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tThis paper is devoted to a numeri
al implementation of the Fran
fort-Marigo model of damage evolution in brittle materials. This quasi-stati
model is based, at ea
h time step, on the minimization of a total energywhi
h is the sum of an elasti
 energy and a Gri�th energy release rate.Su
h a minimization is 
arried over all geometri
 mixtures of the two,healthy and damaged, elasti
 phases, respe
ting an irreversibility 
on-straint. Numeri
ally, we 
onsider a situation where two well separatedphases 
oexist, and model their interfa
e by a level set fun
tion that istransported a

ording to the shape derivative of the minimized total en-ergy. In the 
ontext of interfa
e variations (Hadamard method) and usinga steepest des
ent algorithm, we 
ompute lo
al minimizers of this quasi-stati
 damage model. Initially, the damaged zone is nu
leated by usingthe so-
alled topologi
al derivative. We show that, when the damagedphase is very weak, our numeri
al method is able to predi
t 
ra
k prop-agation, in
luding kinking and bran
hing. Several numeri
al examples in

2d and 3d are dis
ussed.1 Introdu
tionFra
ture me
hani
s is a �eld of paramount importan
e whi
h is the subje
t ofintense resear
h e�orts, see [19, 20, 37℄ and referen
e therein. While many worksaddress the issue of mi
ros
opi
 modelling of fra
tures and the 
oupling of somedefe
t atomisti
 models with ma
ros
opi
 elasto-plasti
 models, we fo
us onpurely ma
ros
opi
 models in the framework of 
ontinuum me
hani
s. Roughlyspeaking su
h 
ontinuum models 
an be 
lassi�ed in two main 
ategories. On1



the one hand, there are models of 
ra
k growth and propagation whi
h assumethat the 
ra
k is a (d − 1)-dimensional hypersurfa
e in dimension d (a 
urvein the plane, and a surfa
e in the 3d spa
e). On the other hand, one 
an
onsider models of damage where there is a 
ompetition between the initialhealthy elasti
 phase and another damaged elasti
 phase. The transition fromhealthy to damaged 
an be smooth (i.e., there is a 
ontinuous damage variablewhi
h measures to what extent, or lo
al proportion, the material is damaged)or sharp (i.e., there is an interfa
e between a fully healthy and fully damagedzones). The Fran
fort-Marigo model [29℄ of quasi-stati
 damage evolution forbrittle materials pertains to the latter 
ategory and it is the purpose of thiswork to propose a numeri
al implementation of su
h a model. One of our main
on
lusion is that, although the Fran
fort-Marigo model is a damage model, itis able to des
ribe 
ra
k propagation, when the damaged phase is very weak,and it gives quite similar results to those obtained in [18, 19℄. This is not somu
h a surprise sin
e the numeri
al approa
h in these papers is based on a Γ-
onvergen
e approximation (à la Ambrosio-Tortorelli) whi
h amounts to repla
ethe original fra
ture model by a damage model.Se
tion 2 gives a 
omplete des
ription of the Fran
fort-Marigo damage modelthat we brie�y summarize now. A smooth body Ω ⊂ R
d (d = 2, 3) is �lled withtwo elasti
 phases: the undamaged or �healthy� phase, and the damaged onewhi
h is mu
h weaker. The damaged zone is Ω0 ⊂ Ω, with 
hara
teristi
 fun
-tion χ(x), and the healthy zone is the remaining region Ω1 = Ω \ Ω0. Thebehavior of su
h a mixture is assumed to be linearly elasti
 with a perfe
t inter-fa
e (i.e., natural transmission 
onditions take pla
e at the interfa
e). Startingfrom an initial 
on�guration of damaged and healthy phases mixture χinit(x)and for a given set of loads, the new damaged 
on�guration χopt(x) is obtainedby minimizing a total energy

J(χ) = Jelast(χ) + κ

∫

Ω

χdV , (1.1)whi
h is the sum of the elasti
 energy and of a Gri�th energy for the 
reation ofthe damaged region (whi
h is proportional to the 
onstant energy release rate
κ), under an irreversibility 
onstraint whi
h forbids an initially damaged zoneto be
ome healthy anew, i.e.,

χ(x) ≥ χinit(x) .A quasi-stati
 damage evolution model is then obtained by a time dis
retizationof the for
e loading and by applying the previous 
onstrained minimization atea
h time step.For numeri
al purposes we represent the interfa
e Σ between the damagedand healthy regions, Ω0 and Ω1 respe
tively, by a level set fun
tion. The levelset method for front propagation, as introdu
ed by S. Osher and J. Sethian [42℄,is well-known to be very 
onvenient for this purpose, in
luding the possibilityof topology 
hanges. Here, we take advantage of another feature of the level setmethod, namely the lo
al 
hara
ter of front displa
ement. In other words, we2



do not seek global minimizers of (1.1) but rather lo
al minimizers obtained fromthe initial 
on�guration χinit by transporting it using the level set method. Al-though global minimization is the ultimate goal in many optimization problems(like, for example, shape optimization [3, 5℄), it turns out to be an undesirablefeature in the present problem of damage evolution. Indeed, as explained in[18℄, global minimization is me
hani
ally not sound for a quasi-stati
 evolutionproblem whi
h resembles a gradient �ow.In the 
ontext of the level set method, at ea
h time step, the new damage
on�guration χopt is obtained from the initialization χinit by solving a trans-port Hamilton-Ja
obi equation with a normal velo
ity whi
h is minus the shapederivative of the total energy (1.1). Se
tion 3 is devoted to the 
omputation ofsu
h a shape derivative, following Hadamard method of geometri
 optimization(see e.g. [3, 35, 40, 49℄). Remark that this 
omputation is not standard (andindeed new in the elasti
ity 
ontext, to the best of our knowledge) sin
e it isan interfa
e between two materials, rather than a boundary, whi
h is movedand sin
e the full strain and stress tensors are not 
ontinuous through the in-terfa
e. Note however that, for 
ontinuous �elds, the derivation with respe
tto the shape of an interfa
e is already known, see e.g. [45, 50℄. The numeri
alalgorithm for the level set method is by now standard and is brie�y re
alled inSe
tion 6.One of the in
onvenien
es of the level set method, as well as of most nu-meri
al methods for 
ra
k propagation, is its inability to nu
leate damage andstart a front evolution if there is no initial interfa
e. Therefore, we use anotheringredient to initialize our 
omputations when no initial damaged zone is pre-s
ribed. Namely, we use the notion of topologi
al derivative as introdu
ed in[27, 31, 48℄, and applied to the 
ase of elasti
 in
lusions in [9, 10, 16℄ for inverseproblems. The topologi
al derivative aims at determining whether it is worth ornot nu
leating an in�nitesimal damaged in
lusion in the healthy zone Ω1. Thisinformation is 
omplementary to that obtained by shape variation sin
e, onthe one hand, the shape derivative 
annot nu
leate new in
lusions and, on theother hand, on
e an in
lusion is 
reated, only the shape derivative 
an expandit further on. The notion of topologi
al derivative will be detailed in Se
tion 4.The resulting numeri
al algorithm is somehow similar to previous algorithmsin stru
tural optimization [5, 51℄. When the damaged phase is mu
h weakerthan the healthy phase (say, with a 10−6 ratio between the Young moduli)and for a suitably 
hosen Gri�th energy release rate κ (whi
h s
ales like theinverse of the mesh size ∆x), our numeri
al results are very similar to thoseof [18℄ whi
h were obtained for a fra
ture model. Therefore we 
laim thatour numeri
al implementation of the Fran
fort-Marigo damage model is ableto simulate 
ra
k propagation. Numeri
al experiments, in
luding a study of
onvergen
e under mesh re�nement, are performed in Se
tion 6. We believeour approa
h is simpler and 
omputationally less intensive than other 
lassi
almethods for 
ra
k propagation [1, 13, 15, 33, 34℄. Let us emphasize that level-set methods have already been used in fra
ture me
hani
s [17, 33, 34℄, usuallyin 
onjun
tion with the extended �nite element method [38℄. However, onenovelty of our work is that we use a single level-set fun
tion instead of two3



for parametrizing the 
ra
k and that the weak damage phase avoids the use ofdis
ontinuous �nite elements. Our results, in
luding some 
omputations in 2d,were announ
ed in [7℄.2 The Fran
fort-Marigo model of damage2.1 Des
ription of the modelThis se
tion gives a 
omprehensive des
ription of the Fran
fort-Marigo model[29℄ of quasi-stati
 damage evolution for brittle materials. In a smooth domain
Ω ⊂ R

d this damage model is stated as a ma
ros
opi
 phase transition problembetween a damaged phase o

upying a subset Ω0 ⊂ Ω and an healthy phase inthe remaining region Ω1 = Ω \ Ω0. To simplify the presentation, in a �rst stepwe 
onsider a stati
 problem starting from an healthy 
on�guration (namely,without any irreversibility 
onstraint). The 
hara
teristi
 fun
tion of Ω0 is de-noted by χ(x). Both the healthy and damaged phases are assumed to be linear,isotropi
 and homogeneous, so we work in a linearized elasti
ity framework andthe Lamé tensor of elasti
ity in Ω is
Aχ = A1(1 − χ) +A0χ,where 0 < A0 < A1 are the Lamé tensors of isotropi
 elasti
ity in the damagedand healthy regions, respe
tively, de�ned by

A0,1 = 2µ0,1I4 + λ0,1I2 ⊗ I2where I2 and I4 denote the identity 2nd and 4th order tensors, respe
tively.The boundary of the body is made of two parts, ∂Ω = ΓD ∪ ΓN , where aDiri
hlet boundary 
ondition uD is imposed on ΓD and a Neumann boundary
ondition g is imposed on ΓN . We assume that uD ∈ H1(Ω; Rd), g ∈ L2(∂Ω; Rd)and we 
onsider also a body for
e f ∈ L2(Ω; Rd). (Slightly stronger regularityassumptions on the data f, g, uD will be made in the sequel.) We denote by nthe normal unit ve
tor on ∂Ω. We introdu
e the a�ne spa
e of kinemati
allyadmissible displa
ement �elds
V = {u ∈ H1(Ω; Rd) su
h that u = uD on ΓD}.As usual, the strain and stress tensors asso
iated to a displa
ement u write as
e(u) =

1

2

(
∇u+ ∇Tu

)
, σ(u) = Aχe(u). (2.1)The elasti
ity system reads as







− div (Aχe(uχ)) = f in Ω,
uχ = uD on ΓD,
Aχe(uχ)n = g on ΓN .

(2.2)4



It is well-known that (2.2) 
an be restated as a minimum potential energy prin
i-ple, that is, the displa
ement �eld uχ ∈ V minimizes in V the energy fun
tional
Pχ(u) =

∫

Ω

(
1

2
Aχe(u) · e(u) − f · u

)

dV −
∫

ΓN

g · udS ,i.e.,
Pχ(uχ) = min

u∈V
Pχ(u) .The Fran
fort-Marigo model amounts to minimize jointly over u and χ a totalenergy whi
h is the sum of the elasti
 potential energy and of a Gri�th energy(a

ounting for the 
reation of the damaged region), writing as

J (u, χ) = Pχ(u) + κ

∫

Ω

χdV , (2.3)where κ is known as the Gri�th's energy release rate. In other words, theFran
fort-Marigo model is based on the minimization over χ ∈ L∞(Ω; {0, 1}) of
J(χ) = J (uχ, χ) = min

u∈V
J (u, χ) . (2.4)Instead of writing (2.4), we 
an �rst minimize in χ and later in u (sin
e (2.3)is doubly minimized, the order of minimization does not matter). Sin
e χ(x)takes only the values 0 and 1, the minimization is easy, provided that we know

uχ (whi
h is of 
ourse never the 
ase). Indeed, minimizing (2.4) is equivalent tothe following lo
al minimization at ea
h point x ∈ Ω

min
χ∈{0,1}

{1

2
Aχe(uχ) · e(uχ) + κχ}(x),providing a transition 
riterion from the healthy to the damaged phase as soonas the release of elasti
 energy is larger than the threshold κ. More pre
isely, apoint x is damaged if and only if

1

2
A1e(uχ) · e(uχ)(x) − 1

2
A0e(uχ) · e(uχ)(x) ≥ κ . (2.5)After minimization in χ we obtain a non-linear non-
onvex fun
tional to beminimized in V

E(u) =
1

2

∫

Ω

min
(
A1e(u) · e(u), A0e(u) · e(u) + 2κ

)
dV (2.6)

−
∫

Ω

f · u dV −
∫

ΓN

g · u dS.In truth the Fran
fort-Marigo model is quasi-stati
 whi
h means that we
onsider a sequen
e of minimization problems of the above type, with an addi-tional thermodynami
 irreversibility 
onstraint. The time is dis
retized by anin
reasing sequen
e (ti)i≥1, with t1 = 0 and ti < ti+1. At ea
h time ti the loads5



are denoted by fi and gi, the imposed boundary displa
ement is uD,i, the a�nespa
e of kinemati
ally admissible displa
ement �elds is Vi, the 
hara
teristi
fun
tion of the damaged phase is χi and the 
orresponding displa
ement is uχi
,solution of (2.2) with loads fi and gi and Diri
hlet boundary 
ondition uD,i.The initial damaged zone is given and 
hara
terized by χ0.The model is irreversible whi
h means that a material point x ∈ Ω whi
h isdamaged at a previous time must remain damaged at a later time ti, i.e.,

χi(x) ≥ χi−1(x). (2.7)Therefore, introdu
ing Ji and Ji, whi
h are de�ned as (2.3) and (2.4) with theloads at time ti, the Fran
fort-Marigo model is a sequen
e, indexed by i ≥ 1, ofminimization problems
inf

χ∈L∞(Ω;{0,1}),χ≥χi−1

Ji(χ) = inf
u∈Vi,χ∈L∞(Ω;{0,1}),χ≥χi−1

Ji(u, χ) , (2.8)with minimizers χ
i
and uχi

(if any).2.2 Mathemati
al properties of the modelThe Fran
fort and Marigo is ill-posed, namely, there does not exist any mini-mizer of (2.8) in most 
ases. This 
an easily be seen be
ause (2.8) is equivalentto the minimization of the non-linear elasti
 energy (2.6) whi
h is not 
onvex,neither quasi-
onvex. A
tually, one of the main purposes of the seminal paper[29℄ of Fran
fort and Marigo was to relax the minimization problem (2.8) andshow the existen
e of suitably generalized solutions. The relaxation of (2.8)amounts to introdu
e 
omposite materials, obtained by a �ne mixing of the twophases, as 
ompetitors in the minimization of the total energy. Su
h 
ompositematerials in
lude the limits, in the sense of homogenization, of minimizing se-quen
es of (2.8): they are 
hara
terized by a phase volume fra
tion in the range
[0, 1] and a homogenized elasti
ity tensor whi
h is the output of the mi
rostru
-ture at given volume fra
tions. It turns out that optimal mi
rostru
tures arefound in the 
lass of sequential laminates. For further details we refer to [29℄for the �rst time step and to [28℄ for the following time steps (where the irre-versibility 
onstraint plays a 
ru
ial role). This relaxed approa
h has been usedfor numeri
al 
omputations of damage evolution in [4℄.One drawba
k of the Fran
fort-Marigo approa
h is that it relies on globalminimization, i.e., at ea
h time step ti the fun
tional Ji(u, χ) is globally min-imized with respe
t to both variables u and χ. There is no true me
hani
almotivation for insisting on global minimization with respe
t to χ. Be
ause ofglobal minimization, damage might o

ur at time step ti in a region far awayfrom the initially damaged zone at the previous time step ti−1, whereas, inmost 
ir
umstan
es, it seems more natural from a physi
al viewpoint to haveexpansion of the previously damaged area. Therefore, in a quasi-stati
 regimewhi
h may favor metastability e�e
ts, it seems reasonable to prefer lo
al mini-mization (with respe
t to χ) instead of global minimization. Unfortunately, it6



was re
ently proved in [32℄ that, at least in a s
alar-valued setting (antiplaneelasti
ity), lo
al minima are a
tually global ones (both in the original setting of
hara
teristi
 fun
tions or in the relaxed setting of 
omposite materials, lo
alitybeing evaluated in the L1(Ω)-norm).However this last result of [32℄ does not prevent the possibility of a di�erentframework in whi
h lo
al minimizers would not be global ones. In the presentpaper we propose su
h a framework based on the notion of front propagation inthe original 
ase of a ma
ros
opi
 distribution of healthy and damaged phases(i.e., not 
onsidering 
omposite materials). Instead of representing a damagedzone by a 
hara
teristi
 fun
tion χ ∈ L∞(Ω; {0, 1}) we rather introdu
e theinterfa
e Σ between the healthy and the damaged regions. Admissible varia-tions of this interfa
e are obtained in the framework of Hadamard method ofshape variations [3℄, [35℄, [40℄, [44℄, [49℄ (see Se
tion 3 below). More pre
isely,the minimization in (2.8) is restri
ted to 
on�gurations whi
h are obtained bya Lips
hitz di�eomorphism from a referen
e or initial 
on�guration. This isa severe restri
tion of the spa
e of admissible designs sin
e, for example, all
on�gurations share the same topology as the referen
e one. As a 
onsequen
ethere 
annot be nu
leation of new damaged zones away from the initial one.This leaves open the possibility of the existen
e of lo
al, but not global, mini-mizers. We shall not prove anything rigorously on this issue but our numeri
alsimulations indi
ate that they do indeed exist. Let us remark that the 
ho-sen numeri
al approa
h by level sets allows for topology 
hanges by breaking adamage region in two parts, but never by 
reating a new damage region.On the other hand, working in the framework of Hadamard method of frontrepresentation does not help at all 
on
erning the existen
e of (lo
al or global)minimizers. On
e again we are spee
hless on this issue. Of 
ourse, one simpleremedy is to add a surfa
e energy in the minimized total energy
Jreg(u, χ) = Pχ(u) + κ

∫

Ω

χdV + κ′ TV (χ) , (2.9)with the total variation norm de�ned by
TV (χ) = sup

φ∈C1(Ω;Rd)

|φ|≤1 in Ω

∫

Ω

χ divφdV.When χ is the 
hara
teristi
 fun
tion of a smooth subset Ω0, the number TV (χ)is also the perimeter of Ω0. A possible justi�
ation of this new term in (2.9)is to 
onsider a Gri�th surfa
e energy on top of the previous Gri�th bulkenergy. We 
all "regularized" the energy in (2.9) sin
e it is well-known toadmit minimizers χ in the 
lass L∞(Ω; {0, 1}) [12℄. In truth, if we mention thisadditive surfa
e energy, this is be
ause the unavoidable numeri
al di�usion ofour 
omputational algorithm has pre
isely the e�e
t of adding su
h a surfa
eenergy. For our numeri
al tests, we shall not rely on (2.9) and rather we usethe standard energy (2.3). 7



2.3 Goal of the present studyThe goal of this paper is to propose and test the following numeri
al methodfor the damage model of Fran
fort and Marigo. At ea
h time step ti the mini-mization (2.8) is performed by Hadamard method of shape sensitivity. In otherwords, we 
ompute the shape derivative of the obje
tive fun
tion Ji with re-spe
t to the interfa
e between the healthy and damaged phases and, applyinga steepest des
ent algorithm, we move this interfa
e in (minus) the dire
tionof the shape gradient. The minimization of Ji is stopped when the shape gra-dient is (approximately) zero, i.e., at a stationary point (a lo
al minimizer innumeri
al pra
ti
e) of the obje
tive fun
tion. We use a level set approa
h to
hara
terize the interfa
e between the healthy and damaged phases. As is wellknown, it allows for large deformations of the interfa
e with possibly topology
hanges. After 
onvergen
e at time ti, we pass to the next dis
rete time ti+1 by
hanging the loads and we start a new minimization of Ji+1, taking into a

ountthe irreversibility 
onstraint (2.7). We iterate until a �nal time tifinal
whi
h we
hoose when the stru
ture is almost entirely damaged.We propose two possible ways of initializing our 
omputations. Either westart from an initial damaged zone χ0 at time t1 = 0, or, in 
ase the initialstru
ture is not damaged at all, we nu
leate a small damaged zone by usingthe notion of topologi
al derivative. This nu
leation step takes pla
e before westart the �rst minimization of J1. We are thus able to predi
t damage propa-gation without pres
ribing any initial 
ra
k as is 
ommonly done in engineeringpra
ti
e.Although the 
onsidered model has been designed in the framework of dam-age me
hani
s, it turns out to be able to a

urately des
ribe 
ra
k propagation insome spe
i�
 regimes. More pre
isely, when the damaged phase is very weak (itsrigidity A0 is negligible) and the energy release rate is large enough, the resultsof our numeri
al 
omputations are 
ra
ks rather than damaged sub-domains.In other words, the damaged zone is a thin hypersurfa
e with a thi
kness of afew mesh 
ells 
on
entrating along a 
urve in 2d or a surfa
e in 3d. However,our model, based on the minimization of (2.3), has no intrinsi
 lengths
ale onthe 
ontrary of other fra
ture models where there is a 
ompetition between bulk(elasti
) energy and surfa
e (
ra
k extension) energy [19℄. Therefore we mustintrodu
e some 
hara
teristi
 lengths
ale in our model if we want to support our
laim that it is able to predi
t 
ra
k propagation. We do this at a numeri
al levelby requiring that our fra
ture results are 
onvergent under mesh re�nement, ane
essary 
ondition for any reasonable numeri
al algorithm. To obtain su
h a
onvergen
e we s
ale the Gri�th energy release rate κ like 1/∆x, where ∆x isthe mesh size whi
h is re�ned. In other words, instead of minimizing (2.3), weminimize (assuming, for simpli
ity, that there are only bulk for
es)

J∆x(u, χ) =

∫

Ω

(
1

2
Aχe(u) · e(u) − f · u

)

dV +
κℓ

∆x

∫

Ω

χdV , (2.10)where ℓ is a 
hara
teristi
 lengths
ale so that κ has the same physi
al units in(2.3) and (2.10). Although (2.10) has been written in a 
ontinuous framework,8



it should be understood as a dis
retized energy for a mesh of size ∆x. When
∆x goes to zero, we expe
t that, for a minimizing sequen
e χ∆x, the last termof (2.10) 
onverges to a surfa
e energy

lim
∆x→0

κℓ

∆x

∫

Ω

χ∆x dV = κℓ

∫

Γ

dS,where Γ is the 
ra
k 
urve in 2d or surfa
e in 3d. The numeri
al examples ofSe
tion 6 show that it is indeed the 
ase: the damage zone 
on
entrates arounda surfa
e Γ with a thi
kness of a few 
ells ∆x. We believe that the dis
retes
aled energies (2.10) Γ-
onverges in some sense, as ∆x and A0 go to zero, tothe fra
ture model
min
u,Γ

∫

Ω\Γ

(
1

2
A1e(u) · e(u) − f · u

)

dV + κℓ

∫

Γ

dS (2.11)where the displa
ement �eld u may be dis
ontinuous through the 
ra
k Γ. Weare not able to prove su
h a result whi
h would �rst require to order the speedof 
onvergen
e of ∆x and A0 to zero. Remark however that similar results havebeen obtained in the 
ontext of image segmentation for dis
rete Mumford-Shahenergies [24℄. This 
onje
tured link between the damage model (2.10) and thefra
ture model (2.11) is, of 
ourse, reminis
ent of the numeri
al approa
h in [18℄,[19℄ where a fra
ture model is numeri
ally approximated by a damage model(based on the Γ-
onvergen
e result of [8℄).3 Shape derivative3.1 On the notion of shape gradientShape di�erentiation is a 
lassi
al topi
 [3℄, [35℄, [40℄, [44℄, [49℄. We brie�yre
all its de�nition and main results in the present 
ontext. Here, the overalldomain Ω is �xed and we 
onsider a smooth open subset ω ⊂ Ω whi
h mayvary. Denoting by χ the 
hara
teristi
 fun
tion of ω, we 
onsider variations ofthe type
χθ = χ ◦

(
Id+ θ

)
, i.e., χθ(x) = χ

(
x+ θ(x)

)
,with θ ∈ W 1,∞(Ω; Rd) su
h that θ is tangential on ∂Ω (this last 
onditionensures that Ω = (Id + θ)Ω). It is well known that, for su�
iently small θ,

(Id+ θ) is a di�eomorphism in Ω.De�nition 3.1 The shape derivative of a fun
tion J(χ) is de�ned as the Fré
hetderivative in W 1,∞(Ω; Rd) at 0 of the appli
ation θ → J
(
χ ◦ (Id+ θ)

), i.e.
J
(
χ ◦ (Id+ θ)

)
= J(χ) + J ′(χ)(θ) + o(θ) with lim

θ→0

|o(θ)|
‖θ‖W 1,∞

= 0 ,where J ′(χ) is a 
ontinuous linear form on W 1,∞(Ω; Rd).9



Lemma 3.1 ([35℄, [49℄) Let ω be a smooth bounded open subset of Ω and θ ∈
W 1,∞(Ω; Rd). Let f ∈ H1(Ω) and g ∈ H2(Ω) be two given fun
tions. Assumethat Σ is a smooth subset of ∂ω with boundary ∂Σ. The shape derivatives of

J1(ω) =

∫

ω

f dV and J2(Σ) =

∫

Σ

g dSare J ′
1(ω) =

∫

∂ω

f θ · n dS and
J ′

2(Σ) =

∫

Σ

(
∂g

∂n
+ gH

)

θ · n dS +

∫

∂Σ

g θ · τ dL, (3.1)respe
tively, where n is the exterior unit ve
tor normal to ∂ω, H is the mean
urvature and τ is the unit ve
tor tangent to ∂ω su
h that τ is normal to both
∂Σ and n, and dL is the (d− 2)-dimensional measure along ∂Σ.3.2 Main resultTo simplify the notations we forget the time index ti in this se
tion. Althoughthe state equation and the 
ost fun
tion of the Fran
fort-Marigo model are (2.2)and (2.4) respe
tively, we 
onsider a slightly more general setting in this se
tion(to pave the way to more general models in the future). More pre
isely, we
onsider a state equation







− div (Aχe(uχ)) = fχ in Ω,
uχ = uD on ΓD,
Aχe(uχ)n = gχ on ΓN ,

(3.2)where
fχ := (1 − χ)f1 + χf0 and gχ := (1 − χ)g1 + χg0with fk ∈ H1(Ω; Rd) ∩ C0,α(Ω; Rd) and gk ∈ H2(Ω; Rd) ∩ C1,α(Ω; Rd), k = 0 or

1 (0 < α < 1) . We also assume that uD belongs to H2(Ω; Rd) and that thesubset Ω0 (with 
hara
teristi
 fun
tion χ) is smooth. Under these assumptionsthe solution uχ of (3.2) belongs to H2(Ω0; Rd) and H2(Ω1; Rd) and is of 
lass
C2,α away from the boundary and from the interfa
e. The 
ost fun
tion is takenas
J(χ) =

1

2

∫

Ω

Aχe(uχ) · e(uχ)dV +

∫

Ω

jχ(x, uχ)dV +

∫

∂Ω

hχ(x, uχ)dS, (3.3)where
jχ := (1 − χ)j1 + χj0 and hχ := (1 − χ)h1 + χh0with jk(x, u) and hk(x, u), k = 0, 1, twi
e di�erentiable fun
tions with respe
tto u, satisfying the following growth 
onditions

|jk(x, u)| ≤ C(|u|2 + 1), |(jk)′(x, u)| ≤ C(|u| + 1), |(jk)′′(x, u)| ≤ C,
|hk(x, u)| ≤ C(|u|2 + 1), |(hk)′(x, u)| ≤ C(|u| + 1), |(hk)′′(x, u)| ≤ C.(3.4)10



where ′ denotes the partial derivative with respe
t to u ∈ R
d. To avoid someunne
essary te
hni
alities we also assume that h1(x, uD(x)) = h0(x, uD(x)) on

ΓD so that the obje
tive fun
tion is equal to
J(χ) =

1

2

∫

Ω

Aχe(uχ) · e(uχ)dV +

∫

Ω

jχ(x, uχ)dV +

∫

ΓN

hχ(x, uχ)dS + Cwhere C is a 
onstant whi
h does not depend on χ.Remark 3.1 When the imposed displa
ement on ΓD vanishes, uD = 0, the 
ostfun
tion of the Fran
fort-Marigo model simpli�es and redu
es to a multiple ofthe 
omplian
e. Indeed, the energy equality for the state equation (2.2) (whi
his valid only if uD = 0), namely
∫

Ω

Aχe(uχ) · e(uχ) dV =

∫

Ω

f · uχ dV +

∫

ΓN

g · uχ dS,implies that the 
ost fun
tion (2.4) (with jχ = κχ − f · uχ and gχ = −g · uχ)redu
es to
J(χ) = κ

∫

Ω

χdV − 1

2

(∫

Ω

f · uχ dV +

∫

ΓN

g · uχ dS

)

. (3.5)Of 
ourse, the study of (3.5) is mu
h simpler than that of the general obje
tivefun
tion (3.3). However, sin
e many numeri
al tests involve non-homogeneousboundary displa
ements, uD 6= 0, we must study (3.3) and not merely (3.5).We need to introdu
e the so-
alled adjoint problem






− div (Aχe(pχ)) = fχ + j′χ(x, uχ) in Ω,
pχ = 0 on ΓD,
Aχe(pχ)n = gχ + h′χ(x, uχ) on ΓN .

(3.6)We denote by Σ the interfa
e between the damaged and healthy regions Ω0 and
Ω1. We de�ne n = n0 = −n1 the outward unit normal ve
tor to Σ. We use thejump notation

[α] = α1 − α0 (3.7)for a quantity α that has a jump a
ross the interfa
e Σ.The shape derivative of (3.3) will be an integral on the interfa
e Σ as is 
learfrom Lemma 3.1. The state uχ and adjoint pχ are 
ontinuous on Σ but not alltheir derivatives. A
tually the tangential 
omponents of their deformation ten-sors are 
ontinuous as well as the normal ve
tor of their stress tensors. To makethis result pre
ise, at ea
h point of the interfa
e Σ we introdu
e a lo
al basismade of the normal ve
tor n and a 
olle
tion of unit tangential ve
tors, 
olle
-tively denoted by t, su
h that (t, n) is an orthonormal basis. For a symmetri

d× d matrix M, written in this basis, we introdu
e the following notations

M =

(
Mtt Mtn

Mnt Mnn

)11



where Mtt stands for the (d−1)× (d−1) minor of M, Mtn is the ve
tor of the
(n− 1) �rst 
omponents of the n-th 
olumn of M, Mnt is the row ve
tor of the
(n− 1) �rst 
omponents of the n-th row of M, and Mnn the (n, n) entry of M.Let us re
all that dV, dS and dL indi
ate volume integration in R

d, and surfa
e(or line, a

ording to the value of d) integration in R
d−1 and R

d−2, respe
tively.Lemma 3.2 Let e and σ denote the strain and stress tensors of the solutionto the state equation (3.2) or adjoint state equation (3.6). All 
omponents of
σnt, σnn, and ett are 
ontinuous a
ross he, assumed smooth, surfa
e Σ, whileall other entries have jumps through Σ, rewritten in terms of these 
ontinuousquantities as






[enn] = [(2µ+ λ)−1]σnn − [λ(2µ+ λ)−1] trett

[etn] = [(2µ)−1]σtn

[σtt] = [2µ]ett + ([2µλ(2µ+ λ)−1] trett + [λ(2µ+ λ)−1]σnn)Id−1
2

(3.8)where Id−1
2 is the identity matrix of order d− 1.Proof. By standard regularity theory, on both sides of the smooth interfa
e Σthe solution, as well as its deformation and stress tensors e and σ, are smooth.This implies that the 
ontinuity of the displa
ement through the interfa
e yieldsthe 
ontinuity of ett. The transmission 
ondition implies that σtn and σnn arealso 
ontinuous on the interfa
e. The other quantities have jumps (3.8) whi
hare 
omputed through the strain-stress relation (2.1). �Theorem 3.1 Let Ω be a smooth bounded open set, Σ be a smooth hypersurfa
ein Ω, γ = Σ ∩ ΓN and θ ∈ W 1,∞(Ω; Rd). The shape derivative in the dire
tion

θ of the obje
tive fun
tion J(χ), as given by (3.3), is
J ′(χ)(θ) =

∫

Σ

D(x) θ · n dS

+

∫

Σ

(
(f0 − f1) · pχ + (j0 − j1)(x, uχ)

)
θ · n dS

+

∫

γ

(
(g0 − g1) · pχ + (h0 − h1)(x, uχ)

)
θ · τ dL

(3.9)with
D(x) = −[

1

(λ+ 2µ)
]σnn(uχ)σnn(pχ) − [

1

µ
]σtn(uχ) · σtn(pχ)

+ [2µ] ett(uχ) · ett(pχ) + [
2λµ

(λ+ 2µ)
] trett(uχ) trett(pχ)

+ [
λ

(λ + 2µ)
] (σnn(uχ) trett(pχ) + σnn(pχ) trett(uχ))

+ [
1

2(λ+ 2µ)
] (σnn(uχ))2 + [

1

2µ
] |σtn(uχ)|2 − [µ] |ett(uχ)|2

− [
λµ

λ+ 2µ
] ( trett(uχ))2 − [

λ

λ+ 2µ
]σnn(uχ) trett(uχ),

(3.10)
12



where uχ and pχ are the solutions of the state equation (3.2) and adjoint equation(3.6), respe
tively, and where the bra
kets denotes the jump as de�ned by (3.7).Equivalently, D(x) 
an be rewritten
D(x) = −σnn(uχ)[enn(pχ)] + ett(uχ) · [σtt(pχ)] − 2[etn(uχ)] · σtn(pχ)

+
1

2

(

σnn(uχ)[enn(uχ)] − ett(uχ) · [σtt(uχ)] + 2σtn(uχ) · [etn(uχ)]
)

.(3.11)Remark 3.2 A formula, partially symmetri
 to (3.11), holds true
D(x) = −σnn(pχ)[enn(uχ)] + ett(pχ) · [σtt(uχ)] − 2[etn(pχ)] · σtn(uχ)

+
1

2

(

σnn(uχ)[enn(uχ)] − ett(uχ) · [σtt(uχ)] + 2σtn(uχ) · [etn(uχ)]
)

.(3.12)The main interest of (3.11), or (3.12), 
ompared to (3.10), is that it does notinvolve jumps of the Lamé 
oe�
ients whi
h blow up when the damaged phasedegenerate to zero.Indeed, it is interesting to investigate the limit of the shape derivative inTheorem 3.1 when A0 
onverges to zero. In su
h a 
ase, we re
over previouslyknown formulas, used in shape optimization [3℄, [35℄, [49℄. As A0 tends to zero,it is well known that, on the interfa
e Σ, the normal stress σn = (σtn, σnn) 
on-verges also to zero, while the deformation tensor e remains bounded. Therefore,the limit formula of (3.11), or (3.12), is
D(x) = ett(uχ) · σtt(pχ) − 1

2
ett(uχ) · σtt(uχ). (3.13)The proof of Theorem 3.1 is given in the next subse
tion (ex
ept some te
h-ni
al 
omputations whi
h are postponed to Appendix A). Similar results in the
ondu
tivity setting (s
alar equations) appeared in [14℄, [36℄, [43℄.Let us now restate Theorem 3.1 for the Fran
fort-Marigo 
ost fun
tion, inwhi
h 
ase we have

jk(x, u) = −fk · uk + κδk0 and hk(x, u) = −gk · ukwhere δk0 is the Krone
ker symbol, equal to 0 if k = 1 and to 1 if k = 0. Itturns out that the problem is self-adjoint, i.e., there is no need of an adjointstate. More pre
isely, in this 
ontext we �nd that pχ = 0. We further simplifythe previous Theorem 3.1 by taking for
es whi
h are the same in the damagedand healthy regions, i.e., f0 = f1 and g0 = g1. Then, we obtainCorollary 3.1 Let f0 = f1 and g0 = g1. The shape derivative of (2.4) in thedire
tion θ is
J ′(χ)(θ) =

∫

Σ

D(x) θ · n dSwith
D(x) = κ+

1

2

(

σnn(uχ)[enn(uχ)]−ett(uχ)·[σtt(uχ)]+2σtn(uχ)·[etn(uχ)]
)

. (3.14)Furthermore, if A0 ≤ A1, then (D(x) − κ
)
≤ 0 on Σ.13



The last result of Corollary 3.1 implies that, upon negle
ting the Gri�thenergy release rate, i.e. taking κ = 0, one should take θ · n ≥ 0 to get anegative shape derivative. In other words, the damaged phase should �ll theentire domain in order to minimize the energy fun
tional (2.4) (whi
h is 
learfrom the minimization (2.5)).3.3 The Lagrangian approa
h to shape di�erentiationThis se
tion is devoted to the proof of Theorem 3.1 by means of a Lagrangianmethod whi
h, in the 
ontext of shape optimization, is des
ribed in e.g. [3℄, [5℄,[23℄. It amounts to introdu
e a Lagrangian whi
h, as usual, is the sum of theobje
tive fun
tion and of the 
onstraints multiplied by suitable Lagrange multi-pliers. In shape optimization the state equation is seen as a 
onstraint and the
orresponding Lagrange multiplier is pre
isely the adjoint state at optimality.The shape derivative J ′(χ)(θ) is then obtained as a simple partial derivativeof the Lagrangian L. This approa
h is also very 
onvenient to guess the exa
tform of the adjoint problem.In the present setting it is the shape of the subdomains Ω0 and Ω1 whi
his varying, or equivalently the interfa
e Σ. Di�erentiating with respe
t to theposition of this interfa
e is more 
ompli
ated than di�erentiating with respe
tto the outer boundary as in usual shape optimization problems. The additionaldi�
ulty, whi
h was re
ognized in [43℄ (see also [14℄, [36℄) is that the solution uχof the state equation (3.2) is not shape di�erentiable in the sense of De�nition3.1. The reason is that some spatial derivatives of uχ are dis
ontinuous atthe interfa
e (be
ause of the jump in the material properties): thus, when weadditionally di�erentiate with respe
t to the position of Σ, we obtain that thosespatial derivatives of u′χ(θ) have a part whi
h is a measure 
on
entrated onthe interfa
e, and 
onsequently u′χ(θ) "es
apes" from the fun
tional spa
e V inwhi
h we di�erentiate. The remedy is simply to rewrite the state equation (3.2)as a transmission problem. We thus introdu
e the restri
tions u0 to Ω0, and u1 to
Ω1, of the solution uχ of (3.2). In other words, they satisfy uχ = (1−χ)u1+χu0and are solutions of the transmission problem







− div
(
A1e(u1)

)
= f1 in Ω1

u1 = uD on Γ1
D = ΓD ∩ ∂Ω1

A1e(u1)n1 = g1 on Γ1
N = ΓN ∩ ∂Ω1

u1 = u0 on Σ = ∂Ω0 ∩ ∂Ω1

A1e(u1)n1 +A0e(u0)n0 = 0 on Σ

(3.15)and






− div
(
A0e(u0)

)
= f0 in Ω0

u0 = uD on Γ0
D = ΓD ∩ ∂Ω0

A0e(u0)n0 = g0 on Γ0
N = ΓN ∩ ∂Ω0

u0 = u1 on Σ
A0e(u0)n0 +A1e(u1)n1 = 0 on Σ

, (3.16)
14



whi
h is equivalent to (3.2). Re
all that n = n0 = −n1 denotes the outwardunit normal ve
tor to the interfa
e Σ.Introdu
ing the notations σi(vi) = Aie(vi) and σi(qi) = Aie(qi), the generalLagrangian is de�ned as
L(v1, v0, q1, q0,Σ) =

∫

Ω1

[

j1(x, v1) +
1

2
σ1(v1) · e(v1) − σ1(v1) · e(q1) + f1 · q1

]

dV

+

∫

Ω0

[

j0(x, v0) +
1

2
σ0(v0) · e(v0) − σ0(v0) · e(q0) + f0 · q0

]

dV

+

∫

Γ0
N

[
g0 · q0 + h0(x, v0)

]
dS +

∫

Γ1
N

[
g1 · q1 + h1(x, v1)

]
dS

− 1

2

∫

Σ

(
σ1(v1) + σ0(v0)

)
n · (q1 − q0)dS

− 1

2

∫

Σ

(
σ1(q1) + σ0(q0)

)
n · (v1 − v0)dS

+
1

2

∫

Σ

(
σ1(v1) + σ0(v0)

)
n · (v1 − v0)dS, (3.17)where q0 and q1 play the role of Lagrange multiplier or, at optimality, of the ad-joint state p0 and p1(on the same token, at optimality v0, v1 are equal to u0, u1).The fun
tions v0, v1 satisfy non homogeneous Diri
hlet boundary 
onditions andbelong to the a�ne spa
e V , while the other fun
tions q0, q1 vanishes on ΓDand thus belong to the ve
tor spa
e V0 de�ned as

V0 = {u ∈ H1(Ω; Rd) su
h that u = 0 on ΓD}.Of 
ourse, di�erentiating the Lagrangian with respe
t to q0 and q1, and equalingit to 0, provides the state equations (3.15) and (3.16). The next result statesthat di�erentiating the Lagrangian with respe
t to v0 and v1, and equaling itto 0, yields the adjoint equation.Lemma 3.3 The optimality 
ondition
∂L
∂v1

(u1, u0, p1, p0, χ) =
∂L
∂v0

(u1, u0, p1, p0, χ) = 0for variations in V0 is equivalent to the adjoint problem (3.6).Proof. This is a 
lassi
al 
omputation [3℄, [23℄, [43℄ whi
h we do not detail.Di�erentiating the Lagrangian with with respe
t to v0 and v1 and equaling itto zero yields






− div
(
Aie(pi)

)
= j′i(x, u

i) − div
(
Aie(ui)

) in Ωi

pi = 0 on Γi
D

Aie(pi)ni = h′i(x, u
i) +Aie(ui)ni on Γi

N

p0 = p1 on Σ
A0e(p0)n = A1e(p1)n on Σ

(3.18)15



whi
h is equivalent to (3.6). �As we already said, the solution uχ of (3.2) is not shape di�erentiable. How-ever its Lagrangian or transported 
ounterpart, namely θ → uχ◦(Id+θ)◦(Id+θ),is a
tually di�erentiable by a simple appli
ation of the impli
it fun
tion theorem(see 
hapter 5 in [35℄). As a 
onsequen
e, upon a suitable extension outside Ωi,the solution ui of (3.15-3.16) are indeed shape di�erentiable.Lemma 3.4 The solutions u1 of (3.15) and u0 of (3.16) are shape di�eren-tiable.The main interest of the Lagrangian is that its partial derivative with respe
tto the shape χ, evaluated at the state uχ and adjoint pχ, is equal to the shapederivative of the 
ost fun
tion.Lemma 3.5 The 
ost fun
tion J(χ) admits a shape derivative whi
h is givenby
J ′(χ)(θ) =

∂L
∂χ

(u1, u0, p1, p0, χ)(θ), (3.19)where (u1, u0, p1, p0) are the solutions of the state equation (3.15-3.16) and ad-joint equation (3.18).Proof. This is again a 
lassi
al result [3℄, [23℄ whi
h we brie�y re
all. We startfrom the identity
J(χ)(θ) = L(u1, u0, q1, q0, χ) (3.20)where q1, q0 are any fun
tions in V . We di�erentiate (3.20) with respe
t to theshape. By virtue of Lemma 3.4 we obtain

J ′(χ)(θ) =
∂L
∂χ

(u1, u0, q1, q0, χ)(θ) + 〈 ∂L
∂v0,1

(u1, u0, q1, q0, χ),
∂u0,1

∂χ
(θ)〉. (3.21)The notation ∂L

∂χ means that it is a shape partial derivative, i.e., we di�erentiate
L in the sense of De�nition 3.1 while keeping the other arguments (u1, u0, q1, q0)�xed. Taking now (q1, q0) = (p1, p0) 
an
els the last term in (3.21) be
ause it isthe variational formulation of the adjoint problem by virtue of Lemma 3.3. Wethus obtain (3.19). �To �nish the proof of Theorem 3.1 it remains to 
ompute the partial shapederivative of the Lagrangian. It is a 
on
eptually simple appli
ation of Lemma3.1 whi
h, nevertheless, is quite tedious. Therefore the proof of the followingLemma is postponed to Appendix A.Lemma 3.6 The partial shape derivative of the Lagrangian

∂L
∂χ

(u1, u0, p1, p0, χ)(θ),is pre
isely equal to the right hand side of (3.9).16



4 Topologi
al derivativeThe aim of this se
tion is to evaluate the sensitivity of the 
ost fun
tion to theintrodu
tion of an in�nitesimal damaged region ωρ inside the healthy region
Ω1. In theory the shape of the smooth in
lusion 
an be arbitrary. However, forpra
ti
al and numeri
al purposes it will be assumed to be a ball in R

d.4.1 Main resultLet ω be a smooth open subset of R
d. Let ρ > 0 be a small positive parameterwhi
h is intended to go to zero. For a point x0 ∈ Ω1 we de�ne a res
aledin
lusion

ωρ = {x ∈ R
d :

x− x0

ρ
∈ ω}, (4.1)whi
h, for small enough ρ is stri
tly in
luded in Ω1 and dis
onne
ted from

Ω0. The total damaged zone is thus Ω0
ρ := Ω0 ∪ ωρ and the healthy phase is

Ω1
ρ := Ω \ Ω0

ρ. Let χρ, χ, χωρ
denote the 
hara
teristi
 fun
tions of Ω0

ρ,Ω
0 and

ωρ, respe
tively (verifying χρ = χ+ χ
ωρ
). In the sequel, in order to distinguishintegration in the variables x and y := x−x0

ρ , the symbol dV will sometimes berepla
ed by dV (y) or dV (η) (where η is a dummy variable similar to y).Let us re
all the notations for the non-perturbed domain Ω = Ω0 ∪ Ω1 (i.e.,without the damaged in
lusion). The 
ost fun
tion then writes as
J(χ) =

1

2

∫

Ω

Aχe(uχ) · e(uχ)dV +

∫

Ω

jχ(x, uχ)dV +

∫

∂Ω

hχ(x, uχ)dS, (4.2)where jχ = j0χ+j1(1−χ), hχ = h0χ+h1(1−χ), and the so-
alled �ba
kground�solution� uχ solves the state equation (3.2) on Ω = Ω0 ∪Ω1. As in the previousse
tion, we assume that the integrands j0, j1(x, u) and h0, h1(x, u) are twi
edi�erentiable fun
tions with respe
t to u, satisfying the growth 
onditions (3.4).Moreover, let us re
all that the so-
alled �ba
kground� dual solution pχ solvesthe adjoint problem (3.6) on Ω = Ω0 ∪ Ω1.On the perturbed domain Ω = Ω0
ρ ∪ Ω1

ρ, the 
ost fun
tion is
J(χρ) =

1

2

∫

Ω

Aχρ
e(uχρ

) · e(uχρ
)dV +

∫

Ω

jχρ
(x, uχρ

)dV +

∫

∂Ω

hχ(x, uχρ
)dS,be
ause χρ ≡ χ, and thus hχρ

≡ hχ, on ∂Ω (the in
lusion ωρ is away from theboundary), and where uχρ
solves







− div
(
Aχρ

e(uχρ
)
)

= f in Ω
uχρ

= uD on ΓD

Aχρ
e(uχρ

)n = g on ΓN

(4.3)with Aχρ
= A0χρ + A1(1 − χρ), the Lamé tensor of the material with thein
lusion. 17



De�nition 4.1 If the obje
tive fun
tion admits the following so-
alled topolog-i
al asymptoti
 expansion for small ρ > 0:
J(χρ) − J(χ) − ρdDJ(x0) = o(ρd),then the number DJ(x0) is 
alled the topologi
al derivative of J at x0 for thein
lusion shape ω.The main result of this se
tion is the following theorem.Theorem 4.1 The topologi
al derivative DJ(x0) of the general 
ost fun
tion(4.2), evaluated at x0 for an in
lusion shape ω, has the following expression:

DJ(x0) := Me(uχ)(x0) · e(pχ)(x0) − 1

2
Me(uχ)(x0) · e(uχ)(x0)

+ |ω|(j0 − j1)(x0, uχ(x0)), (4.4)where uχ and pχ are the solution to the primal and dual problems (3.2) and(3.6), respe
tively, and whereM is the so-
alled elasti
 moment tensor as de�nedbelow by (4.10). Moreover, M is positive if [A] is positive, and negative if [A]is negative.In the 
ase of our damage model, the 
ost fun
tion is (2.4), i.e., jχ(x, uχ) =
κχ − f · uχ and hχ(x, uχ) = −g · uχ. The problem is then known to be self-adjoint, i.e., the adjoint pχ is equal to 0. In su
h a 
ase Theorem 4.1 simpli�esas follows.Corollary 4.1 The topologi
al derivative of the 
ost fun
tion (2.4) at x0 for anin
lusion shape ω is

DJ(x0) := |ω|κ− 1

2
Me(uχ)(x0) · e(uχ)(x0), (4.5)where uχ is the ba
kground solution of (3.2) and M is the elasti
 moment tensorde�ned below by (4.10).In 2d, the elasti
 moment tensor M for a unit disk-in
lusion ω has been
omputed in [11℄. The topologi
al derivative (4.5) for a disk-in
lusion is:

DJ(x0) = πκ− 2π
µ1[µ](λ1 + 2µ1)

λ1(µ0 + µ1) + µ1(µ1 + 3µ0)
e(uχ) · e(uχ)(x0)

+
π

2

(

− (λ1 + 2µ1)[λ+ µ]

λ0 + µ0 + µ1
+ 2

µ1[µ](λ1 + 2µ1)

λ1(µ0 + µ1) + µ1(µ1 + 3µ0)

)

tre(uχ) tre(uχ)(x0).In3d, the elasti
 moment tensor M for a unit ball-in
lusion ω has also been
omputed (private 
ommuni
ation of H. Ammari). The topologi
al derivative(4.5) for a ball-in
lusion is:
DJ(x0) =

4π

3
κ− 2π

3b

(

2[µ]e(u) · e(u) +
[λ]b− 2[µ]a

(3a+ b)
tre(u) tre(u)

)

,18



with ν1 =
λ1

2(λ1 + µ1)
and

a := −5µ1ν1[λ] − λ1[µ]

15λ1µ1(1 − ν1)
, b :=

15µ1(1 − ν1) − 2[µ](4 − 5ν1)

15µ1(1 − ν1)
> 0.In order to prove Theorem 4.1 we need several te
hni
al tools detailed in thenext subse
tions.4.2 Elasti
 moment tensorThe goal of this subse
tion is to de�ne the elasti
 moment tensor as a 4th ordertensor expressing the leading behaviour in the far �eld of wξ, solution to the
anoni
al problem (4.9) of a unit damaged in
lusion ω in a uniform healthyba
kground.We introdu
e a mi
ros
opi
 variable y = x−x0

ρ in order to res
ale the problemwith a unit in
lusion ω. This res
aling, 
entered on the in
lusion, in the limit as
ρ goes to zero, transforms the elasti
ity problem posed on Ω in a problem posedon R

d. The symbols ey, divy et
. are used to spe
ify the derivation w.r.t. y.We begin by re
alling the Green tensor for linear elasti
ity in a uniformin�nite material.Notations 4.1 (Green tensor of elasti
ity) The fundamental tensor of lin-ear elasti
ity Γ := (Γij)1≤i,j≤d reads:
Γij(y) :=







− α

4π

δij
|y|d−2

− β

4π

yiyj

|y|d if d ≥ 3

α

2π
δij ln |y| − β

2π

yiyj

|y|2 if d = 2
, (4.6)where

α =
1

2

(
1

µ1
+

1

2µ1 + λ1

) and β =
1

2

(
1

µ1
− 1

2µ1 − λ1

)

.The 
omponent Γij represents the ith Cartesian 
omponent of the fundamentalsolution in the free-spa
e with a unit Dira
 load δ0 at the origin in the dire
tionof ve
tor −ej, that is,
− div

(

A1ey(

d∑

i=1

Γijei)

)

= −ejδ0, (4.7)where ek denotes the kth element of the 
anoni
al basis of R
d.We introdu
e the following Hilbert spa
e (so-
alled Deny-Lions or Beppo-Levi spa
e)

W := {w ∈ H1
loc(R

d; Rd) su
h that e(w) ∈ L2(Rd; Rd×d)}, (4.8)19



equipped with the s
alar produ
t of L2(Rd) for the deformation tensor e(w),whi
h is well adapted to elasti
ity problems posed in the whole spa
e R
d. Forany symmetri
 matrix ξ we introdu
e wξ(y), solution to the 
anoni
al problem

{
− divy

(
Aχω

ey(wξ)
)

= − divy (χ
ω
[A]ξ) in R

d,
wξ ∈ W,

(4.9)whi
h is easily seen to be well-posed. The fa
t that wξ belongs to W impliesit has some de
ay properties at in�nity (by embedding of W in some Lebesguespa
e, see [26℄, [2℄). We shall not dwell on them sin
e Lemma 4.1 below improvethese de
ay properties.Lemma 4.1 (Far �eld expression) The solution wξ of the 
anoni
al problem(4.9) has the following pointwise behavior at in�nity:
wξ = −∂pΓq(y)Mpqklξkl + O(|y|−d) as |y| → ∞, (4.10)where Γq := Γkqek is the fundamental Green's tensor of linear elasti
ity of thehealthy material, and M is the 4th order elasti
 moment tensor with respe
t toin
lusion ω, independent of ξ, de�ned by

M = [A] (N + |ω|I4) (4.11)with a 4th order tensor N de�ned by
Nξ :=

∫

ω

ey(wξ)dV (y). (4.12)Remark 4.1 Lemma 4.1 tells us that, be
ause the right hand side in (4.9) haszero average, wξ behaves like O(|y|−d+1) at in�nity. The interest of the 
anon-i
al problem for us is that, by denoting ξ0 = e(uχ)(x0), we shall prove in somesense
uχρ

(x) ≈ uχ(x) + ρwξ0(
x− x0

ρ
).Remark 4.2 The elasti
 moment tensor M as de�ned by (4.11) is exa
tly thesame tensor as introdu
ed in [9℄ and [11℄ (by means of layer potential te
hniques)or in [22℄ (by means of a variational approa
h in the 
ondu
tivity setting).Proof of Lemma 4.1. Let us 
onsider an in
lusion ω lo
ated in the free-spa
e R

d and introdu
e a smooth open set U stri
tly 
ontaining ω and a 
ut-o�fun
tion ϕ ∈ C∞(Rd) su
h that ϕ ≡ 0 on ω, ϕ ≡ 1 on R
d \ U . We de�ne afun
tion f(y) by

f := − divy

(
Aχω

e(ϕwξ)
)
, (4.13)whi
h has 
ompa
t support in U be
ause of (4.9) and the fa
t that ϕ ≡ 1 on

R
d \ U . Sin
e ϕ ≡ 0 on ω we dedu
e that

{
− divy

(
A1ey(ϕwξ)

)
= f in R

d,
ϕwξ ∈W,

. (4.14)20



We 
an thus use the Green tensor to 
ompute the kth 
omponent of the solutionof (4.14)
ϕ(y)ek · wξ(y) = −

∫

Rd

Γkq(y − η)fq(η)dV (η). (4.15)It turns out that
∫

Rd

f(y)dV (y) =

∫

U

f(y)dV (y) = −
∫

∂U

Aχω
e(ϕwξ)ndS(y) =

= −
∫

U

div
(
Aχω

e(wξ)
)
dV (y)

(4.9)
= −

∫

U

div(χ
ω
[A]ξ)dV (y)

= −
∫

∂U

χ
ω
[A]ξn dS(y) = 0with n denoting the usual normal unit ve
tor to ∂U . By Taylor expansion ofthe Green fun
tion Γkq(y− η) in terms of Γkq(y) and its derivatives, taking intoa

ount that f has zero average and 
ompa
t support in U , and sin
e ϕ ≡ 1away from U , (4.15) yields that

ek · wξ(y) = ∂pΓkq(y)

∫

Rd

ηpfq(η)η + O(|y|−d). (4.16)Let us now evaluate ∫
Rd ηpfq(η)dV (η) that for the sake of 
al
ulus is rewrittenas ∫

Rd B
pqη · f(η)dV (η), where Bpq := eq ⊗ ep is a se
ond order tensor. By(4.13) and sin
e A1 = Aχω

on ∂U ,
∫

U

Bpqη · f(η)dV (η) =

∫

U

Aχω
e(ϕwξ) · e(Bpqη)dV (η) −

∫

∂U

Aχω
e(ϕwξ)n · BpqηdS(η)

=

∫

U

A1e(ϕwξ) · e(Bpqη)dV (η) −
∫

∂U

A1e(ϕwξ)n · BpqηdS(η)

= −
∫

U

div
(
A1e(Bpqη)

)

︸ ︷︷ ︸

=0

ϕwξdV (η) +

∫

∂U

A1e(Bpqη)n · ϕwξdS(η)

−
∫

∂U

A1e(ϕwξ)n · BpqηdS(η)

=

∫

∂U

(
Aχω

e(Bpqη)n · wξ −Aχω
e(wξ)n ·Bpqη

)
dS(η)

=

∫

U

div
(
Aχω

e(Bpqη)
)

︸ ︷︷ ︸

=div(−χω [A]Bpq)

·wξdV (η) −
∫

U

div
(
Aχω

e(wξ)
)

︸ ︷︷ ︸

= div(χω [A]ξ)

·BpqηdV (η)

=

∫

ω

[A]Bpq · e(wξ)dV (η) +

∫

ω

[A]ξ · BpqdV (η)

= [A]Bpq ·
∫

ω

(e(wξ) + ξ) dV (η). (4.17)Introdu
ing Mijkl de�ned as
Mijkl := [A]ijmn (N + |ω|I4)mnkl (4.18)21



we obtain (4.10). �Lemma 4.2 (Symmetry and signature of M) The elasti
 moment tensor
M , de�ned by (4.11), is symmetri
 and positive if A0 < A1 while negative if
A0 > A1.Proof of Lemma 4.2. Let us multiply (4.9) by the solution wξ′ for anothersymmetri
 tensor ξ′, integrate by parts and observe that, by the symmetryproperty of the left hand side, we have

∫

Rd

Aχω
e(wξ) · e(wξ′)dV = [A]ξ ·Nξ′ = [A]ξ′ ·Nξ

= [A]N · ξ ⊗ ξ′ = [A]N · ξ′ ⊗ ξ, (4.19)the symmetry of [A]N and hen
e of M immediately follows. Take ξ = ξ′ in(4.19), then [A]N is 
learly positive. Therefore if [A] > 0, then M is obviouslypositive. Assume now that [A] < 0. The solution wξ of (4.9) is the minimizerof the following energy
I(w) =

1

2

∫

Rd

Aχω
e(w) · e(w)dV −

∫

Rd

χ
ω
[A]ξ · e(w)dVand its minimal value is, by (4.12), I(wξ) = − 1

2 [A]Nξ · ξ. On the other hand assoon as we rewrite
Aχω

e(w) · e(w) = −χ
ω
[A]e(w) · e(w) +A1e(w) · e(w)we obtain the lower bound I−(w):

I(w) ≥ I−(w) := −1

2

∫

Rd

χ
ω
[A]e(w) · e(w)dV −

∫

Rd

χ
ω
[A]ξ · e(w)dV.It is easily seen that e(w) = −ξ is a 
riti
al point in ω of the above lower bound,whi
h, by the negative 
hara
ter of [A], turns out to be the unique minimizer,thereby providing the minimal value 1

2 |ω|[A]ξ · ξ. Thus we dedu
e that
|ω|[A]ξ · ξ ≤ −[A]Nξ · ξwhi
h implies the desired result M < 0. �4.3 Asymptoti
 analysis in the perturbed domainThis subse
tion is aimed at 
omparing the solutions of elasti
ity problems in theperturbed and non-perturbed domains. We de�ne the di�eren
e v := uχρ

− uχbetween the perturbed (uχρ
) and the ba
kground (uχ) displa
ement �elds. Theequation satis�ed by v is







− div
(
Aχρ

e(v)
)

= − div
(

χ
ωρ

[A]e(uχ)
) in Ω

v = 0 on ΓD

Aχρ
e(v)n = 0 on ΓN

. (4.20)22



Let us introdu
e a tensor ξ0 := e(uχ)(x0) and let wξ0 (y) be the solution of (4.9)for ξ = ξ0. We de�ne a res
aled fun
tion wρ
ξ0

(x) := ρwξ0(
x−x0

ρ ) whi
h is asolution to
− div

(

Aχρ
e(wρ

ξ0
)
)

= − div
(

[A]χ
ωρ
e(uχ)(x0)

) in Ω,satisfying non-homogeneous, but small, boundary 
onditions. This fun
tion wρ
ξ0is the leading term of a so-
alled inner asymptoti
 expansion for v as stated bythe following Lemma.Lemma 4.3 For any 
ut-o� fun
tion θ ∈ C∞

c (Ω) su
h that θ ≡ 1 in a neigh-borhood U of x0, there exists a 
onstant C > 0 independent of ρ su
h that wehave
v = θwρ

ξ0
+ δ, (4.21)with

||δ||H1(Ω) ≤ Cρd/2+1. (4.22)Moreover
||wρ

ξ0
||L2(Ω) ≤ C

{
ρ2
√

log ρ if d = 2

ρd/2+1 if d ≥ 3
and ||e(wρ

ξ0
)||L2(Ω) ≤ Cρd/2.(4.23)Remark 4.3 In the vi
inity of the in
lusion ωρ, we have θ ≡ 1 for su�
ientlysmall ρ, and (4.21) 
an be restated as

v(x) = ρwξ0

(
x− x0

ρ

)

+ oH1(ρ),whi
h is an inner asymptoti
 expansion for v, solution of (4.20). The L2-normsof δ and wρ
ξ0

are of the same order (at least for d ≥ 3) but the L2-norm of ∇δis smaller by a fa
tor ρ than that of ∇wρ
ξ0
, whi
h explains the o(ρ) remainderin the above approximation of v.Proof of Lemma 4.3. The estimates (4.23) on wρ

ξ0
are simply obtained byres
aling and by the de
ay properties of wξ0 . We obtain

||e(wρ
ξ0

)||2L2(Ω) =

∫

Ω

|ey(wξ0)(
x

ρ
)|2dV = ρd

∫

Ω/ρ

|ey(wξ0)(y)|2dV (y) ≤ Cρd.Similarly
||wρ

ξ0
||2L2(Ω) = ρ2

∫

Ω

|wξ0 (
x

ρ
)|2dV = ρd+2

∫

Ω/ρ

|wξ0(y)|2dV (y).

23



However, Lemma 4.1 tells us that the behaviour at in�nity of wξ0 is su
h thatit does not belong to L2(Rd) but is of the order of O(|y|−d+1). Therefore
||wρ

ξ0
||2L2(Ω) ≤ Cρd+2

∫

Ω/ρ

1

1 + |y|2(d−1)
dV (y) ≤ Cρd+2

∫ 1/ρ

1

dr

rd−1

≤ C

{
ρ4| log ρ| if d = 2
ρd+2 if d ≥ 3

(4.24)whi
h is the desired result. Furthermore, sin
e wξ0 = O(|y|−d+1) and ∇wξ0 =
O(|y|−d) at in�nity, we also dedu
e by res
aling that

‖wρ
ξ0
‖L∞(Ω\U) ≤ Cρd and ‖∇wρ

ξ0
‖L∞(Ω\U) ≤ Cρd. (4.25)We now write the equation satis�ed by δ :







− div
(
Aχρ

e(δ)
)

= − div
(

[A]χ
ωρ

(e(uχ)(x) − e(uχ)(x0))
)

+ g in Ω

δ = 0 on ΓD

Aχρ
e(δ)n = 0 on ΓN

,(4.26)where
g = div

[

Aχρ
e(θwρ

ξ0
)
]

− θ div
[

χ
ωρ

[A]e(uχ)(x0)
]

. (4.27)Let us multiply (4.26) and (4.27) by δ and integrate by parts, in su
h a waythat
C||e(δ)||2L2(Ω) ≤

∣
∣
∣
∣

∫

Ω

Aχρ
e(δ) · e(δ)dV

∣
∣
∣
∣

≤
∫

ωρ

∣
∣
∣[A] (e(uχ)(x) − e(uχ)(x0)) · e(δ)

∣
∣
∣dV

+

∣
∣
∣
∣

∫

Ω

g · δdV
∣
∣
∣
∣
. (4.28)for C > 0. Let us remark that, away from the interfa
e between the two phases,

uχ is of 
lass C2,α for some α > 0 (sin
e we assume the for
es to be of 
lass C0,α).Furthermore, the in
lusion ωρ is smooth, so the C2,α regularity of uχ holds upto the interfa
e in the in
lusion, and hen
e
|e(uχ)(x) − e(uχ)(x0)| ≤ Cρ in ωρ, (4.29)whi
h implies

∫

ωρ

∣
∣
∣[A] (e(uχ)(x) − e(uχ)(x0)) · e(δ)

∣
∣
∣dV ≤ Cρd/2+1||e(δ)||L2(Ω). (4.30)Moreover by (4.27), it results that

∫

Ω

g · δdV = −
∫

Ω

Aχρ
e(θwρ

ξ0
) · e(δ)dV +

∫

Ω

χ
ωρ

[A]e(uχ)(x0) · e(θδ)dV

= −
∫

Ω

Aχρ
e(θwρ

ξ0
) · e(δ)dV +

∫

Ω

Aχρ
e(wρ

ξ0
) · e(θδ)dV

=

∫

Ω

Aχρ

(

e(wρ
ξ0

) · (δ ⊗∇θ)s − e(δ) · (wρ
ξ0

⊗∇θ)s
)

dV, (4.31)24



where the sups
ript �s� stands for the symmetri
 part. Hen
e, sin
e ∇θ vanisheson a neighborhoodU of ωρ, by Korn inequality and by estimates (4.25), it followsthat
∣
∣
∣
∣

∫

Ω

g · δdV
∣
∣
∣
∣

≤ C
(

||wρ
ξ0
||L∞(Ω\U) + ||e(wρ

ξ0
)||L∞(Ω\U)

)

||∇θ||L2(Ω\U)||e(δ)||L2(Ω)

≤ Cρd||e(δ)||L2(Ω). (4.32)Therefore, by (4.28)-(4.32) and sin
e d/2+ 1 ≤ d for d ≥ 2, the following globalestimate holds
||e(δ)||L2(Ω) ≤ C

(

ρd + ρd/2+1
)

≤ Cρd/2+1, (4.33)
ompleting the proof by Korn and Poin
aré inequalities. �Similarly, we shall need a 
omparison between the perturbed and ba
kgroundadjoints. However, the adjoint in the perturbed domain (with an in
lusion) isnot the standard one. Rather, we introdu
e a slightly di�erent adjoint problem






− div
(
Aχρ

e(p̃χρ
)
)

= fχ + j′χ(x, uχ) in Ω
p̃χρ

= 0 on ΓD

Aχρ
e(p̃χρ

)n = gχ + h′χ(x, uχ) on ΓN

(4.34)whose solution p̃χρ
depends on the in
lusion sin
e the Lamé tensor Aχρ


orre-sponds to the perturbed domain Ω = Ω0
ρ ∪ Ω1

ρ. Nevertheless, p̃χρ
is di�erentfrom pχρ

, de�ned by (3.6) with χρ instead of χ, be
ause the right hand side of(4.34) depends only on χ and not on χρ.We de�ne the di�eren
e between the above perturbed adjoint and the "true"ba
kground adjoint, q := p̃χρ
− pχ, whi
h is the solution of







− div
(
Aχρ

e(q)
)

= − div
(

χ
ωρ

[A]e(pχ)
) in Ω

q = 0 on ΓD

Aχρ
e(q)n = 0 on ΓN

. (4.35)We introdu
e the tensor ξ′0 := e(pχ)(x0) and the res
aled fun
tion wρ
ξ′
0
(x) :=

ρwξ′
0
(x−x0

ρ ) whi
h is the leading term of an inner asymptoti
 expansion for q.Lemma 4.3 
an then be generalized as follows.Lemma 4.4 For any 
ut-o� fun
tion θ ∈ C∞
c (Ω) su
h that θ ≡ 1 in a neigh-borhood U of x0, there exists a 
onstant C > 0 independent of ρ su
h that wehave

q = θwρ
ξ′
0

+ δ,with
||δ||H1(Ω) ≤ Cρ1+d/2. (4.36)Moreover

||wρ
ξ′
0
||L2(Ω) ≤ C

{
ρ2
√

log ρ if d = 2
ρd/2+1 if d ≥ 3

and ||e(wρ
ξ′
0
)||L2(Ω) ≤ Cρd/2.25



4.4 Proof of Theorem 4.1We 
ombine the ingredients of the two previous subse
tions to prove Theorem4.1 on the topologi
al derivative. Let us re
all that we assume the integrandsof the obje
tive fun
tion, j0, j1(x, u) and h0, h1(x, u), to be C2 fun
tions withrespe
t to u with adequate growth 
onditions.Re
alling that hχρ
≡ hχ on ∂Ω be
ause the in
lusion does not tou
h theboundary, we write a se
ond-order Taylor expansion of the obje
tive fun
tion

J(χρ) =
1

2

∫

Ω

Aχe(uχ + v) · e(uχ + v)dV − 1

2

∫

ωρ

[A]e(uχ + v) · e(uχ + v)dV

+

∫

Ω

jχ(uχ + v)dV +

∫

∂Ω

hχ(uχ + v)dS +

∫

ωρ

(j0 − j1)(uχ + v)dV

= J(χ) +

∫

Ω

Aχe(uχ) · e(v)dV +
1

2

∫

Ω

Aχe(v) · e(v)dV

− 1

2

∫

ωρ

[A]
(

e(uχ) · e(uχ) + 2e(uχ) · e(v)
)

dV − 1

2

∫

ωρ

[A]e(v) · e(v)dV

+

∫

Ω

j′χ(x, uχ) · vdV +

∫

∂Ω

h′χ(x, uχ) · vdS +

∫

ωρ

(j0 − j1)(uχ)dV

+
1

2

∫

Ω

j′′χ(uχ)v · vdV +
1

2

∫

∂Ω

h′′χ(uχ)v · vdS

+

∫

ωρ

(j0 − j1)′(uχ) · vdV +
1

2

∫

ωρ

(j0 − j1)′′(uχ)v · vdV, (4.37)where uχ = uχ + ζv with 0 < ζ < 1. >From assumption (3.4) we know that j′′χand h′′χ are bounded on Ω and thus
∣
∣
∣
∣

∫

Ω

j′′χ(uχ)v · v dV
∣
∣
∣
∣
≤ C‖v‖2

L2(Ω) ≤ o(ρd)and, sin
e v = δ on ∂Ω,
∣
∣
∣
∣

∫

∂Ω

h′′χ(uχ)v · vdS
∣
∣
∣
∣
=

∣
∣
∣
∣

∫

∂Ω

h′′χ(uχ)δ · δdS
∣
∣
∣
∣
≤ C‖δ‖2

H1(Ω) ≤ o(ρd)by Lemma 4.3. A similar estimate holds for the last term of (4.37). The penul-timate term is bounded by
∣
∣
∣
∣
∣

∫

ωρ

(j0 − j1)′(uχ) · vdV
∣
∣
∣
∣
∣
≤ Cρd/2

(
‖uχ‖L∞(ωρ) + 1

)
‖v‖L2(Ω) ≤ o(ρd)be
ause the ba
kground solution uχ is smooth on ωρ (it does not "see" thein
lusion). Thus, the two last lines of (4.37) are small of the order of o(ρd).All other terms in (4.37) 
ontribute to the �nal result, formula (4.4). First, byres
aling and 
ontinuity of uχ on ωρ, we have

∫

ωρ

(j0 − j1)(uχ)dV = ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd).26



Similarly, by 
ontinuity of e(uχ), using the notation ξ0 = e(uχ)(x0), and sin
e
v = θwρ

ξ0
+ δ with θ ≡ 1 in ωρ, we dedu
e

1

2

∫

ωρ

[A]
(

e(uχ) · e(uχ) + 2e(uχ) · e(v)
)

d =
ρd

2

∫

ω

[A]
(

ξ0 · ξ0 + 2ξ0 · ey(wξ0)
)

dV (y)

+

∫

ωρ

[A]e(uχ) · e(δ)dV + o(ρd).Using again the 
ontinuity of e(uχ) in ωρ and (4.36), we bound the last term
∣
∣
∣
∣
∣

∫

ωρ

[A]e(uχ) · e(δ)dV
∣
∣
∣
∣
∣
≤ Cρd+1.Se
ond, from the variational formulation of (4.20) we get

1

2

∫

Ω

Aχe(v) · e(v)dV − 1

2

∫

ωρ

[A]e(uχ(v) · e(v)dV =
1

2

∫

Ω

Aχρ
e(v) · e(v)dV

=
1

2

∫

ωρ

[A]e(uχ) · e(v)dV =
ρd

2

∫

ω

[A]ξ0 · ey(wξ0)dV (y) + o(ρd),where we have again repla
ed v by wρ
ξ0

+ δ in ωρ and negle
ted the δ term.Third, from (3.2) we have
∫

Ω

Aχe(uχ) · e(v) dV =

∫

Ω

fχ · v dV +

∫

∂Ω

gχ · vdS.Thus, the Taylor expansion (4.37) of the obje
tive fun
tion is rewritten
J(χρ) = J(χ) +

∫

Ω

(

fχ + j′χ(x, uχ)
)

· v dV +

∫

∂Ω

(

gχ + h′χ(x, uχ)
)

· vdS

− ρd

2

∫

ω

[A]
(

ξ0 · ξ0 + ξ0 · ey(wξ0 )
)

dV (y)

+ ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd). (4.38)By Lemma 4.1 we know that
−ρ

d

2

∫

ω

[A]
(

ξ0 · ξ0 + ξ0 · ey(wξ0)
)

dV (y) = −ρ
d

2
Mξ0 · ξ0.It remains to show that the two �rst integrals in the right hand side of (4.38)are of order O(ρd) and �nd formula (4.4) for the topologi
al derivative. To doso, we use the adjoint problems (4.34) and (4.35) as follows. Multiplying (4.34)

27



by v and (4.20) by p̃χρ
we obtain

∫

Ω

(

fχ + j′χ(x, uχ)
)

· vdV +

∫

∂Ω

(

gχ + h′χ(x, uχ)
)

· vdS =

∫

Ω

Aχρ
e(p̃χρ

) · e(v)dV

=

∫

ωρ

[A]e(uχ) · e(p̃χρ
)dV =

∫

ωρ

[A]e(uχ) · e(pχ + q)dV

=

∫

ωρ

[A]e(uχ) · e(pχ + θwρ
ξ′
0

+ δ)dV

= ρd

∫

ω

[A]ξ0 ·
(
ξ′0 + ey(wξ′

0
)
)
dV (y) + o(ρd)

= ρdMξ0 · ξ′0 + o(ρd),by appli
ation of Lemma 4.4, res
aling, using the 
ontinuity of e(uχ) and e(pχ)in ωρ and thanks to the formula forM in Lemma 4.1 (re
all that ξ′0 = e(pχ)(x0)).Eventually we have proved
J(χρ) = J(χ) − ρd

2
Mξ0 · ξ0 + ρdMξ0 · ξ′0 + ρd|ω|(j0 − j1)(uχ(x0)) + o(ρd),whi
h is pre
isely formula (4.4). This a
hieves the proof of Theorem 4.1 sin
ethe properties of M have been proved in Lemma 4.2.5 Computational algorithmThe main task is to 
ompute, for ea
h dis
rete time ti, i ≥ 0, a minimizer χiof the Fran
fort-Marigo model (2.8). As we already said, we are interested inlo
al minima. Our notion of lo
al minima is numeri
al in essen
e, that is, weminimize (2.8) with a gradient des
ent algorithm in the level set framework. Aminima is thus lo
al in the sense of perturbations of the lo
ation of the interfa
e

Σ. Our algorithm is made of two nested loops:(i) an outer loop 
orresponding to the in
reasing sequen
e of dis
rete times
ti, i ≥ 0,(ii) an inner loop of gradient iterations for the minimization of the fun
tional(2.8) at ea
h �xed time step ti.The irreversibility 
onstraint (2.7) on the damaged zone is taken into a

ountin the outer loop (i), whereas the inner loop (ii) is purely numeri
al and is notsubje
t to this irreversibility 
onstraint between two su

essive iterates of (ii).The inner loop is performed with the level set method of Osher and Sethian[42℄ that we now brie�y des
ribe (it is very similar with its appli
ation in the
ontext of shape optimization [5℄, [51℄).In the �xed bounded domain Ω, uniformly meshed on
e and for all, weparametrize the damaged zone Ω0 by means of a level set fun
tion ψ su
h that







ψ(x) = 0 ⇔ x ∈ Σ,
ψ(x) < 0 ⇔ x ∈ Ω0,
ψ(x) > 0 ⇔ x ∈ Ω1.28



The normal n to the damaged region Ω0 is re
overed as ∇ψ/|∇ψ| and the mean
urvature H is given by the divergen
e of the normal divn. These quantities areevaluated by �nite di�eren
es sin
e our mesh is uniformly re
tangular. Although
n andH are theoreti
ally de�ned only on Σ, the level-set method allows to de�neeasily their extension in the whole domain Ω.Following the minimization pro
ess, the damaged zone is going to evolvea

ording to a �
titious time s whi
h 
orresponds to des
ent stepping and hasnothing to do with the "real" time ti in the outer loop (i). As is well-known, ifthe shape is moving with a normal velo
ity V , then the evolution of the level-setfun
tion is governed by a simple Hamilton-Ja
obi equation [41℄, [47℄,

∂ψ

∂s
+ V|∇ψ| = 0, (5.1)whi
h is posed in the whole body Ω, and not only on the interfa
e Σ, whenthe velo
ity V is known everywhere. We now explain how we derive V for ourspe
i�
 problem.For the minimization of (2.8) we use the shape derivative given by (3.9),

J ′(χ)(θ) =

∫

Σ

D θ · n dS, (5.2)where the integrandD(x) ∈ L2(Σ) is given by Theorem 3.1 and θ ∈ W 1,∞(Ω; Rd)in any admissible dire
tion of derivation. Sin
e only the normal 
omponent of
θ plays a role in (5.2), we always look for a normal ve
tor �eld, i.e., we restri
tour attention to

θ = v n with a s
alar �eld v ∈ W 1,∞(Ω). (5.3)The velo
ity V is going to be 
hosen as an �optimal� dire
tion of derivation, v,su
h that
J ′(χ)(V n) =

∫

Σ

DV dS ≤ 0. (5.4)The simplest 
hoi
e V = −D, whi
h enfor
es (5.4) and is 
ommonly used instru
tural optimization [5℄, is not satisfa
tory in the present situation, sin
e Dis de�ned as a jump on Σ only, without natural extension over Ω. We thereforesuggest another 
hoi
e based on the identi�
ation of the duality produ
t between
J ′(χ) and v (re
alling that θ = v n) with the usual s
alar produ
t in H1(Ω). Inother words we represent J ′(χ) by a s
alar �eld (−V) ∈ H1(Ω) su
h that, forany test fun
tion v,

J ′(χ)(v n) = −
∫

Ω

(∇V · ∇v + Vv) dV. (5.5)Combining (5.2) and (5.5), and requiring the des
ent 
ondition (5.4), we 
hoosethe velo
ity V in (5.1) as the unique solution in H1(Ω) of the variational for-mulation
∫

Ω

(∇V · ∇v + Vv) dV = −
∫

Σ

D v dS ∀ v ∈ H1(Ω). (5.6)29



Solving (5.6) to 
ompute a shape derivative is a usual tri
k in shape optimizationfor regularizing derivatives [3℄, [44℄. However, (5.6) is used here mostly forextending the �natural� velo
ity D away from the interfa
e Σ. In numeri
alpra
ti
e we add a small positive 
oe�
ient (linked to the mesh size) in front ofthe gradient term in (5.6) in order to limit the regularization and the spreadingof the velo
ity around the interfa
e.In numeri
al pra
ti
e, as explained in [5℄, the surfa
e integral in the righthand side of (5.6) is written as a volume integral
∫

Σ

D v dS =

∫

Ω

δΣ D v dV, (5.7)where the Dira
 mass fun
tion δΣ is approximated by
δǫ
Σ =

1

2
|∇(sǫ(ψ))|with the following approximation of the sign fun
tion

sǫ(x) =
ψ(x)

√

ψ(x)2 + ǫ2
,where ǫ > 0 is a small parameter 
hosen in order to spread the integration overa few mesh 
ells around the interfa
e. The integrand D, being a
tually a jump

[E ] of a dis
ontinuous quantity E (see formulaes (3.11) or (3.12)), requires alsosome spe
ial 
are. In (5.7) we repla
e D = [E ] by
Dapprox = [E ]approx = 2 ((1 − χ)E − χE)where χ is the 
hara
teristi
 fun
tion of the damaged phase (numeri
ally it isalways equal to 0 or 1 ex
ept in those 
ells 
ut by the interfa
e where it isinterpolated by the lo
al proportion of damaged phase in the 
ell). The fa
tor

2 in the above formula takes into a

ount the fa
t that
∫

Ω

δǫ
ΣχdV ≈ 1

2

∫

Σ

dS.In our numeri
al experiments we use formula (3.11) and not (3.10) be
ause thelatter one exhibits singular jumps when the damaged phase is very weak (whi
his the 
ase for our simulations of 
ra
k propagation). Of 
ourse, in the 
ase of adegenerate (zero) damaged phase we 
an use the limit formula given by Remark3.2 whi
h are of 
ourse mu
h simpler (we did so in our previous publi
ation [7℄).Our proposed algorithm for the inner loop (ii) is an iterative method, stru
-tured as follows:1. Initialization of the level set fun
tion ψ0 as the signed distan
e to theprevious damaged interfa
e Σi 
orresponding to the 
hara
teristi
 fun
tion
χ0 ≡ χi.2. Iteration until 
onvergen
e, for k ≥ 0:30



(a) Computation of the state uk by solving a problem of linear elasti
itywith 
oe�
ients Aχk = (1 − χk)A1 + χkA0.(b) Deformation of the interfa
e by solving the transport Hamilton-Ja
obiequation (5.1). The new interfa
e Σk+1 is 
hara
terized by the 
har-a
teristi
 fun
tion χk+1 or the level-set fun
tion ψk+1 solution of(5.1) after a pseudo-time step ∆sk starting from the initial 
ondition
ψk(x) with velo
ity Vk 
omputed through (5.6) in terms of uk. Thepseudo-time step ∆sk is 
hosen su
h that J(χk+1) ≤ J(χk).(
) Irreversibility 
onstraint: we repla
e χk+1 by max(χk+1, χ0) where
χ0 ≡ χi 
orresponds to the damaged zone at the previous iterationof the outer loop (i).At ea
h iteration of above the inner loop, for stability reasons, we also reini-tialize the level-set fun
tion ψ [41℄, [47℄. This is 
ru
ial be
ause the integrand Dof the shape derivative involves normal and tangential 
omponents of stress orstrain tensors, whi
h requires a pre
ise evaluation of the normal n by formula

∇ψ/|∇ψ|. A
tually it turns out that this reinitialization step must be mu
hmore pre
ise in the present 
ontext than for shape optimization [5℄. Indeed,a poor reinitialization 
an in�uen
e the propagation of the damage zone. Wetherefore use a tri
k suggested in [46℄ for an in
reased a

ura
y of the se
ond-order reinitialization pro
ess. The Hamilton-Ja
obi equation (5.1) is solved byan expli
it se
ond order upwind s
heme on a Cartesian grid. The boundary
onditions for ψ are of Neumann type. Sin
e this s
heme is expli
it in time, itstime step is given by a CFL 
ondition. In numeri
al pra
ti
e we often take thedes
ent step ∆sk of the order of the Hamilton-Ja
obi time step whi
h stabilizesthe damage evolution.6 Simulation resultsOtherwise expli
itly mentioned, all our numeri
al experiments are performedwith a healthy material having Young modulus E1 = 1000 and Poisson ratio
ν1 = 0.3 (white material on the pi
tures). The damaged phase (bla
k materialon the pi
tures) has always Poisson ratio ν0 = 0.3 (the fa
t that ν0 = ν1does not matter) but has di�erent Young modulus in di�erent pla
es. Morepre
isely, in Subse
tion 6.1 we 
onsider a moderately weak damaged phase with
E0 = 500, while in the next subse
tions the damage phase is assumed to bealmost degenerate, i.e. E0 = 10−6: this last 
ase 
orresponds to a limit whereour model behaves almost like a brittle fra
ture model. A
tually some modelsof fra
ture me
hani
s [30℄ are approximated by Γ-
onvergen
e te
hniques [18℄,[19℄, whi
h is similar in spirit to a damage model. Therefore it is not surprisingthat our damage model 
an predi
t 
ra
k propagation.In the sequel we 
all 
riti
al load the value of the applied displa
ement forwhi
h the damage region has 
ompletely 
rossed the 
omputational domain(meaning failure of the stru
ture), and initiation load the �rst value for whi
hthe damage zone departs from its initialization. All other intermediate load31



values are 
alled sub
riti
al, while values above the 
riti
al one are 
alled super-
riti
al.In order to validate our method, two type of numeri
al experiments aredone. On the one hand, for simple problems we 
he
k 
onvergen
e under variousre�nements of the mesh size, of the time step, et
. On the other hand, we
ompare our results with a variety of existing ben
hmarks tested by laboratoryexperiments or other numeri
al methods.6.1 2d damage simulation

(a) Initial load (b) Criti
al load (
) Super
riti
al loadFigure 1: Mode I damage for the 320×320mesh with 100 time steps. Initial 
on-�guration with an imposed displa
ement of 0.02 (a) 
riti
al load at an imposeddispla
ement of 0.006 (b) and super
riti
al load with an imposed displa
ementof 0.072 (
).The numeri
al experiments with a moderately weak damaged phase, E0 =
500, are easier to perform that the ones with a degenerate phase but their resultsare me
hani
ally less interesting. Therefore we 
ontent ourselves with a singleexperiment, namely a mode I tra
tion (Fig. 1) in a square box of size 1 with aGri�th's energy release rate κ = 1. The imposed verti
al displa
ement at thebottom is in
reased from 0.02 to 0.08 on a given time interval and shown asabs
issa in the �gures. In order to study 
onvergen
e under mesh re�nement,four di�erent meshes are used: 280 × 280 (
oarse), 320 × 320 (intermediate 1),
400 × 400 (intermediate 2), 452 × 452 (�ne). Similarly, for 
onvergen
e undertime step re�nement, we divide the time interval su

essively in 100, 200 and
400 time steps. Fig. 1 displays the result for the 320 × 320 mesh with 100time steps. There are no sub
riti
al loads: the initiation load 
oin
ides with the
riti
al load whi
h means that, not only the appearan
e of damage is sudden,but the stru
ture 
ompletely fails in just one load displa
ement in
rement. Fig.2 shows that the results are 
onvergent under mesh re�nements. The 
urves32



are almost identi
al and the position of the 
riti
al load is 
learly 
onvergingas the mesh is re�ned. Fig. 3 is 
on
erned with 
onvergen
e under time-stepre�nement. In parti
ular, the 
riti
al loads for the three time re�nements showvery good agreement, meaning that our quasi-stati
 numeri
al model 
onvergesto a time-
ontinuous model as the time step tends to zero.
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(
) Cost fun
tion.Figure 2: Mode I damage experiment: variations of various energies as fun
tionsof the imposed displa
ement. Gri�th energy (a), elasti
 energy (b) and 
ostfun
tion (
) for four di�erent mesh re�nements with 100 time steps.The 
ost fun
tion (2.4), whi
h is minimized at ea
h time step, is the sumof the Gri�th or damage energy and of the elasti
 energy. The 
ost fun
tion,displayed on Fig. 2
, is 
ontinuous and monotone in
reasing with respe
t totime. The damage energy, displayed on Fig. 2a, is dis
ontinuous and in
reasesabruptly at the 
riti
al load. Similarly, the elasti
 energy, displayed on Fig. 2b,is dis
ontinuous de
reasing at the 
riti
al load, whi
h 
orresponds to the releaseof energy produ
ed by damage.Eventually, we have 
he
ked the following formula for the dissipation of33
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Figure 3: Mode I damage experiment: 
ost fun
tion with respe
t to the imposeddispla
ement for the 320 × 320 mesh and for 100, 200 and 400 time steps.energy (see Theorem 4.1 in [28℄)
min
u,χ

J (u, χ)(T ) − min
u,χ

J (u, χ)(0) =

∫ T

0

∫

ΓD

(σn) · duD

dt
(t) dS dt (6.1)where JÂ is de�ned by (2.3) and uD is the applied displa
ement. In the absen
eof any other applied load, formula (6.1) expresses the 
onservation of totalenergy. If we plot the right hand side of (6.1), we obtain exa
tly the 
ostfun
tion on the left hand side with a numeri
al pre
ision of the order of 10−6.6.2 2d fra
ture with mode I loadingWe now swit
h to a very weak damage phase, E0 = 10−6, in order to mimi
 
ra
kpropagation. Here the Gri�th's energy release rate κ = 3.5. We perform thesame mode I tra
tion experiment as in Subse
tion 6.1 with the same parametervalues otherwise expli
itly spe
i�ed. For a mesh of size 320×320, with an initial
ra
k having a width of 8 mesh 
ells, a height of 16, and for 100 time steps, whenthe imposed verti
al displa
ement at the bottom is in
reased from 0.005 to 0.05,we obtain a 
ra
k whi
h breaks the stru
ture in just one time in
rement (seeFig. 4). For all other values of the parameters, the same qualitative behavior isobserved: the initial and 
riti
al loads are the same for a mode I 
ra
k.We then investigate the 
onvergen
e under time-step re�nement (Fig. 5).The imposed verti
al displa
ement at the bottom is in
reased from 0.005 to

0.05. The time interval is su

essively divided in 100, 200 and 400 time steps.The mesh is of size 320×320 with an initial 
ra
k having a width of 8 mesh 
ells.On Fig. 5 the values of the 
riti
al loads are obviously 
onverging as ∆t goesto zero. Therefore we believe that our quasi-stati
 numeri
al model, as appliedto �
ra
k-like� damage, also 
onverges to a time-
ontinuous model as the timestep tends to zero. 34



(a) Initial 
ra
k (b) Criti
al loadFigure 4: Mode I 
ra
k: initial 
on�guration (a) and 
riti
al load at 0.0028 (b).
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Figure 5: Time-step re�nement for the mode I 
ra
k: 
ost fun
tion with respe
tto the imposed displa
ement for three time re�nements.
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We now perform three di�erent test 
ases of 
onvergen
e under mesh re-�nement. From these three re�nement pro
esses, only the last one is fullysatisfa
tory but the two previous ones are illuminating so we keep them in ourexposition.In the �rst 
ase (Fig. 6), we use three meshes, namely 280 × 280 (
oarse),
320× 320 (intermediate 1), 400× 400 (intermediate 2), 452× 452 (�ne), with agiven initial 
ra
k of 
onstant width. In other words, the number of 
ells in a
ross-se
tion of the initial 
ra
k is 6, 8, 10 and 12 respe
tively. The initial 
ra
ktip is slightly rounded for the �ner meshes in order to avoid the appearan
e ofsharp 
orners. The imposed verti
al displa
ement at the bottom is in
reasedfrom 0.005 to 0.05. On Fig. 6 we observe that the value of the 
riti
al loadis de
reasing as the mesh is re�ned and does not seem to 
onverge (espe
iallywhen 
ompared to the damage 
ase in Fig. 2). Similarly, the value of the 
ostfun
tion at the 
riti
al load is de
reasing with �ner meshes be
ause a thinner
ra
k (on a �ner mesh) 
osts less Gri�th energy. Therefore, 
ontrary to thedamage experien
e of Subse
tion 6.1, no mesh 
onvergen
e 
an be 
laimed inthis �rst experiment.
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Figure 6: First mesh 
onvergen
e test for the mode I 
ra
k: 
ost fun
tion withrespe
t to the imposed displa
ement for various meshes and with 100 time steps.In the se
ond 
ase (Fig. 7), we anti
ipate that a 
ra
k should have a thi
knessof the order of a few 
ells ∆x when ∆x goes to zero. Therefore, whatever thevalue of ∆x, the initial 
ra
k is 
hosen with a width of two 
ells only, whi
hmeans that the initial 
ra
k is thinner and thinner as the mesh is re�ned. Theimposed verti
al displa
ement at the bottom is now in
reased from 0.005 to
0.05. Re�nements with respe
t to the mesh size are shown on Fig. 7. The36




riti
al load again o

urs sooner for �ner meshes, thereby indi
ating that thereis no 
onvergen
e under mesh re�nement.
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Figure 7: Se
ond mesh 
onvergen
e test for the mode I 
ra
k: 
ost fun
tionwith respe
t to the imposed displa
ement for various meshes and with 100 timesteps.In the third 
ase (Fig. 8), we repla
e the minimization of (2.4) by thatof the s
aled 
ost fun
tion (2.10) in an attempt to show that there is indeed
onvergen
e under mesh re�nement. In other words we repla
e the Gri�th'senergy release rate κ by its s
aled version κℓ
∆x where ∆x is the mesh size. Fourdi�erent meshes are used: 280× 280 (
oarse), 320× 320 (intermediate 1), 400×

400 (intermediate 2), 452 × 452 (�ne). We again 
hoose κ = 10−6 and take
ℓ = 1/320 (so that ℓ/∆x = 1 for the �intermediate 1� mesh). In pra
ti
e,this s
aling implies that it is more di�
ult to 
reate damage for �ner meshes,a phenomenon that should balan
e the opposite e�e
t displayed in the twoprevious 
ases. As explained in Se
tion 2.3 this s
aling is pre
isely designed sothe Gri�th energy 
onverges to a surfa
e energy when ∆x goes to zero. OnFig. 8 we 
he
k that the 
riti
al load are 
onverging, so we 
laim that mesh
onvergen
e is observed with this parti
ular s
aling of κ.Eventually, we have again 
he
ked the balan
e of energy expressed in (6.1):the 
ost fun
tion perfe
tly mat
hes the time integral of the dissipated energy(i.e. the the right hand side of (6.1)), up to a numeri
al pre
ision of the orderof 10−6.
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Figure 8: Third mesh 
onvergen
e test for the mode I 
ra
k: 
ost fun
tion(2.10) with respe
t to simultaneous mesh, 
ra
k and κ re�nements for 100 timesteps.6.3 2d fra
ture with mode II loadingWe now turn to another 
ra
k experiment with a mode II loading. The di-mensions of the 
omputational domain are the same as in the above mode Iexperiments. The weak damage phase is again E0 = 10−6 while the imposedhorizontal displa
ement at the bottom is here in
reased from 0.1 to 1.0 on agiven time interval. On Figs. 9a and 9b the initial and 
riti
al 
ra
ks are shownfor the 320 × 320 mesh. We emphasize that �
riti
al� has not exa
tly the samemeaning here as for the mode I 
ra
k: the mode II 
ra
k does not a
tuallybreak the stru
ture. The 
ra
k stops just a few 
ells before rea
hing the oppo-site boundary and does not move anymore as the load in
reases. This longest
ra
k 
on�guration is 
alled 
riti
al. However, fra
ture is here again brutal inthe sense that the initiation load 
oin
ides with the 
riti
al load. On Fig. 9 we
an see that the mode II loading yields a bran
hing of the 
ra
k. By symmetryand sin
e the model is linear elasti
ity the two 
ra
k bran
hes are symmetri
,one in 
ompression and the other in tra
tion. It means that another model tak-ing into a

ount the non-interpenetration of material would produ
e only thebran
h under tra
tion, i.e., the lips of whi
h are opening under the load, as it
an be observed in physi
al experiments.Four di�erent meshes are used: 280× 280 (
oarse), 320× 320 (intermediate1), 400×400 (intermediate 2), 452×452 (�ne). In our experiment (Fig. 10), weminimize the s
aled version (2.10) of the 
ost fun
tion, i.e., κ is repla
ed by κℓ
∆x ,and the 
ra
k width is always exa
tly two mesh 
ells. Convergen
e under mesh38



re�nement is 
learly obtained. Even more, the two �nest mesh 
urves almost
oin
ide.

(a) Initial 
ra
k (b) Criti
al loadFigure 9: Mode II 
ra
k experiment: initial 
on�guration (a) and 
riti
al loadat 0.49 (b).6.4 Bitten
ourt's drilled plateThis test 
ase has been proposed in [15℄ where we found all the required nu-meri
al values of the parameters. It has been reprodu
ed in many other works,in
luding [17, 13℄. The Young modulus of the healthy phase is 3000 and itsPoisson ratio 0.35. The damaged phase has a Young modulus 3.10−3 and thesame Poisson ratio. The value of the Gri�th's energy release rate is κ = 0.0014.Contrary to all other numeri
al simulations in this paper, the present experi-ment has been performed with a given �xed applied for
e instead of a sequen
eof in
reasing displa
ements. The verti
al unit load is applied on a single 
on-
entrated point of the upper body boundary. The value of the Gri�th's energyrelease rate κ is su
h that this applied unit load is 
riti
al, i.e. a single timestep produ
es the 
ra
ks displayed on Figs. 11a and 11b for two di�erent 
ra
kinitializations. The distan
e from the left fa
e to the initial 
ra
k is denoted by
a, while b is the initial 
ra
k length. The 3 holes 
arry a Neumann boundary
ondition. We use a non-uniform re
tangular mesh of size 470 × 800 whi
h ismore re�ned in the vi
inity of the holes. These two results are in good agree-ment with laboratory experiment of [15℄, although that of Fig. 11a shows aslightly di�erent 
ra
k path near the se
ond hole.6.5 Coales
en
e of multiple 
ra
ksThis experiment is made on a pre-
ra
ked sample (of size 1.6 × 2.2) with averti
al imposed displa
ement along the verti
al sides (
orresponding to a mode39
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ra
k test: 
ost fun
tion (2.10) with respe
t to simultaneousmesh, 
ra
k and κ re�nements for 100 time steps.
(a) �rst 
ase a = 6, b = 1.5

(b) se
ond 
ase a = 5, b = 1Figure 11: The two Bitten
ourt's experiments:(a) �rst 
ase a = 6, b = 1.5, (b)se
ond 
ase a = 5, b = 1, 40



II type loading). The healthy material has Young modulus E1 = 1 and Poissonratio ν1 = 0.3, the damaged phase has the same Poisson ratio but a smallerYoung modulus E0 = 10−3. The value of the Gri�th's energy release rate is
κ = 10−7. The imposed verti
al displa
ement is in
reased from 0.001 to 0.005with 100 time steps. The 
riti
al load is attained at 0.0014. Two di�erentmeshes are shown on Fig. 12.

(a) Initial 
ra
ks (b) Coarse mesh, 160×220
ells (
) Fine mesh, 320 × 440
ellsFigure 12: Multiple 
ra
k experiment with a mode II loading.6.6 Tra
tion experiment on a �ber reinfor
ed matrixWe perform a test 
ase proposed in [18℄ where all pre
ise values of the param-eters 
an be found. The setting of Fig. 13a is the following. A unit verti
aldispla
ement is exerted on the upper layer of the solid whi
h is also 
lamped atits midpoint to avoid translations and rotations. The �ber (bla
k in
lusion onFig. 13a) is also 
lamped. The healthy material has Young modulus E1 = 1and Poisson ratio ν1 = 0.3, the damaged phase has the same Poisson ratio buta mu
h smaller Young modulus E0 = 10−6. The value of the Gri�th's energyrelease rate is κ = 8000. Ex
ellent agreement with the numeri
al results of [18℄are observed. Let us emphasize that this experiment is the only one using thetopologi
al derivative to initiate the damaged zone: the map of the topologi
algradient at the initialization is displayed on Fig. 14. More pre
isely, the initialbody is 
ompletely healthy without any damage: the applied load is graduallyin
reased, until damage appears be
ause the topologi
al derivative be
omes neg-ative. On
e the damaged zone has been initialized we use our shape gradientmethod to propagate the 
ra
k without further use of the topologi
al gradient.The �nal 
ra
k on Fig. 13 is very similar to that 
omputed in [18℄.41



(a) Initial healthy �ber-reinfor
ed matrix.

(b) Initial damage nu
leated by the topologi
alderivative.

(
) Final 
ra
k.Figure 13: Fiber-reinfor
ed matrix: an example of 
ra
k initiation by the topo-logi
al derivative.
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Figure 14: Fiber-reinfor
ed matrix: isovalues of the topologi
al derivative at theinitialization.6.7 3d mode 1, mode 2 and mode 3 
ra
ksWe eventually 
on
lude our numeri
al tests by performing the 3 di�erent modeloadings in 3d with boundary 
onditions (imposed displa
ements) shown on Fig.15. We work with a 
ubi
 domain of size 1 × 1 × 1 meshed with 80 × 80 × 80
ubi
 
ells: its left ba
k fa
e (
ir
les) is �xed while a uniform displa
ement ofmodulus 0.04 is applied on its right front fa
e. The healthy material has Youngmodulus E1 = 104 and Poisson ratio ν1 = 0.3, the damaged phase has the samePoisson ratio but a smaller Young modulus E0 = 1. The value of the Gri�th'senergy release rate is κ = 1. The initial and �nal 
ra
ks are shown on Fig. 16.For this large test 
ase (involving around 1.56× 106 degrees of freedom) weuse a sparse dire
t linear solver for solving the elasti
ity equations, requiring
40GB of memory and 15 minutes on 8 pro
essors PC. Ea
h of these 3d 
om-putations requires of the order of 150 and 200 iterations, i.e. solutions of theelasti
ity system, so the overall CPU time is about two days.7 Con
luding remarksWe have proposed a numeri
al method, based on the Fran
fort-Marigo damagemodel and using a single level set fun
tion with standard �nite elements, forthe simulation of 
ra
k propagation. We obtained promising results in 2D and3D test 
ases. The ill-posed 
hara
ter of the minimization problem (2.4) or(2.10) (whi
h do not admit minimizers, in general) manifests itself in variousaspe
ts. First, 
ra
ks almost always break the stru
ture in a single time in
re-ment: fra
ture is thus a brutal pro
ess. Se
ond, our numeri
al results are quite43



(a) Mode I loading. (b) Mode II loading.
(
) Mode III loading.Figure 15: Boundary 
onditions for the modes I, II and III in 3d.
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(a) Initial 
ra
k. (b) Mode I 
ra
k.

(
) Mode II 
ra
k. (d) Mode III 
ra
k.Figure 16: Initial and �nal 
ra
ks for the modes I, II and III in 3d.
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sensitive to some implementation issues. For example, it is ne
essary to use the
omplete shape derivative formulas (3.9) (whi
h features the two phases) andnot their simpler limit (3.13), obtained when the damaged phase is assumed tohave zero rigidity, otherwise the minimization of the 
ost fun
tion is less 
om-plete and the values of the initiation or 
riti
al loads may be wrong. Anotherimportant issue is the reinitialization pro
ess whi
h must be pre
ise enough sothat the normal and tangent ve
tors to the interfa
e between the two phasesare always a

urately 
omputed while the interfa
e itself does not move at allduring reinitialization.An interesting open problem is to prove the 
onje
tured Γ-
onvergen
e ofthe dis
rete s
aled energy (2.10) towards the fra
ture model (2.11). A naturalextension of our work is to handle a non-interpenetration 
ondition so that
ra
ks under 
ompression do not propagate. We have used standard Q1 �niteelements for solving the linear elasti
ity system whi
h features a large variationof the Young modulus between the two phases. It would be interesting to studyif extended �nite element methods (XFEM, see e.g. [33℄, [34℄) would improvethe numeri
al pre
ision at a not too large expense in CPU 
ost. Of 
ourse,we should also perform more realisti
 test 
ases and make pre
ise 
omparisonswith both physi
al experiments and other 
odes, in
luding a study of CPU 
ost.Eventually let us mention that shape optimization for minimizing the risk of
ra
k propagation is also a promising �eld to investigate, following [39℄.A Computation of the shape derivativeThis appendix is devoted to the proofs of Lemma 3.6 and Corollary 3.1. Webegin with Lemma 3.6 whi
h furnishes the partial shape derivative of the La-grangian. To prove it we use Lemma 3.1. On the one hand, the derivativesof integrals on Ω0,1 are simple. On the other hand, the interfa
e Σ is either a
losed surfa
e without boundary or a surfa
e whi
h meets the outer boundary
∂Ω: in both 
ases the derivative of an integral on Σ has no 
ontribution onits boundary ∂Σ as in (3.1). Eventually, even if the surfa
es Γ0,1

N are subsetof the �xed boundary ΓN , they 
an vary tangentially to ΓN , so the derivativesof integrals on Γ0,1
N are made of the sole boundary term on γ = ∂Γ0,1

N in (3.1).
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Therefore, the partial shape derivative of L is
<
∂L
∂χ

, φ > =

∫

Σ

(
σ1(u1) · e(p1) − σ0(u0) · e(p0)

)
θ · ndS

+

∫

Σ

(
−f1 · p1 + f0 · p0 − j1(u1) + j0(u0)

)
θ · ndS

+
1

2

∫

Σ

(
σ0(u0) · e(u0) − σ1(u1) · e(u1)

)
θ · ndS

− 1

2

∫

Σ

(
∂

∂n
+H

)( (
σ1(u1)n+ σ0(u0)n

)
· (p1 − p0)

)

θ · ndS

− 1

2

∫

Σ

(
∂

∂n
+H

)( (
σ1(p1)n+ σ0(p0)n

)
· (u1 − u0)

)

θ · ndS

+
1

2

∫

Σ

(
∂

∂n
+H

)( (
σ1(u1)n+ σ0(u0)n

)
· (u1 − u0)

)

θ · ndS

+

∫

γ

(
g0 · p0 − g1 · p1 + h0(u0) − h1(u1)

)
θ · τdL, (A.1)where H denotes the mean 
urvature and τ is the external unit ve
tor normalto γ = ∂ΓN and n. Sin
e u0 = u1 and p0 = p1 on Σ, the terms involving the
urvature vanish on Σ. Similarly the normal 
omponent of the stress tensorsare 
ontinuous through Σ. Thus, (A.1) simpli�es in

<
∂L
∂χ

, φ > =

∫

Σ

(
σ1(u1) · e(p1) − σ0(u0) · e(p0)

)
θ · ndS

+

∫

Σ

1

2

(
σ0(u0) · e(u0) − σ1(u1) · e(u1)

)
θ · ndS

−
∫

Σ

σ(u)n · ∂(p1 − p0)

∂n
θ · ndS

−
∫

Σ

σ(p)n · ∂(u1 − u0)

∂n
θ · ndS

+

∫

Σ

σ(u)n · ∂(u1 − u0)

∂n
θ · ndS

−
∫

Σ

(
(f1 − f0) · p+ j1(u) − j0(u)

)
θ · ndS

−
∫

γ

(
(g1 − g0) · p+ h1(u) − h0(u)

)
θ · τdL, (A.2)where u, p, σ(u)n, σ(p)n denotes the 
ontinuous quantities at the interfa
e. Thetwo last lines of (A.2) are expressed only in terms of 
ontinuous quantitiesthrough the interfa
e, but not the �ve �rst lines that we must rewrite, usingLemma 3.2, as an expli
it expression in terms of 
ontinuous fun
tions at theinterfa
e and jumps of the Lamé 
oe�
ients. (In the following 
omputations, thesymbol · will denote, a

ording to the 
ontext, either a s
alar produ
t betweentwo ve
tors, or between two matri
es.)47



Let us 
ompute the integrand in the �rst term of the right hand side of (A.2).In the lo
al orthonormal basis (t, n) (adapted to the interfa
e Σ and introdu
edin Lemma 3.2) the following de
omposition holds
σ1(u1) · e(p1) = σ1

nn(u1)enn(p1) + 2σ1
tn(u1) · etn(p1) + σ1

tt(u
1) · ett(p

1).>From Lemma 3.2 it rewrites as
σ1(u1) · e(p1) =

1

λ1 + 2µ1
σ1

nn(u1)
(
σ1

nn(p1) − λ1 trett(p
1)
)

+
1

µ1
σ1

tn(u1) · σ1
tn(p1)

+

[

2µ1ett(u
1) +

λ1

λ1 + 2µ1

(
2µ1 trett(u

1) + σ1
nn(u1)

)
Id−1
2

]

· ett(p
1)

=
1

λ1 + 2µ1
σ1

nn(u1)σ1
nn(p1) +

1

µ1
σ1

tn(u1) · σ1
tn(p1)

+ 2µ1ett(u
1) · ett(p

1) +
2λ1µ1

λ1 + 2µ1
trett(u

1) trett(p
1).A similar 
omputation with the index 0 instead of 1 yields the di�eren
e

σ1(u1) · e(p1) − σ0(u0) · e(p0) = [
1

λ+ 2µ
]σnn(u)σnn(p)

+[
1

µ
]σtn(u) · σtn(p) + [2µ]ett(u) · ett(p) + [

2λµ

λ+ 2µ
] trett(u) trett(p)whi
h is expressed, as desired, only in terms of 
ontinuous fun
tions at theinterfa
e. On the same token we dedu
e

σ0(u0) · e(u0) − σ1(u1) · e(u1) = [
−1

λ+ 2µ
] (σnn(u))

2

−[
1

µ
]|σtn(u)|2 − [2µ]|ett(u)|2 − [

2λµ

λ+ 2µ
] ( trett(u))

2
.We now 
onsider the integrand of the third, fourth of �fth line of (A.2). Weuse the following identity for two displa
ements v and qif q = 0 on Σ, then σ(v)n · ∂q

∂n
= 2(σ(v)n) · (e(q)n) − σnn(v)enn(q) on Σ.We obtain

σ(u)n · ∂(p1 − p0)

∂n
= 2(σ(u)n) · (e(p1)n− e(p0)n) − σnn(u)

(
enn(p1) − enn(p0)

)

= [
2

λ+ 2µ
]σnn(u)σnn(p)

− [
2λ

λ+ 2µ
]σnn(u) trett(p) + [

1

µ
]σtn(u) · σtn(p)

− [
1

λ+ 2µ
]σnn(u)σnn(p) + [

λ

λ+ 2µ
]σnn(u) trett(p)

= [
1

λ+ 2µ
]σnn(u)σnn(p) + [

1

µ
]σtn(u) · σtn(p)

− [
λ

λ+ 2µ
]σnn(u) trett(p). (A.3)48



We get a similar expression for σ(p)n · ∂(u1−u0)
∂n and σ(u)n · ∂(u1−u0)

∂n . Summingup these 
ontributions we dedu
e that the integrand of the �ve �rst lines of theright hand side of (A.2) is
D(x) = − [

1

λ+ 2µ
]σnn(u)σnn(p) − [

1

µ
]σtn(u) · σtn(p) + [2µ]ett(u) · ett(p)

+ [
2λµ

λ+ 2µ
] trett(u) trett(p) + [

λ

λ+ 2µ
] (σnn(u) trett(p) + σnn(p) trett(u))

+ [
1

2(λ+ 2µ
)](σnn(u))2 + [

1

2µ
]|σtn(u)|2 − [µ]|ett(u)|2

− [
λµ

λ+ 2µ
]( trett(u))

2 − [
λ

λ+ 2µ
]σnn(u) trett(u)whi
h is pre
isely formula (3.10). Using the relations (3.8) between e and σ(see Lemma 3.2) we easily dedu
e (3.11) from (3.10), whi
h �nishes the proofof Lemma 3.6. �Proof of Corollary 3.1. The Fran
fort-Marigo obje
tive fun
tion is obtainedfor jk(u) = −fk · u + κδk0 and hk(u) = −gk · u. We dedu
e that j′k(u) = −fkand h′k(u) = −gk, and thus that the adjoint state vanishes pχ = 0. If we furtherassume that f0 = f1 and g0 = g1, the shape derivative redu
es to

J ′(χ)(θ) =

∫

Σ

D(x) θ · n dSwith
D(x) = [

1

2(λ+ 2µ)
](σnn(uχ))2 + [

1

2µ
]|σtn(uχ)|2 − [µ]|ett(uχ)|2

− [
λµ

(λ+ 2µ)
]( trett(uχ))2 − [

λ

(λ+ 2µ)
]σnn(uχ) trett(uχ). (A.4)Assumption A0 ≤ A1 is equivalent to [µ] ≥ 0 and [κ] ≥ 0 with κ := λ +

2

d
µ,the bulk modulus. Sin
e σtn(u) only appears as a square produ
t in (A.4), itsu�
es to 
he
k that the 
ombination of all other terms is indeed negative, thatis,

[
1

λ+ 2µ
](σnn(u))2 − [2µ]|ett(u)|2 − [

2λµ

λ+ 2µ
]( trett(u))

2 (A.5)
− [

2λ

λ+ 2µ
]σnn(u) trett(u) ≤ 0.Sin
e ( trett(u))

2 ≤ (d − 1)|ett(u)|2 (where d = 2, 3 is the spa
e dimension) theleft hand side of (A.5) is bounded from above by
[

1

λ+ 2µ
]σnn(u)2 − [

2µ

d− 1
+

2λµ

λ+ 2µ
]( trett(u))

2 − [
2λ

λ+ 2µ
]σnn(u) trett(u),(A.6)49



whi
h writes in term of κ and µ as
[

d

dκ+ 2(d− 1)µ
]σnn(u)2 − d

d− 1
[

2dκµ

dκ+ 2(d− 1)µ
] tr2ett(u)

− 2[
dκ− 2µ

dκ+ 2(d− 1)µ
]σnn(u) trett(u).Sin
e, by assumption A0 ≤ A1, we have

[
d

dκ+ 2(d− 1)µ
] ≤ 0 and [

2dκµ

dκ+ 2(d− 1)µ
] ≥ 0,the quadrati
 form (A.6) is negative if and only if

[
dκ− 2µ

dκ+ 2(d− 1)µ
]2 ≤ − d

d− 1
[

d

dκ+ 2(d− 1)µ
][

2dκµ

dκ+ 2(d− 1)µ
]. (A.7)Introdu
ing the new variables κ′ =

dκ

2
and µ′ = (d− 1)µ, (A.7) is equivalent to

[
1

κ′ + µ′
][
κ′µ′

κ′ + µ′
] ≤ − 1

d2
[
(d− 1)κ′ − µ′

κ′ + µ′
]2 = −1

4
[
κ′ − µ′

κ′ + µ′
]2. (A.8)A brute for
e 
omputation shows that (A.8) holds true. �A
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