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Abstract. We prove new global stability estimates for the Gel’fand-Calderon inverse
problem in 3D.

1. Introduction
We consider the equation

−∆ψ + v(x)ψ = 0, x ∈ D, (1.1)

where

D is an open bounded domain in Rd, d ≥ 2, ∂D ∈ C2, v ∈ L∞(D). (1.2)

Equation (1.1) arises, in particular, in quantum mechanics, acoustics, electrodynamics.
Formally, (1.1) looks as the Schrödinger equation with potential v at zero energy.

We consider the map Φ such that

∂ψ

∂ν

¯̄
∂D
= Φ(ψ

¯̄
∂D
) (1.3)

for all sufficiently regular solutions ψ of (1.1) in D̄ = D ∪ ∂D, where ν is the outward
normal to ∂D. Here we assume also that

0 is not a Dirichlet eigenvalue for the operator −∆+ v in D. (1.4)

The map Φ is called the Dirichlet-to-Neumann map for equation (1.1) and is considered
as boundary measurements for (physical model described by) (1.1).

We consider the following inverse boundary value problem for equation (1.1):
Problem 1.1. Given Φ, find v.
This problem can be considered as the Gel’fand inverse boundary value problem for

the Schrödinger equation at zero energy (see [9], [16]). This problem can be also considered
as a generalization of the Calderon problem of the electrical impedance tomography (see
[5], [23], [16]).

Concerning results given in the literature on Problem 1.1 (in its Calderon or Gel’fand
form) see [6], [11], [23], [10] (note added in proof), [16], [1], [14], [15], [3], [22], [13], [17],
[19], [12], [4], [21], [20] and references therein.

In particular, in [21] it was shown that the Alessandrini stability estimates of [1]
for Problem 1.1 in dimension d ≥ 3 (see Theorem 2.1 of the next section) admit some
principle improvement. These new stability estimates (see Theorem 2.2 of the next section)
were found in [21] using methods developed in [17], [18], [19]. These methods include, in
particular: (1) the ∂̄-approach to inverse ”scattering” at zero energy in dimension d ≥ 3,
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going back to [2], [10], and (2) the reduction of Problem 1.1 to inverse ”scattering” at zero
energy, going back to [16].

However, a complete proof of the aforementioned new stability estimates for
Problem 1.1 in dimension d ≥ 2 was given in [21] in the Born approximation (that is
in the linear approximation near zero potential) only. Besides, a scheme of proof of these
estimates was also mentioned in [21] for potentials with sufficiently small norm in dimension
d = 3. (In this scheme [21] refers, in particular, to results of [19].)

In the present work we give a complete proof of these new stability estimates
(Theorem 2.2 of the next section) in the general (or by other words global) case in dimension
d = 3. In this proof we use, in particular, results of the recent work [20].

2. Stability estimates
As in [21] we assume for simplicity that

D is an open bounded domain in Rd, ∂D ∈ C2,

v ∈Wm,1(Rd) for some m > d, supp v ⊂ D, d ≥ 2,
(2.1)

where
Wm,1(Rd) = {v : ∂Jv ∈ L1(Rd), |J | ≤ m}, m ∈ N ∪ 0, (2.2)

where

J ∈ (N ∪ 0)d, |J | =
dX
i=1

Ji, ∂Jv(x) =
∂|J|v(x)

∂xJ11 . . . ∂x
Jd
d

.

Let
kvkm,1 = max

|J|≤m
k∂Jvk

L1(Rd
)
. (2.3)

Let
kAk denote the norm of an operator

A : L∞(∂D)→ L∞(∂D).
(2.4)

We recall that if v1, v2 are potentials satisfying (1.2), (1.3), where D is fixed, then

Φ1 −Φ2 is a compact operator in L∞(∂D), (2.5)

where Φ1, Φ2 are the DtN maps for v1, v2 respectively, see [16], [17]. Note also that
(2.1)⇒ (1.2).

Theorem 2.1 (variation of the result of [1]). Let conditions (1.4), (2.1) hold for
potentials v1 and v2, where D is fixed, d ≥ 3. Let kvjkm,1 ≤ N , j = 1, 2, for some N > 0.
Let Φ1, Φ2 denote the DtN maps for v1, v2, respectively. Then

kv1 − v2kL∞(D) ≤ c1(ln(1 + kΦ1 −Φ2k−1))−α1 , (2.6)

where c1 = c1(N,D,m), α1 = (m− d)/m, kΦ1 −Φ2k is defined according to (2.4).
As it was mentioned in [21], Theorem 2.1 follows from formulas (3.9)-(3.11), (4.1) (of

Sections 3 and 4).
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A disadvantage of estimate (2.6) is that

α1 < 1 for any m > d even if m is very great. (2.7)

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Then

kv1 − v2kL∞(D) ≤ c2(ln(1 + kΦ1 −Φ2k−1))−α2 , (2.8)

where c2 = c2(N,D,m), α2 = m− d, kΦ1 − Φ2k is defined according to (2.4).
A principal advantage of estimate (2.8) in comparison with (2.6) is that

α2 → +∞ as m→ +∞, (2.9)

in contrast with (2.7).
In the Born approximation, that is in the linear approximation near zero potential,

Theorem 2.2 was proved in [21].
For sufficiently small N in dimension d = 3, a scheme of proof of Theorem 2.2 was

also mentioned in [21]. This scheme involves, in particular, results of [17], [19].
In the general (or by other words global) case Theorem 2.2 in dimension d = 3 is

proved in Section 7. This proof involves, in particular, results of [17], [20].

3. Faddeev functions
We consider the Faddeev functions G, ψ and h (see [7], [8], [10], [16]):

ψ(x, k) = eikx +

Z
Rd

G(x− y, k)v(y)ψ(y, k)dy, (3.1)

G(x, k) = eikxg(x, k), g(x, k) = −(2π)−d
Z
Rd

eiξxdξ

ξ2 + 2kξ
, (3.2)

where x ∈ Rd, k ∈ Σ,

Σ = {k ∈ Cd : k2 = k21 + . . . + k2d = 0}; (3.3)

h(k, l) = (2π)−d
Z
Rd

e−ilxv(x)ψ(x, k)dx, (3.4)

where (k, l) ∈ Θ,
Θ = {k ∈ Σ, l ∈ Σ : Imk = Im l}. (3.5)

One can consider (3.1), (3.4) assuming that v is a sufficiently regular function on Rd with
sufficient decay at infinity. For example, one can consider (3.1), (3.4) assuming that (1.2)
holds.

We recall that:
∆G(x, k) = δ(x), x ∈ Rd, k ∈ Σ; (3.6)

formula (3.1) at fixed k is considered as an equation for

ψ = eikxµ(x, k), (3.7)
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where µ is sought in L∞(Rd); as a corollary of (3.1),(3.2), (3.6), ψ satisfies (1.1); h of (3.4)
is a generalized ”scattering” amplitude in the complex domain at zero energy.

Note that, actually, G, ψ, h of (3.1)-(3.5) are zero energy restrictions of functions
introduced by Faddeev as extentions to the complex domain of some functions of the
classical scattering theory for the Schrödinger equation at positive energies. In addition,
G, ψ, h in their zero energy restriction were considered for the first time in [2]. The
Faddeev functions G, ψ, h were, actually, rediscovered in [2].

We recall also that, under the assumptions of Theorem 2.1,

µ(x, k)→ 1 as |Imk|→∞ (uniformly in x) (3.8)

and, for any σ > 1,

|µ(x, k)| < σ for |Imk| ≥ r1(N,D,m, σ), (3.9)

where x ∈ Rd, k ∈ Σ;

v̂(p) = lim
(k,l)∈Θ, k−l=p
|Imk|=|Im l|→∞

h(k, l) for any p ∈ Rd, (3.10)

|v̂(p)− h(k, l)| ≤ c3(D,m)N2

ρ
for (k, l) ∈ Θ, p = k − l,

|Imk| = |Im l| = ρ ≥ r2(N,D,m),

(3.11)

where

v̂(p) =
¡ 1
2π

¢d Z
Rd

eipxv(x)dx, p ∈ Rd. (3.12)

Results of the type (3.8), (3.9) go back to [2]. Results of the type (3.10), (3.11) (with
less precise right-hand side in (3.11)) go back to [10]. Estimates (3.8), (3.11) are related
also with some important L2-estimate going back to [23] on the Green function g of (3.1).

Note also that in some considerations it is convenient to consider h on Θ as H on Ω,
where

h(k, l) = H(k, k − l), (k, l) ∈ Θ,
H(k, p) = h(k, k − p), (k, p) ∈ Ω,

(3.13)

Ω = {k ∈ Cd, p ∈ Rd : k2 = 0, p2 = 2kp}. (3.14)

For more information on properties of the Faddeev functions G, ψ, h, see [10], [17],
[20] and references therein.

In the next section we recall that Problem 1.1 (of Introduction) admits a reduction
to the following inverse ”scattering” problem:

Problem 3.1. Given h on Θ, find v on Rd.

4. Reduction of [16], [17]
Let conditions (1.2), (1.4) hold for potentials v1 and v2, where D is fixed. Let Φi, ψi,

hi denote the DtN map Φ and the Faddeev functions ψ, h for v = vi, i = 1, 2. Let also
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Φi(x, y) denote the Schwartz kernel Φ(x, y) of the integral operator Φ for v = vi, i = 1, 2.
Then (see [17] for details):

h2(k, l)− h1(k, l) =
¡ 1
2π

¢d Z
∂D

Z
∂D

ψ1(x,−l)(Φ2 −Φ1)(x, y)ψ2(y, k)dydx, (4.1)

where (k, l) ∈ Θ;

ψ2(x, k) = ψ1(x, k) +

Z
∂D

A(x, y, k)ψ2(y, k)dy, x ∈ ∂D, (4.2a)

A(x, y, k) =

Z
∂D

R1(x, z, k)(Φ2 −Φ1)(z, y)dz, x, y ∈ ∂D, (4.2b)

R1(x, y, k) = G(x− y, k) +

Z
Rd

G(x− z, k)v1(z)R1(z, y, k)dz, x, y ∈ Rd, (4.3)

where k ∈ Σ. Note that: (4.1) is an explicit formula, (4.2a) is considered as an equation
for finding ψ2 on ∂D from ψ1 on ∂D and A on ∂D × ∂D for each fixed k, (4.2b) is an
explicit formula, (4.3) is an equation for finding R1 from G and v1, where G is the function
of (3.2).

Note that formulas and equations (4.1)-(4.3) for v1 ≡ 0 were given in [16] (see also
[10] (Note added in proof), [14], [15]). In this case h1 ≡ 0, ψ1 = eikx, R1 = G(x − y, k).
Formulas and equations (4.1)-(4.3) for the general case were given in [17].

Formulas and equations (4.1)-(4.3) with fixed background potential v1 reduce Problem
1.1 (of Introduction) to Problem 3.1 (of Section 3).

5. Some considerations related with Θ and Ω

5.1 Some subsets of Θ and Ω. Let

Br = {p ∈ Rd : |p| < r}, ∂Br = {p ∈ Rd : |p| = r},
B̄r = Br ∪ ∂Br, where r > 0.

(5.1)

In addition to Θ of (3.5), we consider, in particular, the following its subsets:

Θρ = {(k, l) ∈ Θ : |Imk| = |Im l| < ρ},
bΘρ = {(k, l) ∈ Θ : |Imk| = |Im l| = ρ},
Θ̄ρ = Θρ ∪ bΘρ,
Θ∞ρ,τ = {(k, l) ∈ Θ\Θ̄ρ : k − l ∈ B2ρτ},
bΘρ,τ = {(k, l) ∈ bΘρ : k − l ∈ B2ρτ},

(5.2)

where ρ > 0, 0 < τ < 1, and Br is defined in (5.1).
In addition to Ω of (3.14), we consider, in particular, the following its subsets:

Ωρ = {(k, p) ∈ Ω : |Imk| < ρ},
bΩρ = {(k, p) ∈ Ω : |Imk| = ρ},
Ω̄ρ = Ωρ ∪ bΩρ,
Ω∞ρ,τ = {(k, p) ∈ Ω\Ω̄ρ : p ∈ B2ρτ},
bΩρ,τ = {(k, p) ∈ bΩρ : p ∈ B2ρτ},

(5.3)
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where ρ > 0, 0 < τ < 1, and Br is defined in (5.1).
Note that

Ω ≈ Θ, Ωρ ≈ Θρ, bΩρ ≈ bΘρ,

Ω∞ρ,τ ≈ Θ∞ρ,τ , bΩρ,τ ≈ bΘρ,τ ,
(5.4)

or, more precisely,

(k, p) ∈ Ω⇒ (k, k − p) ∈ Θ, (k, l) ∈ Θ⇒ (k, k − l) ∈ Ω
and the same for Ωρ, bΩρ, Ω

∞
ρ,τ , bΩρ,τ

and Θρ, bΘρ, Θ
∞
ρ,τ , bΘρ,τ , respectively, in place of Ω and Θ.

(5.5)

We consider also, in particular,

Ων = {(k, p) ∈ Ω : p /∈ Lν},
Ω∞ρ,τ,ν = Ω

∞
ρ,τ ∩Ων , bΩρ,τ,ν = bΩρ,τ ∩Ων ,

(5.6)

where
Lν = {p ∈ Rd : p = tν, t ∈ R}, (5.7)

ν ∈ Sd−1, ρ > 0, 0 < τ < 1.

5.2. Coordinates on Ω for d = 3. In this subsection we assume that d = 3 in formulas
(3.5), (3.14), (5.1)-(5.7).

For p ∈ R3\Lν we consider θ(p) and ω(p) such that

θ(p), ω(p) smoothly depend on p ∈ R3\Lν ,
take values in S2, and

θ(p)p = 0, ω(p)p = 0, θ(p)ω(p) = 0,

(5.8)

where Lν is defined by (5.7) (for d = 3).
Assumptions (5.8) imply that

ω(p) =
p× θ(p)

|p| for p ∈ R3\Lν (5.9a)

or

ω(p) = −p× θ(p)

|p| for p ∈ R3\Lν , (5.9b)

where × denotes vector product.
To satisfy (5.8), (5.9a) we can take

θ(p) =
ν × p

|ν × p| , ω(p) =
p× θ(p)

|p| , p ∈ R3\Lν . (5.10)

Let θ, ω satisfy (5.8). Then (according to [19]) the following formulas give a diffeo-
morphism between Ων and (C\0)× (R3\Lν):

(k, p)→ (λ, p), where λ = λ(k, p) =
2k(θ(p) + iω(p))

i|p| , (5.11a)
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(λ, p)→ (k, p), where k = k(λ, p) = κ1(λ, p)θ(p) + κ2(λ, p)ω(p) +
p

2
,

κ1(λ, p) =
i|p|
4
(λ+

1

λ
), κ2(λ, p) =

|p|
4
(λ− 1

λ
),

(5.11b)

where (k, p) ∈ Ων , (λ, p) ∈ (C\0)×(R3\Lν). In addition, formulas (5.11a), (5.11b) for λ(k)
and k(λ) at fixed p ∈ R3\Lν give a diffeomorphism between Zp = {k ∈ C3 : (k, p) ∈ Ω}
for fixed p and C\0.

In addition, for k and λ of (5.11) we have that

|Imk| = |p|
4

¡
|λ|+ 1

|λ|
¢
, |Rek| = |p|

4

¡
|λ|+ 1

|λ|
¢
, (5.12)

where (k, p) ∈ Ων , (λ, p) ∈ (C\0)× (R3\Lν).
Let

Λρ,ν = {(λ, p) : λ ∈ Dρ/|p|, p ∈ R3\Lν}, (5.13)

Λρ,τ,ν = {(λ, p) : λ ∈ Dρ/|p|, p ∈ R3\Lν , |p| < 2τρ},
bΛρ,τ,ν = {(λ, p) : λ ∈ Tρ/|p|, p ∈ R3\Lν , |p| < 2τρ},

where ρ > 0, 0 < τ < 1, ν ∈ S2,

Dr = {λ ∈ C\0 :
1

4
(|λ|+ |λ|−1) > r}, r > 0, (5.14)

Tr = {λ ∈ C :
1

4
(|λ|+ |λ|−1) = r}, r ≥ 1/2, (5.15)

Lν is defined by (5.7) (for d = 3).
Note that

Λρ,τ,ν = Λ
+
ρ,τ,ν ∪ Λ−ρ,τ,ν , Λ+ρ,τ,ν ∩ Λ−ρ,τ,ν = ∅,

bΛρ,τ,ν = bΛ+ρ,τ,ν ∪ bΛ−ρ,τ,ν ,
(5.16)

where
Λ±ρ,τ,ν = {(λ, p) : λ ∈ D±ρ/|p|, p ∈ B2τρ\Lν},
bΛ±ρ,τ,ν = {(λ, p) : λ ∈ T ±ρ/|p|, p ∈ B2τρ\Lν},

(5.17)

D±r = {λ ∈ C\0 :
1

4
(|λ|+ |λ|−1) > r, |λ|±1 < 1},

T ±r = {λ ∈ C : 1

4
(|λ|+ |λ|−1) = r, |λ|±1 ≤ 1}, r > 1/2,

(5.18)

where ρ > 0, τ ∈]0, 1[, ν ∈ S2.
Using (5.12) one can see that formulas (5.11) give also the following diffeomorphisms

Ων\Ω̄ρ ≈ Λρ,ν , Ω∞ρ,τ,ν ≈ Λρ,τ,ν ,
bΩρ,τ,ν ≈ bΛρ,τ,ν ,

Z∞p,ρ = {k ∈ C3 : (k, p) ∈ Ων\Ω̄ρ} ≈ Dρ/|p| for fixed p,

(5.19)
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where ρ > 0, 0 < τ < 1, ν ∈ S2 (and where we use the definitions (5.3), (5.6), (5.13)).
In [19] λ, p of (5.11) were used as coordinates on Ω. In the present work we use them

also as coordinates on Ω\Ωρ (or more precisely on Ων\Ωρ).
6. An integral equation of [20] and some related formulas
In the main considerations of [20] it is assumed that d = 3 and the basic assumption

on v consists in the following condition on its Fourier transform:

v̂ ∈ L∞µ (R
3) ∩ C(R3) for some real µ ≥ 2, (6.1)

where v̂ is defined by (3.12) (for d = 3),

L∞µ (R
d) = {u ∈ L∞(Rd) : kukµ < +∞},

kukµ = ess sup
p∈Rd

(1 + |p|)µ|u(p)|, µ > 0, (6.2)

and C denotes the space of continuous functions.
Note that

v ∈Wm,1(Rd) =⇒ v̂ ∈ L∞µ (R
d) ∩ C(Rd),

kv̂kµ ≤ c4(m,d)kvkm,1 for µ = m,
(6.3)

where Wm,1, L∞µ are the spaces of (2.2), (6.2).
Let

H(λ, p) = H(k(λ, p), p), (λ, p) ∈ (C\0)× (R3\Lµ), (6.4)

where H is the function of (3.13), λ, p are the coordinates of Subsection 5.2 under assump-
tion (5.9a).

Let
L∞µ (Λρ,τ,ν) = {U ∈ L∞(Λρ,τ,ν) : |||U |||ρ,τ,µ <∞},
|||U |||ρ,τ,µ = ess sup

(λ,p)∈Λρ,τ,ν
(1 + |p|)µ|U(λ, p)|, µ > 0, (6.5)

where Λρ,τ,ν is defined in (5.13), ρ > 0, τ ∈]0, 1[, ν ∈ S2, µ > 0.
Let v satisfy (6.1) and kv̂kµ ≤ C. Let

η(C, ρ, µ)
def
= a(µ)C(ln ρ)2ρ−1 < 1, ln ρ ≥ 2, (6.6)

where a(µ) is the constant c2(µ) of [20]. Let H(λ, p) be defined by (6.4) and be considered
as a function on Λρ,τ,ν of (5.13). Then (see Section 4 of [20]):

H = H0 +Mρ,τ (H) +Qρ,τ , τ ∈]0, 1[, (6.7)

where

H0(λ, p) =
1

2πi

Z
T +
ρ/|p|

H(ζ, p)
dζ

ζ − λ
, (λ, p) ∈ Λ+ρ,τ,ν , (6.8a)

H0(λ, p) = − 1

2πi

Z
T −
ρ/|p|

H(ζ, p)
λdζ

ζ(ζ − λ)
, (λ, p) ∈ Λ−ρ,τ,ν , (6.8b)
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where Λ±ρ,τ,ν , T ±r are defined in (5.17), (5.18) (and where the integrals along T ±r are taken
in the counter-clock wise direction);

Mρ,τ (U)(λ, p) =M+
ρ,τ (U)(λ, p) =

− 1
π

Z Z
D+
ρ/|p|

(U,U)ρ,τ (ζ, p)
dRe ζdImζ

ζ − λ
, (λ, p) ∈ Λ+ρ,τ,ν , (6.9a)

Mρ,τ (U)(λ, p) =M−ρ,τ (U)(λ, p) =

− 1
π

Z Z
D−
ρ/|p|

(U,U)ρ,τ (ζ, p)
λdRe ζdImζ

ζ(ζ − λ)
, (λ, p) ∈ Λ−ρ,τ,ν , (6.9b)

(U1, U2)ρ,τ (ζ, p) = {χ2τρU 01, χ2τρU 02}(ζ, p), (ζ, p) ∈ Λρ,τ,ν ,
χ2τρU

0
j(k, p) = Uj(λ(k, p), p), (k, p) ∈ Ω∞ρ,τ,ν ,

χ2τρU
0
j(k, p) = 0, |p| ≥ 2τρ, j = 1, 2,

(6.10)

where U,U1, U2 are test functions on Λρ,τ,ν , Ω
∞
ρ,τ,ν is defined in (5.6), λ(k, p) is defined in

(5.11a), {·, ·} is defined by the formula

{F1, F2}(λ, p) = −
π

4

πZ
−π

¡ |p|
2

|λ|2 − 1
λ̄|λ| (cosϕ− 1)− |p|

λ̄
sinϕ

¢
×

F1(k(λ, p),−ξ(λ, p, ϕ))F2(k(λ, p) + ξ(λ, p, ϕ), p+ ξ(λ, p, ϕ))dϕ,

(6.11)

for (λ, p) ∈ Λρ,ν , where F1, F2 are test functions on Ω\Ω̄ρ, k(λ, p) is defined in (5.11b),
Λρ,ν is defined in (5.13),

ξ(λ, p, ϕ) = Rek(λ, p)(cosϕ− 1) + k⊥(λ, p) sinϕ, (6.12)

k⊥(λ, p) =
Imk(λ, p)×Rek(λ, p)

|Imk(λ, p)| , (6.13)

where × in (6.13) denotes vector product;

H,H0, Qρ,τ ∈ L∞µ (Λρ,τ,ν), (6.14)

|||H|||ρ,τ,µ0 ≤
C

1− η(C, ρ, µ)
, (6.15a)

|||H0|||ρ,τ,µ0 ≤
C

1− η(C, ρ, µ)

¡
1 +

c5(µ0)C

1− η(C, ρ, µ)

¢
, (6.15b)

|||Qρ,τ |||ρ,τ,µ0 ≤
3c5(µ0)C

2

(1− η(C, ρ, µ))2(1 + 2τρ)µ−µ0
, (6.15c)

where 2 ≤ µ0 ≤ µ, c5 is the constant b4 of [20], η(C, ρ, µ) is defined by (6.6).
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Following [20] we consider (6.7) as an approxiate integral equation for finding H on
Λρ,τ,ν from H0 on Λρ,τ,ν with unknown remainder Qρ,τ .

Note also that if v̂ satisfies (6.1), then (see [19], [20])

H(λ, p)→ v̂(p) as λ→ 0,

H(λ, p)→ v̂(p) as λ→∞,
(6.16)

where p ∈ B2τρ\Lν , H is defined by (6.4) and is considered as a function on Λρ,τ,ν , ρ > 0,
0 < τ < 1, ν ∈ S2.

7. Proof of Theorem 2.2 for d = 3

Lemma 7.1. Let v̂i satisfy (6.1) and kv̂ikµ < C, where i = 1, 2. Let

0 < τ ≤ τ1(µ, µ0, C, δ), ρ ≥ ρ1(µ, µ0, C, δ), (7.1)

where τ1, ρ1 are the constants of Section 4 of [20] and where δ = 1/2, 2 ≤ µ0 < µ. Then

|||H2 −H1|||ρ,τ,µ0 ≤ 2(|||H0
2 −H0

1 |||ρ,τ,µ0 + |||Q2ρ,τ −Q1ρ,τ |||ρ,τ,µ0), (7.2)

whereHi, H
0
i , Q

i
ρ,τ are the functions of (6.4), (6.7), (6.8), (6.14), (6.15) for v = vi, i = 1, 2.

In addition,

|||Q2ρ,τ −Q1ρ,τ |||ρ,τ,µ0 ≤
24c5(µ0)C

2

(1 + 2τρ)µ−µ0
. (7.3)

In connection with (7.1) we remind that τ1 ∈]0, 1[ is sufficiently small and ρ1 is sufficiently
great, see [20].

Lemma 7.1 follows from estimates mentioned as estimates (6.14), (6.15) of the present
paper (see estimates (3.3), (4.20), (4.22) of [20]) and from Lemmas 4.4, 4.5 and estimates
(4.36) of [20].

Lemma 7.2. Let v̂i satisfy (6.1) and kv̂ikµ < C, where i = 1, 2. Let

η(C, ρ0, µ) ≤ 1/2, ln ρ0 ≥ 2, (7.4)

where η is defined in (6.6). Let

0 < τ0 < 1, 2 ≤ µ0 < µ, ρ = 2ρ0, τ = τ0/2.

Then

|||H0
2 −H0

1 |||ρ,τ,µ0 ≤ (c6 + 4c7(µ0, τ0, ρ0)C)|||χρ0,τ0,ρ,τ (H2 −H1)|||ρ0,τ0,µ0 , (7.5)

where Hi, H
0
i are the functions of (6.4), (6.8) for v = vi, i = 1, 2, χρ0,τ0,ρ,τ is the charac-

teristic function of Λρ0,τ0,ν\Λρ,τ,ν , c6 is defined by (8.9), c7 is the constant c8 of [20] (that
is c7(µ, τ, ρ) = 3b1(µ)τ

2 + 4b2(µ)ρ
−1 + 4b3(µ)τ , where b1, b2, b3 are the constants of [20]).
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Note that

Λρ,τ,ν ⊂ Λρ0,τ0,ν under the assumptions that ρ = 2ρ0, τ = τ0/2, 0 < τ0 < 1, ρ > 0.
(7.6)

Lemma 7.2 is proved in Section 8.

Lemma 7.3. Let the assumptions of Theorem 2.1 hold (for d = 3). Let

ρ0 ≥ r1(N,D,m, σ) for some σ > 1, (7.7)

where r1 is the number of (3.9). Let 0 < τ0 < 1, 0 < µ0, ρ = 2ρ0, τ = τ0/2. Then

|||χρ0,τ0,ρ,τ (H2 −H1)|||ρ0,τ0,µ0 ≤ c8σ
2e2ρLkΦ2 −Φ1k(1 + ρ)µ0 , (7.8)

where

c8 = (2π)
−d
Z
∂D

dx, L = max
x∈∂D

|x|, (7.9)

kΦ2 −Φ1k is defined according to (2.4), χρ0,τ0,ρ,τ , H1, H2 are the same that in (7.5).
Lemma 7.3 is proved in Section 8.

Lemma 7.4. Let the assumptions of Theorem 2.1 hold (for d = 3). Let

0 < τ ≤ τ2(m,µ0, N), ρ ≥ ρ2(m,µ0, N,D, σ), (7.10)

where 2 ≤ µ0 < m, σ > 1, and τ2, ρ2 are constants such that (7.10) implies that

τ ≤ τ1(m,µ0, c4(m, 3)N, 1/2), ρ ≥ ρ1(m,µ0, c4(m, 3)N, 1/2), (7.11a)

τ < 1/2, η(c4(m, 3)N, ρ/2,m) ≤ 1/2, ln(ρ/2) ≥ 2, (7.11b)

ρ/2 ≥ r1(N,D,m, σ), (7.11c)

where τ1, ρ1, η, r1 are the same that in (7.1), (7.4), (7.7), c4 is the constant of (6.3). Then

|||H2 −H1|||ρ,τ,µ0 ≤ c9(N,D,m,µ0, σ, τ)e
2Lρρµ0kΦ2 −Φ1k+ c10(N,m, µ0, τ)ρ

−(m−µ0),
(7.12)

where c9, c10 are some constants which can be given explicitly.
Lemma 7.4 follows from formula (6.3) and Lemmas 7.1, 7.2, 7.3.
The final part of the proof of Theorem 2.2 for d = 3 consists of the following. Under

the assumptions of Lemma 7.4 for µ0 = 2, we have that

kv1 − v2kL∞(D) ≤ |||H2 −H1|||ρ,τ,2
Z

|p|≤2ρτ

dp

(1 + |p|)2+

2c4(m, 3)N

Z
|p|≥2ρτ

dp

(1 + |p|)m ≤

8πρτ |||H2 −H1|||ρ,τ,2 +
8πc4(m, 3)N

(m− 3)(2τ)m−3
1

ρm−3
≤

c11(N,D,m, σ, τ)e2Lρρ3kΦ2 − Φ1k+ c12(N,m, τ)ρ−(m−3),

(7.13)
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where c11, c12 are related in a simple way with c9, c10 for µ0 = 2. To obtain (7.13) we
used also (6.3), (6.5), (6.16) and the inverse Fourier transform formula

v(x) =

Z
R3

e−ipxv̂(p)dp, x ∈ R3. (7.14)

Let now

α ∈]0, 1[, β = 1− α

2L
, δ = kΦ1 −Φ2k, ρ = β ln(1 + δ−1), (7.15)

where δ is so small that ρ ≥ ρ2(m, 2, N,D, σ), where ρ2 is the constant of (7.10). Then,
due to (7.13),

kv1 − v2kL∞(D) ≤ c11(N,D,m, σ, τ)(1 + δ−1)2Lβ(β ln(1 + δ−1))3δ+

c12(N,D,m, τ)(β ln(1 + δ−1))−(m−3) =

c11(N,D,m, σ, τ)β3(1 + δ)1−αδα(ln(1 + δ−1))3+

c12(N,D,m, τ)β−(m−3)(ln(1 + δ−1))−(m−3),

(7.16)

where σ, τ are the same that in (7.10) for µ0 = 2 and where α, β and δ are the same that
in (7.15).

Using (7.16) we obtain that

kv1 − v2kL∞(D) ≤ c13(N,D,m)(ln(1 + kΦ1 −Φ2k−1))−(m−3) (7.17)

for δ = kΦ1−Φ2k ≤ δ0(N,D,m), where δ0 is sufficiently small positive constant. Estimate
(7.17) in the general case (with modified c13) follows from (7.17) for
δ = kΦ1 −Φ2k ≤ δ0(N,D,m) and the property that kvjkL∞(D) ≤ c14(m)N (for d = 3).

Thus, Theorem 2.2 for d = 3 is proved.

8. Proofs of Lemmas 7.2 and 7.3

Proof of Lemma 7.2. Using the maximum principle for holomorphic functions it is
sufficient to prove that

sup
(λ,p)∈bΛ±ρ,τ,ν

(1 + |p|)µ0 |H0
2 (λ(1∓ 0), p)−H0

1 (λ(1∓ 0), p)| ≤

(c6 + 4c7(µ0, τ0, ρ0)C)|||χρ0,τ0,ρ,τ (H2 −H1)|||ρ0,τ0,µ0 ,
(8.1)

where bΛ+ρ,τ,ν , bΛ
−
ρ,τ,ν are defined in (5.17) (and where H0

i (λ(1 − 0), p), i = 1, 2, are
considered for (λ, p) ∈ bΛ+ρ,τ,ν , H

0
i (λ(1+0), p), i = 1, 2, are considered for (λ, p) ∈ bΛ−ρ,τ,ν).

Using (6.8) and the Sohotsky-Plemelj formula, we have that

H0(λ(1− 0), p) = 1

2πi

Z
T +
ρ/|p|

H(ζ, p)
dζ

ζ − λ(1 + 0)
+H(λ, p), (λ, p) ∈ bΛ+ρ,τ,ν , (8.2a)

H0(λ(1 + 0), p) = − 1

2πi

Z
T −
ρ/|p|

H(ζ, p)
λdζ

ζ(ζ − λ(1− 0)) +H(λ, p), (λ, p) ∈ bΛ−ρ,τ,ν .(8.2b)
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In addition, using the Cauchy-Green formula we have that

H(λ, p) = − 1

2πi

Z
T +
ρ/|p|

H(ζ, p)
dζ

ζ − λ(1 + 0)
+

1

2πi

Z
T +
ρ/|p|

H(ζ, p)
dζ

ζ − λ
− (8.3a)

1

π

Z Z
D+
ρ0/|p|

\D+
ρ/|p|

∂H(ζ, p)

∂ζ̄

dReζdImζ

ζ − λ
, (λ, p) ∈ bΛ+ρ,τ,ν ,

H(λ, p) =
1

2πi

Z
T −
ρ/|p|

H(ζ, p)
λdζ

ζ(ζ − λ(1− 0)) −
1

2πi

Z
T −
ρ/|p|

H(ζ, p)
λdζ

ζ(ζ − λ)
− (8.3b)

1

π

Z Z
D−
ρ0/|p|

\D−
ρ/|p|

∂H(ζ, p)

∂ζ̄

λdReζdImζ

ζ(ζ − λ)
, (λ, p) ∈ bΛ−ρ,τ,ν

(where the integrals along T ±r are taken in the counter- clockwise direction). In addition
(see formulas (3.22), (3.23), (4.8), (4.14) of [20]),

∂H(ζ, p)

∂ζ̄
= (H,H)ρ0,τ0(ζ, p), (ζ, p) ∈ Λρ0,τ0,ν , (8.4)

where (·, ·)ρ,τ is defined by (6.10).
Using (8.2), (8.3) we obtain that

H0(λ(1− 0), p) = 1

2πi

Z
T +
ρ0/|p|

H(ζ, p)
dζ

ζ − λ
− (8.5a)

1

π

Z Z
D+
ρ0/|p|

\D+
ρ/|p|

∂H(ζ, p)

∂ζ̄

dReζdImζ

ζ − λ
, (λ, p) ∈ bΛ+ρ,τ,ν ,

H0(λ(1 + 0), p) = − 1

2πi

Z
T −
ρ0/|p|

H(ζ, p)
λdζ

ζ(ζ − λ)
− (8.5b)

1

π

Z Z
D−
ρ0/|p|

\D−
ρ/|p|

∂H(ζ, p)

∂ζ̄

λdReζdImζ

ζ(ζ − λ)
, (λ, p) ∈ bΛ−ρ,τ,ν .

Using (8.5), (8.4) for H0 = H0
i , H = Hi, i = 1, 2, we obtain that:

(H0
2 −H0

1 )(λ(1− 0), p) = A+(λ, p) +B+(λ, p), (8.6a)

A+(λ, p) =
1

2πi

Z
T +
ρ0/|p|

(H2 −H1)(ζ, p)
dζ

ζ − λ
,

B+(λ, p) = − 1
π

Z Z
D+
ρ0/|p|

\D+
ρ/|p|

¡
(H2 −H1,H2)ρ0,τ0 + (H1,H2 −H1)ρ0,τ0

¢
(ζ, p)

dReζdImζ

ζ − λ
,
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where (λ, p) ∈ bΛ+ρ,τ,ν ;

(H0
2 −H0

1 )(λ(1 + 0), p) = A−(λ, p) +B−(λ, p), (8.6b)

A−(λ, p) = − 1

2πi

Z
T −
ρ0/|p|

(H2 −H1)(ζ, p)
λdζ

ζ(ζ − λ)
,

B−(λ, p) = − 1
π

Z Z
D−
ρ0/|p|

\D−
ρ/|p|

¡
(H2 −H1,H2)ρ0,τ0 + (H1,H2 −H1)ρ0,τ0

¢
(ζ, p)

λdReζdImζ

ζ(ζ − λ)
,

where (λ, p) ∈ bΛ−ρ,τ,ν .
Estimates (8.1) follow from formulas (8.6) and from the estimates

|A±(λ, p)| ≤ c6(1 + |p|)−µ0∆, (λ, p) ∈ bΛ±ρ,τ,ν , (8.7)

|B±(λ, p)| ≤ 4c7(µ0, τ0, ρ0)C∆, (λ, p) ∈ bΛ±ρ,τ,ν , (8.8)

where

c6 = sup
r∈]1/2,+∞[

q(r)

q(r)− q(2r)
,

q(r) = 2r
¡
1−

¡
1− 1

4r2
¢1/2¢

,

(8.9)

∆ = |||χρ0,τ0,ρ,τ (H2 −H1)|||ρ0,τ0,µ0 . (8.10)

Note that
0 < c6 ≤ (2

√
3− 3)−1, (8.11)

where c6 is defined by (8.9). Estimate (8.11) follows from the formulas

c6 =
1

1− 2σ , σ = sup
τ∈]0,1[

1− (1− (1/4)τ)1/2
1− (1− τ)1/2

, (8.12)

(1− τ)1/2 ≤ 1− (1/2)τ, 1− (1/4)τ ≥ a(1− (1/4)τ) + 1− a, (8.13)

a = 2(2−
√
3), τ ∈]0, 1[.

Estimates (8.7) follow from formula (7.6), the properties that

Hi ∈ C(Λρ0,τ0,ν ∪ bΛρ0,τ0,ν),
|Hi(λ, p)| ≤ (1 + |p|)−µ|||Hi|||ρ0,τ0,µ, (λ, p) ∈ Λρ0,τ0,ν ∪ bΛρ0,τ0,ν , i = 1, 2,

(8.14)

(see formulas (3.2), (3.3) of [20] for H and formulas (5.3), (5.6), (5.13), (5.19), (6.4), (6.5)
of the present paper for Ω∞ρ,τ,ν , Λρ,τ,ν , H and L∞µ (Λρ,τ,ν)) and from the formulas

1

2π

Z
T −r

|λ||dζ|
|ζ||ζ − λ| =

1

2π

Z
T +
r

|dζ 0|
|ζ 0 − λ0| ≤

q(r)

q(r)− q(2r)
, (8.15)
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λ ∈ T −2r , λ0 ∈ T +2r , r > 1/2. In turn, formulas (8.15) follow from the property that
z−1 ∈ T +r if z ∈ T −r and from the formula that q(r) is the radius of T +r , where r > 1/2.

Estimates (8.8) follow from the proof of estimates (7.8), (7.9) of [20] and from the
formulas (6.15a) (for ρ = ρ0, τ = τ0), (7.4), (7.6), (8.14) of the present paper.

Lemma 7.2 is proved.

Proof of Lemma 7.3. Using formulas (6.4), (6.5), the formulas

Λρ,τ,ν ≈ Ω∞ρ,τ,ν = Ω∞ρ,τ ∩Ων , Ω∞ρ,τ ≈ Θ∞ρ,τ

(see (5.19), (5.6), (5.4)), and formulas (5.2), (3.13), we have that

∆ ≤ sup
(k,l)∈Θ̄ρ\Θρ0 ,

|k−l|≤2τρ

|h2(k, l)− h1(k, l)|, (8.16)

where ∆ is defined by (8.10), h1, h2 are the functions of Section 4.
Estimate (7.8) follows from formulas (8.16), (4.1), (3.7), (3.9), the property that

|k− l| ≤ ρ in (8.16) (since τ < 1/2 due to the assumptions of Lemma 7.3) and the property
that |eikx| ≤ eρL, |eilx| ≤ eρL for k, l ∈ Θ̄ρ, x ∈ ∂D.

Lemma 7.3 is proved.
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