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Abstract

In this article we study a continuous Primal-Dual method proposed
by Appleton and Talbot and generalize it to other problems in image
processing. We interpret it as an Arrow-Hurwicz method which leads
to a better description of the system of PDEs obtained. We show
existence and uniqueness of solutions and get a convergence result
for the denoising problem. Our analysis also yields new a posteriori

estimates.
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1 Introduction

In imaging, duality has been recognized as a fundamental ingredient for
designing numerical schemes solving variational problems involving a to-
tal variation term. Primal-Dual methods were introduced in the �eld by
Chan, Golub and Mulet in [10]. Afterwards, Chan and Zhu [17] proposed to
rewrite the discrete minimization problem as a min-max and solve it using
an Arrow-Hurwicz [5] algorithm which is a gradient ascent in one direction
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and a gradient descent in the other. Just as for the simple gradient descent,
one can think of extending this method to the continuous framework. This is
in fact what does the algorithm previously proposed by Appleton and Talbot
in [4] derived by analogy with discrete graph cuts techniques. The �rst to
notice the link between their method and Primal-Dual schemes were Cham-
bolle and al. in [8]. This continuous framework leaves the way open to a
wide variety of numerical schemes, ranging from �nite di�erences to �nite
volumes. These numerical methods can also reduce the discretization bias
and lead to more anisotropic results compared with classical discretizations
of the total variation.
This paper proposes to study the continuous Primal-Dual algorithm follow-
ing the philosophy of the work done for the gradient �ow by Andreu and al.
in [2]. We give a rigorous de�nition of the system of PDEs which is obtained
and show existence and uniqueness of a solution to the Cauchy problem. We
prove strong L2 convergence to the minimizer for the Rudin-Osher-Fatemi
model and derive some a posteriori estimates. As a byproduct of our analysis
we also obtain a posteriori estimates for the numerical scheme proposed by
Chan and Zhu.

1.1 Presentation of the problem

Many problems in image processing can be seen as minimizing in BV ∩ L2

an energy of the form

J(u) =

∫
Ω

|Du|+ G(u) +

∫
∂ΩD

|u− ϕ|

We assume that Ω is a bounded Lipschitz open set and that ∂ΩD is a

subset of ∂Ω. The function ϕ being given in L1(∂ΩD), the term
∫

∂ΩD

|u−ϕ|

is a Dirichlet condition on ∂ΩD. We call ∂ΩN the complement of ∂ΩD in ∂Ω
and assume that G is convex and lower-semi-continuous (lsc) in L2 with

G(u) ≤ C(1 + |u|p2) with 1 ≤ p ≤ +∞

In this paper we note |u|2 the L2 norm of u. According to Giaquinta and
al. [13], one has,

Proposition 1.1. The functional J is convex and lsc in L2.
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In the following, we also assume that J attains its minimum in BV ∩L2.
This is for example true if G satis�es some coercivity hypothesis or if G is
non negative.

Two fundamental applications of our method are image denoising via to-
tal variation regularization and segmentation with geodesic active contours.

In the �rst problem, one starts with a corrupted image f = ū + n and
wants to �nd the clean image ū. Rudin, Osher and Fatemi proposed to look
for an approximation of ū by minimizing∫

Ω

|Du|+ λ

2

∫
Ω

(u− f)2

This corresponds to G(u) = λ
2

∫
Ω
(u−f)2 and ∂ΩD = ∅. For a comprehensive

introduction to this subject, we refer to the lecture notes of Chambolle and
al. [9]. Figure 1 shows the result of denoising using the algorithm of Chan
and Zhu.

Figure 1: Denoising using the ROF model

The issue in the second problem is to extract automatically the boundaries
of an object within an image. We suppose that we are given two subsets S
and T of ∂Ω such that S lies inside the object that we want to segment and T
lies outside. Caselles and al. proposed in [7] to associate a positive function
g to the image in a way that g is high where the gradient of the image is low
and vice versa. The object is then segmented by minimizing

min
E⊃S, Ec⊃T

∫
∂E

g(s)ds
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In order to simplify the notations, we will only deal with g = 1 in the
following. It is however straightforward to extend our discussion to general
(continuous) g. The energy we want to minimize is thus

∫
Ω
|DχE|. This

functional is non convex but by the coarea formula (see Ambrosio-Fusco-
Pallara [1]), it can be relaxed to functions u ∈ [0, 1]. Let ϕ = 1 on S and
ϕ = 0 on T . Letting ∂ΩD = S ∪ T , and f be a L2 function, our problem can
be seen as a special case of the prescribed mean curvature problem,

inf
0≤u≤1

u=ϕ in ∂ΩD

∫
Ω

|Du|+
∫

Ω

fu

The solution E is then any superlevel of u, namely E = {u > s} for any
s ∈]0, 1[.
It is however well known that the in�mum is not attained in general because
of the lack of compactness for the boundary conditions in BV . Following
the ideas of Giaquinta and al. [13] we have to relax the boundary conditions
by adding

∫
∂ΩD

|u − ϕ| to the functional. We also have to deal with the
hard constraint on u. This will be discussed afterwards but it brings some
mathematical di�culties that we were not able to solve. Fortunately, our
problem is equivalent (see [8]) to the minimization of the unsconstrained
problem

J(u) = inf
u∈BV (Ω)

∫
Ω

|Du|+
∫

∂ΩD

|u− ϕ|+
∫

Ω

f+|u|+
∫

Ω

f−|1− u|

Here f+ = max(f, 0) and f− = max(−f, 0).
We give in �gure 2 the result of this segmentation on yeasts. The small
square is the set S and the set T is taken to be the image boundary. The
study of this problem was in fact our �rst motivation for this work.

1.2 Idea of the Primal-Dual method

Formally, the idea behind the Primal-Dual method is using the de�nition of∫
Ω
|Du| in order to write J as

J(u) = sup
ξ∈C1

c (Ω)

|ξ|∞≤1

K(u, ξ)
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Figure 2: Yeast segmentation

Where K(u, ξ) = −
∫

Ω
u div(ξ) +

∫
∂ΩD

|u − ϕ| + G(u). Then, one seeks
for a saddle point of K by a gradient descent in u and a gradient ascent in
ξ, which amounts to solve the system of PDEs:

∂tu = div(ξ)− ∂G(u)

∂tξ = Du− ∂IB(0,1)(ξ)

+ boundary conditions

(1)

Here IB(0,1)(ξ) is the indicator function of the unit ball in L∞ (it takes the
value 0 if |ξ|∞ ≤ 1 and +∞ otherwise) and ∂ stands for the subdi�erential
(see Ekeland-Temam for the de�nition [12]). This system is almost the one
proposed by Appleton and Talbot in [4] for the segmentation problem.

Let us remark that, at least formally, the di�erential operator

A(u, ξ) =

(
− div ξ + ∂G(u)
−Du + ∂IB(0,1)(ξ)

)
veri�es 〈A(u, ξ), (u, ξ)〉 ≥ 0, which means

that A is monotone.
We recall some facts about the theory of maximal monotone operators and its
applications for �nding saddle points in the next section. In the last section
we use it to give a rigourous meaning to the hyperbolic system (1) together
with existence and uniqueness of solutions of the Cauchy problem.
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2 Maximal Monotone Operators

Following Brézis [6], we present brie�y in the �rst part of this section the
theory of maximal monotone operators. In the second part we show how this
theory shade light on the general Arrow-Hurwicz method. We mainly give
results found in Rockafellar's paper [16].

2.1 De�nitions and �rst properties of maximal mono-

tone operators

De�nition 2.1. Let X be an Hilbert space. An operator is a multivaluated
mapping A from X into P(X). We call D(A) = {x ∈ X /A(x) 6= ∅} the

domain of A and R(A) =
⋃
x∈X

A(x) its range. We identify A and its graph in

X ×X.

De�nition 2.2. An operator A is monotone if :

∀x1, x2 ∈ D(A), 〈A(x1)− A(x2), x1 − x2〉 ≥ 0

or more precisely if for all x∗1 ∈ A(x1) et x∗2 ∈ A(x2),

〈x∗1 − x∗2, x1 − x2〉 ≥ 0

It is maximal monotone if it is maximal in the set of monotone operators.
The maximality is to be understood in the sense of graph inclusion.

One of the essential results for us is the maximal monotonicity of the
subgradient for convex functions.

Proposition 2.3. [6] Let ϕ be a proper lower-semi-continuous convex func-
tion on X then ∂ϕ is a maximal monotone operator.

Before stating the main theorem of this theory, namely the existence of
solutions of the Cauchy problem −u′ ∈ A(u(t)) we need one last de�nition.

De�nition 2.4. Let A be maximal monotone. For x ∈ D(A) we call A◦(x)
the projection of 0 on A(x) (it exists since A(x) is closed and convex, see
Brézis [6] p. 20).

We now turn to the theorem.
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Theorem 2.5. [6] Let A be maximal monotone then for all u0 ∈ D(A), there
exists a unique function u(t) from [0, +∞[ into X such that

• u(t) ∈ D(A) for all t > 0

• u(t) is Lipschitz continous on [0, +∞[, i.e u′ ∈ L∞(0, +∞; X) (in the
sense of distributions) and

|u′|L∞(0,+∞;X) ≤ |A◦(u0)|

• −u′ ∈ A(u(t)) for almost every t

• u(0) = u0

Moreover u veri�es,

• u has a right derivative for every t ∈ [0, +∞[ and −d+u

dt
∈ A◦(u(t))

• the function t → A◦(u(t)) is right continuous and t → |A◦(u(t))| is non
increasing

• if u and û are two solutions then |u(t)− û(t)| ≤ |u(0)− û(0)|

2.2 Application to Arrow-Hurwicz methods

Let us now see how this theory can be applied for tracking saddle points. As
mentioned before, we follow here [16]. We start with some de�nitions.

De�nition 2.6. Let X = Y ⊕ Z where Y and Z are two Hilbert spaces. A
proper saddle function on X is a function K such that :

• for all z ∈ Z, the function K(·, z) is convex

• for all y ∈ Y , the function K(y, ·) is concave

• there exists x = (y, z) such that K(y, z′) < +∞ for all z′ ∈ Z and
K(y′, z) > −∞ for all y′ ∈ Y . The set of x for which it holds, is called
the e�ective domain of K and is noted dom K.

De�nition 2.7. A point (y, z) ∈ X is called a saddle point of K if

K(y, z′) ≤ K(y, z) ≤ K(y′, z) ∀y′ ∈ Y, ∀z′ ∈ Z
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We then have,

Proposition 2.8. A point (y, z) is a saddle point of a saddle function K, if
and only if

K(y, z) = sup
z′∈Z

inf
y′∈Y

K(y′, z′) = inf
y′∈Y

sup
z′∈Z

K(y′, z′)

The proof of this proposition is easy and can be found in Rockafellar's
book [15] p. 380.

The next theorem shows that the Arrow-Hurwicz method always provides
a monotone operator.

Theorem 2.9. [16] Let K be a proper saddle function. For x = (y, z) let

T (x) =

{
(y∗, z∗) ∈ Y ∗ ⊕ Z∗/

y∗ is a subgradient of K(·, z) in y
z∗ is a subgradient of −K(y, ·) in z

}
Then T is a monotone operator with D(T ) ⊂ dom K.

We can now characterize the saddle points of K using the operator T .

Proposition 2.10. [16] Let K be a proper saddle function then a point x is
a saddle point of K if and only if 0 ∈ T (x).

Remark . This property is to be compared with the minimality condition
0 ∈ ∂f(x) for convex functions f .

The next theorem shows that for regular enough saddle functions, the
corresponding operator T is maximal.

Theorem 2.11. [16] Let K be a proper saddle function on X. Suppose that
K is lsc in y and upper-semi-continuous in z then T is maximal monotone.

Proof. We just sketch the proof because it will inspire us in the following.
The idea is to use the equivalent theorem for convex functions. For this we
�invert� the operator T in the second variable. Let

H(y, z∗) = sup
z∈X

〈z∗, z〉+ K(y, z)

The proof is then based on the following lemma :

Lemma 2.12. H is a convex lsc function on X and

(y∗, z∗) ∈ T (y, z) ⇔ (y∗, z) ∈ ∂H(y, z∗)

It is then not too hard to prove that T is maximal.
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3 Study of the Primal-Dual Method

Before starting the study of the Primal-Dual method, let us remind some
facts about functions with bounded variation and pairings between measures
and bounded functions.

De�nition 3.1. Let BV (Ω) be the space of functions u in L1 for which∫
Ω

|Du| := sup
ξ∈C1

c (Ω)

|ξ|∞≤1

−
∫

Ω

u div ξ < +∞

With the norm |u|BV =
∫

Ω
|Du| + |u|L1 it is a Banach space. We note the

functional space BV 2 = BV (Ω) ∩ L2.

More informations about functions with bounded variation, can be found
in the books [1] or [14].
Following Anzellotti [3], we now de�ne

∫
Ω
[ξ, Du] which has to be understood

as
∫

Ω
ξ ·Du, for functions u with bounded variation and bounded functions

ξ with divergence in L2.

De�nition 3.2. • Let X2 = {ξ ∈ (L∞(Ω))n / div ξ ∈ L2(Ω)}.

• For (u, ξ) ∈ BV 2 ×X2 we de�ne the distribution [ξ, Du] by

〈[ξ, Du], ϕ〉 = −
∫

Ω

uϕ div(ξ)−
∫

Ω

u ξ · ∇ϕ ∀ϕ ∈ C∞c (Ω)

Theorem 3.3. [3] The distribution [ξ, Du] is a bounded Radon measure on
Ω and if ν is the outward unit normal to Ω, we have Green's formula,∫

Ω

[ξ, Du] = −
∫

Ω

u div(ξ) +

∫
∂Ω

(ξ · ν)u

Using the ideas of Andreu and al. [2] it can be shown that

Proposition 3.4. Let J(u) =

∫
Ω

|Du| + G(u) +

∫
∂ΩD

|u − ϕ| then u is a

minimizer of J in BV 2 if and only if there exists ξ ∈ X2 such that
div(ξ) ∈ ∂G(u)∫

Ω

|Du| =
∫

Ω

[ξ, Du]

ξ · ν = 0 in ∂ΩN and (ξ · ν) ∈ sign(ϕ− u) in ∂ΩD
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Applying the approximations lemmas in [3], it is not hard to prove the
following

Proposition 3.5. Let u ∈ BV (Ω) then∫
Ω

|Du| = sup
ξ∈X2

|ξ|∞≤1

∫
Ω

[Du, ξ]

We thus want to �nd a saddle point of

K(u, ξ) =

∫
Ω

[Du, ξ] + G(u) +

∫
∂ΩD

|u− ϕ|

The saddle function K does not ful�ll the assumptions of Rockafellar's
result but if we remember Lemma 2.12 and set

H(u, ξ∗) = sup
ξ∈X2

|ξ|∞≤1

〈ξ, ξ∗〉+ K(u, ξ)

= sup
ξ∈X2

|ξ|∞≤1

〈ξ, ξ∗〉+

∫
Ω

[Du, ξ] + G(u) +

∫
∂ΩD

|u− ϕ|

=

∫
Ω

|Du + ξ∗|+ G(u) +

∫
∂ΩD

|u− ϕ|

Then H is a convex lsc function on L2 × (L2)n hence ∂H is maximal
monotone. We are now able to de�ne a maximal monotone operator T by

T (u, ξ) = {(u∗, ξ∗) / (u∗, ξ) ∈ ∂H(u, ξ∗)}

In order to compute ∂H which gives the expression of T , we use the
characterization

(u∗, ξ) ∈ ∂H(u, ξ∗) ⇔ 〈u∗, u〉+ 〈ξ∗, ξ〉 = H(u, ξ∗) + H∗(u∗, ξ)

Hence we have to determine what H∗ is.

Proposition 3.6. We have

D(H∗) =
{
(u∗, ξ) / u∗ ∈ L2(Ω) and ξ ∈ X2 , ξ · ν = 0 in ∂ΩN , |ξ|∞ ≤ 1

}
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and

H∗(u∗, ξ) = G∗(u∗ + div(ξ))−
∫

∂ΩD

(ξ · ν)ϕ.

Proof. We start by computing the domain of H∗.
If (u∗, ξ) ∈ D(H∗) then there exists a constant C such that for every
(u, ξ∗) ∈ BV 2 × (L2)n,

〈u∗, u〉+ 〈ξ∗, ξ〉 −H(u, ξ∗) ≤ C

Restraining to u ∈ H1(Ω) with u|∂ΩD

= 0 and ξ∗ ∈ (L2)n, we �nd that

〈u∗, u) + 〈ξ∗, ξ〉 −
∫

Ω

|∇u + ξ∗| −G(u) ≤ C

from which

〈∇u + ξ∗, ξ〉 − 〈∇u, ξ〉+ 〈u∗, u〉 −
∫

Ω

|∇u + ξ∗| −G(u) ≤ C

Setting ξ′ = ∇u + ξ∗ and taking the supremum over all ξ′ ∈ (L2)n we
have that |ξ|∞ ≤ 1 and for all u ∈ H1(Ω) with u|∂ΩD

= 0 ,

−〈∇u, ξ〉+ 〈u∗, u〉 ≤ C + G(u)

Taking now u = λv with λ positive and reminding the form of G, it can
be shown that

−〈∇u, ξ〉+ 〈u∗, u〉 ≤ C|u|2
This implies that u∗ + div ξ ∈ L2 hence div ξ ∈ L2. Then by Green's

formula in H1(div) (see Dautray-Lions [11] p. 205) we have ξ ·ν = 0 in ∂ΩN .

Let us now compute H∗.
Let (u∗, ξ) ∈ D(H∗),

H∗(u∗, ξ) = sup
ξ∗∈L2

sup
u∈BV 2

{
〈u∗, u〉+ 〈ξ∗, ξ〉 −

∫
Ω

|Du + ξ∗| −G(u)−
∫

∂ΩD

|u− ϕ|
}

Let ξ∗ ∈ L2 be �xed. Then by Lemma 5.2 p. 316 of Anzellotti's paper
[3], for every u ∈ BV 2 there exists un ∈ C∞ ∩BV 2 such that
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un
L2

→ u , (un)|∂ΩD

= u|∂ΩD

and∫
Ω

|Dun + ξ∗| →
∫

Ω

|Du + ξ∗|

We can thus restrict the supremum to functions u of class C∞(Ω). We
then have

H∗(u∗, ξ) = sup
u∈BV 2∩C∞

sup
ξ∈L2

{
〈u∗, u〉+ 〈ξ∗, ξ〉 −

∫
Ω

|Du + ξ∗| −G(u)−
∫

∂ΩD

|u− ϕ|
}

= sup
u∈BV 2∩C∞

{
〈u∗, u〉 − 〈∇u, ξ〉 −G(u)−

∫
∂ΩD

|u− ϕ|
}

= sup
u∈BV 2

{
〈u∗, u〉 −

∫
Ω

[Du, ξ]−G(u)−
∫

∂ΩD

|u− ϕ|
}

= sup
u∈BV 2

{
〈u, u∗ + div ξ〉 −G(u)−

∫
∂ΩD

{|u− ϕ|+ (ξ · ν)u}
}

Beware that u ∈ BV 2 ∩ C∞ implies that ∇u ∈ L1 and not ∇u ∈ L2

but the density of L2 in L1 allows us to pass from the �rst equality to the
second. The third equality follows from Lemma 1.8 of [3]. We now have to
show that we can take separately the supremum in the interior of Ω and on
the boundary ∂ΩD.

Let f be in L1(∂Ω) and v be in L2(Ω). We want to �nd uε ∈ BV 2 con-
verging to v in L2 and such that (uε)|∂ΩD

= f .

By Lemma 5.5 of [3] there is a wε ∈ W 1,1 with (wε)|∂ΩD

= f and |wε|2 ≤ ε.

By density of C∞c (Ω) in L2 we can �nd vε ∈ C∞c (Ω) with |vε− v|2 ≤ ε We can
then take uε = vε + wε.

This shows that

H∗(u∗, ξ) = sup
u∈L2(Ω)

{〈u, u∗ + div ξ〉 −G(u)} − inf
u∈L1

∫
∂ΩD

{|u− ϕ|+ (ξ · ν)u}

= G∗(u∗ + div(ξ))−
∫

∂ΩD

(ξ · ν)ϕ
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We can now compute T

Proposition 3.7. Let (u, ξ) ∈ BV 2×X2 then, (u∗, ξ∗) ∈ T (u, ξ) if and only
if 

u∗ + div(ξ) ∈ ∂G(u)∫
Ω

|ξ∗ + Du| = 〈ξ∗, ξ〉+

∫
Ω

[ξ, Du]

ξ · ν = 0 in ∂ΩN and (ξ · ν) ∈ sign(ϕ− u) in ∂ΩD

Proof. Let us �rst note that,

G(u) + G∗(u∗ + div(ξ)) ≥ 〈u, u∗ + div(ξ)〉 (2)∫
Ω

|Du + ξ∗| ≥
∫

Ω

[ξ, Du] +

∫
Ω

ξ∗ξ (3)

|u− ϕ| ≥ (ξ · ν)(ϕ− u) (4)

where the second inequality is obtained arguing as in Proposition 3.5.
By de�nition, (u∗, ξ∗) ∈ T (u, ξ) if and only if

〈u, u∗〉+ 〈ξ, ξ∗〉 =H(u, ξ∗) + H∗(u∗, ξ)

=

∫
Ω

|Du + ξ∗|+ G(u) +

∫
∂ΩD

|u− ϕ|

+ G∗(u∗ + div(ξ))−
∫

∂ΩD

(ξ · ν)ϕ

This shows that (2), (3) and (4) must be equalities which is exactly
u∗ + div(ξ) ∈ ∂G(u)∫

Ω

|ξ∗ + Du| = 〈ξ∗, ξ〉+

∫
Ω

[ξ, Du]

(ξ · ν) ∈ sign(ϕ− u) in ∂ΩD

Remark .
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• Whenever it has a meaning, one can show that the condition∫
Ω

|ξ∗ + Du| = 〈ξ∗, ξ〉+

∫
Ω

[ξ, Du]

is equivalent to
ξ∗ + Du ∈ IB(0,1)(ξ)

so that we won't distinguish between these two.

• This analysis shows why the constraint u ∈ [0, 1] is hard to deal with.
In fact, it imposes that div(ξ) is a measure but not necessarily a L2

function. It is not easy to give a meaning to
∫

Ω
Du · ξ or to (ξ · ν) on

the boundary for such functions. However, when dealing with numerical
implementations, it is better to keep the constraint on u.

We can summarize those results in the following theorem which says that
the Primal-Dual Method is well-posed.

Theorem 3.8. For all (u0, ξ0) ∈ dom(T ), there exists a unique (u(t), ξ(t))
such that 

∂tu ∈ div(ξ)− ∂G(u)

∂tξ ∈ Du− ∂IB(0,1)(ξ)

(ξ · ν) ∈ sign(ϕ− u) in ∂ΩD ξ · ν = 0 in ∂ΩN

(u(0), ξ(0)) = (u0, ξ0)

(5)

Moreover, the energy |d
+u

dt
|22 + |d

+ξ

dt
|22 is non increasing and if (ū, ξ̄) is a

saddle point of K, |u− ū|22 + |ξ − ξ̄|22 is also non increasing.

Proof. Apply theorem 2.5.

Remark . This theorem also shows that whenever J has a minimizer, K
has saddle points. This is because stationnary points of the system (5) are
minimizers of J (verifying the Euler-Lagrange equation for J).

For the Rudin-Osher-Fatemi model, one can show that there is conver-
gence of u to the minimizer of the functional J and obtain a posteriori esti-
mates.
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Proposition 3.9. Let G =
λ

2

∫
Ω

(u − f)2 and ∂ΩD = ∅. Then if ū is the

minimizer of J , every solution of (5) converges in L2 to ū. Furthermore one
has

|u− ū|2 ≤
1

2

1

λ
|∂tu|2 +

√
|∂tu|22

λ2
+

8|Ω| 12
λ

|∂tξ|2


Proof. Let (ū, ξ̄) be such that 0 ∈ T (ū, ξ̄). Let e(t) = |u(t)− ū|22 and
g(t) = |ξ(t)− ξ̄|22. We can show that

1

2
(e + g)′ ≤ −λe

Indeed, by de�nition of the �ow,∫
Ω

[ξ, Du]− 〈ξ, ∂tξ〉 ≥
∫

Ω

[ξ̄, Du]− 〈ξ̄, ∂tξ〉 and∫
Ω

[ξ̄, Dū]− 〈ξ̄, ∂tξ̄〉 ≥
∫

Ω

[ξ, Dū]− 〈ξ, ∂tξ̄〉

Summing these two we �nd,∫
Ω

[ξ − ξ̄, D(u− ū)] ≥ 〈ξ − ξ̄, ∂tξ − ∂tξ̄〉

We thus have

1

2
(e + g)′ = 〈u− ū, ∂tu− ∂tū〉+ 〈ξ − ξ̄, ∂tξ − ∂tξ̄〉

≤ 〈u− ū, div(ξ − ξ̄)− λ(u− ū)〉+

∫
Ω

[ξ − ξ̄, D(u− ū)]

= −λe

The functions e and g are Lipschitz continuous. Let L be the Lipschitz
constant of e and let h = e + g.

Suppose that there exists α > 0 and T > 0 such that e ≥ α for all t > T ,
then we would have h′ ≤ −λα and h would tend to −∞ which is impossible
by positivity of h. Hence

∀α > 0 ∀T > 0 ∃t ≥ T e(t) ≤ α

15



Suppose now the existence of ε > 0 such that for all T ≥ 0 there exists
t ≥ T with e(t) ≥ ε.
By continuity of e, there exists a sequence (tn) with lim

n→+∞
tn = +∞ such

that
e(t2n) =

ε

2
e(t2n+1) = ε

Moreover, on [t2n−1, t2n], we have e(t) ≥ ε
2
. We then �nd that

|e(t2n)− e(t2n−1)| ≤ L(t2n − t2n−1) so
ε

2L
≤ t2n − t2n−1

From which we see that,

h(t2n+2) = h(t2n+1) +

∫ t2n+2

t2n+1

h′(t) dt

≤ h(t2n+1)− ελ(t2n+2 − t2n+1)

≤ h(t2n)− λε2

2L

This shows that lim
t→+∞

e(t) = 0.

We now prove the a posteriori error estimate.

We have that

u = f +
1

λ
(div ξ − ∂tu)

ū = f +
1

λ
div ξ̄

Which leads to

|u− ū|22 =
1

λ
〈div(ξ − ξ̄)− ∂tu, u− ū〉

=
1

λ

[
〈div(ξ − ξ̄), u− ū〉 − 〈∂tu, u− ū〉

]
=

1

λ

[
−〈ξ − ξ̄, Du−Dū〉 − 〈∂tu, u− ū〉

]
≤ 1

λ

[∫
Ω

|Du| −
∫

Ω

[ξ, Du] + |∂tu|2|u− ū|2
]

16



From which we deduce that

|u− ū|2 ≤
1

2

(
1

λ
|∂tu|2 +

√
|∂tu|22

λ2
+

4

λ
(

∫
Ω

|Du| −
∫

Ω

[ξ, Du])

)
The estimate follows from the fact that∫

Ω

| − ∂tξ + Du| =
∫

Ω

[ξ, Du]−
∫

Ω

∂tξ · ξ thus∫
Ω

|Du| −
∫

Ω

|∂tξ| ≤
∫

Ω

[ξ, Du]−
∫

Ω

∂tξ · ξ hence∫
Ω

|Du| −
∫

Ω

[ξ, Du] ≤ 2

∫
Ω

|∂tξ| ≤ 2|Ω|
1
2 |∂tξ|2

Following the same lines, one can show a posteriori error estimates for
general �nite di�erence scheme. Indeed if ∇h is any discretization of the
gradient and if divh is de�ned as −(∇h)∗, the associated algorithm isξn = PB(0,1)(ξ

n−1 + δτn∇hun−1)

un = un−1 + δtn(divh ξn − λ(un−1 − f))

Where PB(0,1)(ξ)i,j =
ξi,j

max(|ξi,j|, 1)
is the componentwise projection of ξ on

the unit ball. We can associate to this system a discrete energy,

Jh(u) =
∑
i,j

|∇hu|i,j +
λ

2

∑
i,j

|ui,j − fi,j|2

The algorithm presented above could have been directly derived from the
discrete energy using the method of Chan and Zhu [17] (which is just the
discrete counterpart of our continuous method). Hence, the next proposition
gives a stopping criterion for their algorithm.

Proposition 3.10. If ū is the minimizer of Jh then

|un − ū|2 ≤
1

2

(
1

λ
|∂tu

n|2 +

√
|∂tun|22

λ2
+

8

λ
|ξn

t |2

)

Where ∂tu
n =

un+1 − un

δtn+1
and ∂tξ

n =
ξn+1 − ξn

δτn+1
.
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The proof of this dicrete estimate is almost the same as for the continuous
one. We give it in the appendix.

For the general problem, there is no uniqueness for the minimizer (for
example in the segmentation problem) and hence convergence may not occur
or be hard to prove. Indeed, even when uniqueness holds, we can have non
vanishing oscillations. For example in the simpler one dimensional problem

min
u∈BV ([0,1])

∫ 1

0

|u′|

the unique minimizer is u = 0 but u(t, x) = 1
2
cos(πx) sin(πt) and

ξ(t, x) = 1
2
sin(πx) cos(πt) gives a solution to the associated system. In this

example, the energy is constant hence not converging to 0. We can however
show general a posteriori estimates for the energy.

Proposition 3.11. For every saddle point (ū, ξ̄) and every (u0, ξ0), the so-
lution (u(t), ξ(t)) of (5) satis�es

|J(u)− J(ū)| ≤
(√

|u0 − ū|22 + |ξ0 − ξ̄|22
)
|∂tu|2 + 2|Ω|

1
2 |∂tξ|2

Proof. Let (ū, ξ̄) be a saddle point and (u(t), ξ(t)) be a solution of (5).

J(u)−J(ū) =

∫
Ω

|Du|+
∫

∂ΩD

|u−ϕ|−
∫

Ω

|Dū|−
∫

∂ΩD

|ū−ϕ|+G(u)−G(ū)

By de�nition of the operator T we have∫
Ω

[ξ, Du]−
∫

Ω

∂tξ · ξ =

∫
Ω

|Du− ∂tξ|

≥
∫

Ω

|Du| −
∫

Ω

|∂tξ|

This shows that ∫
Ω

|Du| ≤
∫

Ω

[ξ, Du] + 2

∫
Ω

|∂tξ|

On the other hand,∫
Ω

[ξ, Du] +

∫
∂ΩD

|u− ϕ| = −
∫

Ω

u div ξ +

∫
∂ΩD

{(ξ · ν)u + |u− ϕ|}

18



Applying
∫

∂ΩD

{(ξ · ν)u + |u− ϕ|} = inf
v
{(ξ · ν)v + |v − ϕ|} to v = ū we

have∫
Ω

[ξ, Du] +

∫
∂ΩD

|u− ϕ| −
∫

∂ΩD

|ū− ϕ| ≤ −
∫

Ω

u div ξ +

∫
∂ΩD

(ξ · ν)ū

= −
∫

Ω

u div ξ +

∫
Ω

ū div ξ +

∫
Ω

[ξ, Dū]

=

∫
Ω

(ū− u) div ξ +

∫
Ω

[ξ, Dū]

If we now use
〈div(ξ)− ∂tu, u− ū〉 ≥ G(u)−G(ū)

and combine it with all these inequalities, we �nd

J(u)− J(ū) ≤
∫

Ω

(ū− u)∂tu + 2|∂tξ|2 +

∫
Ω

[ξ, Dū]−
∫

Ω

|Dū|

≤ |ū− u|2|∂tu|2 + 2|∂tξ|2

Which gives the estimate reminding that
√
|u− ū|22 + |ξ − ξ̄|22 is non in-

creasing.

Remark .

Supported by numerical evidence, we can conjecture that whenever the con-
straint on ξ is saturated somewhere, convergence of u occurs. It might how-
ever be also necessary to add the constraint u ∈ [0, 1] in order to have this
convergence.

Considering a �nite di�erence scheme, just as for the Rudin-Osher-Fatemi
model, we can de�ne a discrete energy Jh and show the corresponding a
posteriori estimate.

Proposition 3.12. If ū is a minimizer of Jh and (un, ξn) is de�ned byξn = PB(0,1)(ξ
n−1 + δτn∇hun−1)

un = un−1 + δtn(divh ξn − pn)

with pn ∈ ∂Gh(un−1) then

|Jh(u
n)− Jh(ū)| ≤ 2|∂tξ

n|+ |∂tu
n||un−1 − ū|
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We omit the proof because it is exactly the same as for Proposition 3.11.

Remark .

• The boundary conditions are hidden here in the operator ∇h.

• In the discrete framework, the estimate involves |un− ū| which can not
be easily bounded by the initial error.

4 Numerical Experiments

To illustrate the relevance of our a posteriori estimates, we �rst consider the
simple example of denoising a rectangle (see �gure 3). We then compare the
a posteriori error bound with the "true" error. We use the relative L2 error

de�ned as
|un − ū|
|ū|

and ran the algorithm of Chan and Zhu with �xed time

steps δt = 0.1 and δτ = 4. The minimizer ū is computed by the algorithm
after 15000 iterations. Figure 4 shows that the a posteriori bound is quite
sharp even if there are some unexpected pikes on the curve.

Figure 3: Denoising of a rectangle using the ROF model

The second experiment is performed on the yeast segmentation of �gure
2. The solution was computed with the algorithm of Chan and Zhu using
as weight function g the one proposed by Appleton and Talbot [4]. We used
this time the error |Jh(u

n) − Jh(ū)| and ran the algorithm with δt = 0.2
and δτ = 0.2. The minimizer ū is computed by the algorithm after 15000
iterations. We can see on �gure 5 that again the a posteriori estimate is
sharp. We must notice that in general we do not know ū. However, this
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Figure 4: Comparison of the relative L2 error with the predicted a posteriori
bound.

experiment shows that using |∂tξ
n| and |∂tu

n| as a stopping criterion makes
sense.

Figure 5: Comparison for the segmentation problem.
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A Proof of Proposition 3.10

For notational convenience, we present the proof for λ = 1. Let ū be the
minimizer of Jh and ξ̄ be such that |ξ̄|∞ ≤ 1 then

∑
i,j |∇hū|i,j = 〈∇hū, ξ̄〉

ū = divh ξ̄ + f

Reminding that un = f + divh ξn − ∂tu
n we get

|un − ū|2 = 〈divh(ξn+1 − ξ̄)− ∂tu
n, un − ū〉

= −〈ξn+1 − ξ̄,∇hun −∇hū〉 − 〈∂tu
n, un − ū〉

≤ 〈ξ̄ − ξn+1,∇hun〉+ |∂tu
n||un − ū|

We have that ξn+1 = PB(0,1)(ξ
n + δτn+1∇hun) hence by de�nition of the

projection,

∀ξ̄ ∈ B(0, 1) 〈ξn+1 − (ξn + δτn+1∇hun), ξ̄ − ξn+1〉 ≥ 0

This gives us
〈∇hun, ξ̄ − ξn+1〉 ≤ 〈∂tξ

n, ξ̄ − ξn〉

Combining this with 〈∂tξ
n, ξ̄) − 〈∂tξ

n, ξ̄〉 ≤ 2|∂tξ
n| (which holds because

|ξ̄|∞ ≤ 1 and |ξn|∞ ≤ 1) we �nd that

|un − ū|2 ≤ 2|∂tξ
n|+ |∂tu

n||un − ū|

The announced inequality easily follows.
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