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Abstract.

An electrical potential U on a bordered real surface X in R? with isotropic conductivity
function o > 0 satisfies equation d(ach)‘X = 0, where d° = i(0 — 0), d = 0 + O are
real operators associated with complex (conforme) structure on X induced by Euclidien
metric of R®. This paper gives exact reconstruction of conductivity function ¢ on X from
Dirichlet-to-Neumann mapping U ‘b ~ — odU }b +- This paper extends to the case of the
Riemann surfaces the reconstruction schemes of R.Novikov [N2] and of A.Bukhgeim [B],
given for the case X C R?. The paper extends and corrects the statements of [HM], where
the inverse boundary value problem on the Riemann surfaces was firstly considered.
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0. Introduction

0.1. Reduction of inverse boundary value problem on a surface in R® to the corre-
sponding problem on affine algebraic Riemann surface in C.

Let X be bordered oriented two-dimensional manifold in R3. Manifold X is equiped
by complex (conformal) structure induced by Euclidean metric of R®. We say that X
possesses an isotropic conductivity function o > 0, if any electric potential v on bX
generates electrical potential U on X, solving the Dirichlet problem:

U|bX =u and dodU|, =0, (0.1)

where d¢ = i(0—0), d = 0+0 and the Cauchy-Riemann operator 0 corresponds to complex
(conformal) structure on X. Inverse conductivity problem consists in the reconstruction
of 0|X from the mapping potential U}bX — current j = adCU}bX for solutions of (0.1).
This mapping is called Dirichlet-to-Neumann mapping.

This problem is the special case of the following more general inverse boundary value
problem, going back to I.M.Gelfand [Ge] and A.Calderon [C]: to find potential (2-forme)
g on X in the equation

dd$ = qv (0.2)
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from knowledge of Dirichlet-to-Neumann mapping w‘b < = d%p}b  for solutions of (0.2).
Equation (0.2) is called in some context by stationary Schrédinger equation, in other
context by monochromatic acoustic equation etc. Equation (0.1) can be reduced to the
equation (0.2) with

qg= dd\;_(‘j/g by the substitution ¢ = \/oU.

Let restriction of Euclidean metric of R* on X have (in local coordinates) the form

ds? = Edx? 4+ 2Fdxdy + Gdy? = Adz* + 2Bdzdz + Adz?,

— ; — E{G — E-G-2iF _ A :
where 2 = z +1iy, B = ==, A 7 . Put p BB AR By classical

results (going back to Gauss and Riemann) one can construct holomorphic embedding
0 : X — C?, using some solution of Beltrami equation: d¢ = udp on X. Moreover,
embedding ¢ can be chosen in such a way that ¢(X) belongs to smooth algebraic curve V
in C®. Using existence of embedding ¢ we can identify further X with ¢(X).

0.2. Reconstruction schemes for the case X ¢ R? ~ C.

For the case X = Q C R? the exact reconstruction scheme for formulated inverse
problems was given in [N2], [N3] under some restriction (smallness assumption) for o or
q (see Corollary 2 of [N2]) . For the case of inverse conductivity problem, see (0.1), (0.2),
when g = %@, restriction on ¢ in this scheme was eliminated by A.Nachman [Na] by
the reduction to the equivalent question for the first order system studied by R.Beals and
R.Coifman [BC2]. Recently A.Bukhgeim [B] has found new original reconstruction scheme
for inverse boundary value problem, see (0.2), without smallness assumption on q.

In a particular case, the scheme of [N2] for the inverse conductivity problem consists
in the following. Let o(z) > 0 for z € Q and o € C?(Q). Put o(z) = 1 for z € R*\Q.

Let g = %@.

From L.Faddeev [F1] result it follows: 3 compact set £ C C such that for each
A € C\E there exists a unique solution ¥ (z, A) of the equation ddy) = qip = %w, with
asymptotics

(2, N)e def w(z,A) =14 o0(1), z — oc.

Such solution can be found from the integral equation

p ) =1+2 gz — ¢ ) MENIVT (0.3)

2 Vo
£eq)
where the function
() = / AU Nqw Ndw i / e (WEO2) duy A di
T = on)2 (w+ )@  2(2n)? w(w — i)
we(c wEC

is called the Faddeev-Green function for the operator
o= 5(8 + Adz)p.
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From [N2] it follows that YA € C\E the function w‘bQ can be found through Dirichlet-to-
Neumann mapping by integral equation

P(2 N[, = €™ + / T g(z — €N (@Y(E,N) — Dorp(€,N)), (0.4)

£€b0

where &9 = 99|, ), Pov> = Do)y, Yol = V], and 9ol =0.
By results of [BC1], [GN] and [N2] it follows that 1(z, \) satisfies 0-equation of Bers-
Vekua type with respect to A € C\ E:

g—? = b(\)y, where (0.5)

- -z 1 Z2—AZ

Ab(N) = —5— e A0, (2, \) = g / e Mau, (0.6)
z€bQ) Q

P(z,Ne ™ = pu(z,\) = 1, A = o0, V z € C. (0.7)

From [BC2] and [Na] it follows that for ¢ = dd\c/—;/g, o> 0,0 C?Q) the exceptional

set E = {0} and function A — b()) belongs to L**¢(C) N L?>~¢(C) for some € > 0. As a
consequence function p = e~*#1) is a unique solution of the Fredholm integral equation

1 s d)\' A d)\’
reC

Integral equations (0.4), (0.8) permit, starting from the Dirichlet-to-Neumann map-
ping, to find firstly the boundary values v ‘ pop Secondly 7 O-scattering data” b(\) and thirdly

function 1/1|Q From equality dd®y = 9% */_w on X we find finally % \/_;/E on X.

The scheme of the Bukhgeim type [B] can be presented in the following way. Let
q = Qdd|z|?, where Q € C(Q), but potential @ is not necessary of the conductivity

form dd\c/_;/g. By variation of Faddeev statement and proof we obtain that V a € C 3

compact set £ C C such that VA € C\E there exists a unique solution v,(z, A) of the
equation dd®y = qi» with asymptotics

Ya(2,\)e =D = 11 (2,0) =1+ 0o(1), 2z — oo,

Such a solution can be found from integral equation (0.3), where kernel g(z, \) is replaced
by kernel

9a(2,(,N) =

jera’—Aa® e~ AN¢—n+a)’ +A((-7+a)?
/ dn A dn.

2m? (n—2)(¢C 1)
Kernel g,(z,(, \) can be called the Faddeev type Green function for the operator
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p— 0(0 + Md(z — a)?)p. Equation (0 + Md(z — a)?)u = %q,u and Green formula implies

/eA(z—a)2—5\(z—a)28u — /eA(z—a)Q—S\(z—af%. (09)
(3
b Q

Stationary phase method, applied to the integral in the right-hand side of (0.9), gives for
T — 00, T € R, equality

4 . 2, /2 =\27 =
lim — / e TlE=a G719 1, (2,i7) = Q(a). (0.10)

T—0 17
TE ZGbQ

Formula (0.10) means that values of potential @) in the arbitrary point a of € can be

reconstructed from Dirichlet-to-Neumann mapping } po — Ozlta | yo for family of functions

ta(2z, A) depending on parameter A = i7, T > const, where we assume that p,|,, is found

e
using an analog of (0.4) for wa‘bQ.

Bukhgeim’s scheme works well at least ¥V Q € C1)(Q).

More constructive scheme of [N2] works quite well only in the absence of exceptional
set E in the A-plane for Faddeev type functions. In papers [BLMP], [Ts], [N3] it was con-
structed modified Faddeev-Green function permitting to solve inverse boundary problem
(0.2), on the R? = C, at least, under some smallness assumptions on potential Q.

Let us note that the first uniqueness results in the two-dimensional inverse boundary
value or scattering problems for (0.1) or (0.2) goes back to A.Calderon [C], V.Druskin [D],
R.Kohn, M.Vogelius [KV], J.Sylvester, G.Uhlmann [SU] and R.Novikov [N1].

Note in this connection that the first seminal results on reconstruction of the two-
dimensional Schrodinger operator H on the torus from the data "extracted” from the
family of eigenfunctions (Bloch-Floquet) of single energy level Hy = E1 were obtained in
series of papers starting from B.Dubrovin, I.Krichever, S.P.Novikov [DKN], S.P.Novikov,
A.Veselov [NV]. These results were obtained in connection with (241)- dimensional evo-
lution equations.

This paper extends to the case of Riemann surfaces reconstruction procedures of [N2]
and of [B]. The paper extends (and also corrects) the recent paper [HM2] where the inverse
boundary value problem on Riemann surface was firstly considered.Earlier in [HM1] it was
proved that if X C R? possesses a constant conductivity then X with complex structure
can be effectively reconstructed by at most three generic potential — current measurements
on bX.

Very recently, motivated by [B] and [HM1], [HM2], C.Guillarmou and L.Tzou [GT]
have obtained general identifiability result (without reconstruction procedure): if for all
solutions of equations dd“u + ¢;ju =0, ¢; € C@)(X), j = 1,2, Cauchy datas u}bx, d°c
coincide, then ¢; = ¢2 on X.

u|bX’

1. Preliminaries and main results
Let CP? be complex projective space with homogeneous coordinates



w = (wp : wy : wg : ws). Let CPL = {w € CP3: wy = 0}. Then CP3\CP2 can
be considered as the complex affine space with coordinates z = wy/wg, k = 1,2,3. By
classical result of G. Halphen (see R.Hartshorne [H], ch.IV, § 6) any compact Riemann
surface of genus g can be embedded in CP? as projective algebraic curve V, which intersects
CP2 transversally in d > ¢ points, where d > 1if g =0,d >3 if g=1and d > g+ 3 if
g > 2. Without loss of generality one can suppose that
i) V= f/\(CP2 is connected affine algebraic curve in C* defined by polynomial equations
V ={z € C®: pi(2) = pa(z) = p3(z) = 0} such that the rang of the matrix
(32 (2), %2 (2), 22 (2)] =2V z € V.
ii) VNCP2 = {p1,...,B4}, where

Bi=(0: B 87 : 7). (ﬁl gl)e@ =12 .4
l
iii) For rg > 0 large enough
9pa 9pa
detgﬁ 3&‘#0 for 2€V: |z1| >79 and «a # f.
8252 823
iv) For |z| large enough:
dzo 1 dzs ~ ,%0 1
d2’1| ’Vl+ + ( 3) le}Vl 'YZ+Z%+ (zi)’)’

where v, Y1, 77, Y #0, for l =1,...,d,d > 2.

Let Vo = {z € V : |z1] < ro} and V\Vy = UL,V,, where {V;} are connected
components of V\Vy. Let us equip V by Euclidean volume form dd®|z|?. Let )
WYP(V) ={F € L>(V): OF € L, (V)}, Wi§(V) = {f € Li%(V) : 9f € L} ,(V)},
p > 2. Let Hyp1(V) denotes the space of antiholomorphic (0,1)-forms on V. Let
H(]il(V) =Ho1(V)N Lal(V), 1<p<2.

Let WhP(V) ={F € L»(V): OF € L§ ,(V)}.

From the Hodge-Riemann decomposition theorem (see [GH], [Ho]) V&, € Wol”f (V) we
have

= 0(0*G®y) + HPo, where H®y € Hy 1(V) and G is the Hodge-Green operator for the
Laplaman d0* + 0*0 on V with the properties: G(Hy1(V)) =0, 0G = G9, 0*G = GO*.

Straight generalization of Proposition 1 from [He] gives exphclt operators:

Ry: Ly, (V)= LP(V), Ry : L (V) — WHP(V) and H : Lo, (V) — Hy(V), 1 <p <2,
% = % — 1, such that V@ € L 0.1(V) we have decomposition of Hodge-Riemann type:

® = ORP + HP, where R = R;+ Ry,

1
Rib(2) = 5 [ 96) A dpa Adps) s A da 1 deadet]
Lev
Ro®(2) = (0"G(OR1® — @))(2) — ("G(OR1® — @)) (),
(OR1® — @) € W&”f(f/), G is the Hodge — Green operator for Laplacian 90*

for (0,1) — forms on V,

Opa(§) Ops(§) €—72
o5 08 T|E— 2
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(1,1)-form under sign of integral does not depend on the choice of indexes «, 5 = 1,2, 3,

a7 B,

g

HD = Z(/@A%)@j,

j=1 Vv

{w;} is orthonormal basis of holomorphic (1,0)-forms on V, i.e.

/(,Uj/\@k:(Sjk, J,k=1,2,...,g.
14

Note that as a corollary of construction of R we have that lg‘rfl R®(z) = R®(51) = 0.
z€V;y

z— 00

Remark 1.1. If V = {z € C*: P(z) = 0} be algebraic curve in C* then formula for
operator R is reduced to the following:

d opP ¢ — 3
Ri®(:) = 5o [ 95k det[Fp(©). =)

27?7,56‘/ 9,

Remark 1.2. Based on [HP] one can construct an explicit formula not only for the
main part R; of the R-operator, but for the whole operator R = Ry + Rp.
Let o € L} (V)N L(V), fe Wi F(V), AeC, 0 eC.
Let A
Rop = R((dz1 + 0dz2) |¢)(dz1 + 0dzs),

Raof = e_xoR(erof), where ey g(z) = eMe1t022)-ME+0%),

By straight generalization of Propositions 2, 3 from [He] the form f = Roy is a solution
of 0f = ¢ on V, function u = Ry ¢ f is a solution of

(0+ A(dz1 4+ 0dz2))u = f — Hxof, where
Hxof def e_xoH(exof), ue WH(V), p>2.
In addition, by straight generalization of Proposition 4 from [He| we have that

(0 + Mdz1 + 0dz2))u = o + A(dZ, + 0dZy) AHag(Rgp) on V.

Definition 1.1. The kernel gy 6(2,¢), 2,§ € V, A € C, of integral operator Ry g o Ry
is called in [He| the Faddeev type Green function for operator 0(0 + A(dz1 + 0dz2)).

Definition 1.2. Let g = genus V. Let {w;}, j = 1,...,g, be orthonormal basis

of holomorphic forms on V. Let {a1,...,a,} be different points (or effective divisor) on
V\Vo. Let

Ag(A):det[/ Ro(6(6,a;)) A@e(€)ero(€) jk=1,....9.]

Eev



where §(&, a;)- Dirac (1,1)-form concentrated in {a;}.
Let Eg = {A € C: Ag(N\) =0}.

Definition 1.3. Parameter § € C will be called generic if 6 ¢ {61,...,04}, where
9, = —1/v;,. Divisor {ai,...,a,} on V\V, will be called generic if

ot

det [le (ak)]j,kzl g 7é 0.

.....

Proposition 1.1. Let parameter 6 € C and divisor {ai,...,as} on V\V, be generic,
where Vo ={z € V' : |z1| <ro}, g > 1. Then for ro large enough we have inequalities:

limy 00| N A(N)| < 00 and

Ve >0 Lm,  _[MAg(\)|. >0, where MAN)|-=  sup (V)9 Ag(\)|
(NN =X|<e}

Besides, the set Fy is a closed nowhere dense subset of C.

Let X be domain containing V[, and relatively compact on V. Let o € C (3)(V), o >0,
onV,o=1on V\X. Let Y be domain containing X and relatively compact on V. Let
divisor {a1,...,a,} on Y\ X and parameter § € C be generic.

Definition 1.4. The functions 1g(z,\) = o Fa(z,\) = pg(z, \)er#11022) 5 c v/,
0 € C\{0y,...,04}, A € C\Ep, will be called the Faddeev type functions, associated with
o, 6 and {ai,...,a,} if g, Fy, pe satisfy correspondingly properties:

g
dod’Fy = 2,/5* 14972 Y 7 Cj9(N)d(2,0;),

j=1
ddy = qupg + 2e (3 T0%) zg: Cj,0(N)d(z, a;), (1.1)
00 + Adz1 + 0dzo))pg = Sapp +i > Cio(Ni(z,ay),
j=1
and the normalization condition
lim pe(z, ) =1, (1.2)

z€Vp

z— 00

where ug}y € LP(Y), ,u9|V\Y eL>®(V\Y),p>2,q= %, {Cj,¢} are some functions of
AE (C\Eg

Theorem 1.1. Under the aforementioned notations and conditions, ¥V generic 6 € C,
V generic divisor {ai,...,a,} C V\X and V XA € C\Ey : |A| > const(V,{a;},0,0) there
exists unique Faddeev type function

Yoz, \) = Vo Fy(z,\) = e)‘(zlJreZQ)ug(z, A),
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associated with conductivity function o and divisor {a1,...,a,}. Moreover:
A) function z — (2, ) and parameters {C;9(\)} can be found from the following
equations, depending on parameters 6 € C, A € C\ Ejy,

dole) _% / ex((zl—51>+e<z2—52>>gw(27g)d‘i/?_‘/‘?we(z, A) =
£ex
g (1.3)
e}\(21+922) + Z Z CJ’Q()\)g)\70(Z7 aj)eA(Zl+022)7
j=1
23" CralNerola)—2—(a;) -
L O N e ¥ 0dzs
= (1.4)
Nz gz ddoNo Wi .
_ )\(Z1—|—0Z2) )\ _
/ ¢ 7o VN B
zeV
where k =1,2,...,g and {w;} is orthonormal basis of holomorphic forms on f/;

B) functions z — 1y(z,\) and parameters {C;¢(\)} satisfy the following properties
for X € C\Ey : |\ > const(V,{a;},0,0)

3 lim L%e—m*%)(% + é%) = lim e 2= H0%2)p5()),  (1.5)

e A 0z 9=mT
iCj () = (2mi) Res,, e 11022 gy 1 o lim e NEH022) gy (1.6)
|z—aj|=¢
b (2, A S
Wolz ) _ Tl (L.7)
X
aijj()‘) eMajitbaz2) _ bo()\)mei(ﬁj,ﬁé@ﬂ)_ (1.8)
B ’
Besides,
_ 1 _ &
Abg(A)d = 5 / exo(z)0u(z) + ZZCL@G}\,@(CLJ’),
z€bX J=1
1 1 (1.9)
Al - [be(N)| < const(V, {a;), :
AP0 = constV i) O 7 Tay T+ e
1 1

|Cj.0(N)| < const(V,{a;},0) (A + D)3 [Ag(M) (1 + [N\

Remark 1.3. If || In /o o (x) < const(V,{a;},0) then the condition
A€ C\Eg : [N > const(V,{a;},0,0) in Theorem 1.1 can be replaced by the condi-
tion A € C\Eyp. Dependence of const(V,{a;},0,0) of o means its dependence only of

Voo x)-



Definition 1.5. The functions bg(\) and {C} ¢} will be called ”scattering” data for
potential q.

Let é(w}bx> = &p}bX for all sufficiently regular solutions v of (0.2) in X, where

q= %. The operator ® is equivalent to the Dirichlet-to-Neumann operator for (0.1).

Let o denote ® for g=0on X.

Theorem 1.2. Under the conditions of Proposition 1.1 and Theorem 1.1, the follow-
ing statements are valid:

A) VA e C\Ep : |\ > const(V,{a;},0,0) the restriction of 1g(z, A) on bX and data
{Cj.0(N\)} can be reconstructed from Dirichlet-to-Neumann data as unique solution of the
Fredholm integral equation

Yoz, A)|ox + / A= =8)F00z2=8)] g (2 €)(D — Do)app(€, \) = (1.10)
£EbX

g
j=1

g
/(a+ﬂ@)(8+MMy+M@)mzA =3 (ag +0a52)"ECio(N), (111)
7j=1

z€bX

k=2,...,9+1, where (without restriction of generality) we suppose that values {a; 1} of
the first coordinates of points {a;} are mutually different;
B) Function o(w), w € X, can be reconstructed from Dirichlet-to- Neumann data

¢9}bX “9|bx Matoz) 8¢9‘bx

by explicit formulas, where we assume that ¢9’bx is found using (1.10), (1.11).

For the case V = {z € C*: P(z) = 0}, where P is a polynomial of degree N, this
formula has the following form. Let {w,,} be points of V', where (dz; + QdZQ)IV(wm) =0,

_dd°\/G

m = 1,...,M. Then for almost all 6 values Todd o7 W) can be found from the

7y
following linear system

dF ~ ,
(1 o) ([ emale)Ona(z.ir)) =
z€bX
Moir(1+16)2)  ddey/o
|g—P(w)| exp ’LT[(wm 1+ 0w 2) + (Wpmn + H_wmyg)]
2 2 2 ?

where m,k = 1,...,M; M = N(N —1), 7 € R, 7 — oo, |7|9]A¢(iT)] > € > 0, e- small
enough. Determinant of system (1.12) is proportional to the determinant of Vandermonde.

9



C)Ifg=0andif = 6(\) = \72, then V z € X and VA € C function pg(z,\) =
Yo(z, e M=1H022 s yunique solution of Fredholm integral equation

dé A dE

1 o
m 2 \) + / b ¢ 65(214-9(5)22)—f(z1+9(§)22)ﬁ 2, € =1,
o0 (2,A) + 5 ” o(¢)(§) o) ( )g—A
const(V
uhere [bago (€)] < Frri)

and function z — o(z), z € X, can be found from equality

dd°\/o
\/E

dd“Pg(ny (2, A) = (2)Yen) (2, A), 2z € X.

Remark 1.4. Using the Faddeev type Green function constructed in [Hel, in [HM2]
were obtained natural analogues of the main steps of the reconstruction scheme of [N2]
on the Riemann surface V. In particular, under a smallness assumption on dlog+/o the
existence (and uniqueness) of the solution u(z, \) of the Faddeev type integral equation

A)dde g
po(&; \/)E Vo + iZng/\,G(Zaaj)v zeV, AeC,

¢ev i=1

po(z,\) =1+ % / gxr0(2,€)

holds for any a priori fixed constants C1, ..., Cy. However (and this fact was overlooked in
[HM]) for A € C\E there exists unique choise of constants C;(\, o) for which the integral
equation above is equivalent to the differential equation

9(0 + X(dz1 + 0dz2))p — %(d{;_fu) +iZCj6(z,aj),

j=1

where 6(z,a;) are Dirac measures concentrated in the points a;.

2. Faddeev type functions on Riemann surfaces. Uniqueness

Let projective algebraic curve V be embedded in CP? and intersect
CP2 = {w € CP3: wy = 0} transversally in d > g points. Let V = V\CP2,,
Vo={2z €V : |z1| <rp} and properties i)-iv) from § 1 be valid.

Proposition 2.1. Let o be positive function belonging to C® (V) such that o =
const =1 on V\X C V\Vy = UL, V], where {V;} are connected components of V\Vy. Put
q= dd\c/_f. Let {ai,...,a,} be generic divisor with support in Y\X, X CY CY C V.

Let for generic § € C and A € C: |\ > const(V,{a;},0,0) function z — p = pg(z,\) be
such that:

aly € LPY), iy € LZ2(V\Y),

_ h ) 2.1
Oply € LP(Y), Ouly,\y € LP(VYY), 1<p<2, p>2, @1)

10



. g
(0 + A(dz1 + 0dzo)pu = %q,u +1 Z Ci0(z,a;) with some C; = Cje(N) and (2.2)
j=1
po(z,A\) =0, z—o00, z€V. (2.3)
Then pg(z,\) =0, z € V.

Remark 2.1. Proposition 2.1 is a corrected version of Proposition 2.1 of [HM2]. For
the case V' = C the equivalent result goes back to [BC2].

Lemma 2.1. Let ¢ = \/oF = e*®%022) ), where i satisfies (2.1), (2.2) and
Fy =\/0OF, F;=/00F. (2.4)

Then forms Fi, Fs satisfy the system of equations

g
OFy + Fy A OIny/o = ie** 920 N " C}5(2, a),
j=1
3 g
OFy + Fy A dln /o = —ie)=1+022) ZCjé(z,aj).
j=1

Proof of Lemma 2.1. From definition of I} and F5 it follows that

dod°F = i[2000F — 0o N\ OF + 0o N\ OF| =
22\/5(8}72 + Fy /\5111\/5) = —22\/5(5}71 + F5 /\8111\/5)

From (2.4) and (2.2) we deduce also that

dd° J
d(od°F) = /o (dd — ¢ \/*_/E) = 2/ 10220 N " C55(2, a).
o =
These equalities imply (2.5).
Lemma 2.1 is proved.

Lemma 2.2. Let {b,,} be the points of X, where (dz; + QdZQ)‘X(bm) =0.

Let BY = Uy, {by} and A° = U;{a;}.

Let utx = my & e_y 9(2)my, where my = e”A&11022) 1y = e~ A= 4022) £,
fi= \/Eg—i, fo= \/Eg—i. Let also g1 = 8137;1/5 and do(z,a;) = %. Then in conditions
of Lemma 2.1

sup |5Ui‘X(Z) ~dist®(z, B)| = O(sup |uxdist(z, B°)|) < oo;
2€X z€X (2.6)
ui}v\x c L'(V\X)nO(V\(X U AY)
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and system (2.5) is equivalent to the system

ou
—=dz1 = Feono()nus)dz+
Zl
) (2.7)
z‘Z(Cj + Cje_x0(2))00(z,a;)dz.
j=1
Proof of Lemma 2.2. From (2.1) we deduce the property
u:t|y € LP(Y)a 1<p<2
ui|v\y c LP(V\Y) @ L>®(V\Y), p>2.
System (2.5) is equivalent to the system of equations
Ofs N 40m)
07, —foqi + i1t )j:Zle(S()(Z,aj),
Of 7 4 ioA(z1+022 ’
9., ~ I + i Ho );Cﬁo(z,aj)
This system and definition of mq, mo imply
Omi _ m +izg:C~(5 (z,a4)
621—%2 j:130737
dm 025 _ <
621 + )\mg(l + 06_21) = —q1my + Zj; Cj(S()(Z, CLj).
From the last equalities and definition of u4 we deduce
6ui 8m1 6 mo 8 z9 . J
8_21 = P :|:€_>\79(Z)(a —|—)\(1+98—Zl) ) = —qlmg—l—zjz::leéo(z,aj):I:
e_xo(2) (5\(1 + 9%)7712 — )\mg(l + 98—) —qgmy +1 zg:C_"(So(z a )) =
’ 821 0z Z1 J T

j=1

g
F (e—r0(2)q1ty) Z (Cj £ Cie—x0(2))00(2,a;).

Property (2.7) is proved.
For proving (2.6) we will use construction coming back to Bers and Vekua (see [Ro],
[V]). Let 5+ be continuous on Y solutions of 0- equations

_ i
0B+ = ief/\,e(z)(h_idgl,
Ut

12



where the right-hand side belongs to Lg% (Y).
Functions v+ = uie ™+ belongs to O(Y). Indeed, from (2.1), (2.2) it follows that
peWhP(Y)nw, ’p(Y\(Aoiu BY)). From this and from definition of v+ we deduce that

loc

Ovy = qrudzie P+ — qruy Z—Ie‘ﬁi dz; =0 on Y\ (AU BY) and the following formula for
u4 is valid
us(z) = vi(z)el+), (2.8)

From this and (2.7), (2.8) we obtain (2.6).
Lemma 2.2 is proved.

Lemma 2.3. Let u+ be the functions from Lemma 2.2 and p be the function from
Lemma 2.1. Then

I

029 on
Uy = P +)\(1—|—9—) —Q1MI|:€—,\,0(Z)( o
21

) ) qm)

Proof of Lemma 2.3. We have

Uy = e—)\(21+022)f1 + €—>\(Z1+922)f2 — 6_)‘(21+0z2)(f1 + fz)’

where OF 5 1
— [ Y )\(Zl-i-eZQ) —

A(z1+6022) (% + )\(1 + Q%W — qlu),

82’1 82’1
aF 9 1 Mz1+0z2) -\
f2 \/_a 2 \/5821 (\/Ee :u)
o
)\(Z1+9Z2) - _ !
This imply Lemma 2.3.
Lemma 2.4. Let wy,...,w, be orthonormal basis of holomorphic 1 forms onV. Let
{a1,...,a4} be generic d1V1sor on Y\X, where Vo C X CY C V. Put w), = #=(a;). Let

for some generic § € C and \ € C functions ut from Lemmas 2.2-2.3 sat1sfy (12 6) (2.7)
with some C; = C;9()\). Then

sup [Cj,9(A)| < const(V, {a;},0)| In \/E”%/vzoo(x)(l + D)3 ug || e (x, B0
J
where  ||u+ || L (x,B0) C sup lu (2)dist(z, B°)).
zeX

Proof of Lemma 2.4. From condition iv) of section 1 we deduce |w | < oo. From
definition of generic divisor we obtain det]w j’k] # 0. From (2.7) and from definition of

13



Dirac measure V £ =1,...,g we deduce

Oln /o

lim ( / Ux N wk) + /€_>\79(Z) 921 u+dz N wg =

{z€V: |z1|=r}

g —
/Z(CJ + Cj€_>\79(z))50(z, aj)d51 Nwg = (2.9)
y J=1

{
] (Cj + Cje—A,Q(aj>)w?,k7 jak = 1727 -y g
1

g
7

J

From estimates lim sup lut+(2)| < oo, for some sequence r, — oo, and
T {zeVs |z |=ra}

lwr| < ()(|%D7 2zeV\Y, k=1,...,g, we obtain

le
lim ‘ / ur Awg| = 0. (2.10)
{zeV: |z1]=r}
From (2.9), (2.10) and Kramers’s formula we obtain
i(Cj £ Cje—xo(ay)) =
det[w?’k; . 5‘*’?—1,1@5){ te_x0(2) Blanz\l/gﬂidil A Wi; "J?+1,k;5 e ;w;k] (2.11)
det[w? ] ’
where j,k=1,...,g9.
Let us prove estimate
01
‘ / e ro(2) ;ﬁaidzl Ay <
% 1 (2.12)

const(X, 0)(1 + |)\|)_1/3|| In \/EH%VQ,QO(X) . ||u:t||L°°(X,B0)~

For |A| < 1 estimate follows directly, using that In /o € W1>°(X).

Let B =UM_{z € X : |2 —bp| <e}.

Let Xe.,, v = 1,2, be functions from C" (V) such that x. 1 + xc2 =1 on V,
suppXe1 C B*, suppxe2 C V\BE, |dxe.| = O(%), v=1,2.

Put Jouy = fxs,y(z)e_k,g(z)%@ﬂidél ANwg, v =1,2. We have directly:
X

|Jius| < const(X)e||In \/EHWl,l(X) . ||/U/:|:||L<X>(X7_BO). (2.13)

14



For J5u+ we obtain by integration by parts:

1 Oln\/o
JZEui = —— /nggae_)\’g(z) \/_’fb:tdil VAN
A 821

X

Wk

le + Odzg -

2.14
1 8111\/5_ Wi ( )

- _ co————UgdZy N ————— .
)\ /6 A’9(2)8<X 2 87:1 Utd21 A le + 6d22>
X

To estimate (2.14) we use (2.6) and the following properties: |9x.,2| = O(1),
supp(9xe,2) C B,

dln /o
=5,
const(X,0)

£

_ Wk
dzy N Oxe — ||z <
21 Xe,2U+ dz1 + Odzy ”LO,l(X) =

0 /o || wriee (x) lut Lo (x, B0

| Zye G <
022 dz1 + 0dzy P15 =

| Ine|const(X, 0)|| In /o |lwz.eo x)||u+]| Lo (x, B0)

H@ln\/E
82’1

const(X,0)

£

dz1 N dZiXe 2u+

_ Wk
dZ1 Xe Ut A a(m) Irg,(x) <

I/ [ wroo () [ut || oo ( x, B0
dut | = Flexo(2)quiis)dz.
From (2.14), (2.6) and these properties we obtain

const(X, 0
] < el 2T G o) - e+

const(X, 0
%H ln \/EHWLOO(X) . HuiHLoo(X’BO)—F (215)

const(X, 60,0
#H In Vo[l x) - |t | (x, 50)-

Putting in (2.13), (2.15) € = % and 6 = 1/3 we obtain (2.12) for || > 1.
Inequalities (2.11), (2.12) imply estimate
Cj £ Cje—xelaz)| < const(X, {a;},0)(L+ [A) ™2 I V/ol[fe o x) - llutll e x,m0)-

We obtained statement of Lemma 2.4.

Lemma 2.5. Let functions uy satisfy (2.6), (2.7) and R - operator from section 1.
Then

| Rle—xo0q10+d& || o (x,p0y < const(X,0)(1 + [A) 75| In /o |[wzee (x) - [t || Lo (x,B0)-
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Proof of Lemma 2.5. B
Let Xz, v = 1,2, be partition of unity from Lemma 2.4. Put SSuy = R[x: ,q1u+d&],
v =1,2. Using (2.6) and formula for operator R we deduce estimate

1St || Lo (x, 80y = O(e)|| In Vo [lw.e (x0) Ut || oo (x, B0)- (2.16)
Let Ry (&, ) be kernel of operator R. It means, in particular, that d¢ Ry o(&,2) = —4(, 2),
where §(&, 2)- Dirac (1,1)- measure, concentrated in the point £ = z. We have
Shuy = /XE,QG—A,GC]laidglRLO(Sa z). (2.17)
X

Integration by parts in (2.17) gives the following

Sgus = / e rl6) 2 B2 (O 74 (O Rrol6:2) =

_ l/e,\,9(5)5(ﬁxaﬂf)m(ﬁ)ﬂi(&))Rl,o(&Z)+ (2.18)

>l
>

1 3

A g,

5 (2)Xe,2(2)q1(2)u(2).

To estimate (2.18) we use (2.6), properties of partition of unity {x..} and inequalities

1

dél 1 3 dél
—_— =0(—5= 0———= =0(——7—=
1 = 1 '
=0(———==), |0 =0(—mm—— X.
From (2.19), (2.8) and from the formula for operator R we deduce estimate
1
[S5ux || £ (x) = 0(54\)\| Vo [[w2.0e (x) [t || Lo (x, B0).- (2-20)
Putting in (2.16), (2.20) € = |/\|+/5 we obtain statement of Lemma 2.5.
Proof of Proposition 2.1.
Let function p satisfy conditions (2.1)-(2.3) and us be functions defined in
Lemma 2.2. Then by Lemma 2.3 we have
lim uy(2,A) = lim (mq ey g(2)m2) =
ey Ten 2.21)
_ iz o o 92.21
lim AN1+0—)p+ — =+ .
i%r\%)[(—i_ dz) +8 €>\9( >aZ1]—>O
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Let

g
hy =uy £ R[(e—xp(2)q1ts)dz; — i Z(Cj + Cle_x0(2))00(2,a;j)dz], (2.22)
j=1

where R is the operator from section 1.

By Lemmas 2.2-2.5 and properties of operator R we have hy € O(V) N L>®(V) and
hi(z,\) — 0, z — oo, z € V4. By Liouville theorem, hy(z,A\) =0 on V, A € C. Then
from (2.22) with hy(z,A) =0 and Lemmas 2.4, 2.5 it follows that uy(z,A) =0, z € V, if
A e C\Ey: |A| > const(V,{a;},0)| In \/E||%/V2»°°(X)' Property uy (z,\) =0, z € V, implies
by Lemma 2.3 equality g—z"l —qp =0, z € V, where u(z) —» o if z € V4, z — oco. The
Liouville type theorem for generalized holomorphic functions ([Ro], theorem 7.1) implies
1 = 0. Proposition 2.1 is proved.

3. Faddeev type functions on Riemann surface. Existence.
Proof of Theorem 1.1A

Proposition 3.1. Let conductivity o and divisor {ai,...,aq} satisfy conditions of
Proposition 2.1. Then V generic § € C and VA € C\Ey : |\ > const(V,{a;},0,0) there
exists unique Faddeev type function

P def VoF def e’\(zl+gz2)p, where

(3.1)
’QZ} = ¢9(Z7)‘)7 F = F9(27)‘)7 M= /LQ(Z,)\),
associated with o and divisor {ay,...,a4}, i.e.
_ i g
0(0+ A(dz + 0dze))p = JaH + Zde(z,aj), for some C; = Cjg(X\), where
j=1
dde /7 (3.1a)
°\o 5 s = .
== ply € LP(Y), ply\y € LZ(V\Y), %I?O po(2,A) = 1.
In addition,
const(V,{a;},0,0,p,¢)
Z7A o 00 ,A 5 < ) YRR RN ] ’
||H9( ) Me( l )HL (V) = |Ag()\)’ . (1 + ’)\l)g+1_6
where g (oo, A) def zlggo po(z,\), 1=1,...,d, (3.1b)
zeV]
CONSt(‘/, {CL'},G,U,p,ﬁ, 6) ~
a p + 8 D S J ) < 27 > 27
|| MHLLO(Y) ” M”LLO(V\Y) |A9()\)| ) (1 + |)\|)g—€ b P
V generic 6 € C and A€ C\Ey: |\ > const(V,{a;},0,0),
On| ewre(y), 2% Lo(W\Y) UW P (V\Y (31
O, ewrey), K| e LY UW(RY)

17



where {V;} are connected components of V\Vy, I =1,...,d,

6)\’9 (Z) — eA(zl +9Z2)—>\(51 +922) )

Remark 3.1. Proposition 3.1 is a corrected version of Proposition 2.2 from [HM2].
For the case V' = C the results of such a type goes back to [F1], [F2].

Lemma 3.1. Under the conditions of Proposition 3.1, YA € C\Ey function
z — pg(z,\) belonging to LP(Y) on'Y and to L>=°(V\Y) on V\Y satisfies (3.1a) iff
there exists C; = Cj9(N), 7 =1,...,g, such that

. g
1 .
po(2,A) =1+ / ax0(z ) qua(&, )+ Cia(Ngro(z, ;) (3.2)
cex g=1
and one of two equjva]ent conditions is valid

H/\(;(Re( qu —f—ZZCJg HAQ(R@(é(Z,aj)):O or
= (3.3)

(0 + A(d21 + 0dz))pg(z, N) € Hio(V\(X UJ_, {a;})) N Li o(Y\X),
where gy ¢ is Faddeev type Green function, Re, H o - operators defined in section 1.

Proof of Lemma 3.1. From Proposition 4 in [He] and from definition of Green function
9x,0(z, &) we deduce that integral equation (3.2) is equivalent to the following differential
equation

. g
(0 + X(dz1 + 0dz))pn = %q,u +1 Z Cj00(z,a;)+

= (3.4)

, g
— _ ~ 1 . ~
)\(le + edig)) X |:H)\,0 (Rg (§qu)) “+1 Z Cj79H>\79(R9 (5(2, aj))} .
j=1
Equation (3.4) is equivalent to (3.1a) if one of two equivalent conditions (3.3) is valid.
Lemma 3.1 is proved.

Lemma 3.2. Let {ay,...,a,} be generic divisor in Y\X. Then for any generic § € C
and
VA € C\Ey : |A > const(V,{a;},0,0), integral equation (3.2), (3.3) is uniquely solvable

Fredholm integral equation in the space WP(V).

Proof of Lemma 3.2. Let § € C and A € C\Ey : |\ > const(V,{a;},6,0). From
(3.2), (3.3) we obtain integral equation for fig = g — 1 and C} ¢:

. g
fio(z, A) —% / 9r0(2,8)a(€) e (€, ) Z Agre(z,a;) =

eV (3.5)

1
2/9>\9Z§ +ZZ (Mgro(z, aj).

Eev
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Parameters C’j =Cj9(N),j=1,...,g, are defined by the equations:

Jj=1

=305 [ Ruld.aen(ennl) =
Vi (3.6)
[ era©Ro(Gaman). k=120

Eev

We remind that determinant of system (3.6) is exactly Ag()\).

Parameters C’joﬁ are defined by (3.6) with C’joﬁ in place of C’j’e and 1 in place of fi.
One can see also that Cf ,(\) = Cjg(A) — Cjo(N).
_ Let us prove that (3.5), (3.6) determine Fredholm integral equation in the space
WL(V), p > 2.

Propositions 2, 3 of [He] imply that correspondance

g
fi = R0 ( Re Z 0l (3(2,a5)))

define linear continuous mapping of Wl’ﬁ(V) into itself. This mapping is compact because
mapping g — qfi, suppq C X, from Wl’ﬁ(V) 1nt0 L1 (X)) is compact, operator
Ry : L?l(X) — Wll’bﬁ(V) and operator Ry g : W, 2(V) — WHP(V) are bounded.

If for fixed A ¢ Ep Fredholm equation (3. 5) ( 6) is not solvable then correspond-
ing homogeneous equation, when the right-hand side of (3.5) is replaced by zero, admits
nontrivial solution g* = p* — 1.

By Lemma 3.1 function ji* satisfies differential equation (2.2) with C; replaced by C;
and with property fi*(z) — 0, z — o0, z € V4.

By Proposition 2.1, f* = 0if A € C\Ep : || > const(V,{a;},0,0).

It means that equation (3.2), (3.3) is uniquely solvable Fredholm integral equation for
any A € C\Ey : || > const(V,{a;},0,0).

Lemma 3.2 is proved.

Lemma 3.3. Let {ai,...,a,} be generic divisor on Y\X. Let A € C\Eyp. Let p
be solution of integral equation (3.2), (3.3). Then relations (3.3) determining parameters
C; = Cjg(N) are reduced to the following explicit formulas

QiZijee)\,G(aj)j—;(aj) = / 6)\79( )( dcic/_\/_+26ln\/_/\81n\/_) ( ) (3.7)

j=1 zeX
Proof of Lemma 3.3. By Lemma 3.1 equations (3.2), (3.3) are equivalent to the

equation:

. g
80 + Mdzy + 0dz))p = %qﬂ +0Y Cjod(zay), (3.8)

J=1
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where p = pg(z,\) = 1, z € V4, 2 — 0.
System (2.7) implies the following relation

g
. ~ d(z,a;)
li Ut N @ Cio F Cj e
|z1]=R 2€V\X I (3.9)
:F / )\(Zl+922) )\(Zl+022)q 'U/:l:d21 /\wk7
zeX
where ¢; = 8151;/_.
To obtain 83.9) we multiply the both sides of (2.7) by Awg, integrate on V' and take

conjugation.
From Lemma 2.3 and Lemma 3.2 it follows that

ut(z) = AL +0v) - lim po(z, ), 2 — o0, z €V,

z€V]
Oz .
where 7 = lim 5 Lim pg(z,A) = 1.
zeV] z€V]

Existence of zlL%lo po(z, A) follows from Lemma 4.1 below. This imply that

z€V]

R— o0
‘Zl|:R |21‘:R

lim | / Uy N g :I%lijnw‘ / AL+ 0%;)iy.| :]%Enoouw(%) =0. (3.10)

From (3.9), (3.10) and definition of ui we obtain

222 / C €ex, 9 ) Nwg = / e,\,g(z)cjl(mr —I—u_)dz1 Nwg =
I=hA x 2E€X
oF
2 / _A(z1+9z2)q1f1dzl A Wy, where f; =+o—.
821
zeX

By Lemma 2.3 we have

2 / e N2 g pday Ny, =

X (3.11)

0 0z
2 / e>\79(z)tjl(a—51—I—)\u—l—)\ﬂa—ziu—qlu)dzl N Wp.

zeX

From definition of §(z,a;) we have

222 / Ciexol )5(;7?]/\_ ——22206)\9 a] ( ;) (3.12)

i= 126V\X
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By integration by part we have

0 Oln
2 / exo(z )Ch(ag + Ap)dzy A @y, :2/6/\ 0(2) fAudzl A @ —

zeX X

8ln\/_(
azl

07z
82 In/o _
)\Ga—,u Ydz1 A&y, — /€>\ 25 o, Mdzl AWk = (3.13)
X

),udzl N W

X
9?In\/o Oln/o 60z
_2/6/\9( )( 021071 * 0z, )\082'
X

Using (3.11), (3.12), (3.13) we obtain

0? ln\/_ dln\/o 2 _
ZZCJGGM(%)d_ (a;) = /fa,e(Z)(aZlaZ1 | 7 ") pudz1 A oy

j=1 zeX

Lemma 3.3 is proved.

Proof of Proposition 3.1. a) By Lemmas 3.1-3.3 statement (3.1a) of Proposition is
valid, i.e. there exists function z — pug(z,\), z € V with property (3.1a) YA € C\FEjy :
|A| > const(V,{a;},0,0).

g

b) Put fy = Rg(Qqu) ( Z Cj.00(2,a5)) and f = fo + fi1. By (3.2) we have
p—1=Ryof = Rxofo+ Rrofi.
Put

LEP(V) =A{u: u|y, € L§ V), u‘v\}—, eLf (V\Y)}, 1<p<2 p>2 ¢=0,1
By Proposition 3 ii’ from [He] we obtain

|1 — po (00, M)l Lsv\y) <

g
const(V,p,6) - min(|A|~1/2, |)"_1)(”f0HW11’§(V) + Z 1Cj.0l)
’ j=1 (3.14)

g
H@;LHL%(V) < const(V,ﬁ, 0)(Hf0HWlly’gf(V) + Z |C’ )

For proving estimates (3.1b) let us now estimate {C,}.

In order to estimate {C 9} we must use equations (3.6), where parameters {C; ¢} are
replaced by {C 9} and functlon f is replaced by 1. For modified equations (3.6)

1) we apply Kramer formula for solution of linear system and integration by parts
in all integrals of this system, using ey ¢(2)(dz1 + 0dz2) = %56)\’9(2). In addition, we
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use: formula (1. 2) for Ag(\), formula 5]%9(%@@) = +qp and estimate of singular integral,
) This gives inequality:

containing 8( e +9 e

0 const(V,{a;},0,0)
210 < TR TR+ e

ii) The equation (3.5) together with obtained inequality for ) |C;-),0()\)|, estimate of
Faddeev type Green function |gx¢(2,¢)| = O(w%) are used to obtain estimate (3.15) for

> |Cr(N)| and |ug(N)]:

B . const(V,{a;},0,0,p,¢€)
A ellirs vy + Co(A)| < ]
A7 N el (V) ZJ] (W] |Ag(N)|(1 4+ |A])9

const(V,{a;},0,0,p,¢) (3.15)
— o0 , 7 f < — ,

where A € C\Ep : |\ > const(V,{a;},0,0,¢), 1=1,...,d, pg(co1,A) = 1.

These estimates imply estimates (3.1b). B
c¢) Differentiation of equation (3.2) with respect to A gives equality

2t 41322
. (3.16)
(21 +022)(n—1) — Ry o((& + 952)1%(%% +1 Z Cjod(2,a5)).
j=1
Equality (3.16) can be rewritten in the following form
O _ (1 - RMORG( ¢-)) " [(z1 4 0Z2) (1 —1) + Rygo Re zzg: 00,0 6(z,a5))—
O\ 21 — 0A
Ry ((&+ 952)R9(%qu +i zg: Cjo(N)d(z,a5))].
~ (3.17)

Using Propositions 2, 3 from [He], estimates from part (b) of this proof we obtain from
(3.17)

o 1.p
V(2] € WHP(Y),

exa(Z) 55 Ly, € WP (VAY) UL (VY ).

Statement (3.1c) is proved.
Proposition 3.1 is proved.
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4. Equation %Zxﬁ =bp(N)e_xo0(2)fg(z,A). Proof of Theorem 1.1B

Proposition 4.1. Let conductivity o, divisor {a,...,as} and @ satisfy the condi-
tions of Proposition 2.1. Let function 1g(z,\) = e**1+922) (2 \) be the Faddeev type
function, associated with o, 6 and divisor {a1,...,a,}. Then for A € C\Ey : |\ >
const(V, {a;},6,0)

i) the following 0-equations take place

%=b9<A>e_A,9<z>u_e<z_,A>, if z€V\{a1,... a4}, (4.1)
ch;(” = bo(Ne_ro(a;)Cra(N), j=1,....9, where (42)

ii) function bg(\) satisfies equations:

. _ Z 4+ 0% Apig(z, \)
o0 di ol ) = Jim, ST enole)
) ] . g (4.3)
Abg(A)d = ~5— ex0(2)0pe(z,A) +iZCj,9()‘)eA,9(aj)> l=1,...,d
2€bX j=1
and the inequality
1

Remark 4.1. For the case V' = C this statement is obtained in [GN], [N2], [N3].
Proposition 4.1 is a corrected version of Proposition 3.2 of [HM2].

Lemma 4.1. i) Let function p = pgp(z,\), z € V\Y,
A€ C\Ey: |A > const(V,{a;},0,0) satisfy equation

(0 + N(dz1 +0dz))p =0 on V\Y (4.5)
and the property
[H - /’LQ(OOb)‘)HVZ\Y S Wl’ﬁ(‘/l\?)ﬂ where ﬁ > 2,

fo (00, A) def Jlim oz, A), I=1,...,d.

z€V)
Then 5
A 7\Y
(1 + 073) + A€ O(V\Y) and
g 1
A Au(oop) + A ,
|V’l\Y IJJ( l) ; k’,l (Zl + 0Z2)k



o

Y 2)————c O(V\Y) and
)\,9( )8(21 + 022) ( \ )
(4.6)
B|VZ\Y ZBM )k,lzl,...,d,
where O(V\Y) is the space of holomorphic functions on (V\Y).
ii) Let
—  ap(A - —  bea(N)
’Vz OOl, +I; 21 +0Z2 an |Vz ]; (21 _|_952)k
be formal series with coefficients determined by relations
)\ak,l — (k‘ — 1)ak_17l = Ak,l, j\bkyl - (k‘ — 1)bk—1,l = Bk,l, l = 1, ce ,d, k= 1,2, e
Let
. gl S . bi,1
M, |, = pg(ocor, A) + — N,|, = — . 4.7
|Vl NG( l ) ; (Zl +922)k }Vl ]; (21 —|—922) ( )
Then function p has the asymptotic decomposition
/’L‘W_M}V—’—e >\9 N‘Va zZ1 — OQ,
. 1
ie. u‘Vl = M“/l —I—e—A,e(Z)Ny}Vl +O(|le—y+1)'

Proof of Lemma 4.1.
i) From (4.5) it follows that

0(eMN=1F022) (5 N)) 0.

‘V\? -
Thus 9(eM*11922) (2, \)) = eM=11022)9y, is antiholomorphic form on V\Y and Ou +

Mu(dzy + 0dzs) is holomorphic form on V\Y. From this, condition du € Lgl(V\Y) and
the Cauchy theorem it follows that

e,\(z1+9z2)5lu/|‘/l = HME02) Bgz 4 édig)‘vl\y —

B _
/\(z1+9z2) Z k,l dz1 n 0d22)|vl and

(z1 +922
> Akl
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It gives (4.6).
ii) From (4.6), (4.7) we obtain, first, that

a —A(z1 z22) 9 h) zZ1 722 \] 1
Bl = =M1 +0%) §( A1+ >Ny)}vl+0(|zlly+1)

) (4.8)
then M‘V = MV|V —l—e_)\,g(z)Ny‘V —|—O(|21|V)

Comparison of the last equality for different indexes v and v + 1 implies that O( |211|V) =
1
O (o)
It gives statement of Lemma 4.1.

Lemma 4.2. i) Functions M, and N, (congugated to N, ) from decomposition (4.8)
have the following properties:

oM

o Ml/ e

8(21 + ‘922)

. 8N1/ def aN

31 _— N) = ———— N.
A (G 00 T M) T a1 T

ii) Functions % + AM and 52N + AN belongs to O(V\Y) and

8(21+922)

ou ON _
T _—e ———— +N),
0z +07) A’9(2)(6(21 +0%2) ) (4.9)
L + A = a—M + M .
8(21 + 922) H= 8(21 + 9752) ’

ON
m —+ )\N — 0, zZ1 — OQ. (410)

Proof of Lemma 4.2.
Part i) and equalities (4.9), (4.10) from part ii) follow directly from (4.8).

Properties (4.8), (4.9), (4.10), property du € L§ (Proposition 3.1b) and extension
property of bounded holomorphic functions through isolated singularities imply that

oM ON
A+ 0 M GG ) TAY

belongs to O(V\Y).
Lemma 4.2 is proved.

Lemma 4.3. Let vy(z,\) = e**11922) 5(2 \) be the Faddeev type function on V,

associated with potential ¢ = %@ and divisor {ay,...,a,} on Y\X. Then
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VA e C\Ep: |\ > const(V,{a;},0,0)

8,UJ . > _ N- \—k
eA,Q(Z’)m‘VZ\y = I;Bk’l(ZI + 922) , where
1
By = —— _
1,0 5 X (4.11)
ou _
————(dz1 +0dz)Vri: YC{zeV: <7rij.
€>\,9(Z> 8(21 n 922)( 21 + 2’2) 1 {Z |Z1| 7’1}

{z€Vi: |z1]=r1}

Proof of Lemma 4.3.

Estimate of du from (3.1b) and the Cauchy theorem, applied to antiholomorphic

. p) . .
function 6A79(Z)8(_214Ij§72)‘w\? implies (4.11).
Proof of Proposition 4.1.
Since ¥, i are Faddeev type functions, we have the equations

8(0 + \dz1 + 0dza))p = %q,u +iYCio(Nd(z,a;),
j=1

g
ddp = qip + 2 X205 4(N)d(2, a).

j=1
Put 95 = %;—p\ and py = %%.
We obtain
c . A(z1+022) 8Cj79
dd°ys = qib + 2;e 5 Wiz q)).
From Lemma 4.1 we deduce
o Bui(\) 1
_— o —e_ o O(—= d
0(z1 + 0%z2) ‘VI\Y e-x0(2) Z1 + 0% " ("Zl|2), o (4.12)
ou B A1i(A) 1 .
(a(zl + 0z2) - Au)|Vl\Y = Auloor) + 21+ 0z - O(|Z1|2).
From (4.6), (4.7), (4.8) we deduce
al()\) bl()\) 1
_ = Y _ Z 4.1
M|Vl\y Ho (001, A) + z1 + 0z te /\’9(2)21 + 0z, O<|21]2)7 71 7 00 (4.13)

where Aby(A) € o1 (A = By, Aar(\) € Xan (A = Ay, 1=1,....d (4.14)
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From (4.13) and (3.1c) we obtain for [ =1,...,d

Yy =GR =

e)\(2’1+9z2)( al()‘) +€5\(21+§22)—)\(21+0z2) bl()‘) O( 1 )),

21+ 0z9 Z1 + 0z, |21]2
bl()\)‘i‘@Aﬁ(Z)aue(o?hA)

1
X Ay =
Z + 0z +O(|Zl|)]

o (007, A) +

O

Uslvyy = ﬁ}\/z\y = EFRI[(7) 4 02)

65\(21 —‘y—éig) (bl ()\) + 6)\’9 (Z) alu’e (ao;la )\)

For function p5 = e~ **11922)q)x we obtain

g

= ' ~— 90}
00+ Ndz1 +0dz0))us = saps +i ) —220(z.a))
j=1

Opg (001, A)
oA

and g5 = e-x0(2)(bi(N) +exo(2)

~ For 2z large enough function e_y o(2)jix et ©(z, A) satisfies equation
0(0 + A(dz + 0dz2))p = 0. From this, Lemma 4.1 and property lim |¢(z, )|y < oo

we deduce that 90‘\/}(2’ A) — consty(N) def p(oo, A),if z€ Vi, 2z — 00,1l =1,...,d. So
in the relations above we have ey g(z)px(o0;,A) =0, 1 = 1,...,d. Functions e_y g(2)jix
and o both satisfy equation 0(9 + A(dzy + 0dz))u = Squ on V\{ai,...,ay}. Besides
,u}vl(z, A) — p(oor, A) and ey g(2)px(z, A) — bi(N), if z € Vj, 2 — oco. Applying Proposition
2.1 we obtain

exo(2)x = bi(N)fia (2, N) (e (oo, )71, 1=1,...,d.

This implies equalities (4.1), (4.2), where

bo(\) = )y (4.15)

po (001, A)

Asymptotic formula (4.3) follows from (4.11), (4.14) and (4.15). These formulas and
Cauchy-Green formula imply also the following important expression for by(\):

_ 1 _ 1 B ' g
Ny (N)d = — 5 / exo(2)0n= 5= [ exa@0p+id Croenala),  (116)
zZELY z€bX 7=1
where X
/ ex0(2)0u = / Z@\,e(z)qu- (4.17)
z€bX X



Equality (4.3) follows from (4.16). This equality together with estimate of {C;} from
Lemma 2.4 and estimate through integration by parts of [ ey gqu imply (4.4).
b'e

Proposition 4.1 is proved.

5. Reconstruction of function vy from Dirichlet-to-Neumann data on

bX. Proof of Theorem 1.2A

}bX

Let X be domain containing Vy and relativement compact in V' with smooth (of

classe C?) boundry. Let 0 € CA(V), 0 >0o0n V, 0 =1o0n V\X. Let ¢ = dd\c/—;/g. Let

u € C(bX) and @ € WHP(X), p > 2, be solution of the Dirichlet problem dod‘a|, = 0,
i, =u, where d° =i(9 — 9), d = 9+ 0. Let Y = \/ou and 1) = \/ou. Then
o~ dd\Jo - ~ ~
di*h = = XTG = g on X, §], = (5.1)
Let 19 be solution of Dirichlet problem
ddc¢0|x =0, ¢0|bx - w‘bX'
Let R o R o
1p = Y|, and Do = o), - (5.2)
Operator qb}b " 51;}17 + s equivalent to the Dirichlet-to-Neumann operator
ul,y = odeil, .

Proposition 5.1. Let 1) = eM*11922) ) be the Faddeev type function associated with
potential ¢ = % (see Definition 1.4), generic divisor {ay,...,a,} with support in V\X
and generic § € C. Then VA € C\Ey : |\ > const(V,{a;}6,0) the restriction ¢|bX of ¥

on bX can be found from Dirichlet-to-Neumann operator w‘bX — adcw‘bx through the
uniquely solvable Fredholm integral equation

g
po (2N, x + / gx0(2, Om_x(® — do)mape(¢,N) = 140 Cjo(Ngro(z,a;), (5.3)
€ebX j=1

7

g
1=

(aj,l + Qaj,g)_ij,g(A) + / (Zl + 922)_k(8+ )\(dzl + HdZQ)),u =0, k=2,...,9+1,

1 2€bX

where gx ¢(z,§)- kernel of operator Ry g o Rg,
m_A(® = Bo)mapo((,A) = / e MOHILN (D¢, w) — (¢, w))e MO g (w, X), (5.4)
webX

D(C,w), Po(C,w) are kernels of operators ® and gy, m+y denote the multiplication oper-
ators by e *11922) values {a;1} of the first coordinate of points {a;} are supposed to be
mutually different.
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This proposition for the case V' = C is equivalent to the second part of Theorem 1
from [N2].

Lemma 5.1. Let o) = e**11922); be Faddeev type function of Proposition 5.1. Then
VzeV\X and VA € C\Ey : |\ > const(V,{a;},0,0) we have equalities

po(z,\) =1— / 9rn0(2,€)Oe(E, ) — / oz, §)eMEH0R) (e MO0 gy (2, €))+

£€bX £ELX
g
iy Cio(Ngje(za;)
=1
(5.5)
and

g
- / (21 + 023) (0 + M1 + 0dz)) = 3 (az1 + 0a52) *iCi.0(0), k=2,... (5.6)
£ebx J=1

Proof of Lemma 5.1.
The equation

, g
8(0 + Adz1 + 0dz))p = %qﬂ +0>Cio(N8(2,a)), (5.7)
j=1
where suppq C X implies that (1,0)-form f = (0 + A(dz1 + 0dz2))p is holomorphic on
(VN(X UJ_; {a;}) and Res,,; (0 + M(dz1 + 0dz2))p = % This and the property (4.12)
imply that VA € C\Ep and V k > 2 form (21 +022)~ k f is holomorphic in the neighborhood
of (V\V). By residue theorem applied to the form (z; + 6z3) % f on V\ X, we obtain

g
/ (21 4+020) 7" f(2,\) = —2mi Z Resq, (z1+022) " f(2,A) = —(aj1+0a;2) " (iCj0(N)),

2€bX j=1

k=2,3,.... Equality (5.6) is proved.
Let us prove now (5.5). Differential equation (5.7), where |, € LP(Y),

,u}v\}—, € L®(V\Y), u(z) — 1, z — 0o, z € V4, is equivalent by Lemma 3.1 to the system
of equations
. g g
w(z,\) =1+ Rygo R9(§q,u +7LZC’j(5(z,aj)), z €V, and (5.8)
j=1
00+ Ndzy +0dz))u =0, z€V\(X Ui_; {a;}). (5.9)

These equations imply relations (5.6). Besides, we have equality

[ 920500 = [ 9202400 + N + dz)

X X
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Using Green-Riemann formula we obtain

/eA((z1—51)—&-9(22—52))9)\79(2,g)aazp — /waa(ewzl—51>+e<z2—52>>gw(z,5))+
X

X
R R O VI C)
bx bX

For z € V\ X we have
85(6)‘((z1_51)+9(Z2_£2))g>\79(2’,f)) = 0.

Then

1 = _
—/QA,O(Zaf)(§QH)= /gA’QanL / e)\(€1+0€2),ua(e >\(§1+0§2)g)\’9(2,§))' (5.10)

£ex £ebXx £ebXx

From (5.8), (5.10) we deduce statement (5.5) of Lemma 5.1.

Proof of Proposition 5.1.
Let 1/)0 : 88w0 = 0 and wo

have

= 1. By Green-Riemann formula V z € V\X we

‘X ‘bX

/ ¢8(6A((z1_€1)+9(z2_€2))g)\,9(27'f)) + / eA((zl—61)—i—@(zg—52)).9)\79(2:75’)57#0 —0. (5_11)
EebXx £ebX

Formulas (5.11) and (5.5), (5.6) imply

(2, A) = A / AN H0G=€) g, (6)(Bi(€) — Dubo(€))+

bX

g
iy ARG (2, a5).
j=1

(5.12)

Formula (5.12), (5.6) are equivalent to (5.3). Integral equation (5.3) is the Fredholm
equation in C'(bX), because operator (& — @) is compact operator in C'(bX). Existence
VA € C\ Ey of unique Faddeev type function ¢ = eMa1t022) ) associated with ¢ and divisor
{a1,...,ay} imply existence of solution of (5.3) with residue data
iCj = Resq, (0 + A(dz1 + 0dz2))p, j=1,...,9. Let us prove uniqueness of solution (5.3)
in C(bX) with residue data {C;}. Suppose p € C(bX) solves (5.3), (5.6). Consider this
as Dirichlet data for equation 9(0 + A(dz1 + 0dz3))p = 2qu on X, solution of which well
defines p on X.

Let us also define u on V\X by (5.5). Function p(z,)\) defined in such a way on V
belongs to C(V\ UJ_; {a;}).
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Let us show that p satisfy (5.7). By Sohotsky-Plemelj jump formula V z* € bX we

have '
(4 " . a _

§,UJ(Z ) — Zligl* (/ g)\,ga,u+,u€>‘(€l+9£2)a(€ >\(£1+9€2)g>\79))_

X (5.13)

A& +9§2)8(6—>\(€1 +6£2)

— lim (/ gx00u + pe gr0))-

zZ—Z

2€VAX px

From (5.5) and (5.13) we deduce equality

. g
1 = _ .
p—sp=1- / 9x,001— / pe G0 AEHR) gy )+ " Cigan(z,a5), 2 € X.

’ £€bX €€bX j=1

(5.14)
By Green-Riemann formula we have also
g
- /gx,eé,u — peN O (e AR g, 5) 40y " Clagan(z,a5) =
bX j=1
_ - g

— /u(a(a + A(dz1 + 6dz2)gx0) + /gx,g(?@ + A(dzy + 0dz9)) )+ i Z Ciogr0(z,a;) =

X X J=1

_ g
L4 [ 92,00(0 4+ Ndz1 + 0dz2))u+1i Y Ce9r0(2,a5), z € X,
X =1 (5.15)
_ . g :
){gm@(a + AMdzy + Odz))pu + 1 Zl Ciogre(z,a5), z € V\(X UI_; {a;}).

J

Equalities (5.5), (5.6), (5.14) and (5.15) imply (3.3) and

g
w(z) =1+ / 93,00(0 + M(dz1 + 0d2))p+ 1Y Crogn0(2 a5) =
1% j=1

, g
1+ Rypo Rg(%q,u +iZCj795(z,aj)), zeV.

j=1

By Lemma 3.1 function pg(z, A) is the Faddeev type function associated with ¢ and divisor
{a1,...,ay}. The uniqueness of solution of (5.3) in C'(bX) with residue data {C ¢} follows
now from uniqueness of the Faddeev type function.

6. Reconstruction of conductivity function from Dirichlet-to-Neumann
data. Proof of Theorem 1.2B

We will obtain here exact formulas for reconstruction of conductivity function
ccCB(V),o0>0,0=1o0n V\X, from Dirichlet-to-Neumann data

¢9‘bX _>5¢9|bX
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for Faddeev type functions 1g(z, \) = e*Z1+022) 445(2, \), § € C\{61, 04},
Ae C\Ey: [N > const(V,{a;},0,0), {a1,...,a,} CY\X.

For simplicity of presentation we consider in detail the case of regular algebraic curves
in C* ¢ CP?, only.

Let V={2=(%:%:4%)eCP?: P(%) =0}, where P(%) homogeneous polynomial
of degre N. Let CPL = {Z: CP?: 3, = 0}. Put

. - Z =
C2={2€CP?: % #0}, z1==, z= 2—2, P(z) = P(1, 21, 22), 6.1)

V={zeC?: P(z)=0}=VnNC%

Without restriction of generality we suppose that V be (regular) curve of degree N > 2
with property:

VN CPL ={B1,...,B4}, where Bi,...,Bq be different points of CPL,
B

5l:(036111512), B—ZIE(C, l=1,...,N,

oP .

a7(z)7«é0, if zeV: |z1| >rg=const(V). (6.2)
2

For 0 € C let {w,,} be points of V', where (dz; + Odzg)‘v(wm) = 0. Then for almost
all § € C the following relations are valid

oP OP oP
0 = 8_z2(wm)/0_z1(wm)’ 8—Z1(wm) #0,
0%?P  OP o0?P ,0P. 0P 0%2P , OP

Without restriction of generality it is sufficient to give proof under condition that 6 = 0,
i.e. for points wy, = (wm,1, Wm,2) € V such that

OP OP o0%2pP
a—zl(wm) # 0, 0_,22(wm) =0, ng(wm) #0 (6.3)

and also such that V m the line {z € C?: 2 = W1} has tangency with X only in the
single point w,,, m = 1,..., M. By Hurwitz-Riemann formula M = N(N — 1). In the
neighborhood of point w,, € V curve V can be represented in the form

V={(21,22) €C*: 23 = w1+

opr 10°P

-1 6.4
(a_zl(w’”)) [_53_,23(@”771)(22 — wWm2)? + O((22 — Wm2)?)]. &4

stationary phase method, using formula (4.17).

The reconstruction formula for ddj/—‘/; (W), m = 1,..., M, will be obtained here by the

32



Let 1 be Faddeev type function (3.1) with properties (3.1a)-(3.1c) and with ¢ = 0.

Below in this section we will write Rg, Rx 0, ex,0, to, Yo, Do, Eo, Cjo as R, Ry, ey,
My 1/), A, E, Cj.

Let

g
fo = Fodzr = SR(qu), fi = Fidz = iy Ci(NR((a5)),

Jj=1

where p = pu(z,A), z€ V, e C\E : |\ > const(V,{a;},0).

l\.')lS

Lemma 6.1. For ug = R) fy the following estimate holds:

Fo(-, A) const(V, p)
luo (s A) = == llorsx) < WHJCO(")\)”Wff(V)'

Proof of Lemma 6.1. By Lemma 2.1 and Proposition 2 from [He] we have fo €
le”g)(V), Fy € WHP(V). Using equality d.ex(z) = Aex(z)dz; and integration by parts

formula ug = Ry fo = e_x(2)R(exfo) can be transformed into the following

uo(z) = (eAfO) +e-x(z )RO(ex\fO) =
8F0 A\ d& det[ (f) f — Z]

SE(©) If—ZI2 B (6.5)
det[22(¢),£ — 2] A dy
oo (6 €~ P )+

>/|>—l

>/I>—l
<\ \

~x(2)Ro(exfo),

27m

where Ry, Ry operators defined in section 1 (see remark 1.1). From (6.5), using
Corollary 1.2 from [He], we deduce

)\UO - Fo = —6,)\(Z)R1(6)\(§)8F0) - 6,)\( )Ro(e)\(é.)aFo) = Jl(Z) -+ J()(Z) (66)

We will estimate further only term J;(z). Estimate for Jy(z) is similar.
For Ji(z) we have J;(z) = J; (2) + J; (2), where

0(6) A G det[22(6),¢ - 2]
SE (&) |6 — 2P

e +
Jli(z) _ e_x(2) / AE)x; (§)OF

2mi ’

v
X?f be smooth functions such that X? + X; =1,
+
=1, if ‘d€|<p, suppxpc{f |d£}<2} (6.7)

and |dx; | = (;)
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Let By ={z€V: d§1|v(z) = 0}. Property 0Fy = dz1]$qp implies estimate
5 1
aFO - O(dist(z,Bo)
estimate for

)dzs. From this, formula for J;"(z) and Lemma 3.1 of [He] we obtain

T+ 1 g = OGP follzs vy (6.8)

In order to estimate J; (z) we integrate by parts in the formula for J; , using
0.ex(z) = Aex(z)dz1. Then inequalities

1
dist(z, By) )

dés A dés
‘ / €212 (&2 — 22) "

p<[€2]<L1 p<|€2|<

0Fy(2)] = O 80Fo(2)| = O(—— ))2,z€X\BO

dist(z, By

and inequality

dés N dés 1
@282 1 (2
‘ /1|€2|(§2—52)2 (P)

imply estimate
_ 1
11 |2 x) = Ol follwzp vy - (6.9)

[Alp
From (6.6), (6.8), (6.9) with p = |A\|3/5 we obtain statement of Lemma 6.1.

Lemma 6.2. Let q € Cf}l)(V), suppqg C X, fo = %R(q,u), ug = Rxfo. Then the
following asymptotic estimate is valid

1
| )[ (Do) = ol i) for

Ae C: A > const(V,{a;},0), [ANL+]A)?|>d>0, for some sufficient small 0.

Proof of Lemma 6.2.
From Lemma 6.1, using estimate of u from (3.1b), we obtain asymptotic relation in
the space LP(V), 2 < p < 9/4:

Fo(z, )\) 1

= TO0E) =

~—

uo(z, A

dz1 4 R(q)

i 1
i +O0(—==) if [Ag(N)(1+ A9 >0 > 0.

|)\|7/5

Putting this relation into [ ex(2)q(z)uo(z), we obtain
X

/) 1

[ ex@atunte) = 55 [ ex(@a(:) a1 f(a) + Ol

X
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By Riemann-Lebesgue type theorem

/ ex(2)g(2)(dz1 ) R(q) = o(1) if A — o0, [AN|(1+[A)? > 6> 0.
X

This implies the statement of Lemma 6.2.

Lemma 6.3. Let g € Cill)(V), suppg C X. Let wq,...,wy be the points, where
dzy ‘V(wm) = 0. Then the following consequence of stationary phase method is valid:

M T }g_fl(wm)‘Qﬂwm)

/ TR TRg(z) =) (1+o(1) Y — TR (610)
2

v m m=1

where Qo (wy,) = m(wm)'

Proof of Lemma 6.3 (see [Fe], Th.2.1).

c 9 ~
Lemma 6.4. Let q = %@ € C&)(X), suppqg C X, fi =i, C;(NR((-, ay)),
j=1

u1 = Ry f1. Then the following asymptotic estimate is valid
1
‘/e,\(z)q(z)ul(zﬂ = O(W), for Xe C: |\ > const(V,{a;},0,¢),
X

AN+ A >0>0, § for some sufficiently small §.

Proof of Lemma 6.4. Using that {ai,...,a4} be generic divisor, from estimate
(3.7) (Lemma 3.3) we obtain inequality

sup [C;(\)| < const(V {a;}) sup
7,A k

/eA(z)(idd\c/_\U/E +20Iny/o AdIn \/E)LL;U_—;(Z) .

Let € > 0 be small enough and B, = {z € X : ﬁ‘ < ¢}. Then

dZQ
or(2), e 1
T =0 ) 2e X

Let Xff € C(X) be functions with properties (6.7). Using that 0 € C®)(X),
1€ WHP(X), .ex(z) = Aex(z)dz; by integration by parts we obtain

‘/Xp(z)e/\(z)(idcic/gg+25]n\/5/\81n\/5),u(z,)\)

Wi
dz

(2)| <

const(V, o)
pA
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We have also directly

‘/Xj(z)ex(z)(id{c/}rﬁ+2mn\/g/\aln\/g)u(z’)\)5_;(z) =

const(V,o)p.

These estimates with p = \/ﬁ and estimates for Faddeev type Green function

IRy o R(3(-,a;)| = O(P\I+‘E) from Theorem 4 of [He] imply statement of Lemma 6.4.

Proposition 6.1. Under conditions (6.1)-(6.4), for A =it : 7 € R, |T9A@T)] > 6 >
0, 0- small enough, the following formula is valid

[ en@tnzin = [ el -

z€bX zeX

M.
1+0(1) i dd®\/o
T Z 2 /odde|z|? ‘V(wm)e

(6.11)
EL w2 )
8,2% m 821 mr

7:7-(71}171,,1"‘71}171,,1) ‘

m=1

Proof of Proposition 6.1 and Theorem 1.2B. From Lemma 3.1 we have equality

-

p=1+RyoR(5aqn) + Rro R Cs0(z,a;)) = 1+ uo +us. (6.12)

1

J

Let § > 0 be small enough. Estimates of Lemmas 6.2, 6.4 and (6.12) give asymptotic
equality

p= 1—|—0(§) (6.13)

under conditions A € C: |\ > const(V,{a;},0), |AN)(1+|A])9]>4d > 0.
By Proposition 1.1, Ve > 0 we have inequality

limy, , |ANAN)|: =d(e) >0, where [NAN)|: = sup INAN.
{N: IV =A|<e}

So for any € > 0 and any positive § < §(e) there exists r such that the set
{AeC: |AN)(1+|N\)¢] > 6 > 0} intersects any disque {\ : |A = N | < e}, with |A] > 7.
This property, Lemma 6.3 and property (6.13) imply Proposition 6.1.

Theorem 1.2B follows from Proposition 1. Indeed, stationary phase method permits
differentiation of (6.11) with respect to 7, keeping (in our case) terms of order 1. Differ-
entiation of the right-hand side of (6.11) gives for § = 0 the right-hand side of (1.12).

Theorem 1.2B is proved.

Remark 6.1. To obtain version of Proposition 6.1 with arbitrary generic 6 from
Proposition 6.1 with § = 0 it is sufficient to change coordinate system: zZ; = 21 + 029,
52 = Z9.
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Remark 6.2. Proposition 6.1 can be reformulated also as formula for reconstruction
of conductivity function from scattering data by (i7) and C; ¢(i7). Indeed,by formula (4.16),
we have

g
/e”,g(z)éu(z, iT) = =27 [Tbg (e1)d 4+ Z Cj+(iT)eiro(aj),
bX J=1

where d is defined in section 1.

7. Proof of Proposition 1.1
For simplicity of presentation we give proof only for the case when V' is algebraic curve
in C2. Proposition 1.1 will be obtained here as a corollary of the following statement.

Proposition 7.1. Let § € C\{601,...,0n}, § = 6(0) = irl1f|9 -0, Vo ={2 € V:

|21] < 7ro(0)}, m0(d) = %\/%(V). Let {by,} be the points of V, where (dz1 +0dz2) |, (bm) = 0,

m=1,...,M, and {a1,...,a,} be the points of generic divisor in V\Vy. Then V j k =
1,...,9 and for A\ = ir, where 7 € R, large enough, such that |Ag(iT)| > § > 0, the
following asymptotic equality is valid
. _ 1 Wk
Ry(6(&,a;)) A == ) L
[ Folb.a) n@x©ens() = ~gersla)

\%

(aj)—

M
. - _ 1
— W mz_ exp [)\(bmJ + ebm’g) — )\(bm71 + ebm,g)]KJ k:(bmy a]) + O( |)\|2)

where

Kj,k(bma aj) =

BE () Ro(0(0m:07) @151+ 6 (7.1)

92P (HP 92P 9P P 32P P )
|8zf (0_22) 921022 Oza Oz1 + (71) |ddc|2|2‘ ( m)

Lemma 7.1. Let V\Vy = UJ_, V| be a curve with properties i)-iv) of section 1. Then
VO # 601, ...,04 any point w, where (dz —|—0dzz)‘v(w) =0, belongsto Vo ={z €V : || <
r0(8)}, where r4(8) = const(V) /8, § = mlin |0 — 0,].

Proof of Lemma 7.1. For any point w € V\Vp, where (dz; +9dZ2)|V(w) = 0, definition
0 = %
l=1,...,d, and property iii) of Section 1 imply for some [ = I

A

w) equality

)]s =

V]des = [0 — 6) + 0(%)}6&1.

0 = (dz1 4 0dz2)|, (w) = [1+60(v +l+0(

-

0
wy
This gives equality 0(1 -+ O( )) = 6;. This equality together with inequality |0 — 6;| > ¢

implies inequality |w| < %\/%(V) = 10(9).
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Lemma 7.1 is proved.
Let further

Acj={2€V: |z—qj| <}, A =Uj_ 4.,
Bey={2€V: |z—by|<ce}, B:= Un]\gles,m'

Lemma 7.2 Let ro(6), § = 6(0) be as in Lemma 7.1. Let x*<, xP< be smooth
functions with properties

. = 0 [dx | = Of

=0, |dxP|=0(

),

~—

M=o =

V\Bae

Then for any € > 0 small enough we have Bo. N Ag. = {0} and V j,k=1,...,g

APEN [ (= xt =XV ) An©ens() = O(55)
Eev

Proof of Lemma 7.2. By Lemma 7.1, any point b,,, where (dz; + HdZQ)}V(bm) =0
belongs to {z € V : |z1| < ro}. Under the conditions of Lemma 7.2, any a; from
{ai1,...,a4} belongs to {z € Vi |z1]| > rp(0)}, § = d(6).

Then Bs. N Ag. = {0} if € is small enough. From definition of Ag’f; and equality

ARy (0(e, aj))‘v\{aj} = 0 we obtain

AEO = 3 [ (1= = XPIRo(3(6,07)) A B a(6) =
1%

Wk

dé1 + 0dg,

d& + 0dés »

Jexo(§)—

(7.2)
0(§)+
L i / Ro(6(&,a;)) A ().

{eV: [&1]=r}

Le
dé; + 0dés Ao

From asymptotic estimates |Ry(0(,a;))| = O(|d&|) and |@y| = O(dg——él), & — oo, and
property iIllf |0 —6;] > 0 we obtain vanishing of the last term of the right-hand side of (7.2).
Property (d&; + Hdgg)‘v\ 5. 7 0 permits to integrate other terms of the right-hand

side of (7.2) by parts once more and to obtain statement of Lemma 7.2.
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Lemma 7.3 For any k,j € {1,...,g9}, 0 ¢ {61,...,04} and any € > 0 we have the
asymptotic equality
[ X Ra(6. ) A ou(©ern©) = fenala) g (@) + (55)
’ ’ AU +0dgy T A

\%4

_ Proof of Lemma 7.3. Integration by parts of the left-hand side, equality
OR(0(&,a;)) = (&, aj) and inequality (d&; —|—0d§2)}A - # 0 imply statement of Lemma 7.3.
Lemma 7.4 Under the conditions of Lemmas 7.1, 7.2, V6 > 0, 0 : irllf 0 — 0, > 9,

vj7k:]‘7"'7g7

/XBERGJQ(& a;j)) Nk (§)eiro(§) =

o B 1
— > exp[A(bm.t + 0bm.2) = A1 + 05 2)] K (b, aj) + O(W)’

where 0 = 0(b,,), m=1,..., M, and K ;(bm,a;) are defined by (7.1).

Proof of Lemma 7.4. This statement is consequence of the classical result of the sta-
tionary phase method [Fe], applied to the left-hand side, taking into account the following
equality for ey g(#) in the neighborhood of the stationary points b,, € V, m=1,..., M,

ex0(z) = exp[A(bm,1 + 0bp2) — X(bml + G_bm,g)] X exp[AA(z2 — bm72)2 — MA(Z3 — by, 2)2],

)

where

(559” — 252350 + 55) (bn) (22 = b 2)*(1 + O(z2 — bin.2))
2(2) (brn) |

We use here 29, Z5 as coordinates of integration.
Lemma 7.4 is proved.

A=—

Proof of Proposition 7.1. Proposition 7.1 follows from Lemmas 7.2-7.4.

In the proof of Proposition 1.1 we will apply also the following statement about ex-
ponential polynomials discovered by L.Ehrenpreis [E| and reinforced by C.Berenstein and
M.Dostal [BD].

Proposition 7.2. ([E], [BD]) Let Q(£) be an exponential polynomial

N

Q) =D qu(§e= >,

k=1

where {q} are polynomials of £ = (&1,...,&,) € C", ap, = {ak1,...,a6n} € C",
k=1,... N.
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Let h(&) = max Re < ay, & >. Then Ve > 0 3 constant C = C(e,Q) > 0 such that

def

. 1
QEI=  sup Q)] 2 Fe"©.
{e€C: |g/—¢|<e}

The final part of the proof of Proposition 1.1 consists of the following.
Proposition 7.1 and definition of Ag(A) imply asymptotic equality

A
IA|9Ap(A) :det(—feA,g (a;)—

L
A dfl + édgg

- 1

) (7.3)
m Z exp[A(bm,1 + 0bim,2) = A1+ b 2) K 1o (b, 7)) + O(W)’
m=1

where j,k=1,...,g.

The determinant of the right-hand side of (7.3) is an exponential polynomial Q(\, \)
of the form

N —
QAN =D ge(A, A)eror Ao, (7.4)
k=1

where A € C, ap € C, k=1,...,N. Coefficient gz (), \) of exponential polynomial Q(\, \)
and complex frequences {oy} depend on V, {a;}, 0, {b,,}. Applying Proposition 7.2 to
the exponential polynomial (7.4) we obtain uniformly for A € C estimate

_ 1 max Re (\ay —Aax) 1

QAN > o’ = s (7.5)

The both inequalities of Proposition 1.1 follow from (7.3)-(7.5).
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