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Interating partile systems and Yaglom limitapproximation of di�usions with unbounded driftDenis Villemonais∗May 7, 2010AbstratWe study the existene and the exponential ergodiity of a general interatingpartile system, whose omponents are driven by independent di�usion proesseswith values in a bounded open subset of Rd, d ≥ 1. The interation ours when apartile hits the boundary: it jumps to a position hosen with respet to a probabilitymeasure depending on the position of the whole system.Then we study the behavior of suh a system when the number of partilesgoes to in�nity. This leads us to an approximation method for the Yaglom limit ofmulti-dimensional di�usion proesses with unbounded drift de�ned on an unboundedopen set. While most of known results on suh limits are obtained by spetraltheory arguments and are onerned with existene and uniqueness problems, ourapproximation method allows us to get quantitative information on quasi-stationarydistributions, whih �nd appliations to many disiplines. We end the paper withnumerial illustrations of our approximation method for stohasti proesses relatedto biologial populations models.Key words : di�usion proess, interating partile system, empirial proess, quasi-stationary distribution, Yaglom limit.MSC 2000 subjet : Primary 82C22, 65C50, 60K35; seondary 60J601 IntrodutionLet D ⊂ Rd be a bounded open set whose boundary is of lass C2. The �rst part ofthis paper is devoted to the study of interating partile systems (X1,...,XN ), whoseomponents X i evolve in D as di�usion proesses and jump when they hit the boundary
∂D. More preisely, let N ≥ 2 be the number of partiles in our system. Let us onsider
N independent d-dimensional Brownian motions B1,...,BN and a jump measure J (N) :
∂(DN) 7→ M1(D

N), where M1(D
N) denotes the set of probability measures on DN . Webuild the interating partile system (X1,...,XN) with values in DN as follows. At thebeginning, the partiles X i evolve as independent di�usion proesses with values in Dde�ned by

dX
(i)
t = dBi

t + q
(N)
i (X

(i)
t )dt, X

(i)
0 ∈ D, (1)
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where q(N)
i is ontinuous and bounded on D. When a partile hits the boundary, sayat time τ1, it jumps to a position hosen with respet to J (N)(X1

τ1-,...,X
N
τn-). Then thepartiles evolve independently with respet to (1) until one of them hits the boundary andso on. In the whole study, we require the jumping partile to be, in some sense, attratedaway from the boundary by the other ones during the jump (see Hypothesis 1 on J (N) inSetion 2.2). We emphasize the fat that the jumping position is allowed to be loatedstritly loser to the boundary than all other partiles and that the di�usion proesseswhih drive the partiles between the jumps an depend on the partiles. As a onse-quene, this onstrution is a generalization of the Fleming-Viot type model introduedin [4℄ for Brownian partiles and in [18℄ for di�usion partiles.The �rst step of the study onsists in proving that the interating partile system iswell de�ned for all t ≥ 0, whih means that there is no aumulation of jumps in �nitetime almost surely. In a seond step, we prove that the system is exponentially ergodi.The whole study is made possible by a oupling between (X1,...,XN) and a system of Nindependent 1-dimensional re�eted di�usion proesses, that we build in Setion 2.3.Assume now that, for all N ≥ 2, we're given a jump measure J (N) and a family ofdrifts (q(N)

i )1≤i≤N whih is uniformly bounded by a onstant Q > 0 that doesn't depend on
N . Assume that the onditions for existene and ergodiity of the assoiated interatingproess are ful�lled for allN ≥ 2, and letMN be its stationary distribution. We denote by
XN the assoiated empirial stationary distribution, whih is de�ned by XN = 1

N

∑N
i=1 δxi

,where (x1,...,xN ) ∈ DN is distributed following MN . We prove in Setion 2.4 that thefamily of random measures XN is uniformly tight.In Setion 3, we onsider the following partiular ase: q(N)
i = q doesn't depend on

i,N and
J (N)(x1,...,xN ) =

1

N − 1

∑

j 6=i

δxj
, xi ∈ ∂D. (2)It means that at eah jump time, the jumping partile is sent to the position of a partilehosen uniformly between the N − 1 remaining ones. In that ase, we're able to identifythe limit of the family of empirial stationary distributions (XN)N≥2. This leads us toan approximation method of the limiting onditional distributions of di�usion proessesabsorbed at the boundary of an open set of Rd studied by Cattiaux and Méléard in [6℄and de�ned as follows. Let D0 ⊂ Rd be an open set and P0 be the law of the di�usionproess de�ned by the SDE

dX0
t = dBt +∇V (X0

t )dt, X
0 ∈ D0 (3)and absorbed at the boundary ∂D0. Here B is a d-dimensional Brownian motion and

V ∈ C2(D,R). We denote by τ∂ the absorption time of the di�usion proess (3). Asproved in [6℄, the limiting onditional distribution
ν0 = lim

t→∞
P0
x

(

X0
t ∈ .|t < τ∂

) (4)exists and doesn't depend on x ∈ D, under suitable onditions whih allow the drift
∇V and the set D to be unbounded (see Hypothesis 2 in Setion 3). This probability isalled the Yaglom limit assoiated with P0 and it is a quasi-stationary distribution for thedi�usion proess (3), whih means that P0

ν0(Xt ∈ dx|t < τ∂) = ν0 for all t ≥ 0. We referto [5, 21, 23℄ and referenes therein for existene or uniqueness results on suh invariant2



onditional distributions in other settings (and to [27℄ for an extensive bibliography onquasi-stationary distributions).Suh distributions are an important tool in the theory of Markov proesses with ab-sorbing states, whih are ommonly used in stohasti models of biologial populations,epidemis, hemial reations and market dynamis (see the bibliography [27, Applia-tions℄). Indeed, while the long time behavior of a reurrent Markov proess is well de-sribed by its stationary distribution, the stationary distribution of an absorbed Markovproess is onentrated on the absorbing states, whih is of poor interest. In ontrast, thelimiting distribution of the proess onditioned to not being absorbed when it is observedan explain some omplex behavior, as the mortality plateau at advaned ages (see [1℄and [29℄), whih leads to new appliations of Markov proesses with absorbing states inbiology (see [22℄). As stressed in [26℄, suh distributions are in most ases not expliitlyomputable. In our ase, the existene of the Yaglom limit is proved in [6℄ by spetraltheory arguments, whih doesn't allow us to get its expliit value. The main motivationof Setion 3 is to prove an approximation method of ν0, even when the drift ∇V and thedomain D0 are unbounded and the boundary ∂D0 isn't of lass C2.The approximation method is based on a sequene of interating partile systems withjumps from the boundary de�ned with the jump measures (2), for all N ≥ 2. In the aseof a Brownian motion killed at the boundary of a bounded open set (i.e. q = 0), Burdzyet al. onjetured in [3℄ that the unique limit measure of the sequene (XN)N∈N is theYaglom limit ν0. This has been on�rmed in the Brownian motion ase (see [4℄, [17℄and [24℄) and proved in [15℄ for some Markov proesses de�ned on disrete spaes. Newdi�ulties arise from our ase with unbounded drift and unbounded domain D0. Forinstane, the interating partile proess introdued above isn't neessarily well de�ned,sine it doesn't ful�ll the onditions of Setion 2. To avoid this di�ulty, we introduea ut-o� of D0 near its boundary. More preisely, let (Dǫ)ǫ>0 be a dereasing familyof regular bounded subsets of D0, suh that ∇V is bounded on eah Dǫ and suh that
D0 =

⋃

ǫ>0Dǫ. We de�ne an interating partile proess (Xǫ,1,...,Xǫ,N) on eah subsetDN
ǫ ,by setting q(N)

i = ∇V and D = Dǫ in (1). For all ǫ > 0 and N ≥ 2, (Xǫ,1,...,Xǫ,N) is wellde�ned and exponentially ergodi. Denoting by XN,ǫ its empirial stationary distribution,we prove that
lim
ǫ→0

lim
N→∞

XN,ǫ = ν0.We onlude in Setion 3.3 by some numerial illustrations of our method applied tothe 1-dimensional Wright-Fisher di�usion onditionned to be killed at 0, to the LogistiFeller di�usion and to the 2-dimensional stohasti Lotka-Volterra di�usion.2 A general interating partile proess with jumpsfrom the boundary2.1 Constrution of the interating proessLet D be a bounded open subset of Rd, d ≥ 1, with a boundary of lass C2. Let N ≥ 2be �xed. In what follows, we build a system of partiles (X1,...,XN ) with values in DN ,whih is àdlàg and whose omponents jump from the boundary ∂D. Between the jumps,3



eah partile evolves independently of the other ones and follows the law Pi of the di�usionproess de�ned on D by
dX

(i)
t = dBi

t − q
(N)
i (X

(i)
t )dt, X

(i)
0 = xi ∈ D (5)and absorbed at the boundary ∂D. Here B1,...,BN are N independent d-dimensionalBrownian motions and q

(N)
i = (q

(N)
i,1 ,...,q

(N)
i,d ) ∈ C(D,Rd) is bounded. The in�nitesimalgenerator assoiated with the di�usion proess (5) will be denoted by Li, with

Li =
1

2

d
∑

j=1

∂2

∂x2j
− q

(N)
i,j

∂

∂xj
(6)on its domain DLi.For eah i ∈ {1,...,N}, we set

Di = {(x1,...,xN ) ∈ ∂(DN ), suh that xi ∈ ∂D, and, ∀j 6= i, xj ∈ D}.Let J (N) :
⋃N

i=0Di → M1(D) be the jump measure, whih assoiates a probabilitymeasure J (N)(x1,...,xN ) on D to eah point (x1,...,xN ) ∈ ⋃N
i=1Di. Let (X1

0 ,...,X
N
0 ) ∈ DNbe the starting point of the interating partile proess (X1,...,XN), whih is built asfollows:� Eah partile evolves following the SDE (5) independently of the other ones, untilone partile, say X i1 , hits the boundary at a time whih is denoted by τ1. In theone hand, we have τ1 > 0 almost surely, beause eah partile starts in D. Inthe other hand, the partile whih hits the boundary at time τ1 is unique, beausethe partiles evolves as independent It�'s di�usion proesses in D. It follows that

(X1
τ1-,...,X

N
τ1-) belongs to Di1.� The position of X i1 at time τ1 is then hosen with respet to the probability measure

J (N)(X1
τ1-
,...,XN

τ1-
).� At time τ1 and after proeeding to the jump, all the partiles are in D. Then thepartiles evolve with respet to (5) and independently of eah other, until one ofthem, say X i2, hits the boundary, at a time whih is denoted by τ2. For the samereason as above, we have τ1 < τ2 and (X1

τ2-,...,X
N
τ2-) ∈ Di2 .� The position of X i2 at time τ2 is then hosen with respet to the probability measure

J (N)(X1
τ2-,...,X

N
τ2-).� Then the partiles evolve with law Pi and independently of eah other, and so on.The law of the interating partile proess with initial distribution m ∈ M1(D

N) will bedenoted by PN
m , or by PN

x if m = δx, with x ∈ DN . The assoiated expetation will bedenoted by EN
m , or by Ex if m = δx.The sequene of suessive jumping partiles is denoted by (in)n≥1, and

0 < τ1 < τ2 < ...4



denotes the stritly inreasing sequene of jumping times. We set τ∞ = limn→∞ τn. Theproess desribed above isn't neessarily well de�ned for all t ∈ [0, + ∞[, and we needmore assumptions on the jump measure J (N) to onlude that τ∞ = ∞ almost surely.In the sequel, we denote by φD(x) the Eulidean distane from x to the boundary ∂D,whih means that, for all x ∈ D,
φD(x) = inf

y∈∂D
‖y − x‖2.Hypothesis 1. There exists p(N)

0 > 0 suh that, ∀i ∈ {1,...,N},
inf

(x1,...,xN)∈Di

J (N)(x1,...,xN )({y ∈ D, φD(y) ≥ min
j 6=i

φD(xj)}) ≥ p
(N)
0Informally, we assume that at eah jump time τn, the probability that the jump po-sition X in

τn is hosen further from the boundary than at least one another partile isbounded below by a positive onstant p(N)
0 . This assumption ensures that, at eah jump,the jumping partile is attrated away from the boundary by the other ones.Remark 1. Hypothesis 1 is very general and allows a lot of hoies for J (N)(x1,...,xN ).For instane, for any hoie of σ(N) :

⋃N
i=0Di → M1(D), the jump measure

J (N)(x1,...,xN ) =
N − 1

N
σ(N)(x1,...,xN ) +

1

N(N − 1)

∑

j=1,...,N, j 6=i

δxj
, ∀(x1,...,xN ) ∈ Di,ful�lls the assumption with p(N)

0 = 1/N .Hypothesis 1 also inludes the ase studied by Grigoresu and Kang in [18℄, where
J (N)(x1,...,xN ) =

∑

j 6=i

pij(xi)δxj
, ∀(x1,...,xN ) ∈ Di.with ∑j 6=i pij(xi) = 1 and inf i∈{1,...,N},j 6=i,xi∈∂D pij(xi) > 0, so that the partile on theboundary jumps to one of the other ones, with positive weights. In that ase, Hypothesis1 is ful�lled with p(N)

0 = 1. In Setion 3, we will fous on the partiular ase
J (N)(x1,...,xN ) =

1

N − 1

∑

j=1,...,N, j 6=i

δxj
, ∀(x1,...,xN ) ∈ Di.That will lead us to an approximation method of the Yaglom limit (4).Theorem 2.1. Assume that Hypothesis 1 is ful�lled. Then1. The proess (X1,...,XN ) is well de�ned, whih means that τ∞ = +∞ almost surely.2. Moreover, the proess (X1,...,XN) is exponentially ergodi, whih means that thereexists a probability measure MN on DN suh that,

||PN
x ((X1

t ,...,X
N
t ) ∈ .)−MN ||TV ≤ C(N)(x)

(

ρ(N)
)t
, ∀x ∈]0,1[N , ∀t ∈ R+,where C(N)(x) is �nite, ρ(N) < 1 and ||.||TV is the total variation norm. In partiu-lar, MN is a stationary measure for the proess (X1,...,XN).5



The main tool of the proof is a oupling between (X1,...,XN ) and a system of Nindependent one-dimensional di�usion proesses (Y 1,...,Y N). The system is built in orderto satisfy
0 ≤ Y i

t ≤ φD(X
i
t) ∧ α a.s.for all t ≥ 0 and eah i ∈ {1,...,N}. We build this oupling in Subsetion 2.2 and weonlude the proof of Theorem 2.1 in Subsetion 2.3 .In Subsetion 2.4, we assume that, for all N ≥ 2, we're given J (N) whih ful�llsHypothesis 1 and a family of drifts (q(N)

i )1≤i≤N whih is uniformly bounded above by aonstant that doesn't depend on N . We prove that the family of empirial distributions
(XN)N≥2 is uniformly tight.2.2 Coupling's onstrutionProposition 2.2. There exists a N-dimensional Brownian motion (W 1,...,WN) and pos-itive onstants α,Q > 0 suh that, for eah i ∈ {1,...,N}, the re�eted di�usion proesswith values in [0,α] de�ned by

Y i
t = Y i

0 +W i
t −Qt+ Li,0

t − Li,α
t , Y i

0 = min(α,φD(X
i
0)) (7)satis�es

0 ≤ Y i
t ≤ φD(X

i
t) ∧ α a.s. (8)for all t ∈ [0,τ∞[ (see Figure 1). In (7), Li,0 (resp. Li,α) denotes the loal time due to there�eting property of the boundary {0} (resp. {α}), (f. [8℄).

Figure 1: The partile X1 and its oupled re�eted di�usion proess Y 1Proof of Proposition 2.2 : The boundary of D is assumed to be of lass C2, whih impliesby [11, Theorem 4.3℄ that there exists a positive onstant r1 > 0, suh that
φD is of lass C2 on Dc

r1
, (9)6



where Dr = {x ∈ D, φD(x) ≥ r}. Moreover, we have
‖∇φD(x)‖2 = 1, ∀x ∈ Dc

r1
. (10)We set α = r1/2.Fix i ∈ {1,...,N}. We de�ne a sequene of stopping times (tin)n suh that X i

t ∈ Dc
r1
forall t ∈ [ti2n,t

i
2n+1[ and X i

t ∈ Dα for all t ∈ [ti2n+1,t
i
2n+2[. More preisely, we set (see Figure2)

ti0 = inf {t ∈ [0,+∞], X i
t ∈ Dc

α},
ti1 = inf {t ∈ [t0, +∞], X i

t ∈ Dr1},and, for n ≥ 1,
ti2n = inf {t ∈ [ti2n−1, +∞], X i

t ∈ Dc
α},

ti2n+1 = inf {t ∈ [ti2n, +∞], X i
t ∈ Dr1}.

Figure 2: De�nition of the sequene of stopping times (tn)n≥0Let γi be a 1-dimensional Brownian motion independent of the proess (X1,...,XN).We set
W i

t = γit, for t ∈ [0,t0[, (11)and, for all n ≥ 0,
W i

t =W i
t2n

+

∫ t

t2n

∇φD(X
i
s-) · dBi

s for t ∈ [t2n,t2n+1],

W i
t =W i

t2n+1
+ (γit − γit2n+1

) for t ∈ [t2n+1,t2n+2],where ∫ t

t2n
∇φD(X

i
s-) · dBi

s has the law of a Brownian motion between times t2n and t2n+1,thanks to (10). It an be obviously proved that (W 1,...,WN) is a N-dimensional Brownianmotion. 7



Fix i ∈ {1,...,N}. Let us now prove that the proess Y i de�ned by (7) with a onstant
Q whih satis�es

max
i=1,...,N

‖LiφD‖∞ < Q (12)ful�lls the inequality (8). We de�ne the time ζ = inf {0 ≤ t < τ∞, Y
i
t > φD(X

i
t)} and wework onditionally to ζ <∞. By right ontinuity of the two proesses, Y i

ζ ≥ φD(X
i
ζ) a.s.If ζ = 0, then Y i

ζ ≤ φD(X
i
ζ) by de�nition of Y i

0 . If ζ > 0, then, by left ontinuity of Y iand by the de�nition of ζ , Y i
ζ ≤ φD(X

i
ζ-). But φD(X

i
ζ-) ≤ φD(X

i
ζ), then Y i

ζ ≤ φD(X
i
ζ)almost surely. Finally, we get

Y i
ζ = φD(X

i
ζ) a.s. (13)We dedue from it that φD(X

i
ζ) ≤ α, then there exists n ≥ 0, suh that ζ ∈ [t2n,t2n+1[.In partiular, we an apply It�'s formula to (φD(X

i
t))t∈[ζ,t2n+1[, thanks to the regularity of

φD on Dc
r1
(9), and we get

φD(X
i
t) = φD(X

i
t2n

) +

∫ t

t2n

∇φD(X
i
s) · dBi

s +

∫ t

t2n

LiφD(X
i
s)dsfor all stopping time t ∈ [ζ,t2n+1 ∧ τ (ζ)[, where τ (ζ) denotes the �rst jumping time of iafter ζ , whih means τ (ζ) = minn≥1 {τn, τn > ζ}. We dedue from (13) that Y i

ζ > 0 almostsurely. Let h > 0 be a positive random variable, suh that ζ+h < t2n+1∧ τ (ζ) and Y i
t > 0for all t ∈ [ζ,ζ+h[ almost surely. Then, for all t ∈ [ζ,ζ+h], we have, by the It�'s formula,

φD(X
i
t)− Y i

t =

∫ t

ζ

(Q− LiφD(X
i
s))ds− Li,0

t + Li,0
ζ + Li,α

t − Li,α
ζ ,where Q − LiφD(X

i
s) ≥ 0, (Li,α

s )s≥0 is inreasing and Li,0
t = L0

ζ , sine Y i doesn't hit 0between times ζ and t (see [8℄). Then φD(X
i) − Y i stays non-negative between times

ζ and ζ + h, what ontradits the de�nition of ζ . Finally, ζ = ∞ almost surely, whihmeans that the oupling inequality (8) remains true for all t ∈ [0,τ∞[.2.3 Proof of Theorem 2.1Proof that (X1,...,XN ) is well de�ned. Let N ≥ 2 be the size of the interating partilesystem and �x arbitrarily its starting point x ∈ DN . We de�ne the event C = {τ∞ <
+∞}. Conditionally to C, the total number of jumps is equal to +∞ before the �nitetime τ∞. There is a �nite number of partiles, then at least one partile makes an in�nitenumber of jumps before τ∞. We denote it by i0 (whih is a random index).For eah jumping time τn, we denote by σi0

n the next jumping time of i0, with τn <
σi0
n < τ∞. Conditionally to C, we get σi0

n − τn → 0 when n → ∞. The proess X i0 beinga ontinuous di�usion proess with bounded drift between τn and σi0
n -, we get

φD(X
i0
τn)− φD(X

i0

σ
i0
n -
) −−−→

n→∞
0, a.s.But φD(X

i0

σ
i0
n -
) = 0 by de�nition, then

lim
n→∞

φD(X
i0
τn) = 0, a.s. (14)8



Let us denote by (τ i0n )n the sequene of jumping times of the partile i0. We denoteby An the event
An =

{

∃i 6= i0 | φD(X
i

τ
i0
n

) ≤ φD(X
i0

τ
i0
n

)
}

.We have, for all 1 ≤ k ≤ l,
P

(

l+1
⋂

n=k

Ac
n

)

= E

(

E

(

l+1
∏

n=k

1Ac
n
| (X1

t ,...X
N
t )

0≤t<τ
i0
l+1

))

= E

(

l
∏

n=k

1Ac
n
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

)

,where, by de�nition of the jump mehanism of the interating partile system,
E
(

1Ac
l+1

| (X1
t ,...X

N
t )

0≤t<τ
i0
l+1

)

= J (N)(X1

τ
i0
l+1

,...,XN

τ
i0
l+1

)
(

Ac
l+1

)

≤ 1− p
(N)
0 ,by Hypothesis 1. By indution on l, we get

P

(

l
⋂

n=k

Ac
n

)

≤ (1− p
(N)
0 )l−k, ∀1 ≤ k ≤ l.Sine p(N)

0 > 0, it yields that
P

(

⋃

k≥1

∞
⋂

n=k

Ac
n

)

= 0.It means that, for in�nitely many jumps τn almost surely, one an �nd a partile j suhthat φD(X
j
τn) ≤ φD(X

i0
τn). Beause there is only a �nite number of other partiles, onean �nd a partile, say j0 (whih is a random variable), suh that

φD(X
j0
τn) ≤ φD(X

i0
τn), for in�nitely many n ≥ 1.In partiular, we get from (14) that

lim
n→∞

(

φD(X
i0
τn),φD(X

j0
τn)
)

= (0,0) a.s.Using the oupling inequality of Proposition 2.2, we dedue that
C ⊂

{

lim
t→τ∞

(Y i0
t ,Y

j0
t ) = (0,0)

}

.Then, onditionally to C, Y i0 and Y j0 are independent re�eted di�usion proesses withbounded drift, whih hit 0 at the same time. This ours for two independent re�etedBrownian motions with probability 0, and then for Y i0 and Y j0 too, by the Girsanov'sTheorem. That implies Px(C) = 0. Finally, we have τ∞ = +∞ almost surely.9



Proof of the exponential ergodiity. It is su�ient to prove that there exists n ≥ 1, ǫ > 0and a non-trivial probability ϑ on DN suh that
Px((X

1
n,...,X

N
n ) ∈ A) ≥ ǫϑ(A), ∀x ∈ Dα

N
, A ∈ B(DN) (15)and that

sup
x∈Dα

N

Ex(κ
τ ′) <∞, (16)where κ is a positive onstant and τ ′ is the return time to Dα

N of the Markov hain
(X1

n,...,X
N
n )n∈N. Indeed, Down and Meyn proved in [12, Theorem 2.1 p.1673℄ that if theMarkov hain (X1

n,...,X
N
n )n∈N is aperiodi (whih is obvious in our ase) and ful�lls (15)and (16), then it is geometrially ergodi. But, thanks to [12, Theorem 5.3 p.1681℄, thegeometri ergodiity of this Markov hain is a su�ient ondition for (X1,...,XN ) to beexponentially ergodi.Let us �rst prove that (15) is ful�lled. Let F be the event �the proess (X1,...,XN)has no jump between times 0 and 1�. Conditionally to F , the proess X i doesn't dependon the other partiles before time 1. Then the law of X i onditionally to F is the sameas the law of the di�usion proess X(i) de�ned by (5) at time 1 and onditioned to notbe killed. It yields that

P(x1,...,xN)(X
i
1 ∈ dx|F) = Pi

xi
(X

(i)
1 ∈ dx|1 < τ∂) ≥ Pi

xi
(X1 ∈ dx). (17)The law of X(i)

1 has a density pi1(xi,y) with respet to the Lebesgue's measure and pi1(xi,y)depends ontinuously on xi and y. It only vanishes when y = 0 or 1. Then
ǫi = inf

(xi,y)∈Dα×Dα

pi1(xi,y) > 0,sine Dα ×Dα is ompat. We get from (17) that
P(x1,...,xN)(X

i
1 ∈ dx|F) ≥ ǫi1Dα

(x)dx, ∀(x1,...,xN ) ∈ Dα
N
.Conditionally to F , the partiles are independent from eah other, so that

P(x1,...,xN)((X
1
1 ,...,X

N
1 ) ∈ dy1...dyN |F) =

N
∏

i=1

P(x1,...,xN)(X
i
1 ∈ dyi|F)

≥
(

N
∏

i=1

ǫi

)

1
Dα

N (y1,...,yN)dy1...dyN .De�ne p = inf
x∈Dα

N Px(F). Thanks to the oupling with (Y 1,...,Y N), we have p > 0. Ityields that (15) is satis�ed with ϑ(dx) = p
(

∏N
i=1 ǫi

)

1
Dα

N (x)dx.Now we prove that ∃κ > 0 suh that (16) holds. Let p′ > 0 be the probability for
(Y 1,...,Y N) to enter Dα

N at time n + 1, starting from 0 at time n. For all x ∈ DN andall n ≥ 1, the probability for (X1,...,XN) to be in Dα
N at time n + 1 starting from x attime n is bounded below by the probability p′. Hene, at eah time n ≥ 1, (X1,...,XN)returns to Dα

N at time n + 1 with a probability greater than p′ > 0. It implies that thereturn time to Dα
N for (X1

n,...X
N
n )n∈N is bounded above by a time of geometrial law,independent of the starting point x ∈ DN . Then ondition (16) is ful�lled.10



2.4 Uniform tightness of the empirial stationary distributionsAssume that a jump measure J (N) is given for eah N ≥ 2 and that Hypothesis 1 isful�lled for all N ≥ 2. Assume that we're given a family of drifts (q(N)
i )i=1,...,N for eah

N ≥ 2 whih is uniformly bounded, whih means that there exists a onstant Q′ > 0 suhthat
‖q(N)

i ‖∞ < Q′, ∀ i,N. (18)We denote by MN ∈ M1(D
N) the stationary distribution of the N -partiles proess de-sribed above. The empirial stationary distribution XN denotes the random probabilityon D de�ned by

XN =
1

N

N
∑

i=1

δxiwhere (x1,...,xN ) is a random vetor in DN distributed following MN .Theorem 2.3. The family of empirial stationary distributions (XN
)

N≥2
is uniformlytight.Proof. Let us onsider the proess (X1,...,XN) starting with a distribution mN and itsoupled proess (Y 1,...,Y N ). For all t ∈ [0,τ∞[, we denote by µN(t,dx) (resp. µ′N(t,dx))the empirial measure of the proess (X1,...,XN) (resp. (Y 1,...,Y N)) at time t:

µN(t,dx) =
1

N

N
∑

i=1

δXi
t
(dx) and µ′N(t,dx) =

1

N

N
∑

i=1

δY i
t
(dx).By the oupling inequality (8), we get

µN(t,Dc
r) ≤ µ′N(t,[0,r]), ∀r ∈ [0,α].As a onsequene,

EmN

(

µN(t,Dc
r)
)

≤ EmN

(

µ′N(t,[0,r])
)

, ∀r ∈ [0,α].The family (EmN

(

µ′N(t,.)
))

N≥2
is uniformly tight for any arbitrarily hosen t > 0, sineone an hoose the onstant Q in (7) equal to Q′ for all N ≥ 2, by (12) and (18). Thenthe family (EmN

(

µN(t,.)
))

N≥2
is also uniformly tight for any given t > 0. This impliesthe uniform tightness of the family of random measures (µN(t,dx))N≥2 (see [20℄). If weset mN equal to the stationary distribution MN , then we get by stationarity that XN isdistributed as µN(t,.), for all N ≥ 2 and t > 0. Finally, the family of empirial stationarydistributions (XN)N≥2 is uniformly tight.3 Yaglom limit's approximationWe onsider now the partiular ase J (N)(x1,...,xN ) = 1

N−1

∑N
k=1,k 6=i δxk

: at eah jumptime, the partile whih hits the boundary jumps to the position of a partile hosenuniformly between the N − 1 remaining ones. We assume moreover that q(N)
i = q doesn'tdepend on i,N . In this framework, we are able to identify the limit of the empirial11



stationary distribution sequene, when the number of partiles tends to in�nity. Thisleads us to an approximation method of the Yaglom limits (4), inluding ases where thedrift of the di�usion proess isn't bounded and where the boundary ∂D0 is neither of lass
C2 nor bounded.Let D0 be an open domain of Rd, with d ≥ 1. We denote by P0 the law of the di�usionproess de�ned on D0 by

dXt = dBt −∇V (Xt)dt, X0 = x ∈ D0 (19)and absorbed at the boundary ∂D0. Here B is a d-dimensional Brownian motion and
V ∈ C2(D0,R). We assume that Hypothesis 2 below is ful�lled, so that the Yaglom limit

ν0 = lim
t→+∞

P0
x (Xt ∈ .|t ≤ τ∂) , ∀x ∈ D0 (20)exists and doesn't depend on x, as proved by Cattiaux and Méléard in [6, Theorem B.2℄.We emphasize the fat that this hypothesis allows the drift ∇V of the di�usion proess(19) to be unbounded and the boundary ∂D0 to be neither of lass C2 nor bounded. Inpartiular, the results of the previous setion aren't available in all generality for di�usionproesses with law P0.Hypothesis 2. We assume that1. P0

x(τ∂ < +∞) = 1,2. ∃C > 0 suh that G(x) = |∇V |2(x)−∆V (x) ≥ −C > −∞, ∀x ∈ D0,3. G(R) → +∞ as R → ∞, where
G(R) = inf {G(x); |x| ≥ R and x ∈ D0} ,4. For all R > 0, one an �nd an inreasing sequene of open bounded sets Kn(R) suhthat the boundary of Kn(R)∩D0 is of lass C1 and ⋃n (Kn(R) ∩D0) = B(0,R)∩D0,where B(0,R) is the Eulidean ball of radius R.5. There exists R > 0 suh that

∫

D0∩{d(x,∂D0)>R}

e−2V (x)dx <∞ and ∫
D0∩{d(x,∂D0)≤R}

(
∫

D

pD0

1 (x,y)dy

)

e−V (x)dx <∞.Here pD0

1 is the transition density of the di�usion proess (19) with respet to theLebesgue measure.Remark 2. For example, it is proved in [6℄ that Hypothesis 2 is ful�lled by the Lotka-Volterra system studied numerially in Subsetion 3.3.3. Up to a hange of variable, thissystem is de�ned by the di�usion proess with values in D0 = R2
+, whih satis�es

dY 1
t = dB1

t +

(

r1Y
1
t

2
− c11γ1 (Y

1
t )

3

8
− c12γ2Y

1
t (Y 2

t )
2

8
− 1

2Y 1
t

)

dt

dY 2
t = dB2

t +

(

r2Y
2
t

2
− c22γ2 (Y

2
t )

3

8
− c21γ1Y

2
t (Y 1

t )
2

8
− 1

2Y 1
t

)

dt

(21)and is killed at ∂D0. Here B1,B2 are two independent one-dimensional Brownian motionsand the parameters of the di�usion proess ful�ll ondition (46).12



In order to de�ne the interating partile proess of the previous setion, we introduea ut-o� of D0 near its boundary. More preisely, let (Dǫ)ǫ≥0 be a family of bounded opensubsets of D0 of lass C2, whih tends to D0 in the sense that, for all ompat subset
K ⊂ D0, ∃ǫ > 0 suh that K ⊂ Dǫ. For all 0 < ǫ < ǫ′, we assume that d(Dǫ,∂D0) > 0,and Dǫ ( Dǫ′. For all ǫ > 0, we denote by Pǫ the law of the di�usion proess de�ned on
Dǫ by

dXǫ
t = dBt −∇V (Xǫ

t )dt, X
ǫ
0 = x ∈ Dǫand absorbed at the boundary ∂Dǫ. Here B is a d-dimensional Brownian motion. Forall ǫ > 0, the di�usion proess with law Pǫ learly ful�lls the onditions of Setion 2 .For all N ≥ 2, let (Xǫ,1,...,Xǫ,N) be the interating partile proess de�ned by the law

Pǫ between the jumps and by the jump measure J (ǫ,N)(x1,...,xN ) =
1

N−1

∑N
k=1,k 6=i δxk

. ByTheorem 2.1, this proess is well de�ned and exponentially ergodi.For all ǫ > 0 and all N ≥ 2, we denote by M ǫ,N the stationary distribution of
(Xǫ,1,...,Xǫ,N) and by X ǫ,N the assoiated empirial stationary distribution.We are now able to state the main result of this setion.Theorem 3.1. Assume that Hypothesis 2 is satis�ed. Then

lim
ǫ→0

lim
N→∞

X ǫ,N = ν0, (22)in the weak topology of random measures.In Setion 3.1, we �x ǫ > 0 and we prove that the sequene (X ǫ,N)N≥2 onverges to aprobability νǫ when N goes to in�nity. In partiular, we prove that νǫ is the Yaglom limitassoiated with Pǫ, whih exists by [16℄. In Setion 3.2, we onlude the proof, proeedingby a ompatness/uniqueness argument: we prove that (νǫ)0<ǫ<1/2 is a uniformly tightfamily and we show that eah limiting probability of the family (νǫ)0<ǫ<1/2 is equal to theYaglom limit ν0. The last Setion 3.3.3 is devoted to numerial illustrations of Theorem3.1.3.1 Convergene of (X ǫ,N)N≥2, when ǫ > 0 is �xedProposition 3.2. Let ǫ > 0 be �xed. The sequene of empirial stationary distributions
(X ǫ,N)N≥2 onverges to νǫ in the weak topology of random measures when N goes toin�nity, where νǫ is the Yaglom limit assoiated with Pǫ.Remark 3. The Yaglom limit νǫ exists and is the unique quasi-stationary distributionassoiated with Pǫ. Moreover it satis�es

νǫ = lim
t→∞

Pǫ
m (Xǫ

t ∈ .|Xǫ
t ∈ Dǫ) , ∀m ∈ M1(Dǫ), (23)by [6, Proposition B.12℄.Proof of Proposition 3.2. The initial distribution of the proess (Xǫ,1,...,Xǫ,N) is hosenequal to its stationary distribution M ǫ,N . For all t ≥ 0, we denote by µǫ,N(t,dx) itsempirial measure at time t (by stationarity, µǫ,N(t,dx) and X ǫ,N have the same law). Weset

νǫ,N(t,dx) =

(

N − 1

N

)AN
t

µǫ,N(t,dx),13



where AN
t =

∑∞
n=1 1τn≤t denotes the number of jumps before time t. Intuitively, weintrodue a loss of 1/N of the total mass at eah jump, in order to approximate thedistribution of the di�usion proess (19) without onditioning. We will ome bak to thestudy of µǫ,N and the onditioned di�usion proess by normalizing νǫ,N .For all ǫ ≥ 0, we denote by Lǫ the in�nitesimal generator of the di�usion proess withlaw Pǫ. From the It�'s formula applied to the semimartingale µǫ,N(t,ψ) = 1

N

∑N
i=1 ψ(X

ǫ,i
t ),where ψ ∈ C2(Dǫ,R

d), we get
µǫ,N(t,ψ) = µǫ,N(0,ψ) +

∫ t

0

µǫ,N(s,Lǫψ)ds+Mc,ǫ,N(t,ψ) +Mj,ǫ,N(t,ψ)

+
1

N − 1

∑

0≤τn≤t

µǫ,N(τn-,ψ), (24)where Mc,ǫ,N(t,ψ) is the ontinuous martingale
1

N

N
∑

i=1

d
∑

j=1

∫ t

0

∂ψ

∂xj
(Xǫ,i

s )dBi,j
sand Mj,ǫ,N(t,ψ) is the pure jump martingale

1

N

N
∑

i=1

∑

0≤τ in≤t

(

ψ(Xǫ,i
τ in
)− N

N − 1
µǫ,N(τ in-,ψ)

)

.Applying the It�'s formula to the semimartingale νǫ,N(t,ψ), we dedue from (24) that
νǫ,N(t,ψ) = νǫ,N(0,ψ) +

∫ t

0

νǫ,N(s,Lǫψ)ds+

∫ t

0

(

N − 1

N

)AN
s

dMc,ǫ,N(s,ψ)

+
∑

0≤τn≤t

(νǫ,N(τn,ψ)− νǫ,N(τn-,ψ)).Where we have
νǫ,N(τn,ψ)− νǫ,N(τn-,ψ) =

(

N − 1

N

)AN
τn
(

µǫ,N(τn,ψ)− µǫ,N(τn-,ψ)
)

+ µǫ,N(τn-,ψ)

(

(

N − 1

N

)AN
τn

−
(

N − 1

N

)AN
τn-

)

.But
µǫ,N(τn,ψ)− µǫ,N(τn-,ψ) =

1

N − 1
µǫ,N(τn-,ψ) +Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)and

(

N − 1

N

)AN
τn

−
(

N − 1

N

)AN
τn-

= − 1

N − 1

(

N − 1

N

)AN
τn

.14



Then
νǫ,N(τn,ψ)− νǫ,N(τn-,ψ) =

(

N − 1

N

)AN
τn
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.

=
N − 1

N

(

N − 1

N

)AN
τn-
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.That implies
νǫ,N(t,ψ)− νǫ,N(0,ψ) =

∫ t

0

νǫ,N(s,Lǫψ)ds+

∫ t

0

(

N − 1

N

)AN
s

dMc,ǫ,N(s,ψ)

+
N − 1

N

∑

0≤τn≤t

(

N − 1

N

)AN
τn-
(

Mj,ǫ,N(τn,ψ)−Mj,ǫ,N(τn-,ψ)
)

.It yields that, for all smooth funtions Ψ(t,x) vanishing at the boundary of Dǫ,
νǫ,N(t,Ψ(t,.))− νǫ,N(0,Ψ(0,.)) =

∫ t

0

νǫ,N(s,
∂Ψ(s,.)

∂s
+
∂Ψ(s,.)

∂x
q +

1

2

∂2Ψ(s,.)

∂x2
)ds

+N c,ǫ,N(t,Ψ) +N j,ǫ,N(t,Ψ),

(25)where N c,ǫ,N(t,Ψ) is the ontinuous martingale
1

N

N
∑

i=1

d
∑

j=1

∫ t

0

(

N − 1

N

)AN
s ∂Ψ

∂xj
(s,Xǫ,i

s )dBi,j
sand N j,ǫ,N(t,Ψ) is the pure jump martingale

1

N

N
∑

i=1

∑

0≤τ in≤t

(

N − 1

N

)AN

τin-

(

Ψ(τ in,X
ǫ,i
τ in
)− N

N − 1
µǫ,N(τ in-,Ψ(τ in-,.))

)

.For all δ > 0, de�ne Ψδ(t,x) = P ǫ
T−tP

ǫ
δ f(x), where f ∈ C2(D) vanishes on ∂D, and (P ǫ

t )is the semigroup assoiated with Pǫ. From Kolmogorov's equation (see [13, Proposition1.5 p.9℄),
∂

∂s
Ψδ(s,x) +

1

2
∆Ψδ(s,x) + q(x)∇Ψδ(s,x) = 0.It yields that

νǫ,N(t,Ψδ(t,.))− νǫ,N(0,Ψδ(0,.)) = N c,ǫ,N(t,Ψδ) +N j,ǫ,N(t,Ψδ). (26)Sine (N−1
N

)AN
s ≤ 1 a.s., we get

E
(

N c,ǫ,N(T,Ψδ)2
)

≤ T

N
‖∇Ψδ‖2∞

≤ T

N

cǫ
√

(T − t + δ) ∧ 1
‖f‖∞

(27)15



where cǫ > 0 is a positive onstant. The last inequality omes from [28, Theorem 4.5℄ ongradient estimates in regular domains of Rd. The jumps of the martingale Mj,ǫ,N(t,Ψδ)are smaller than 2
N
‖Ψδ‖∞, then

E

[

∑

0≤τn≤T

(

N − 1

N

)2Aτn-
(

Mj,ǫ,N(τn,Ψ
δ(τn,.))−Mj,ǫ,N(τn-,Ψ

δ(τn-,.))
)2

]

≤ 4

N2
‖Ψδ‖2∞E

[

∑

0≤τn≤T

(

N − 1

N

)2Aτn-

]

≤ 4

N
‖Ψδ‖2∞.Then

E
(

N j,N(Ψ,T )2
)

≤ 4

N
‖Ψ‖2∞ ≤ 4

N
‖f‖2∞. (28)We get from (26), (27) and (28) that

√

E
(

∣

∣νN(t,P ǫ
T−t+δf)− νN (0, P ǫ

T+δf)
∣

∣

2
)

≤ Cǫ,δ√
N
‖f‖∞where Cǫ,δ is a positive onstant whih does not depend on f . In partiular, one an �nda stritly dereasing sequene (δN)N whih onverges to 0 and suh that

√

E
(

∣

∣νǫ,N(T,P ǫ
δN
f)− νǫ,N(0, P ǫ

T+δN
f)
∣

∣

2
)

≤ ‖f‖∞o(N).But ‖P ǫ
δN
f − f‖∞ tends to 0 when δN goes to 0, then

√

E
(

|νǫ,N(T,f)− νǫ,N(0, P ǫ
Tf)|2

)

→ 0. (29)The family of random probabilities (X ǫ,N)N≥0 is uniformly tight, by Theorem 2.3. Let
X ǫ be one of its limit probabilities. By de�nition, there exists a stritly inreasing map
ϕ : N 7→ N, suh that X ǫ,ϕ(N) onverges in law to X ǫ when N → ∞. Sine νǫ,N(0,.) =
µǫ,N(0,.) has the same law as X ǫ,N , we dedue from (29) that

E
(

νǫ,ϕ(N)(T,f)
)

−−−→
N→∞

E (X ǫ(P ǫ
Tf)) (30)for all ontinuous funtion f whih vanishes at the boundary of Dǫ. But the family

(

µǫ,ϕ(N)(T,.)
)

N
is uniformly tight, then (νǫ,ϕ(N)(T,.)

)

N
is also uniformly tight. By (30),its unique limit is then the measure X ǫ(P ǫ

T .) de�ned by f 7→ X ǫ(P ǫ
Tf). We �nally get

νǫ,ϕ(N)(T,.)
law−−−→

N→∞
X ǫ(P ǫ

T .). (31)In partiular,
(

νǫ,ϕ(N)(T,Dǫ),ν
ǫ,ϕ(N)(T,.)

) law−−−→
N→∞

(X ǫ(P ǫ
T1Dǫ

),X ǫ(P ǫ
T .)) .16



But X ǫ(P ǫ
T1Dǫ

) never vanishes almost surely, so that
µǫ,ϕ(N)(T,.) =

νǫ,ϕ(N)(T,.)

νǫ,ϕ(N)(T,Dǫ)

law−−−→
N→∞

X ǫ(P ǫ
T .)

X ǫ(P ǫ
T1Dǫ

)
= Pǫ

X ǫ(Xǫ
T ∈ .|Xǫ

T ∈ Dǫ)By stationarity, µǫ,ϕ(N)(T,.) and X ǫ,N have the same law, and onverge in law to X ǫwhen N → ∞. It yields that X ǫ and Pǫ
X ǫ(Xǫ

T ∈ .|Xǫ
T ∈ Dǫ) have the same law. But

Pǫ
X ǫ(Xǫ

T ∈ .|Xǫ
T ∈ Dǫ) onverges almost surely to νǫ when T → ∞, by (23). We deduefrom it that X ǫ has the same law as νǫ. As a onsequene, the unique limit probabilityof the uniformly tight family (X ǫ,N)N is νǫ, whih allows us to onlude the proof ofProposition 3.2.3.2 Convergene of the family (νǫ)0<ǫ<1We show in Subsetion 3.2.1 that the family (νǫ)0<ǫ<1 is uniformly tight. In Subse-tion 3.2.2, we prove that its unique probability limit is ν0, whih onludes the proof ofTheorem 3.1.3.2.1 Uniform tightness of the family (νǫ)0<ǫ<1Proposition 3.3. Assume that hypothesis 2 is ful�lled. Then the family (νǫ)0<ǫ<1 isuniformly tight. Moreover, every limit point is absolutely ontinuous with respet to theLebesgue measure, with a density bounded by ce−V , where c is a positive onstant.Proof of Proposition 3.3. Let us reall some results from [16℄ and [6℄ on the spetral theoryof Lǫ. It has a simple eigenvalue λǫ > 0 with minimal real part. The orrespondingnormalized eigenfuntion ηǫ is stritly positive on Dǫ, belongs to C2(Dǫ,R) and ful�lls

Lǫηǫ = −λǫηǫ and ∫
Dǫ

ηǫ(x)
2σ(dx) = 1, (32)where

σ(dx) = e−2V (x)dx.Moreover, we have
dνǫ =

ηǫdσ
∫

Dǫ
ηǫ(x)dσ(x)

, ∀ǫ ≥ 0. (33)In order to prove that (νǫ)0<ǫ<1 is uniformly tight, we show that (∫
Dǫ
ηǫ(x)dσ(x)

)

0<ǫ<1
isuniformly bounded below by a positive onstant A > 0, and we onlude by proving thatthe family (ηǫdσ)0<ǫ<1 is uniformly tight.Let us prove that

A = inf
0<ǫ<1

∫

Dǫ

ηǫ(x)dσ(x) > 0. (34)In order to ahieve this goal, assume the onverse: one an �nd a sequene of positive num-bers (ǫk)k∈N whih onverges to 0 and suh that ∫Dǫk

vǫk(x)e
−V (x)dx =

∫

Dǫk

ηǫk(x)dσ(x) −−−→
k→∞

0, where we set vǫ = ηǫe
−V . Thanks to [6℄, there exists a onstant κ > 0 suh that

vǫ(x) < κ, ∀ǫ ≥ 0, ∀x ∈ Dǫ. (35)17



In partiular, we have
∫

Dǫk

vǫk(x)
2e−V (x)dx ≤ κ

∫

Dǫk

vǫk(x)e
−V (x)dx −−−→

k→∞
0. (36)Let us show that (vǫ(x)

2dx)ǫ>0 is uniformly tight. If D0 is bounded, it is a diretonsequene of the uniform bound (35) . Assume that D0 isn't bounded, then
∫

Dǫ∩|x|≥R

v2ǫ (x)dx ≤ 1

G(R)

∫

Dǫ∩|x|≥R

v2ǫ (x)G(x)dx, (37)where G(R) → +∞ when R → +∞ (see Hypothesis 2). For all x ∈ Dǫ, (32) leads to
1

2
∆vǫ −

1

2
G(x)vǫ(x) = −λǫvǫ(x) and ∫

Dǫ

vǫ(x)
2dx = 1.Then

∫

Dǫ

v2ǫ (x)G(x)dx = λǫ

∫

Dǫ

vǫ(x)
2dx+

∫

Dǫ

vǫ(x)∆vǫ(x)dx

= λǫ −
∫

Dǫ

|∇vǫ(x)|2dx

≤ λǫ, (38)where the seond equality is a onsequene of the Green's formula (see [2, Corollary 3.2.4℄).But the eigenvalue λǫ of −Lǫ is given by (see for instane [31, hapter XI, part 8℄)
λǫ = inf

φ∈C∞

0
(Dǫ), 〈φ,φ〉σ=1

〈Lǫφ,φ〉σ,

= inf
φ∈C∞

0
(Dǫ), 〈φ,φ〉σ=1

〈

L0φ,φ
〉

σ
,

(39)where C∞
0 (Dǫ) is the vetor spae of in�nitely di�erentiable funtions with ompat sup-port in Dǫ and 〈f,g〉σ =

∫

D0
f(u)g(u)dσ(u). We dedue from it that λǫ inreases with ǫand is uniformly bounded above by λ1. The uniform bound (38) and the inequality (37)allow us to onlude that the family (vǫ(x)

2dx)ǫ>0 is uniformly tight.As a onsequene, one an �nd (after extrating a sub-sequene) a non-negative map
m : D0 → R+ suh that, for all ontinuous and bounded funtion φ : D0 → R,

∫

Dǫk

vǫk(y)
2φ(y)dy −−−→

k→∞

∫

D0

m(y)φ(y)dy. (40)Indeed, (v2ǫ ) being uniformly bounded, all limit measures are absolutely ontinuous withrespet to the Lebesgue measure. In partiular,
∫

Dǫk

vǫk(x)
2min (e−V (x),1)dx −−−→

k→∞

∫

D0

m(x)min (e−V (x),1)dx.We dedue from (36) that
∫

D0

m(x)min (e−V (x),1)dx = 0.18



But min (e−V (.),1) is ontinuous and positive on D0, so that m vanishes almost everywhere. Finally, by the onvergene property (40) applied to φ = 1 almost everywhere, wehave
1 =

∫

Dǫk

vǫk(x)
2dx −−−→

k→∞
0,whih is absurd. Finally A is stritly positive.Fix an arbitrary positive onstant α > 0 and let us prove that one an �nd a ompatset Kα ⊂ D0 suh that

∫

Kc
α

ηǫ(x)dσ(x) ≤ α, ∀ǫ ∈]0,1[. (41)Let R be the positive onstant of the �fth part of Hypothesis 2. For all ompat set K,we have
∫

Kc

ηǫ(x)dσ(x) =

∫

Kc∩{d(x,∂D0)>R}

ηǫ(x)dσ(x) +

∫

Kc∩{d(x,∂D0)≤R}

ηǫ(x)dσ(x). (42)But, from the proof of [6, Proposition B.6℄,
∫

Kc∩{d(x,∂D0)>R}

ηǫ(x)dσ(x) ≤
√

∫

Kc∩{d(x,∂D0)>R}

e−2V (x)dx (43)and
∫

Kc∩{d(x,∂D0)≤R}

ηǫ(x)dσ(x) ≤ eC/2eλǫ‖vǫ‖∞
∫

Kc∩{d(x,∂D0)≤R}

(
∫

D

pD0

1 (x,y)dy

)

dx. (44)On the one hand, eλǫ‖vǫ‖∞ is uniformly bounded above by eλ1κ. On the other hand, bothintegrals on the right hand side are well de�ned, thanks to Hypothesis 2. Finally, one an�nd a ompat set Kα suh that (43) and (44) are both bounded by α/2. Sine (41) isful�lled for all α > 0, the family (ηǫdσ)0<ǫ<1 is uniformly tight.Finally, it yields from equality (33) and the uniform bound A, that the family (νǫ)ǫ>0is uniformly tight. Moreover, νǫ has a density whih is bounded by κe−V /A, uniformlyin ǫ > 0. Then it is uniformly bounded on every ompat set, so that every limitingdistribution is absolutely ontinuous with respet to the Lebesgue measure, with a densitybounded by κe−V /A.3.2.2 Uniqueness of the limiting probabilityProposition 3.4. Assume that Hypothesis 2 holds. Let ν be a probability measure whihis the limit of a sub-sequene (νǫk)k∈N, where ǫk → 0 when k → ∞. Then ν is the Yaglomlimit ν0 assoiated with P0.Proof of Proposition 3.4. Thanks to Proposition 3.2, ν has a density η with respet to σ,and η ≤ κeV /A. Let us prove that η belongs to L2(dσ). Sine νǫk → ν, we have, for all
f ∈ C0(D0,R) (whih denotes the set of ontinuous real funtions with ompat supporton D0),

∫

D0

f(x)η(x)2dσ(x) =

∫

D0

f(x)η(x)dν(x) = lim
k→∞

∫

D0

f(x)η(x)dνǫk(x)

= lim
k→∞

∫

D0

f(x)
ηǫ(x)

〈ηǫk ,1Dǫ
〉dν(x)19



sine ηǫk (x)

〈ηǫk ,1Dǫ〉 is the density of νǫk with respet to σ, by (33). For the same reasons,
∫

D0

f(x)η(x)2dσ(x) = lim
k→∞

lim
k′→∞

∫

D0

f(x)
ηǫk(x)ηǫk′ (x)

〈

ηǫk ,1Dǫk

〉

σ

〈

ηǫk′ ,1Dǫ
k′

〉

σ

dσ(x).For all ǫ > 0, we have ∫
D0
η2ǫdσ(x) = 1 by (32), and 〈ηǫ,1Dǫ

〉σ > A by (34). Then, by theCauhy-Shwarz inequality, we get
∫

D0

f(x)η(x)2dσ(x) ≤ ‖f‖∞/A2.It yields that η ∈ L2(dσ).We denote by E0 the orthogonal spae of η0 in L2(dσ). We prove that η is proportionalto η0 by showing that η is orthogonal to E0 ∩ C0(D0). For all f ∈ E0 ∩ C0(D0) and all
x ∈ D0, P ǫk

t f(x) onverges to P 0
t f(x) when k → ∞. But νǫk → ν when k → ∞, then wehave

〈

P 0
t f,η

〉

σ
=

∫

D0

P 0
t f(x)dν(x)

= lim
k→∞

∫

D0

P ǫk
t f(x)dνǫk(x)

= lim
k→∞

e−λǫk
t

∫

D0

f(x)dνǫk(x),where the last equality omes from [16℄. But λk → λ0 by (39) and ∫
D0
f(x)dνǫk(x) →

∫

D0
f(x)dν(x) when k → ∞. As a onsequene,

〈

η, P 0
t f
〉

σ
= e−λ0t 〈η, f〉σ , ∀f ∈ E0 ∩ C0(D0), ∀t ≥ 0.But η belongs to L2(dσ), then we have by [6, Theorem A.4℄

lim
t→∞

eλ0t
〈

η,P 0
t f
〉

= 0, ∀f ∈ E0 ∩ C0(D0).We dedue that 〈η, f〉σ = 0 for all f ∈ E0 ∩ C0(D0). This allows us to onlude that η isproportional to η0. Finally, ν and ν0 are two proportional probabilities, then ν = ν0.3.3 Numerial simulations3.3.1 The Wright-Fisher aseThe Wright-Fisher with values in ]0,1[ onditioned to be killed at 0 is the di�usion proessdriven by the SDE
dZt =

√

Zt(1− Zt)dBt − Ztdt, Z0 = z ∈]0,1[,and killed when it hits 0 (1 is never reahed). Huillet proved in [19℄ that the Yaglom limitof this proess exists and has the density 2 − 2x with respet to the Lebesgue measure.20



In order to apply Theorem 3.1, we de�ne P0 as the law of X. = arccos(1− 2Z.). Then P0is the law of the di�usion proess with values in ]0,π[, driven by the SDE
dXt = dBt −

1− 2 cosXt

2 sinXt
dt, X0 = x ∈]0,π[,killed when it hits 0 (π is never reahed). One an easily hek that this di�usion proessful�lls Hypothesis 2. We denote by ν0 its Yaglom limit.For all ǫ ∈]0,π/2[, we de�ne Dǫ =]ǫ,π − ǫ[. Let Pǫ and νǫ be as in Setion 3. Weproeed to the numerial simulation of the N-interating partile system (Xǫ,1,...,Xǫ,N)with ǫ = 0.001 and N = 1000. This leads us to the omputation of E(XN,ǫ), whih is anapproximation of ν0. After the hange of variable Z. = 2 cos(X.), we see on Figure 3 thatthe simulation is very lose to the expeted result (2− 2x)dx, whih shows the e�ienyof the method.

 0
 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 2

 1

Figure 3: E(X ǫ,N) in the Wright-Fisher ase3.3.2 The logisti aseThe logisti Feller di�usion with values in ]0,+∞[ is de�ned by the stohasti di�erentialequation
dZt =

√

ZtdBt + (rZt − cZ2
t )dt, Z0 = z > 0, (45)and killed when it hits 0. Here B is a 1-dimensional Brownian motion and r,c are twopositive onstants. In order to use Theorem 3.1, we make the hange of variable X. =

2
√
Z.. This leads us to the study of the di�usion proess with values in D0 =]0, + ∞[,whih is killed at 0 and satis�es the SDE

dXt = dBt −
(

1

2Xt
− rXt

2
+
cX3

t

4

)

dt, X0 = x ∈]0, +∞[.We denote by P0 its law. Cattiaux et al. proved in [5℄ that Hypothesis 2 is ful�lled in thisase. Then the Yaglom limit ν0 assoiated with P0 exists and one an apply Theorem 3.121



with Dǫ =]1/ǫ,ǫ[ for all ǫ ∈]0,1/2[. As above and for all N ≥ 2, we denote by Pǫ the lawof the di�usion proess restrited to Dǫ and by X ǫ,N the empirial stationary distributionof the N-interating partile proess assoiated with Pǫ.We've proeeded to the numerial simulation of the interating partile proess for alarge number of partiles and a small value of ǫ. This allows us to ompute E(X ǫ,N),whih gives us a numerial approximation of ν0, thanks to Theorem 3.1.In the numerial simulations below, we set ǫ equal to 0.0001 and N = 10000. Weompute E(X ǫ,N) for di�erent values of the parameters r and c in (45). The results aregrahially represented in Figure 4. As it ould be wanted for, greater is c, loser is thesupport of the QSD to 0. We thus numerially desribe the impat of the linear andquadrati terms on the Yaglom limit.
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Figure 4: E(X ǫ,N) for the di�usion proess (45), with di�erent values of r and c3.3.3 Stohasti Lotka-Volterra ModelWe apply our results to the stohasti Lotka-Volterra system with values in D = R2
+studied in [6℄, whih is de�ned by the following stohasti di�erential system

dZ1
t =

√

γ1Z1
t dB

1
t +

(

r1Z
1
t − c11(Z

1
t )

2 − c12Z
1
t Z

2
t

)

dt,

dZ2
t =

√

γ2Z
2
t dB

2
t +

(

r2Z
2
t − c21Z

1
t Z

2
t − c22(Z

2
t )

2
)

dt,where (B1,B2) is a bi-dimensional Brownian motion. We are interested in the proessabsorbed at ∂D.More preisely, we study the proess (X1,X2) = (2
√

Z1
t /γ1,2

√

Z2
t /γ2), with values in

D0 = R2
+, whih satis�es the SDE (21) and is killed at ∂D0. We denote its law by P0.The oe�ients are supposed to satisfy

c11,c21 > 0, c12γ2 = c21γ1 < 0 and c11c22 − c12c21 > 0. (46)22



In [6℄, this ase was alled the weak ooperative ase and the authors proved that itis a su�ient ondition for Hypothesis 2 to be ful�lled. Then the Yaglom limit ν0 =
limt→+∞ P0

x ((Y
1
t ,Y

2
t ) ∈ .|t < τ∂) is well de�ned and we are able to apply Theorem 3.1.For eah ǫ > 0, we de�ne Dǫ as it is desribed on Figure 5. With this de�nition, it is learthat all onditions of Theorems 2.1 and 3.1 are ful�lled.

Figure 5: De�nition of DǫWe hoose ǫ = 0.0001 and we simulate the long time behavior of the interating partileproess withN = 10000 partiles for di�erent values of c12 and c21. The values of the otherparameters are r1 = 1 = r2 = 1, c11 = c22 = 1, γ1 = γ2 = 1. The results are illustrated onFigure 6. One an observe that a greater value of the ooperating oe�ients −c12 = −c21leads to a Yaglom limit whose support is further from the boundary and overs a smallerarea. In other words, the more the two populations ooperate, the bigger the survivingpopulations are.Aknowledgments I am extremely grateful to my Ph.D. supervisor Sylvie Méléard forhis areful and indispensable help on the form and the ontent of this paper. I wouldlike to thank Pierre Collet and my olleagues Jean-Baptiste Bellet and Khalid Jalalzai fortheir advies on funtional analysis.
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Figure 6: Empirial stationary distribution of the interating partile proess for di�erentvalues of c12 = c21
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