||vj||m1 < N, j = 1,2, for some N > 0.
Let ®1, @5 denote the DtN maps for vi, va, respectively. Then

lor = v2ll L (py < ea(In(1 + ||y — B2 7)™, (2.6)
where ¢c; = ¢1(N,D,m), a1 = (m — d)/m, ||®1 — P3| is defined according to (2.4).

As it was mentioned in [21], Theorem 2.1 follows from formulas (3.9)-(3.11), (4.1) (of
Sections 3 and 4).



A disadvantage of estimate (2.6) is that

a1 <1 for any m >d even if m is very great. (2.7)

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Then
lor = v2ll Lo (py < co(In(l + || — B[ 7)) 72, (2.8)

where ca = co(N,D,m), ag = m — d, | ®1 — P2|| is defined according to (2.4).
A principal advantage of estimate (2.8) in comparison with (2.6) is that

ag — 400 as m — 400, (2.9)

in contrast with (2.7).

In the Born approximation, that is in the linear approximation near zero potential,
Theorem 2.2 was proved in [21].

For sufficiently small N in dimension d = 3, a scheme of proof of Theorem 2.2 was
also mentioned in [21]. This scheme involves, in particular, results of [17], [19].

In the general (or by other words global) case Theorem 2.2 in dimension d = 3 is
proved in Section 7. This proof involves, in particular, results of [17], [20].

3. Faddeev functions
We consider the Faddeev functions G, ¢ and h (see [7], [8], [10], [16]):

vlok) =+ [ Gla =y kolu)vla. D (3.1
ik B zgwdg

G(&?,k) :ek g(.ﬁC,k), g(.’l?,k) :_(27T) d[]éd ﬁa (32)

where x € ]Rd, ke,
Y={keC’: K=E+.. . +k=0} (3.3)
h(k,1) = (2m) ¢ /Rd e~ y(x)(x, k)d, (3.4)

where (k,1) € O,

O={keX leX: Imk=Iml}. (3.5)

One can consider (3.1), (3.4) assuming that v is a sufficiently regular function on R? with

sufficient decay at infinity. For example, one can consider (3.1), (3.4) assuming that (1.2)
holds.

We recall that:
AG(z, k) =0(z), zeR? keX; (3.6)

formula (3.1) at fixed k is considered as an equation for
Y =M u(a, k), (3.7)
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where 11 is sought in L (R%); as a corollary of (3.1),(3.2), (3.6), ¢ satisfies (1.1); h of (3.4)
is a generalized "scattering” amplitude in the complex domain at zero energy.

Note that, actually, G, ¥, h of (3.1)-(3.5) are zero energy restrictions of functions
introduced by Faddeev as extentions to the complex domain of some functions of the
classical scattering theory for the Schrodinger equation at positive energies. In addition,
G, 1, h in their zero energy restriction were considered for the first time in [2]. The
Faddeev functions G, 1, h were, actually, rediscovered in [2].

We recall also that, under the assumptions of Theorem 2.1,

p(x, k) — 1 as |[Imk| — oo (uniformly in x) (3.8)
and, for any o > 1,
\p(z, k)| <o for |[Imk|>ri(N,D,m,o), (3.9)
where z € R%, k € 3;

A

= 1 h(k,1) f R 510
o) = im0 forany pER” 510

~ Cg(D,m)N2
—hk D < —F— fi ke, p=k—1
[0(p) — h(k, D] < or (k,1)€®©, p , (3.11)
|[Imk|=|Iml| =p>ro(N,D,m),
where )
o(p) = (%)d/ deiva(:n)da:, p e R (3.12)

Results of the type (3.8), (3.9) go back to [2]. Results of the type (3.10), (3.11) (with
less precise right-hand side in (3.11)) go back to [10]. Estimates (3.8), (3.11) are related
also with some important Lo-estimate going back to [23] on the Green function g of (3.1).

Note also that in some considerations it is convenient to consider h on © as H on (2,
where

hk,) = H(k,k—1), (k1) €O,

H(k,p) = h(k,k—p), (k.p) € 9. (3.13)

Q={keC% peR’: k=0, p* = 2kp}. (3.14)

For more information on properties of the Faddeev functions G, v, h, see [10], [17],
[20] and references therein.

In the next section we recall that Problem 1.1 (of Introduction) admits a reduction
to the following inverse ”scattering” problem:

Problem 3.1. Given k on ©, find v on R%.

4. Reduction of [16], [17]
Let conditions (1.2), (1.4) hold for potentials v; and vo, where D is fixed. Let ®;, v;,
h; denote the DtN map ® and the Faddeev functions ¢, h for v = v;, i = 1,2. Let also
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®,(z,y) denote the Schwartz kernel ®(z,y) of the integral operator ® for v = v;, i = 1, 2.
Then (see [17] for details):

ha(k.D) = (k) = (3)" [ [ rlo~)(@2 = @) (o )in(o B)dyda. (41)

0DoD
where (k,[) € ©;

el k) =i k) + | Ale.y,pbaly. R)dy, @ € 0D, (4.20)
oD
Az, y, k) = / Ru(x, 2, k) (@ — ®1)(,y)dz, 2,y € OD, (4.20)
oD

Rl(x7y7 k:) = G($ - Y k) + /]Rd G(m - % k)vl(Z)Rl(z7yv ]{J)dZ, T,y € Rdv (43)

where k € ¥. Note that: (4.1) is an explicit formula, (4.2a) is considered as an equation
for finding 2 on 9D from 1 on D and A on 0D x 9D for each fixed k, (4.2b) is an
explicit formula, (4.3) is an equation for finding Ry from G and vy, where G is the function
of (3.2).

Note that formulas and equations (4.1)-(4.3) for v; = 0 were given in [16] (see also
[10] (Note added in proof), [14], [15]). In this case hy = 0, 1 = e**, Ry = G(x — y, k).
Formulas and equations (4.1)-(4.3) for the general case were given in [17].

Formulas and equations (4.1)-(4.3) with fixed background potential v; reduce Problem
1.1 (of Introduction) to Problem 3.1 (of Section 3).

5. Some considerations related with © and 2
5.1 Some subsets of © and ). Let
B.={peRy: [p|<r}, 0B, ={peR: |p|=rl,
B, = B, UOB,, where r > 0.
In addition to © of (3.5), we consider, in particular, the following its subsets:
0, ={(k,l) € ©: |Imk| = [Iml| < p},
bO, ={(k,1) € ©: |Imk|=|Iml| = p},
0,=0,Ubo,, . (5.2)
0, ={(k,1) €O\O,: k—1¢€ By},
bO, . ={(k,1) €bO,: k—1¢€ By},
where p >0, 0 < 7 < 1, and B, is defined in (5.1).
In addition to 2 of (3.14), we consider, in particular, the following its subsets:
Qp, ={(k,p) €Q: |[Imk| < p},
b2, — {(h,p) € Qs [Tmk| = p},
Q,=0Q,Ub0,, i (5.3)
Q= {(k,p) € N\Q,: p € Baypr},

b, = {(k,p) € bQ, : p € Bap:},

(5.1)
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where p >0, 0 < 7 < 1, and B, is defined in (5.1).

Note that
Q; o, QOZ ~ 0,, b, =~ bO,, (5.4)
QX =07, b, ~bO,,
or, more precisely,
(k,p) e Q= (k,k—p) €O, (k,)eO=(kk—-1)e€Q
and the same for €,, bQ2,, Q. bQ, (5.5)
and ©,, bO,, 7, bO, -, respectively, in place of ) and ©.
We consider also, in particular,
QV:{(kap) €Q: p¢£l/}7 (5 6)
O, =07 Ny, by - =0, - N,
where
L,={peR’: p=tv, t R}, (5.7)

vesStl p>0,0<7<1.
5.2. Coordinates on §2 for d = 3. In this subsection we assume that d = 3 in formulas
(3.5), (3.14), (5.1)-(5.7).
For p € R*\ L, we consider #(p) and w(p) such that
0(p),w(p) smoothly depend on p € R3\L,,
take values in S*, and (5.8)
0(p)p =0, w(p)p =0, 6(p)w(p) =0,

where £, is defined by (5.7) (for d = 3).
Assumptions (5.8) imply that

6
w(p) = p ><|p](p) for p e R*\L, (5.9a)

or /
w(p) = P ><|p|(p) for p e R*\L,, (5.9b)

where X denotes vector product.
To satisfy (5.8), (5.9a) we can take
v Xp p < 6(p) 3

O(p) = ——, w(p) = , pEeR\L,. 5.10
)= e ) = \ (5.10)

Let 6,w satisfy (5.8). Then (according to [19]) the following formulas give a diffeo-
morphism between ,, and (C\0) x (R*\L,):

2k(0(p) + iw(p))

(k,p) — (\,p), where X\ = \(k,p) = ]

, (5.11a)




(A, p) — (k,p), where k=k(\p)=r1(\p)0(p)+ r2(\,p)w(p) +

1

map) = B 3),

mp) = Py :

4 )\)

N3

(5.11b)

where (k,p) € Q,, (A, p) € (C\0) x (]R3\£y). In addition, formulas (5.11a), (5.11b) for (k)

and k()\) at fixed p € R*\L, give a diffeomorphism between Z, = {k € C* :

for fixed p and C\0.
In addition, for k£ and A of (5.11) we have that

1

| |
RGI{J A 4+ —

Imk|l = AN+ —

where (k,p) € Q,, (\,p) € (C\0) x (R®\L,).
Let
Ap,u - {()‘ap) D AE Dp/|p|7 pE R3\‘CV}7

Apry = {(A\,p): A€ DP/|P\7 pE RS\[,V, Ip| < 27p},
DAy e ={(\p): NET, ., pERNL,, [p| <27p},

where p>0,0<7<1,veS?
1
D, ={XeC\0: Z<|)\| + A >} r >0,

1
={reC: J(A+ AT =7} r>1/2,

L, is defined by (5.7) (for d = 3).
Note that

APaTV - A;_TI/ UA;TV’ A;_TI/ mAp_,’TV = (D?
bAprp =bAS UDAT
where

A:tTV = {()‘ p) )‘ € D:I:/| |’ p S BZTp\EV}v

Ay, ={(Ap): AT, p€ B, \Lo},

1
Dr={AeC\0: Z(A+ATH>r AF <1},

1
TE={\eC: Z(w+|A|*1)=r, IAFL <1}, r>1/2,

where p > 0, 7 €]0,1[, v € S*.

(k,p) € Q}

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

Using (5.12) one can see that formulas (5.11) give also the following diffeomorphisms

~ .
Qy\Qp ~ AP,IM Qp T,V ~ APJ,V’

by = bA, -,
Zpp =1k € C: (k,p) € Q,\Q,} = D,y for fixed p,

7
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where p > 0,0 < 7 < 1, v € S? (and where we use the definitions (5.3), (5.6), (5.13)).
In [19] A, p of (5.11) were used as coordinates on (2. In the present work we use them
also as coordinates on Q\Q, (or more precisely on €,\(2,).

6. An integral equation of [20] and some related formulas
In the main considerations of [20] it is assumed that d = 3 and the basic assumption
on v consists in the following condition on its Fourier transform:

NS LZO(]RB) NC(R?) for some real u > 2, (6.1)
where ¢ is defined by (3.12) (for d = 3),
Lye(RY) = {u € LR lully < +o0},

lull = ess sup (1+ p)*|u(p)l, u>0, (6.2)
peR"
and C denotes the space of continuous functions.
Note that
ve W™ RY) = o € LY (RY) NC(RY), 63)
2]l < ca(m, d)[[v]lm,1 for p=m, .
where W', L>° are the spaces of (2.2), (6.2).
Let
H(X,p) = H(k(X,p),p), (A;p) € (C\0) x (R*\L,,), (6.4)
where H is the function of (3.13), A, p are the coordinates of Subsection 5.2 under assump-
tion (5.9a).
Let
LA pr) ={U € L=(Aprp) : [IIUl]prp <00},
1Ulllp.re = ess sup (L [pH U P)], >0, (6:5)
(Mp)EAL -,
where A, ., is defined in (5.13), p > 0, 7 €]0,1[, v € S?, pu > 0.
Let v satisfy (6.1) and ||0]|,, < C. Let
def _
n(C,p,p) = a(p)C(lnp)?p~" <1, Inp>2, (6.6)

where a(p) is the constant ca(p) of [20]. Let H (A, p) be defined by (6.4) and be considered
as a function on A, -, of (5.13). Then (see Section 4 of [20]):

H=H"+M, . (H)+Q,,, 7€]0,1], (6.7)
where
HOOp) = —— [ HGp) =2, (\p) e At (6.80)
9 271_/[/ 9 C— )\7 9 p,'r,]/?
T

1 ¢ _
H°\,p) = —— H — = (A A .8b
(A, p) 5 (C’p)C(C—A)’ (Ap) €A, ., (6.80)

Tp?lp\



where ApiT ., T.F are defined in (5.17), (5.18) (and where the integrals along 7,* are taken

in the counter-clock wise direction);

M.+ ,p) =M, (U)(\,p) =
dRe (dIl
__// UUPTCP) ZC )\mca ()‘ )EA;’J_Tw (6.9&)
p/lp\
M, 7 ,p) =M, (U)(\,p) =
1 AdRe (dIm ¢ _ 6.9b
// UU/?, <p> C(C )\) ) ()\ )EAp’TIJ7 ( )
p/\:DI
(U1, U2),- (¢, p) = {X2roU1, X2rpU3}(C, 1), (C,P) € Mpprvs
X2rpUj(k,p) = U;j(A\(k,p),p), (k,p) € Q57 (6.10)

X27‘pUj/'(k7p) - 07 |p| 2 27'/% J = 1727

where U, Uy, Uy are test functions on A, -, Q5°, , is defined in (5.6), A(k,p) is defined in

DTV
(5.11a), {-, -} is defined by the formula

T

! pl
{FlyFQ}()‘vp)__Z/<7 oy (Cose 1) = sing) X (6.11)

—T

Fl(k:()‘ap)v _S(Aapa @))FQ(k()Vp) + S()Hpa 90)729 + S()Upa @))d(p7

for (\,p) € A,,, where Iy, Iy are test functions on Q\(Q,, k(\,p) is defined in (5.11b),
A, is defined in (5.13),

O\ p,p) = Rek(\,p)(cos — 1) + k() p) sin ¢, (6.12)
1 _ Imk(\,p) x Rek()\,p)
k=(\p) = T kOwp)] , (6.13)

where x in (6.13) denotes vector product;

H H°,Qur € LY (Mpr), (6.14)

WAl < T (6.150)

1O < s (14 0T (6.150)
2

120 ellnrin < iy L T (0:15)

where 2 < pg < pu, c5 is the constant by of [20], n(C, p, ) is defined by (6.6).
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Following [20] we consider (6.7) as an approxiate integral equation for finding H on
A, ;. from H° on A, ;. with unknown remainder @, -.
Note also that if © satisfies (6.1), then (see [19], [20])

H(\p) — 0(p) as A — 0,

where p € Ba;,\L,, H is defined by (6.4) and is considered as a function on A, -, p > 0,
0<7<1 veSi

7. Proof of Theorem 2.2 for d =3
Lemma 7.1. Let 0; satisfy (6.1) and ||0;]|,, < C, wherei =1,2. Let

0 <7 < 71(, po, C,0), p > p1(p, po, C,0), (7.1)

where 11, p1 are the constants of Section 4 of [20] and where § =1/2, 2 < pg < p. Then

lom110)s (7.2)

where H;, HY, Q', _ are the functions of (6.4), (6.7), (6.8), (6.14), (6.15) forv =v;,i =1,2.
In addition,

[[Hz — Hil|

PyT, 0 S 2(H’Hg - H:(l)‘HPﬂ"NO _|— H|Q27T - ;I-),T

2 1 24c5(p0)C?
H'Q T p,TH|Pﬂ';M0 = —n
(14 27p)n—Ho

(7.3)
In connection with (7.1) we remind that 7 €]0, 1] is sufficiently small and p; is sufficiently
great, see [20].

Lemma 7.1 follows from estimates mentioned as estimates (6.14), (6.15) of the present

paper (see estimates (3.3), (4.20), (4.22) of [20]) and from Lemmas 4.4, 4.5 and estimates
(4.36) of [20].

Lemma 7.2. Let v; satisfy (6.1) and ||0;||, < C, where i =1,2. Let
n(C, po, ) <1/2, Inpy > 2, (7.4)
where n is defined in (6.6). Let
O<tm<l1, 2<puo<p, p=2py, T=T0/2.
Then

I1H3 — HY||

prmo < (6 + 4710, 70, p0) O)l[Xp0,70.0,7 (Ha2 = H1)lllpo 70,10 (7.5)
where H;, HY are the functions of (6.4), (6.8) for v =v;, i = 1,2, Xpg.r0.p.r 1S the charac-
teristic function of Ay -0, \Ap.ru, Co is defined by (8.9), c7 is the constant csg of [20] (that
is c7(, 7, p) = 3by1 ()72 + 4bo (1) p~t + 4bs ()T, where by, b, bs are the constants of [20]).
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Note that

Aprv CApyrow under the assumptions that p=2pg, T=19/2, 0< 19 <1, p>0.

(7.6)
Lemma 7.2 is proved in Section 8.
Lemma 7.3. Let the assumptions of Theorem 2.1 hold (for d = 3). Let
po > r1(N,D,m,o) for some o> 1, (7.7)
where 1 s the number of (3.9). Let 0 < 19 < 1, 0 < ug, p = 2po, T = 10/2. Then
11X po,r0,0.7 (H2 = H1)ll g, rouo < cs0%€P%[[ @2 — @1|(1+ p)*, (7.8)
where
cg = (2m)~¢ / dx, L= max |z, (7.9)
oD
| P2 — D1 is defined according to (2.4), Xpo,ro,p,7» Hi, Ha are the same that in (7.5).
Lemma 7.3 is proved in Section 8.
Lemma 7.4. Let the assumptions of Theorem 2.1 hold (for d = 3). Let
0<T§T2(m7MOaN)7 pZPQ(m,MO,N,D70>; (710)
where 2 < pg < m, o > 1, and 1o, pa are constants such that (7.10) implies that
TS T (ma Ko, C4(m7 3)N7 1/2)’ p = p1 (m7 Hos C4(m7 3)N7 1/2)7 (711&)
r < 1/2, n(ca(m, 3N, p/2,m) < 1/2, In(p/2) > 2, (7.11b)
p/2>11(N,D,m,o), (7.11c)

where Ty, p1, N, 1 are the same that in (7.1), (7.4), (7.7), c4 is the constant of (6.3). Then

|||H2 — H, | | |pﬂ',#0 < 09(N7 D,m, po, o, 7_)€2Lppuo ||(I)2 - H + ClO(Na m, [o, T)p—(m—,uo),
(7.12)
where cg, c19 are some constants which can be given explicitly.
Lemma 7.4 follows from formula (6.3) and Lemmas 7.1, 7.2, 7.3.
The final part of the proof of Theorem 2.2 for d = 3 consists of the following. Under
the assumptions of Lemma 7.4 for pg = 2, we have that

|| 1 2||L (D) = ||| 2 1|||p; ,2 / (1_|_ |p|)2
lp|<2pT

dp
sam N s = (7.13)

Ip|=2p7

87TC4(m, 3)N 1

m — 3)(27)m=3 pm—3 —

c11(N, D, m,o,7)e*L2 p? || @y — ®1 || + c12(N,m, 7)p~ ("),

8mpt|||Hy — H,||

p,T,2 + (
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where c11, ¢12 are related in a simple way with ¢y, ¢19 for po = 2. To obtain (7.13) we
used also (6.3), (6.5), (6.16) and the inverse Fourier transform formula

v(z) = /eipm@(p)dp, z € R (7.14)
RZ%
Let now
1—
€01, B=—7= 0= @1 — P2, p=Bln(1+57"), (7.15)

where ¢ is so small that p > pa(m,2, N, D, o), where ps is the constant of (7.10). Then,
due to (7.13),

|v1 = va|[pee(py < c11(N, D,m,0,7)(1 + SH2LB(BIn(1 +071))36+
c12(N, D,m, 7)(BIn(1+0671)) "3 =

c11(N,D,m,o,7)33(1 4 6)17*6*(In(1 4+ 6~ 1))+

c12(N, D,m, 7)™ 3 (In(1 4 61))~(m=3),

(7.16)

where o, 7 are the same that in (7.10) for go = 2 and where «, 5 and ¢ are the same that
in (7.15).
Using (7.16) we obtain that

lvs = vall Lo (py < cas(N, D,m)(In(1 + [|@1 — Do) ~1)) =72 (7.17)

for § = ||®1 — ®2|| < (N, D, m), where dy is sufficiently small positive constant. Estimate

(7.17) in the general case (with modified c¢13) follows from (7.17) for

§ = [|®1 — P2f| < 60(IV, D,m) and the property that ||v;||ze(p) < c1a(m)N (for d = 3).
Thus, Theorem 2.2 for d = 3 is proved.

8. Proofs of Lemmas 7.2 and 7.3

Proof of Lemma 7.2. Using the maximum principle for holomorphic functions it is
sufficient to prove that

sup (L4 [p))*|HIA(1F0),p) — HY(A(1 F0),p)| <
(\p)EDAL -, (8.1)

(66 + 4C7(,U0, 7_07p0)C)H|XPO,TO7P,T(H2 - H1)|||p077'0,u07
where bAT bA, ., are defined in (5.17) (and where H(A(1 —0),p), i = 1,2, are

DTV STV

considered for (A,p) € bAY_,, H?(A(1+0),p), i = 1,2, are considered for (A, p) € bA_ ).

Using (6.8) and the Sohotsky-Plemelj formula, we have that

1 d¢
0 _ _ a6 +
Tt
p/lpl
HO()\(I +0),p) = _ b H((,p) AdG + H(\,p), (\,p) € bA__(8.20)
’ 271 (¢ =M1 -0)) A Py

Tp/\p\
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In addition, using the Cauchy-Green formula we have that
1 d¢ 1 dc

H(Ap) = —5— H(¢p )er% H(c, p)c 1 (8.3a)
Tp/\p\ Tp/lp\
l O0H ((,p) dReCdIm( n
7_‘_/ / 85 C_)\ 7()\ )ebApTV7
Djo/|p|\Dj/|p\
)\dC 1 Ad(
p/IpI Tp_/\pl
1 OH ((,p) AddReCdIm( _
= > A, bA
-/ / o P

Do/ \Poyn)

(where the integrals along 7,F are taken in the counter- clockwise direction). In addition
(see formulas (3.22), (3.23), (4.8), (4.14) of [20]),

aHg(gap) = (H; H)PO,TO (Cap)7 (C;p) c A/\poﬂ—oﬂ,7 (84)

where (-,-), - is defined by (6.10).
Using (8.2), (8.3) we obtain that

HOA(1 — / H(C,p) == (8.50)
po/lpl
1 0H (¢, p) dReCdIm(
;/ / v
CAIRAC A
0 _ AdC
T +0.0) = 3= [ HEDZE (8.50)
oo /191
OH(C, p) AdRe¢dIm¢ )
> A .
/ [ S (et
/Ipl\ p/lpl
Using (8.5), (8.4) for H® = H?, H = H;, i = 1,2, we obtain that:
(Hy — HY)(A(1 = 0),p) = A*(A\,p) + BT (\,p), (8.6a)
1 d
AT p) = o / (Ha — H)(G.p) =5,
PO/|P|
(A, p) ——/ / ((Hy — Hy, Ha) oy + (Hy, Hy — Hl)po,m)(c,p)%,

po/\p\\ p/lpl
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where (\,p) € bAT

p7T)Ij7

(Hy — HY)(A(140),p) = A~ (A, p) + B~ (), p), (8.6b)
A =g [ -GS

oo /19l
B™(A\p) = —%/ ((Hy — Hy, Hy) o,y + (Hyi, Ho — Hl)po,To)(Cap)%a

Doo/1o1 Loy

where (A, p) € bA7

pyT V"
Estimates (8.1) follow from formulas (8.6) and from the estimates

AT\ )| < es(L+Ip) A, (A, p) € DA

DT V7
|BE(X,p)| < 4er(pio; 7o, p0)CA, (A, p) € DAT .,
where
_ q(r)
cg = sup ———,
rel1/2,400[ (1) — q(27) (8.9)
1 (172
A= |||XPO,7'07PaT(H2 - Hl)“lpoﬂ'o,uo' (810)
Note that
0<cs<(2v3-3)71, (8.11)

where cg is defined by (8.9). Estimate (8.11) follows from the formulas

1 1—(1—(1/4)7)!/?
— — 8.12
CT T T 0 I—(-n2 (8.12)
Q-2 <1-(1/2)r, 1- (/)7 >a(l—(1/4)7)+1—a, (8.13)
a=2(2-+3), 7€0,1].
Estimates (8.7) follow from formula (7.6), the properties that
H; e C(APO,TO,V U bApo,To,V)ﬂ (814)

[Hi(Ap)| < L+ [pD) " I Hilllpo,roms (AP) € Apgrop UbApg zg0s @ = 1,2,

(see formulas (3.2), (3.3) of [20] for H and formulas (5.3), (5.6), (5.13), (5.19), (6.4), (6.5)
of the present paper for Q°° , A, ., H and L;°(A,7,)) and from the formulas

DTV
Lof 1 [ a(r)
il LA b 8.
o | RliC= " 2 =N S 00— a@) (8.15)
T T
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A€ T, N €T, r>1/2. In turn, formulas (8.15) follow from the property that
2=t e Tt if 2 € 77 and from the formula that ¢(r) is the radius of 7", where r > 1/2.
Estimates (8.8) follow from the proof of estimates (7.8), (7.9) of [20] and from the
formulas (6.15a) (for p = po, 7 = 70), (7.4), (7.6), (8.14) of the present paper.
Lemma 7.2 is proved.

Proof of Lemma 7.3. Using formulas (6.4), (6.5), the formulas

A

~ ()OO _ (oo 00 AL (OO
pTv meu - Qp,T N, Qp,T -~ @p,f

(see (5.19), (5.6), (5.4)), and formulas (5.2), (3.13), we have that

A< sup  |ho(k D) — ha(k, D), (8.16)
(k.1)€0,\Op,.

lk—1|<27p

where A is defined by (8.10), hy, he are the functions of Section 4.

Estimate (7.8) follows from formulas (8.16), (4.1), (3.7), (3.9), the property that
|k—1] < pin (8.16) (since 7 < 1/2 due to the assumptions of Lemma 7.3) and the property
that || < Pk, |et®| < ePl for k,1 € ©,, x € ID.

Lemma 7.3 is proved.

References

[ 1] G.Alessandrini, Stable determination of conductivity by boundary measurements, Appl.
Anal. 27 (1988), 153-172.

[ 2] R.Beals and R.R.Coifman, Multidimensional inverse scattering and nonlinear partial
differential equations, Proc. Symp. Pure Math. 43 (1985), 45-70.

[ 3] R-M.Brown and G.Uhlmann, Uniqueness in the inverse conductivity problem for non-
smooth conductivities in two dimensions, Comm. Partial Diff. Eq. 22 (1997), 1009-
1027.

[ 4] A.L.Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,
J.Inverse Ill-Posed Probl. 16(1) (2008), 19-33.

[ 5] A.-P.Calderén, On an inverse boundary value problem, Seminar on Numerical Analysis
and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp.65-73, Soc.
Brasil. Mat. Rio de Janeiro, 1980.

[ 6] L.D.Druskin, The unique solution of the inverse problem in electrical surveying and
electrical well logging for piecewise-constant conductivity, Physics of the Solid Earth
18(1) (1982), 51-53.

[ 7] L.D.Faddeev, Growing solutions of the Schrédinger equation, Dokl. Akad. Nauk
SSSR 165 (1965), 514-517 (in Russian); English Transl.: Sov. Phys. Dokl. 10 (1966),
1033-1035.

[ 8] L.D.Faddeev, Inverse problem of quantum scattering theory II, Ttogi Nauki i Tekhniki,
Sovr. Prob. Math. 3 (1974), 93-180 (in Russian); English Transl.: J.Sov. Math. 5
(1976), 334-396.

[ 9] LM.Gelfand, Some problems of functional analysis and algebra, Proceedings of the
International Congress of Mathematicians, Amsterdam, 1954, pp.253-276.

15



[ 10]

[ 1]

[ 12]

[ 13]

[ 21]
[ 22]

[ 23]

G.M.Henkin and R.G.Novikov, The 0- equation in the multidimensional inverse scat-
tering problem, Uspekhi Mat. Nauk 42(3) (1987), 93-152 (in Russian); English
Transl.: Russ. Math. Surv. 42(3) (1987), 109-180.

R.Kohn and M.Vogelius, Determining conductivity by boundary measurements 11, In-
terior results, Comm. Pure Appl. Math. 38 (1985), 643-667.

M.Lassas, J.L.Mueller and S.Siltanen, Mapping properties of the nonlinear Fourier
transform in dimension two, Comm.Partial Differential Equations 32(4-6) (2007),
591-610.

N.Mandache, FExponential instability in an inverse problem for the Schrodinger equa-
tion, Inverse Problems 17 (2001), 1435-1444.

A.I.Nachman, Reconstructions from boundary measurements, Ann. Math. 128 (1988),
531-576.

A I.Nachman, Global uniqueness for a two-dimensional inverse boundary value prob-
lem, Ann, Math. 142 (1995), 71-96.

R.G.Novikov, Multidimensional inverse spectral problem for the equation —Ayp +
(v(z) — Eu(x))y = 0, Funkt. Anal. i Pril. 22(4) (1988), 11-22 (in Russian); English
Transl.: Funct. Anal. and Appl. 22 (1988), 263-272.

R.G.Novikov, Formulae and equations for finding scattering data from the Dirichlet-
to-Neumann map with nonzero background potential, Inverse Problems 21 (2005),
257-270.

R.G.Novikov, The 0- approach to approximate inverse scattering at fized energy in
three dimensions, International Mathematics Research Papers, 2005:6, (2005), 287-
349.

R.G.Novikov, On non-overdetermined inverse scattering at zero energy in three di-
mensions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (2006), 279-328

R.G.Novikov, An effectivization of the global reconstruction in the Gel’fand-Calderon
inverse problem in three dimensions, Contemporary Mathematics, 494 (2009), 161-
184.

R.G.Novikov and N.N.Novikova, On stable determination of potential by boundary
measurements, ESAIM: Proceedings 26 (2009), 94-99.

V.P.Palamodov, Gabor analysis of the continuum model for impedance tomography,
Ark.Mat. 40 (2002), 169-187.

J.Sylvester and G.Uhlmann, A global uniqueness theorem for an inverse boundary
value problem, Ann. Math. 125 (1987), 153-169.

16



