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Intera
ting parti
le systems and Yaglom limitapproximation of di�usions with unbounded driftDenis Villemonais∗May 7, 2010Abstra
tWe study the existen
e and the exponential ergodi
ity of a general intera
tingparti
le system, whose 
omponents are driven by independent di�usion pro
esseswith values in a bounded open subset of Rd, d ≥ 1. The intera
tion o

urs when aparti
le hits the boundary: it jumps to a position 
hosen with respe
t to a probabilitymeasure depending on the position of the whole system.Then we study the behavior of su
h a system when the number of parti
lesgoes to in�nity. This leads us to an approximation method for the Yaglom limit ofmulti-dimensional di�usion pro
esses with unbounded drift de�ned on an unboundedopen set. While most of known results on su
h limits are obtained by spe
traltheory arguments and are 
on
erned with existen
e and uniqueness problems, ourapproximation method allows us to get quantitative information on quasi-stationarydistributions, whi
h �nd appli
ations to many dis
iplines. We end the paper withnumeri
al illustrations of our approximation method for sto
hasti
 pro
esses relatedto biologi
al populations models.Key words : di�usion pro
ess, intera
ting parti
le system, empiri
al pro
ess, quasi-stationary distribution, Yaglom limit.MSC 2000 subje
t : Primary 82C22, 65C50, 60K35; se
ondary 60J601 Introdu
tionLet D ⊂ Rd be a bounded open set whose boundary is of 
lass C2. The �rst part ofthis paper is devoted to the study of intera
ting parti
le systems (X1,...,XN ), whose
omponents X i evolve in D as di�usion pro
esses and jump when they hit the boundary
∂D. More pre
isely, let N ≥ 2 be the number of parti
les in our system. Let us 
onsider
N independent d-dimensional Brownian motions B1,...,BN and a jump measure J (N) :
∂(DN) 7→ M1(D

N), where M1(D
N) denotes the set of probability measures on DN . Webuild the intera
ting parti
le system (X1,...,XN) with values in DN as follows. At thebeginning, the parti
les X i evolve as independent di�usion pro
esses with values in Dde�ned by

dX
(i)
t = dBi

t + q
(N)
i (X

(i)
t )dt, X

(i)
0 ∈ D, (1)
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where q(N)
i is 
ontinuous and bounded on D. When a parti
le hits the boundary, sayat time τ1, it jumps to a position 
hosen with respe
t to J (N)(X1

τ1-,...,X
N
τn-). Then theparti
les evolve independently with respe
t to (1) until one of them hits the boundary andso on. In the whole study, we require the jumping parti
le to be, in some sense, attra
tedaway from the boundary by the other ones during the jump (see Hypothesis 1 on J (N) inSe
tion 2.2). We emphasize the fa
t that the jumping position is allowed to be lo
atedstri
tly 
loser to the boundary than all other parti
les and that the di�usion pro
esseswhi
h drive the parti
les between the jumps 
an depend on the parti
les. As a 
onse-quen
e, this 
onstru
tion is a generalization of the Fleming-Viot type model introdu
edin [4℄ for Brownian parti
les and in [18℄ for di�usion parti
les.The �rst step of the study 
onsists in proving that the intera
ting parti
le system iswell de�ned for all t ≥ 0, whi
h means that there is no a

umulation of jumps in �nitetime almost surely. In a se
ond step, we prove that the system is exponentially ergodi
.The whole study is made possible by a 
oupling between (X1,...,XN) and a system of Nindependent 1-dimensional re�e
ted di�usion pro
esses, that we build in Se
tion 2.3.Assume now that, for all N ≥ 2, we're given a jump measure J (N) and a family ofdrifts (q(N)

i )1≤i≤N whi
h is uniformly bounded by a 
onstant Q > 0 that doesn't depend on
N . Assume that the 
onditions for existen
e and ergodi
ity of the asso
iated intera
tingpro
ess are ful�lled for allN ≥ 2, and letMN be its stationary distribution. We denote by
XN the asso
iated empiri
al stationary distribution, whi
h is de�ned by XN = 1

N

∑N
i=1 δxi

,where (x1,...,xN ) ∈ DN is distributed following MN . We prove in Se
tion 2.4 that thefamily of random measures XN is uniformly tight.In Se
tion 3, we 
onsider the following parti
ular 
ase: q(N)
i = q doesn't depend on

i,N and
J (N)(x1,...,xN ) =

1

N − 1

∑

j 6=i

δxj
, xi ∈ ∂D. (2)It means that at ea
h jump time, the jumping parti
le is sent to the position of a parti
le
hosen uniformly between the N − 1 remaining ones. In that 
ase, we're able to identifythe limit of the family of empiri
al stationary distributions (XN)N≥2. This leads us toan approximation method of the limiting 
onditional distributions of di�usion pro
essesabsorbed at the boundary of an open set of Rd studied by Cattiaux and Méléard in [6℄and de�ned as follows. Let D0 ⊂ Rd be an open set and P0 be the law of the di�usionpro
ess de�ned by the SDE

dX0
t = dBt +∇V (X0

t )dt, X
0 ∈ D0 (3)and absorbed at the boundary ∂D0. Here B is a d-dimensional Brownian motion and

V ∈ C2(D,R). We denote by τ∂ the absorption time of the di�usion pro
ess (3). Asproved in [6℄, the limiting 
onditional distribution
ν0 = lim

t→∞
P0
x

(

X0
t ∈ .|t < τ∂

) (4)exists and doesn't depend on x ∈ D, under suitable 
onditions whi
h allow the drift
∇V and the set D to be unbounded (see Hypothesis 2 in Se
tion 3). This probability is
alled the Yaglom limit asso
iated with P0 and it is a quasi-stationary distribution for thedi�usion pro
ess (3), whi
h means that P0

ν0(Xt ∈ dx|t < τ∂) = ν0 for all t ≥ 0. We referto [5, 21, 23℄ and referen
es therein for existen
e or uniqueness results on su
h invariant2




onditional distributions in other settings (and to [27℄ for an extensive bibliography onquasi-stationary distributions).Su
h distributions are an important tool in the theory of Markov pro
esses with ab-sorbing states, whi
h are 
ommonly used in sto
hasti
 models of biologi
al populations,epidemi
s, 
hemi
al rea
tions and market dynami
s (see the bibliography [27, Appli
a-tions℄). Indeed, while the long time behavior of a re
urrent Markov pro
ess is well de-s
ribed by its stationary distribution, the stationary distribution of an absorbed Markovpro
ess is 
on
entrated on the absorbing states, whi
h is of poor interest. In 
ontrast, thelimiting distribution of the pro
ess 
onditioned to not being absorbed when it is observed
an explain some 
omplex behavior, as the mortality plateau at advan
ed ages (see [1℄and [29℄), whi
h leads to new appli
ations of Markov pro
esses with absorbing states inbiology (see [22℄). As stressed in [26℄, su
h distributions are in most 
ases not expli
itly
omputable. In our 
ase, the existen
e of the Yaglom limit is proved in [6℄ by spe
traltheory arguments, whi
h doesn't allow us to get its expli
it value. The main motivationof Se
tion 3 is to prove an approximation method of ν0, even when the drift ∇V and thedomain D0 are unbounded and the boundary ∂D0 isn't of 
lass C2.The approximation method is based on a sequen
e of intera
ting parti
le systems withjumps from the boundary de�ned with the jump measures (2), for all N ≥ 2. In the 
aseof a Brownian motion killed at the boundary of a bounded open set (i.e. q = 0), Burdzyet al. 
onje
tured in [3℄ that the unique limit measure of the sequen
e (XN)N∈N is theYaglom limit ν0. This has been 
on�rmed in the Brownian motion 
ase (see [4℄, [17℄and [24℄) and proved in [15℄ for some Markov pro
esses de�ned on dis
rete spa
es. Newdi�
ulties arise from our 
ase with unbounded drift and unbounded domain D0. Forinstan
e, the intera
ting parti
le pro
ess introdu
ed above isn't ne
essarily well de�ned,sin
e it doesn't ful�ll the 
onditions of Se
tion 2. To avoid this di�
ulty, we introdu
ea 
ut-o� of D0 near its boundary. More pre
isely, let (Dǫ)ǫ>0 be a de
reasing familyof regular bounded subsets of D0, su
h that ∇V is bounded on ea
h Dǫ and su
h that
D0 =

⋃

ǫ>0Dǫ. We de�ne an intera
ting parti
le pro
ess (Xǫ,1,...,Xǫ,N) on ea
h subsetDN
ǫ ,by setting q(N)

i = ∇V and D = Dǫ in (1). For all ǫ > 0 and N ≥ 2, (Xǫ,1,...,Xǫ,N) is wellde�ned and exponentially ergodi
. Denoting by XN,ǫ its empiri
al stationary distribution,we prove that
lim
ǫ→0

lim
N→∞

XN,ǫ = ν0.We 
on
lude in Se
tion 3.3 by some numeri
al illustrations of our method applied tothe 1-dimensional Wright-Fisher di�usion 
onditionned to be killed at 0, to the Logisti
Feller di�usion and to the 2-dimensional sto
hasti
 Lotka-Volterra di�usion.2 A general intera
ting parti
le pro
ess with jumpsfrom the boundary2.1 Constru
tion of the intera
ting pro
essLet D be a bounded open subset of Rd, d ≥ 1, with a boundary of 
lass C2. Let N ≥ 2be �xed. In what follows, we build a system of parti
les (X1,...,XN ) with values in DN ,whi
h is 
àdlàg and whose 
omponents jump from the boundary ∂D. Between the jumps,3



ea
h parti
le evolves independently of the other ones and follows the law Pi of the di�usionpro
ess de�ned on D by
dX

(i)
t = dBi

t − q
(N)
i (X

(i)
t )dt, X

(i)
0 = xi ∈ D (5)and absorbed at the boundary ∂D. Here B1,...,BN are N independent d-dimensionalBrownian motions and q

(N)
i = (q

(N)
i,1 ,...,q

(N)
i,d ) ∈ C(D,Rd) is bounded. The in�nitesimalgenerator asso
iated with the di�usion pro
ess (5) will be denoted by Li, with

Li =
1

2

d
∑

j=1

∂2

∂x2j
− q

(N)
i,j

∂

∂xj
(6)on its domain DLi.For ea
h i ∈ {1,...,N}, we set

Di = {(x1,...,xN ) ∈ ∂(DN ), su
h that xi ∈ ∂D, and, ∀j 6= i, xj ∈ D}.Let J (N) :
⋃N

i=0Di → M1(D) be the jump measure, whi
h asso
iates a probabilitymeasure J (N)(x1,...,xN ) on D to ea
h point (x1,...,xN ) ∈ ⋃N
i=1Di. Let (X1

0 ,...,X
N
0 ) ∈ DNbe the starting point of the intera
ting parti
le pro
ess (X1,...,XN), whi
h is built asfollows:� Ea
h parti
le evolves following the SDE (5) independently of the other ones, untilone parti
le, say X i1 , hits the boundary at a time whi
h is denoted by τ1. In theone hand, we have τ1 > 0 almost surely, be
ause ea
h parti
le starts in D. Inthe other hand, the parti
le whi
h hits the boundary at time τ1 is unique, be
ausethe parti
les evolves as independent It�'s di�usion pro
esses in D. It follows that

(X1
τ1-,...,X

N
τ1-) belongs to Di1.� The position of X i1 at time τ1 is then 
hosen with respe
t to the probability measure

J (N)(X1
τ1-
,...,XN

τ1-
).� At time τ1 and after pro
eeding to the jump, all the parti
les are in D. Then theparti
les evolve with respe
t to (5) and independently of ea
h other, until one ofthem, say X i2, hits the boundary, at a time whi
h is denoted by τ2. For the samereason as above, we have τ1 < τ2 and (X1

τ2-,...,X
N
τ2-) ∈ Di2 .� The position of X i2 at time τ2 is then 
hosen with respe
t to the probability measure

J (N)(X1
τ2-,...,X

N
τ2-).� Then the parti
les evolve with law Pi and independently of ea
h other, and so on.The law of the intera
ting parti
le pro
ess with initial distribution m ∈ M1(D

N) will bedenoted by PN
m , or by PN

x if m = δx, with x ∈ DN . The asso
iated expe
tation will bedenoted by EN
m , or by Ex if m = δx.The sequen
e of su

essive jumping parti
les is denoted by (in)n≥1, and

0 < τ1 < τ2 < ...4



denotes the stri
tly in
reasing sequen
e of jumping times. We set τ∞ = limn→∞ τn. Thepro
ess des
ribed above isn't ne
essarily well de�ned for all t ∈ [0, + ∞[, and we needmore assumptions on the jump measure J (N) to 
on
lude that τ∞ = ∞ almost surely.In the sequel, we denote by φD(x) the Eu
lidean distan
e from x to the boundary ∂D,whi
h means that, for all x ∈ D,
φD(x) = inf

y∈∂D
‖y − x‖2.Hypothesis 1. There exists p(N)

0 > 0 su
h that, ∀i ∈ {1,...,N},
inf

(x1,...,xN)∈Di

J (N)(x1,...,xN )({y ∈ D, φD(y) ≥ min
j 6=i

φD(xj)}) ≥ p
(N)
0Informally, we assume that at ea
h jump time τn, the probability that the jump po-sition X in

τn is 
hosen further from the boundary than at least one another parti
le isbounded below by a positive 
onstant p(N)
0 . This assumption ensures that, at ea
h jump,the jumping parti
le is attra
ted away from the boundary by the other ones.Remark 1. Hypothesis 1 is very general and allows a lot of 
hoi
es for J (N)(x1,...,xN ).For instan
e, for any 
hoi
e of σ(N) :

⋃N
i=0Di → M1(D), the jump measure

J (N)(x1,...,xN ) =
N − 1

N
σ(N)(x1,...,xN ) +

1

N(N − 1)

∑

j=1,...,N, j 6=i

δxj
, ∀(x1,...,xN ) ∈ Di,ful�lls the assumption with p(N)

0 = 1/N .Hypothesis 1 also in
ludes the 
ase studied by Grigores
u and Kang in [18℄, where
J (N)(x1,...,xN ) =

∑

j 6=i

pij(xi)δxj
, ∀(x1,...,xN ) ∈ Di.with ∑j 6=i pij(xi) = 1 and inf i∈{1,...,N},j 6=i,xi∈∂D pij(xi) > 0, so that the parti
le on theboundary jumps to one of the other ones, with positive weights. In that 
ase, Hypothesis1 is ful�lled with p(N)

0 = 1. In Se
tion 3, we will fo
us on the parti
ular 
ase
J (N)(x1,...,xN ) =

1

N − 1

∑

j=1,...,N, j 6=i

δxj
, ∀(x1,...,xN ) ∈ Di.That will lead us to an approximation method of the Yaglom limit (4).Theorem 2.1. Assume that Hypothesis 1 is ful�lled. Then1. The pro
ess (X1,...,XN ) is well de�ned, whi
h means that τ∞ = +∞ almost surely.2. Moreover, the pro
ess (X1,...,XN) is exponentially ergodi
, whi
h means that thereexists a probability measure MN on DN su
h that,

||PN
x ((X1

t ,...,X
N
t ) ∈ .)−MN ||TV ≤ C(N)(x)

(

ρ(N)
)t
, ∀x ∈]0,1[N , ∀t ∈ R+,where C(N)(x) is �nite, ρ(N) < 1 and ||.||TV is the total variation norm. In parti
u-lar, MN is a stationary measure for the pro
ess (X1,...,XN).5



The main tool of the proof is a 
oupling between (X1,...,XN ) and a system of Nindependent one-dimensional di�usion pro
esses (Y 1,...,Y N). The system is built in orderto satisfy
0 ≤ Y i

t ≤ φD(X
i
t) ∧ α a.s.for all t ≥ 0 and ea
h i ∈ {1,...,N}. We build this 
oupling in Subse
tion 2.2 and we
on
lude the proof of Theorem 2.1 in Subse
tion 2.3 .In Subse
tion 2.4, we assume that, for all N ≥ 2, we're given J (N) whi
h ful�llsHypothesis 1 and a family of drifts (q(N)

i )1≤i≤N whi
h is uniformly bounded above by a
onstant that doesn't depend on N . We prove that the family of empiri
al distributions
(XN)N≥2 is uniformly tight.2.2 Coupling's 
onstru
tionProposition 2.2. There exists a N-dimensional Brownian motion (W 1,...,WN) and pos-itive 
onstants α,Q > 0 su
h that, for ea
h i ∈ {1,...,N}, the re�e
ted di�usion pro
esswith values in [0,α] de�ned by

Y i
t = Y i

0 +W i
t −Qt+ Li,0

t − Li,α
t , Y i

0 = min(α,φD(X
i
0)) (7)satis�es

0 ≤ Y i
t ≤ φD(X

i
t) ∧ α a.s. (8)for all t ∈ [0,τ∞[ (see Figure 1). In (7), Li,0 (resp. Li,α) denotes the lo
al time due to there�e
ting property of the boundary {0} (resp. {α}), (
f. [8℄).

Figure 1: The parti
le X1 and its 
oupled re�e
ted di�usion pro
ess Y 1Proof of Proposition 2.2 : The boundary of D is assumed to be of 
lass C2, whi
h impliesby [11, Theorem 4.3℄ that there exists a positive 
onstant r1 > 0, su
h that
φD is of 
lass C2 on Dc

r1
, (9)6



where Dr = {x ∈ D, φD(x) ≥ r}. Moreover, we have
‖∇φD(x)‖2 = 1, ∀x ∈ Dc

r1
. (10)We set α = r1/2.Fix i ∈ {1,...,N}. We de�ne a sequen
e of stopping times (tin)n su
h that X i

t ∈ Dc
r1
forall t ∈ [ti2n,t

i
2n+1[ and X i

t ∈ Dα for all t ∈ [ti2n+1,t
i
2n+2[. More pre
isely, we set (see Figure2)

ti0 = inf {t ∈ [0,+∞], X i
t ∈ Dc

α},
ti1 = inf {t ∈ [t0, +∞], X i

t ∈ Dr1},and, for n ≥ 1,
ti2n = inf {t ∈ [ti2n−1, +∞], X i

t ∈ Dc
α},

ti2n+1 = inf {t ∈ [ti2n, +∞], X i
t ∈ Dr1}.

Figure 2: De�nition of the sequen
e of stopping times (tn)n≥0Let γi be a 1-dimensional Brownian motion independent of the pro
ess (X1,...,XN).We set
W i

t = γit, for t ∈ [0,t0[, (11)and, for all n ≥ 0,
W i

t =W i
t2n

+

∫ t

t2n

∇φD(X
i
s-) · dBi

s for t ∈ [t2n,t2n+1],

W i
t =W i

t2n+1
+ (γit − γit2n+1

) for t ∈ [t2n+1,t2n+2],where ∫ t

t2n
∇φD(X

i
s-) · dBi

s has the law of a Brownian motion between times t2n and t2n+1,thanks to (10). It 
an be obviously proved that (W 1,...,WN) is a N-dimensional Brownianmotion. 7



Fix i ∈ {1,...,N}. Let us now prove that the pro
ess Y i de�ned by (7) with a 
onstant
Q whi
h satis�es

max
i=1,...,N

‖LiφD‖∞ < Q (12)ful�lls the inequality (8). We de�ne the time ζ = inf {0 ≤ t < τ∞, Y
i
t > φD(X

i
t)} and wework 
onditionally to ζ <∞. By right 
ontinuity of the two pro
esses, Y i

ζ ≥ φD(X
i
ζ) a.s.If ζ = 0, then Y i

ζ ≤ φD(X
i
ζ) by de�nition of Y i

0 . If ζ > 0, then, by left 
ontinuity of Y iand by the de�nition of ζ , Y i
ζ ≤ φD(X

i
ζ-). But φD(X

i
ζ-) ≤ φD(X

i
ζ), then Y i

ζ ≤ φD(X
i
ζ)almost surely. Finally, we get

Y i
ζ = φD(X

i
ζ) a.s. (13)We dedu
e from it that φD(X

i
ζ) ≤ α, then there exists n ≥ 0, su
h that ζ ∈ [t2n,t2n+1[.In parti
ular, we 
an apply It�'s formula to (φD(X

i
t))t∈[ζ,t2n+1[, thanks to the regularity of

φD on Dc
r1
(9), and we get

φD(X
i
t) = φD(X

i
t2n

) +

∫ t

t2n

∇φD(X
i
s) · dBi

s +

∫ t

t2n

LiφD(X
i
s)dsfor all stopping time t ∈ [ζ,t2n+1 ∧ τ (ζ)[, where τ (ζ) denotes the �rst jumping time of iafter ζ , whi
h means τ (ζ) = minn≥1 {τn, τn > ζ}. We dedu
e from (13) that Y i

ζ > 0 almostsurely. Let h > 0 be a positive random variable, su
h that ζ+h < t2n+1∧ τ (ζ) and Y i
t > 0for all t ∈ [ζ,ζ+h[ almost surely. Then, for all t ∈ [ζ,ζ+h], we have, by the It�'s formula,

φD(X
i
t)− Y i

t =

∫ t

ζ

(Q− LiφD(X
i
s))ds− Li,0

t + Li,0
ζ + Li,α

t − Li,α
ζ ,where Q − LiφD(X

i
s) ≥ 0, (Li,α

s )s≥0 is in
reasing and Li,0
t = L0

ζ , sin
e Y i doesn't hit 0between times ζ and t (see [8℄). Then φD(X
i) − Y i stays non-negative between times

ζ and ζ + h, what 
ontradi
ts the de�nition of ζ . Finally, ζ = ∞ almost surely, whi
hmeans that the 
oupling inequality (8) remains true for all t ∈ [0,τ∞[.2.3 Proof of Theorem 2.1Proof that (X1,...,XN ) is well de�ned. Let N ≥ 2 be the size of the intera
ting parti
lesystem and �x arbitrarily its starting point x ∈ DN . We de�ne the event C = {τ∞ <
+∞}. Conditionally to C, the total number of jumps is equal to +∞ before the �nitetime τ∞. There is a �nite number of parti
les, then at least one parti
le makes an in�nitenumber of jumps before τ∞. We denote it by i0 (whi
h is a random index).For ea
h jumping time τn, we denote by σi0

n the next jumping time of i0, with τn <
σi0
n < τ∞. Conditionally to C, we get σi0

n − τn → 0 when n → ∞. The pro
ess X i0 beinga 
ontinuous di�usion pro
ess with bounded drift between τn and σi0
n -, we get

φD(X
i0
τn)− φD(X

i0

σ
i0
n -
) −−−→

n→∞
0, a.s.But φD(X

i0

σ
i0
n -
) = 0 by de�nition, then

lim
n→∞

φD(X
i0
τn) = 0, a.s. (14)8



Let us denote by (τ i0n )n the sequen
e of jumping times of the parti
le i0. We denoteby An the event
An =

{

∃i 6= i0 | φD(X
i

τ
i0
n

) ≤ φD(X
i0

τ
i0
n

)
}

.We have, for all 1 ≤ k ≤ l,
P

(

l+1
⋂

n=k

Ac
n

)

= E

(

E

(

l+1
∏

n=k

1Ac
n
| (X1

t ,...X
N
t )

0≤t<τ
i0
l+1

))

= E

(

l
∏

n=k

1Ac
n
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

)

,where, by de�nition of the jump me
hanism of the intera
ting parti
le system,
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

= J (N)(X1

τ
i0
l+1

,...,XN

τ
i0
l+1

)
(

Ac
l+1

)

≤ 1− p
(N)
0 ,by Hypothesis 1. By indu
tion on l, we get

P

(

l
⋂

n=k

Ac
n

)

≤ (1− p
(N)
0 )l−k, ∀1 ≤ k ≤ l.Sin
e p(N)

0 > 0, it yields that
P

(

⋃

k≥1

∞
⋂

n=k

Ac
n

)

= 0.It means that, for in�nitely many jumps τn almost surely, one 
an �nd a parti
le j su
hthat φD(X
j
τn) ≤ φD(X

i0
τn). Be
ause there is only a �nite number of other parti
les, one
an �nd a parti
le, say j0 (whi
h is a random variable), su
h that

φD(X
j0
τn) ≤ φD(X

i0
τn), for in�nitely many n ≥ 1.In parti
ular, we get from (14) that

lim
n→∞

(

φD(X
i0
τn),φD(X

j0
τn)
)

= (0,0) a.s.Using the 
oupling inequality of Proposition 2.2, we dedu
e that
C ⊂

{

lim
t→τ∞

(Y i0
t ,Y

j0
t ) = (0,0)

}

.Then, 
onditionally to C, Y i0 and Y j0 are independent re�e
ted di�usion pro
esses withbounded drift, whi
h hit 0 at the same time. This o

urs for two independent re�e
tedBrownian motions with probability 0, and then for Y i0 and Y j0 too, by the Girsanov'sTheorem. That implies Px(C) = 0. Finally, we have τ∞ = +∞ almost surely.9



Proof of the exponential ergodi
ity. It is su�
ient to prove that there exists n ≥ 1, ǫ > 0and a non-trivial probability ϑ on DN su
h that
Px((X

1
n,...,X

N
n ) ∈ A) ≥ ǫϑ(A), ∀x ∈ Dα

N
, A ∈ B(DN) (15)and that

sup
x∈Dα

N

Ex(κ
τ ′) <∞, (16)where κ is a positive 
onstant and τ ′ is the return time to Dα

N of the Markov 
hain
(X1

n,...,X
N
n )n∈N. Indeed, Down and Meyn proved in [12, Theorem 2.1 p.1673℄ that if theMarkov 
hain (X1

n,...,X
N
n )n∈N is aperiodi
 (whi
h is obvious in our 
ase) and ful�lls (15)and (16), then it is geometri
ally ergodi
. But, thanks to [12, Theorem 5.3 p.1681℄, thegeometri
 ergodi
ity of this Markov 
hain is a su�
ient 
ondition for (X1,...,XN ) to beexponentially ergodi
.Let us �rst prove that (15) is ful�lled. Let F be the event �the pro
ess (X1,...,XN)has no jump between times 0 and 1�. Conditionally to F , the pro
ess X i doesn't dependon the other parti
les before time 1. Then the law of X i 
onditionally to F is the sameas the law of the di�usion pro
ess X(i) de�ned by (5) at time 1 and 
onditioned to notbe killed. It yields that

P(x1,...,xN)(X
i
1 ∈ dx|F) = Pi

xi
(X

(i)
1 ∈ dx|1 < τ∂) ≥ Pi

xi
(X1 ∈ dx). (17)The law of X(i)

1 has a density pi1(xi,y) with respe
t to the Lebesgue's measure and pi1(xi,y)depends 
ontinuously on xi and y. It only vanishes when y = 0 or 1. Then
ǫi = inf

(xi,y)∈Dα×Dα

pi1(xi,y) > 0,sin
e Dα ×Dα is 
ompa
t. We get from (17) that
P(x1,...,xN)(X

i
1 ∈ dx|F) ≥ ǫi1Dα

(x)dx, ∀(x1,...,xN ) ∈ Dα
N
.Conditionally to F , the parti
les are independent from ea
h other, so that

P(x1,...,xN)((X
1
1 ,...,X

N
1 ) ∈ dy1...dyN |F) =

N
∏

i=1

P(x1,...,xN)(X
i
1 ∈ dyi|F)

≥
(

N
∏

i=1

ǫi

)

1
Dα

N (y1,...,yN)dy1...dyN .De�ne p = inf
x∈Dα

N Px(F). Thanks to the 
oupling with (Y 1,...,Y N), we have p > 0. Ityields that (15) is satis�ed with ϑ(dx) = p
(

∏N
i=1 ǫi

)

1
Dα

N (x)dx.Now we prove that ∃κ > 0 su
h that (16) holds. Let p′ > 0 be the probability for
(Y 1,...,Y N) to enter Dα

N at time n + 1, starting from 0 at time n. For all x ∈ DN andall n ≥ 1, the probability for (X1,...,XN) to be in Dα
N at time n + 1 starting from x attime n is bounded below by the probability p′. Hen
e, at ea
h time n ≥ 1, (X1,...,XN)returns to Dα

N at time n + 1 with a probability greater than p′ > 0. It implies that thereturn time to Dα
N for (X1

n,...X
N
n )n∈N is bounded above by a time of geometri
al law,independent of the starting point x ∈ DN . Then 
ondition (16) is ful�lled.10



2.4 Uniform tightness of the empiri
al stationary distributionsAssume that a jump measure J (N) is given for ea
h N ≥ 2 and that Hypothesis 1 isful�lled for all N ≥ 2. Assume that we're given a family of drifts (q(N)
i )i=1,...,N for ea
h

N ≥ 2 whi
h is uniformly bounded, whi
h means that there exists a 
onstant Q′ > 0 su
hthat
‖q(N)

i ‖∞ < Q′, ∀ i,N. (18)We denote by MN ∈ M1(D
N) the stationary distribution of the N -parti
les pro
ess de-s
ribed above. The empiri
al stationary distribution XN denotes the random probabilityon D de�ned by

XN =
1

N

N
∑

i=1

δxiwhere (x1,...,xN ) is a random ve
tor in DN distributed following MN .Theorem 2.3. The family of empiri
al stationary distributions (XN
)

N≥2
is uniformlytight.Proof. Let us 
onsider the pro
ess (X1,...,XN) starting with a distribution mN and its
oupled pro
ess (Y 1,...,Y N ). For all t ∈ [0,τ∞[, we denote by µN(t,dx) (resp. µ′N(t,dx))the empiri
al measure of the pro
ess (X1,...,XN) (resp. (Y 1,...,Y N)) at time t:

µN(t,dx) =
1

N

N
∑

i=1

δXi
t
(dx) and µ′N(t,dx) =

1

N

N
∑

i=1

δY i
t
(dx).By the 
oupling inequality (8), we get

µN(t,Dc
r) ≤ µ′N(t,[0,r]), ∀r ∈ [0,α].As a 
onsequen
e,

EmN

(

µN(t,Dc
r)
)

≤ EmN

(

µ′N(t,[0,r])
)

, ∀r ∈ [0,α].The family (EmN

(

µ′N(t,.)
))

N≥2
is uniformly tight for any arbitrarily 
hosen t > 0, sin
eone 
an 
hoose the 
onstant Q in (7) equal to Q′ for all N ≥ 2, by (12) and (18). Thenthe family (EmN

(

µN(t,.)
))

N≥2
is also uniformly tight for any given t > 0. This impliesthe uniform tightness of the family of random measures (µN(t,dx))N≥2 (see [20℄). If weset mN equal to the stationary distribution MN , then we get by stationarity that XN isdistributed as µN(t,.), for all N ≥ 2 and t > 0. Finally, the family of empiri
al stationarydistributions (XN)N≥2 is uniformly tight.3 Yaglom limit's approximationWe 
onsider now the parti
ular 
ase J (N)(x1,...,xN ) = 1

N−1

∑N
k=1,k 6=i δxk

: at ea
h jumptime, the parti
le whi
h hits the boundary jumps to the position of a parti
le 
hosenuniformly between the N − 1 remaining ones. We assume moreover that q(N)
i = q doesn'tdepend on i,N . In this framework, we are able to identify the limit of the empiri
al11



stationary distribution sequen
e, when the number of parti
les tends to in�nity. Thisleads us to an approximation method of the Yaglom limits (4), in
luding 
ases where thedrift of the di�usion pro
ess isn't bounded and where the boundary ∂D0 is neither of 
lass
C2 nor bounded.Let D0 be an open domain of Rd, with d ≥ 1. We denote by P0 the law of the di�usionpro
ess de�ned on D0 by

dXt = dBt −∇V (Xt)dt, X0 = x ∈ D0 (19)and absorbed at the boundary ∂D0. Here B is a d-dimensional Brownian motion and
V ∈ C2(D0,R). We assume that Hypothesis 2 below is ful�lled, so that the Yaglom limit

ν0 = lim
t→+∞

P0
x (Xt ∈ .|t ≤ τ∂) , ∀x ∈ D0 (20)exists and doesn't depend on x, as proved by Cattiaux and Méléard in [6, Theorem B.2℄.We emphasize the fa
t that this hypothesis allows the drift ∇V of the di�usion pro
ess(19) to be unbounded and the boundary ∂D0 to be neither of 
lass C2 nor bounded. Inparti
ular, the results of the previous se
tion aren't available in all generality for di�usionpro
esses with law P0.Hypothesis 2. We assume that1. P0

x(τ∂ < +∞) = 1,2. ∃C > 0 su
h that G(x) = |∇V |2(x)−∆V (x) ≥ −C > −∞, ∀x ∈ D0,3. G(R) → +∞ as R → ∞, where
G(R) = inf {G(x); |x| ≥ R and x ∈ D0} ,4. For all R > 0, one 
an �nd an in
reasing sequen
e of open bounded sets Kn(R) su
hthat the boundary of Kn(R)∩D0 is of 
lass C1 and ⋃n (Kn(R) ∩D0) = B(0,R)∩D0,where B(0,R) is the Eu
lidean ball of radius R.5. There exists R > 0 su
h that

∫

D0∩{d(x,∂D0)>R}

e−2V (x)dx <∞ and ∫
D0∩{d(x,∂D0)≤R}

(
∫

D

pD0

1 (x,y)dy

)

e−V (x)dx <∞.Here pD0

1 is the transition density of the di�usion pro
ess (19) with respe
t to theLebesgue measure.Remark 2. For example, it is proved in [6℄ that Hypothesis 2 is ful�lled by the Lotka-Volterra system studied numeri
ally in Subse
tion 3.3.3. Up to a 
hange of variable, thissystem is de�ned by the di�usion pro
ess with values in D0 = R2
+, whi
h satis�es

dY 1
t = dB1

t +

(

r1Y
1
t

2
− c11γ1 (Y

1
t )

3

8
− c12γ2Y

1
t (Y 2

t )
2

8
− 1

2Y 1
t

)

dt

dY 2
t = dB2

t +

(

r2Y
2
t

2
− c22γ2 (Y

2
t )

3

8
− c21γ1Y

2
t (Y 1

t )
2

8
− 1

2Y 1
t

)

dt

(21)and is killed at ∂D0. Here B1,B2 are two independent one-dimensional Brownian motionsand the parameters of the di�usion pro
ess ful�ll 
ondition (46).12



In order to de�ne the intera
ting parti
le pro
ess of the previous se
tion, we introdu
ea 
ut-o� of D0 near its boundary. More pre
isely, let (Dǫ)ǫ≥0 be a family of bounded opensubsets of D0 of 
lass C2, whi
h tends to D0 in the sense that, for all 
ompa
t subset
K ⊂ D0, ∃ǫ > 0 su
h that K ⊂ Dǫ. For all 0 < ǫ < ǫ′, we assume that d(Dǫ,∂D0) > 0,and Dǫ ( Dǫ′. For all ǫ > 0, we denote by Pǫ the law of the di�usion pro
ess de�ned on
Dǫ by

dXǫ
t = dBt −∇V (Xǫ

t )dt, X
ǫ
0 = x ∈ Dǫand absorbed at the boundary ∂Dǫ. Here B is a d-dimensional Brownian motion. Forall ǫ > 0, the di�usion pro
ess with law Pǫ 
learly ful�lls the 
onditions of Se
tion 2 .For all N ≥ 2, let (Xǫ,1,...,Xǫ,N) be the intera
ting parti
le pro
ess de�ned by the law

Pǫ between the jumps and by the jump measure J (ǫ,N)(x1,...,xN ) =
1

N−1

∑N
k=1,k 6=i δxk

. ByTheorem 2.1, this pro
ess is well de�ned and exponentially ergodi
.For all ǫ > 0 and all N ≥ 2, we denote by M ǫ,N the stationary distribution of
(Xǫ,1,...,Xǫ,N) and by X ǫ,N the asso
iated empiri
al stationary distribution.We are now able to state the main result of this se
tion.Theorem 3.1. Assume that Hypothesis 2 is satis�ed. Then

lim
ǫ→0

lim
N→∞

X ǫ,N = ν0, (22)in the weak topology of random measures.In Se
tion 3.1, we �x ǫ > 0 and we prove that the sequen
e (X ǫ,N)N≥2 
onverges to aprobability νǫ when N goes to in�nity. In parti
ular, we prove that νǫ is the Yaglom limitasso
iated with Pǫ, whi
h exists by [16℄. In Se
tion 3.2, we 
on
lude the proof, pro
eedingby a 
ompa
tness/uniqueness argument: we prove that (νǫ)0<ǫ<1/2 is a uniformly tightfamily and we show that ea
h limiting probability of the family (νǫ)0<ǫ<1/2 is equal to theYaglom limit ν0. The last Se
tion 3.3.3 is devoted to numeri
al illustrations of Theorem3.1.3.1 Convergen
e of (X ǫ,N)N≥2, when ǫ > 0 is �xedProposition 3.2. Let ǫ > 0 be �xed. The sequen
e of empiri
al stationary distributions
(X ǫ,N)N≥2 
onverges to νǫ in the weak topology of random measures when N goes toin�nity, where νǫ is the Yaglom limit asso
iated with Pǫ.Remark 3. The Yaglom limit νǫ exists and is the unique quasi-stationary distributionasso
iated with Pǫ. Moreover it satis�es

νǫ = lim
t→∞

Pǫ
m (Xǫ

t ∈ .|Xǫ
t ∈ Dǫ) , ∀m ∈ M1(Dǫ), (23)by [6, Proposition B.12℄.Proof of Proposition 3.2. The initial distribution of the pro
ess (Xǫ,1,...,Xǫ,N) is 
hosenequal to its stationary distribution M ǫ,N . For all t ≥ 0, we denote by µǫ,N(t,dx) itsempiri
al measure at time t (by stationarity, µǫ,N(t,dx) and X ǫ,N have the same law). Weset

νǫ,N(t,dx) =

(

N − 1

N

)AN
t

µǫ,N(t,dx),13



where AN
t =

∑∞
n=1 1τn≤t denotes the number of jumps before time t. Intuitively, weintrodu
e a loss of 1/N of the total mass at ea
h jump, in order to approximate thedistribution of the di�usion pro
ess (19) without 
onditioning. We will 
ome ba
k to thestudy of µǫ,N and the 
onditioned di�usion pro
ess by normalizing νǫ,N .For all ǫ ≥ 0, we denote by Lǫ the in�nitesimal generator of the di�usion pro
ess withlaw Pǫ. From the It�'s formula applied to the semimartingale µǫ,N(t,ψ) = 1

N

∑N
i=1 ψ(X

ǫ,i
t ),where ψ ∈ C2(Dǫ,R

d), we get
µǫ,N(t,ψ) = µǫ,N(0,ψ) +

∫ t

0

µǫ,N(s,Lǫψ)ds+Mc,ǫ,N(t,ψ) +Mj,ǫ,N(t,ψ)

+
1

N − 1

∑

0≤τn≤t

µǫ,N(τn-,ψ), (24)where Mc,ǫ,N(t,ψ) is the 
ontinuous martingale
1

N

N
∑

i=1

d
∑

j=1

∫ t

0

∂ψ

∂xj
(Xǫ,i

s )dBi,j
sand Mj,ǫ,N(t,ψ) is the pure jump martingale

1

N

N
∑

i=1

∑

0≤τ in≤t

(

ψ(Xǫ,i
τ in
)− N

N − 1
µǫ,N(τ in-,ψ)

)

.Applying the It�'s formula to the semimartingale νǫ,N(t,ψ), we dedu
e from (24) that
νǫ,N(t,ψ) = νǫ,N(0,ψ) +

∫ t

0

νǫ,N(s,Lǫψ)ds+

∫ t

0

(

N − 1

N

)AN
s

dMc,ǫ,N(s,ψ)

+
∑

0≤τn≤t

(νǫ,N(τn,ψ)− νǫ,N(τn-,ψ)).Where we have
νǫ,N(τn,ψ)− νǫ,N(τn-,ψ) =

(

N − 1

N

)AN
τn
(

µǫ,N(τn,ψ)− µǫ,N(τn-,ψ)
)

+ µǫ,N(τn-,ψ)

(

(

N − 1

N

)AN
τn

−
(

N − 1

N

)AN
τn-

)

.But
µǫ,N(τn,ψ)− µǫ,N(τn-,ψ) =

1

N − 1
µǫ,N(τn-,ψ) +Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)and

(

N − 1

N

)AN
τn

−
(

N − 1

N

)AN
τn-

= − 1

N − 1

(

N − 1

N

)AN
τn

.14



Then
νǫ,N(τn,ψ)− νǫ,N(τn-,ψ) =

(

N − 1

N

)AN
τn
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.

=
N − 1

N

(

N − 1

N

)AN
τn-
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.That implies
νǫ,N(t,ψ)− νǫ,N(0,ψ) =

∫ t

0

νǫ,N(s,Lǫψ)ds+

∫ t

0

(

N − 1

N

)AN
s

dMc,ǫ,N(s,ψ)

+
N − 1

N

∑

0≤τn≤t

(

N − 1

N

)AN
τn-
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.It yields that, for all smooth fun
tions Ψ(t,x) vanishing at the boundary of Dǫ,
νǫ,N(t,Ψ(t,.))− νǫ,N(0,Ψ(0,.)) =

∫ t

0

νǫ,N(s,
∂Ψ(s,.)

∂s
+
∂Ψ(s,.)

∂x
q +

1

2

∂2Ψ(s,.)

∂x2
)ds

+N c,ǫ,N(t,Ψ) +N j,ǫ,N(t,Ψ),

(25)where N c,ǫ,N(t,Ψ) is the 
ontinuous martingale
1

N

N
∑

i=1

d
∑

j=1

∫ t

0

(

N − 1

N

)AN
s ∂Ψ

∂xj
(s,Xǫ,i

s )dBi,j
sand N j,ǫ,N(t,Ψ) is the pure jump martingale

1

N

N
∑

i=1

∑

0≤τ in≤t

(

N − 1

N

)AN

τin-

(

Ψ(τ in,X
ǫ,i
τ in
)− N

N − 1
µǫ,N(τ in-,Ψ(τ in-,.))

)

.For all δ > 0, de�ne Ψδ(t,x) = P ǫ
T−tP

ǫ
δ f(x), where f ∈ C2(D) vanishes on ∂D, and (P ǫ

t )is the semigroup asso
iated with Pǫ. From Kolmogorov's equation (see [13, Proposition1.5 p.9℄),
∂

∂s
Ψδ(s,x) +

1

2
∆Ψδ(s,x) + q(x)∇Ψδ(s,x) = 0.It yields that

νǫ,N(t,Ψδ(t,.))− νǫ,N(0,Ψδ(0,.)) = N c,ǫ,N(t,Ψδ) +N j,ǫ,N(t,Ψδ). (26)Sin
e (N−1
N

)AN
s ≤ 1 a.s., we get

E
(

N c,ǫ,N(T,Ψδ)2
)

≤ T

N
‖∇Ψδ‖2∞

≤ T

N

cǫ
√

(T − t + δ) ∧ 1
‖f‖∞

(27)15



where cǫ > 0 is a positive 
onstant. The last inequality 
omes from [28, Theorem 4.5℄ ongradient estimates in regular domains of Rd. The jumps of the martingale Mj,ǫ,N(t,Ψδ)are smaller than 2
N
‖Ψδ‖∞, then

E

[

∑

0≤τn≤T

(

N − 1

N

)2Aτn-
(

Mj,ǫ,N(τn,Ψ
δ(τn,.))−Mj,ǫ,N(τn-,Ψ

δ(τn-,.))
)2

]

≤ 4

N2
‖Ψδ‖2∞E

[

∑

0≤τn≤T

(

N − 1

N

)2Aτn-

]

≤ 4

N
‖Ψδ‖2∞.Then

E
(

N j,N(Ψ,T )2
)

≤ 4

N
‖Ψ‖2∞ ≤ 4

N
‖f‖2∞. (28)We get from (26), (27) and (28) that

√

E
(

∣

∣νN(t,P ǫ
T−t+δf)− νN (0, P ǫ

T+δf)
∣

∣

2
)

≤ Cǫ,δ√
N
‖f‖∞where Cǫ,δ is a positive 
onstant whi
h does not depend on f . In parti
ular, one 
an �nda stri
tly de
reasing sequen
e (δN)N whi
h 
onverges to 0 and su
h that

√

E
(

∣

∣νǫ,N(T,P ǫ
δN
f)− νǫ,N(0, P ǫ

T+δN
f)
∣

∣

2
)

≤ ‖f‖∞o(N).But ‖P ǫ
δN
f − f‖∞ tends to 0 when δN goes to 0, then

√

E
(

|νǫ,N(T,f)− νǫ,N(0, P ǫ
Tf)|2

)

→ 0. (29)The family of random probabilities (X ǫ,N)N≥0 is uniformly tight, by Theorem 2.3. Let
X ǫ be one of its limit probabilities. By de�nition, there exists a stri
tly in
reasing map
ϕ : N 7→ N, su
h that X ǫ,ϕ(N) 
onverges in law to X ǫ when N → ∞. Sin
e νǫ,N(0,.) =
µǫ,N(0,.) has the same law as X ǫ,N , we dedu
e from (29) that

E
(

νǫ,ϕ(N)(T,f)
)

−−−→
N→∞

E (X ǫ(P ǫ
Tf)) (30)for all 
ontinuous fun
tion f whi
h vanishes at the boundary of Dǫ. But the family

(

µǫ,ϕ(N)(T,.)
)

N
is uniformly tight, then (νǫ,ϕ(N)(T,.)

)

N
is also uniformly tight. By (30),its unique limit is then the measure X ǫ(P ǫ

T .) de�ned by f 7→ X ǫ(P ǫ
Tf). We �nally get

νǫ,ϕ(N)(T,.)
law−−−→

N→∞
X ǫ(P ǫ

T .). (31)In parti
ular,
(

νǫ,ϕ(N)(T,Dǫ),ν
ǫ,ϕ(N)(T,.)

) law−−−→
N→∞

(X ǫ(P ǫ
T1Dǫ

),X ǫ(P ǫ
T .)) .16



But X ǫ(P ǫ
T1Dǫ

) never vanishes almost surely, so that
µǫ,ϕ(N)(T,.) =

νǫ,ϕ(N)(T,.)

νǫ,ϕ(N)(T,Dǫ)

law−−−→
N→∞

X ǫ(P ǫ
T .)

X ǫ(P ǫ
T1Dǫ

)
= Pǫ

X ǫ(Xǫ
T ∈ .|Xǫ

T ∈ Dǫ)By stationarity, µǫ,ϕ(N)(T,.) and X ǫ,N have the same law, and 
onverge in law to X ǫwhen N → ∞. It yields that X ǫ and Pǫ
X ǫ(Xǫ

T ∈ .|Xǫ
T ∈ Dǫ) have the same law. But

Pǫ
X ǫ(Xǫ

T ∈ .|Xǫ
T ∈ Dǫ) 
onverges almost surely to νǫ when T → ∞, by (23). We dedu
efrom it that X ǫ has the same law as νǫ. As a 
onsequen
e, the unique limit probabilityof the uniformly tight family (X ǫ,N)N is νǫ, whi
h allows us to 
on
lude the proof ofProposition 3.2.3.2 Convergen
e of the family (νǫ)0<ǫ<1We show in Subse
tion 3.2.1 that the family (νǫ)0<ǫ<1 is uniformly tight. In Subse
-tion 3.2.2, we prove that its unique probability limit is ν0, whi
h 
on
ludes the proof ofTheorem 3.1.3.2.1 Uniform tightness of the family (νǫ)0<ǫ<1Proposition 3.3. Assume that hypothesis 2 is ful�lled. Then the family (νǫ)0<ǫ<1 isuniformly tight. Moreover, every limit point is absolutely 
ontinuous with respe
t to theLebesgue measure, with a density bounded by ce−V , where c is a positive 
onstant.Proof of Proposition 3.3. Let us re
all some results from [16℄ and [6℄ on the spe
tral theoryof Lǫ. It has a simple eigenvalue λǫ > 0 with minimal real part. The 
orrespondingnormalized eigenfun
tion ηǫ is stri
tly positive on Dǫ, belongs to C2(Dǫ,R) and ful�lls

Lǫηǫ = −λǫηǫ and ∫
Dǫ

ηǫ(x)
2σ(dx) = 1, (32)where

σ(dx) = e−2V (x)dx.Moreover, we have
dνǫ =

ηǫdσ
∫

Dǫ
ηǫ(x)dσ(x)

, ∀ǫ ≥ 0. (33)In order to prove that (νǫ)0<ǫ<1 is uniformly tight, we show that (∫
Dǫ
ηǫ(x)dσ(x)

)

0<ǫ<1
isuniformly bounded below by a positive 
onstant A > 0, and we 
on
lude by proving thatthe family (ηǫdσ)0<ǫ<1 is uniformly tight.Let us prove that

A = inf
0<ǫ<1

∫

Dǫ

ηǫ(x)dσ(x) > 0. (34)In order to a
hieve this goal, assume the 
onverse: one 
an �nd a sequen
e of positive num-bers (ǫk)k∈N whi
h 
onverges to 0 and su
h that ∫Dǫk

vǫk(x)e
−V (x)dx =

∫

Dǫk

ηǫk(x)dσ(x) −−−→
k→∞

0, where we set vǫ = ηǫe
−V . Thanks to [6℄, there exists a 
onstant κ > 0 su
h that

vǫ(x) < κ, ∀ǫ ≥ 0, ∀x ∈ Dǫ. (35)17



In parti
ular, we have
∫

Dǫk

vǫk(x)
2e−V (x)dx ≤ κ

∫

Dǫk

vǫk(x)e
−V (x)dx −−−→

k→∞
0. (36)Let us show that (vǫ(x)

2dx)ǫ>0 is uniformly tight. If D0 is bounded, it is a dire
t
onsequen
e of the uniform bound (35) . Assume that D0 isn't bounded, then
∫

Dǫ∩|x|≥R

v2ǫ (x)dx ≤ 1

G(R)

∫

Dǫ∩|x|≥R

v2ǫ (x)G(x)dx, (37)where G(R) → +∞ when R → +∞ (see Hypothesis 2). For all x ∈ Dǫ, (32) leads to
1

2
∆vǫ −

1

2
G(x)vǫ(x) = −λǫvǫ(x) and ∫

Dǫ

vǫ(x)
2dx = 1.Then

∫

Dǫ

v2ǫ (x)G(x)dx = λǫ

∫

Dǫ

vǫ(x)
2dx+

∫

Dǫ

vǫ(x)∆vǫ(x)dx

= λǫ −
∫

Dǫ

|∇vǫ(x)|2dx

≤ λǫ, (38)where the se
ond equality is a 
onsequen
e of the Green's formula (see [2, Corollary 3.2.4℄).But the eigenvalue λǫ of −Lǫ is given by (see for instan
e [31, 
hapter XI, part 8℄)
λǫ = inf

φ∈C∞

0
(Dǫ), 〈φ,φ〉σ=1

〈Lǫφ,φ〉σ,

= inf
φ∈C∞

0
(Dǫ), 〈φ,φ〉σ=1

〈

L0φ,φ
〉

σ
,

(39)where C∞
0 (Dǫ) is the ve
tor spa
e of in�nitely di�erentiable fun
tions with 
ompa
t sup-port in Dǫ and 〈f,g〉σ =

∫

D0
f(u)g(u)dσ(u). We dedu
e from it that λǫ in
reases with ǫand is uniformly bounded above by λ1. The uniform bound (38) and the inequality (37)allow us to 
on
lude that the family (vǫ(x)

2dx)ǫ>0 is uniformly tight.As a 
onsequen
e, one 
an �nd (after extra
ting a sub-sequen
e) a non-negative map
m : D0 → R+ su
h that, for all 
ontinuous and bounded fun
tion φ : D0 → R,

∫

Dǫk

vǫk(y)
2φ(y)dy −−−→

k→∞

∫

D0

m(y)φ(y)dy. (40)Indeed, (v2ǫ ) being uniformly bounded, all limit measures are absolutely 
ontinuous withrespe
t to the Lebesgue measure. In parti
ular,
∫

Dǫk

vǫk(x)
2min (e−V (x),1)dx −−−→

k→∞

∫

D0

m(x)min (e−V (x),1)dx.We dedu
e from (36) that
∫

D0

m(x)min (e−V (x),1)dx = 0.18



But min (e−V (.),1) is 
ontinuous and positive on D0, so that m vanishes almost everywhere. Finally, by the 
onvergen
e property (40) applied to φ = 1 almost everywhere, wehave
1 =

∫

Dǫk

vǫk(x)
2dx −−−→

k→∞
0,whi
h is absurd. Finally A is stri
tly positive.Fix an arbitrary positive 
onstant α > 0 and let us prove that one 
an �nd a 
ompa
tset Kα ⊂ D0 su
h that

∫

Kc
α

ηǫ(x)dσ(x) ≤ α, ∀ǫ ∈]0,1[. (41)Let R be the positive 
onstant of the �fth part of Hypothesis 2. For all 
ompa
t set K,we have
∫

Kc

ηǫ(x)dσ(x) =

∫

Kc∩{d(x,∂D0)>R}

ηǫ(x)dσ(x) +

∫

Kc∩{d(x,∂D0)≤R}

ηǫ(x)dσ(x). (42)But, from the proof of [6, Proposition B.6℄,
∫

Kc∩{d(x,∂D0)>R}

ηǫ(x)dσ(x) ≤
√

∫

Kc∩{d(x,∂D0)>R}

e−2V (x)dx (43)and
∫

Kc∩{d(x,∂D0)≤R}

ηǫ(x)dσ(x) ≤ eC/2eλǫ‖vǫ‖∞
∫

Kc∩{d(x,∂D0)≤R}

(
∫

D

pD0

1 (x,y)dy

)

dx. (44)On the one hand, eλǫ‖vǫ‖∞ is uniformly bounded above by eλ1κ. On the other hand, bothintegrals on the right hand side are well de�ned, thanks to Hypothesis 2. Finally, one 
an�nd a 
ompa
t set Kα su
h that (43) and (44) are both bounded by α/2. Sin
e (41) isful�lled for all α > 0, the family (ηǫdσ)0<ǫ<1 is uniformly tight.Finally, it yields from equality (33) and the uniform bound A, that the family (νǫ)ǫ>0is uniformly tight. Moreover, νǫ has a density whi
h is bounded by κe−V /A, uniformlyin ǫ > 0. Then it is uniformly bounded on every 
ompa
t set, so that every limitingdistribution is absolutely 
ontinuous with respe
t to the Lebesgue measure, with a densitybounded by κe−V /A.3.2.2 Uniqueness of the limiting probabilityProposition 3.4. Assume that Hypothesis 2 holds. Let ν be a probability measure whi
his the limit of a sub-sequen
e (νǫk)k∈N, where ǫk → 0 when k → ∞. Then ν is the Yaglomlimit ν0 asso
iated with P0.Proof of Proposition 3.4. Thanks to Proposition 3.2, ν has a density η with respe
t to σ,and η ≤ κeV /A. Let us prove that η belongs to L2(dσ). Sin
e νǫk → ν, we have, for all
f ∈ C0(D0,R) (whi
h denotes the set of 
ontinuous real fun
tions with 
ompa
t supporton D0),

∫

D0

f(x)η(x)2dσ(x) =

∫

D0

f(x)η(x)dν(x) = lim
k→∞

∫

D0

f(x)η(x)dνǫk(x)

= lim
k→∞

∫

D0

f(x)
ηǫ(x)

〈ηǫk ,1Dǫ
〉dν(x)19



sin
e ηǫk (x)

〈ηǫk ,1Dǫ〉 is the density of νǫk with respe
t to σ, by (33). For the same reasons,
∫

D0

f(x)η(x)2dσ(x) = lim
k→∞

lim
k′→∞

∫

D0

f(x)
ηǫk(x)ηǫk′ (x)

〈

ηǫk ,1Dǫk

〉

σ

〈

ηǫk′ ,1Dǫ
k′

〉

σ

dσ(x).For all ǫ > 0, we have ∫
D0
η2ǫdσ(x) = 1 by (32), and 〈ηǫ,1Dǫ

〉σ > A by (34). Then, by theCau
hy-S
hwarz inequality, we get
∫

D0

f(x)η(x)2dσ(x) ≤ ‖f‖∞/A2.It yields that η ∈ L2(dσ).We denote by E0 the orthogonal spa
e of η0 in L2(dσ). We prove that η is proportionalto η0 by showing that η is orthogonal to E0 ∩ C0(D0). For all f ∈ E0 ∩ C0(D0) and all
x ∈ D0, P ǫk

t f(x) 
onverges to P 0
t f(x) when k → ∞. But νǫk → ν when k → ∞, then wehave

〈

P 0
t f,η

〉

σ
=

∫

D0

P 0
t f(x)dν(x)

= lim
k→∞

∫

D0

P ǫk
t f(x)dνǫk(x)

= lim
k→∞

e−λǫk
t

∫

D0

f(x)dνǫk(x),where the last equality 
omes from [16℄. But λk → λ0 by (39) and ∫
D0
f(x)dνǫk(x) →

∫

D0
f(x)dν(x) when k → ∞. As a 
onsequen
e,

〈

η, P 0
t f
〉

σ
= e−λ0t 〈η, f〉σ , ∀f ∈ E0 ∩ C0(D0), ∀t ≥ 0.But η belongs to L2(dσ), then we have by [6, Theorem A.4℄

lim
t→∞

eλ0t
〈

η,P 0
t f
〉

= 0, ∀f ∈ E0 ∩ C0(D0).We dedu
e that 〈η, f〉σ = 0 for all f ∈ E0 ∩ C0(D0). This allows us to 
on
lude that η isproportional to η0. Finally, ν and ν0 are two proportional probabilities, then ν = ν0.3.3 Numeri
al simulations3.3.1 The Wright-Fisher 
aseThe Wright-Fisher with values in ]0,1[ 
onditioned to be killed at 0 is the di�usion pro
essdriven by the SDE
dZt =

√

Zt(1− Zt)dBt − Ztdt, Z0 = z ∈]0,1[,and killed when it hits 0 (1 is never rea
hed). Huillet proved in [19℄ that the Yaglom limitof this pro
ess exists and has the density 2 − 2x with respe
t to the Lebesgue measure.20



In order to apply Theorem 3.1, we de�ne P0 as the law of X. = arccos(1− 2Z.). Then P0is the law of the di�usion pro
ess with values in ]0,π[, driven by the SDE
dXt = dBt −

1− 2 cosXt

2 sinXt
dt, X0 = x ∈]0,π[,killed when it hits 0 (π is never rea
hed). One 
an easily 
he
k that this di�usion pro
essful�lls Hypothesis 2. We denote by ν0 its Yaglom limit.For all ǫ ∈]0,π/2[, we de�ne Dǫ =]ǫ,π − ǫ[. Let Pǫ and νǫ be as in Se
tion 3. Wepro
eed to the numeri
al simulation of the N-intera
ting parti
le system (Xǫ,1,...,Xǫ,N)with ǫ = 0.001 and N = 1000. This leads us to the 
omputation of E(XN,ǫ), whi
h is anapproximation of ν0. After the 
hange of variable Z. = 2 cos(X.), we see on Figure 3 thatthe simulation is very 
lose to the expe
ted result (2− 2x)dx, whi
h shows the e�
ien
yof the method.
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Figure 3: E(X ǫ,N) in the Wright-Fisher 
ase3.3.2 The logisti
 
aseThe logisti
 Feller di�usion with values in ]0,+∞[ is de�ned by the sto
hasti
 di�erentialequation
dZt =

√

ZtdBt + (rZt − cZ2
t )dt, Z0 = z > 0, (45)and killed when it hits 0. Here B is a 1-dimensional Brownian motion and r,c are twopositive 
onstants. In order to use Theorem 3.1, we make the 
hange of variable X. =

2
√
Z.. This leads us to the study of the di�usion pro
ess with values in D0 =]0, + ∞[,whi
h is killed at 0 and satis�es the SDE

dXt = dBt −
(

1

2Xt
− rXt

2
+
cX3

t

4

)

dt, X0 = x ∈]0, +∞[.We denote by P0 its law. Cattiaux et al. proved in [5℄ that Hypothesis 2 is ful�lled in this
ase. Then the Yaglom limit ν0 asso
iated with P0 exists and one 
an apply Theorem 3.121



with Dǫ =]1/ǫ,ǫ[ for all ǫ ∈]0,1/2[. As above and for all N ≥ 2, we denote by Pǫ the lawof the di�usion pro
ess restri
ted to Dǫ and by X ǫ,N the empiri
al stationary distributionof the N-intera
ting parti
le pro
ess asso
iated with Pǫ.We've pro
eeded to the numeri
al simulation of the intera
ting parti
le pro
ess for alarge number of parti
les and a small value of ǫ. This allows us to 
ompute E(X ǫ,N),whi
h gives us a numeri
al approximation of ν0, thanks to Theorem 3.1.In the numeri
al simulations below, we set ǫ equal to 0.0001 and N = 10000. We
ompute E(X ǫ,N) for di�erent values of the parameters r and c in (45). The results aregrahi
ally represented in Figure 4. As it 
ould be wanted for, greater is c, 
loser is thesupport of the QSD to 0. We thus numeri
ally des
ribe the impa
t of the linear andquadrati
 terms on the Yaglom limit.
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Figure 4: E(X ǫ,N) for the di�usion pro
ess (45), with di�erent values of r and c3.3.3 Sto
hasti
 Lotka-Volterra ModelWe apply our results to the sto
hasti
 Lotka-Volterra system with values in D = R2
+studied in [6℄, whi
h is de�ned by the following sto
hasti
 di�erential system

dZ1
t =

√

γ1Z1
t dB

1
t +

(

r1Z
1
t − c11(Z

1
t )

2 − c12Z
1
t Z

2
t

)

dt,

dZ2
t =

√

γ2Z
2
t dB

2
t +

(

r2Z
2
t − c21Z

1
t Z

2
t − c22(Z

2
t )

2
)

dt,where (B1,B2) is a bi-dimensional Brownian motion. We are interested in the pro
essabsorbed at ∂D.More pre
isely, we study the pro
ess (X1,X2) = (2
√

Z1
t /γ1,2

√

Z2
t /γ2), with values in

D0 = R2
+, whi
h satis�es the SDE (21) and is killed at ∂D0. We denote its law by P0.The 
oe�
ients are supposed to satisfy

c11,c21 > 0, c12γ2 = c21γ1 < 0 and c11c22 − c12c21 > 0. (46)22



In [6℄, this 
ase was 
alled the weak 
ooperative 
ase and the authors proved that itis a su�
ient 
ondition for Hypothesis 2 to be ful�lled. Then the Yaglom limit ν0 =
limt→+∞ P0

x ((Y
1
t ,Y

2
t ) ∈ .|t < τ∂) is well de�ned and we are able to apply Theorem 3.1.For ea
h ǫ > 0, we de�ne Dǫ as it is des
ribed on Figure 5. With this de�nition, it is 
learthat all 
onditions of Theorems 2.1 and 3.1 are ful�lled.

Figure 5: De�nition of DǫWe 
hoose ǫ = 0.0001 and we simulate the long time behavior of the intera
ting parti
lepro
ess withN = 10000 parti
les for di�erent values of c12 and c21. The values of the otherparameters are r1 = 1 = r2 = 1, c11 = c22 = 1, γ1 = γ2 = 1. The results are illustrated onFigure 6. One 
an observe that a greater value of the 
ooperating 
oe�
ients −c12 = −c21leads to a Yaglom limit whose support is further from the boundary and 
overs a smallerarea. In other words, the more the two populations 
ooperate, the bigger the survivingpopulations are.A
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Figure 6: Empiri
al stationary distribution of the intera
ting parti
le pro
ess for di�erentvalues of c12 = c21
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