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Abstract

We first investigate a detailed high pressure flame model. Our model is based on thermo-
dynamics of irreversible processes, statistical thermodynamics, and the kinetic theory of dense
gases. We study thermodynamic properties, chemical production rates, transport fluxes, and
establish that entropy production is nonnegative. We next investigate the structure of planar
transcritical H2-O2-N2 flames and perform a sensitivity analysis with respect to the model.
Nonidealities in the equation of state and in the transport fluxes have a dramatic influence
on the cold zone of the flame. Nonidealities in the chemical production rates—consistent
with thermodynamics and important to insure positivity of entropy production—may also
strongly influence flame structures at very high pressures. At sufficiently low temperatures,
fresh mixtures of H2-O2-N2 flames are found to be thermodynamically unstable in agreement
with experimental results. We finally study the influence of various parameters associated
with the initial reactants on the structure of transcritical planar H2-O2-N2 flames as well as
lean and rich extinction limits.

1 Introduction

Progresses in the efficiency of automotive engines, gas turbines and rocket motors have notably
been achieved with high pressure combustion. Many experimental and theoretical studies have
thus been devoted to combustion processes at high pressure. In particular, laminar flames have
been investigated experimentally by Schilling and Franck [1] and turbulent flames by Chehroudi
et. al. [2], Habiballah et al. [3] and Candel et al. [4]. Numerical simulations of high pressure
planar flames have been performed by El Gamal et al. [5], mixing layers by Okongo and Bellan [9],
counterflow laminar flames by Saur et al. [6], Ribert et al. [7], and Pons et al. [8], and turbulent
flames by Zong and Yang [10], and Bellan [11]. More recent research involves supercritical
combustion of oxygen in industrial configurations as studied by Oefelein [12], Zong and Yang [13],
and Schmitt et al. [14].

In this paper, we first investigate a detailed high pressure flame model. Our dense fluid
model is based on thermodynamics of irreversible processes [15, 16, 17, 18], statistical mechanics
[19, 20, 21], statistical thermodynamics [22], as well as the kinetic theory of dense gases [23, 24, 25].
We discuss in particular thermodynamic properties, chemical production rates, transport fluxes,
as well as thermochemistry and transport coefficients.

Thermodynamics is built as usual from the pressure law by assuming a Gibbsian structure and
compatibility with perfect gases at low densities [26, 27, 28]. The nonideal chemical production
rates that we consider are deduced from statistical thermodynamics [22] and are compatible with
the symmetric forms of rates of progress derived from the kinetic theory of dilute reactive gases
[29, 30]. The transport fluxes are also deduced from various macroscopic or molecular theories
[16, 17, 18, 22, 23, 24, 25]. The transport coefficients are finally obtained by using classical
correlations as well as Stefan-Maxwell equations derived from the kinetic theory of dense gases
[25] or from experiments in fluids [31]. We also discuss thermochemistry coefficients, in particular
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for chemically unstable species for which critical states do not exist so that applying the principle
of equivalent states does not make sense a priori. The resulting theoretical flame model is shown
to satisfy the second principle of thermodynamics, that is, entropy production due to transport
fluxes and chemistry are both shown to be nonnegative.

The high pressure flame model is then used to investigate H2-O2-N2 planar flames. Planar
flames are important from a theoretical point of view but are also the basis of numerous turbulent
combustion models [32, 33]. We first establish that, at sufficiently low temperatures, fresh mix-
tures of H2-O2-N2 are thermodynamically unstable. These mixtures split between a hydrogen-rich
gaseous-like phase and a hydrogen-poor liquid-like phase in agreement with experimental results
[34, 35]. We next discuss the structure of transcritical flames for thermodynamically stable fresh
mixtures of H2-O2-N2 and perform a comprehensive sensitivity analysis with respect to the model.
Real gases thermodynamics is found to be of fundamental importance to correctly represent the
fluids under consideration. The influence of transport nonidealities is also critical in the cold
part of the flame in order to prevent unrealistic hydrogen diffusion from dense fresh gases into
the flame front. The dependence of thermal conductivity on density has an important impact on
flame structures. We further show that the chemical production rates nonidealities, which are
consistent with thermodynamics and insure the positivity of entropy production, may dramati-
cally modify flame structures at very high pressure, although their influence is still weak around
p = 100 atm.

We finally investigate the influence of various parameters, like the equivalence ratio ϕ or the
fresh gas temperature T fr, on the structure of planar transcritical H2-O2-N2 flames. We establish
in particular that, in the parameter plane (ϕ, T fr), the flamability domain is bounded on the left
by the lean extinction limit, on the right by the rich extinction limit, and at the bottom by the
thermodynamic stability limit of the incoming fresh mixture.

The detailed flame model is presented in Sections 2 and 3. Computational considerations
are addressed in Section 4 and the thermodynamic stability of fresh mixtures is investigated
in Section 5. Planar transcritical H2-O2-N2 flame structures are analyzed in Section 6 and the
dependence on fresh mixtures parameters is addressed in Section 7.

2 Theoretical formulation

In this section we investigate a detailed high pressure flame model and establish that the corre-
sponding entropy production is nonnegative. When pressure is increasing in a fluid, molecules
stay longer in mutual interaction during collisions and the fluid macroscopic behavior may change
continuously from that of a dilute gas to that of a liquid. Our dense fluid model is derived from
macroscopic theories like thermodynamics of irreversible processes [15, 16, 17, 18] and statistical
thermodynamics [22], as well as molecular theories like statistical mechanics [19, 20, 21] and the
kinetic theory of dense gases [24, 25]. The relations expressing the various system coefficients are
detailed in Section 3.

2.1 Conservation equations

The one-dimentional steady conservation equations for species mass and energy in a dense fluid—
under the small Mach number limit—are in the form

my
′
i + F ′

i = miωi, i ∈ S, (1)

mh′ + q′ = 0, (2)

where m = ρu denotes the mass flow rate, ρ the mass density, u the fluid normal velocity, the
superscript ′ the derivation with respect to the spatial coordinate x, yi the mass fraction of the
ith species, Fi the diffusion flux of the ith species, mi the molar mass of the ith species, ωi the
molar production rate of the ith species, S = {1, . . . , ne} the species indexing set, ne the number
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of species, h the enthalpy per unit mass of the mixture, and q the heat flux. The momentum
equation uncouples from (1)(2) and may only be used to evaluate the perturbed pressure as for
dilute gases [30].

The boundary conditions at the origin are naturally written in the form [36, 37]

m
(
yi(0)− y

fr
i

)
+ Fi(0) = 0, i ∈ S, (3)

m
(
h(0) − hfr

)
+ q(0) = 0, (4)

where the superscript fr refers to the fresh mixture. The downstream boundary conditions are in
the form

y
′
i(+∞) = 0, i ∈ S, T ′(+∞) = 0, (5)

and the translational invariance of the model is removed by imposing a given temperature T fx at
a given arbitrary point xfx of [0,∞)

T (xfx)− T fx = 0, (6)

where T denotes the absolute temperature. These boundary and internal conditions (3)–(6) have
first been used by Sermange [36] for xfx 6= 0 whereas xfx = 0 was first chosen in reference [37].
The relations expressing the thermodynamic properties like h, the transport fluxes Fi, i ∈ S, and
q, and the chemical production rates ωi, i ∈ S, are investigated in the next sections.

2.2 Thermodynamics properties

Various equations of state have been introduced to represent the behavior of dense fluids [38,
39, 40, 41, 42, 6, 43]. The Benedict-Webb-Rubin equation of state [38] and its modified form by
Soave [39] are notably accurate but are mathematically uneasy to handle. On the other hand,
the Soave-Redlich-Kwong equation of state [40, 41] and the Peng-Robinson equation of state [42]
yield less accuracy but allow an easier inversion by using Cardan’s formula thanks to their cubic
form. Statistical mechanics [19] and the kinetic theory of dense gases [25] have similarly suggested
equations of state in polynomial form with respect to the density.

In this study, we have used the Soave-Redlich-Kwong equation of state [40, 41]

p =
∑

i∈S

yi

mi

RT

v − b
− a

v(v + b)
, (7)

where p denotes the pressure, R the perfect gas constant, v = 1/ρ the volume per unit mass,
and a and b the massic attractive and repulsive parameters, respectively. These parameters
a(y1, . . . ,yne , T ) and b(y1, . . . ,yne) are evaluated with the usual Van der Waals mixing rules
written here with a massic formulation

a =
∑

i,j∈S

yiyj
√
aiaj , b =

∑

i∈S

yibi. (8)

The pure-component parameters ai(T ) and bi are deduced from the corresponding macroscopic
fluid behavior or from interaction potentials as discussed in Section 3. The validity of this equation
of state (7) and of the corresponding mixing rules (8) have been carefully studied by comparison
with NIST data by Congiunti et al. [44] and with results of Monte Carlo simulations by Colonna
and Silva [45] and Cañas-Maŕın et al. [46, 47]. Moreover, this equation of state has already been
used in high pressure combustion models by Meng and Yang [48] and Ribert et al. [7].

Once a pressure law is given, there exists a unique corresponding Gibbsian thermodynamics
compatible at low densities with that of perfect gases [28, 49]. There are limitations on the
pressure law p = p(v,y1, . . . yne , T ) for such a construction, that is, p must be zero homogeneous
with respect to the variable (v,y1, . . .yne) and the entropy Hessian matrices of the corresponding
Gibbsian thermodynamics must be negative semi-definite [49].
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For the Soave-Redlich-Kwong equation of state it is further possible to evaluate analyt-
ically the corresponding thermodynamic properties. The real-gas free energy per unit mass
f = f(v,y1, . . .yne , T ) can be written for instance

f =
∑

i∈S

yif
PG⋆
i +

∑

i∈S

yi

mi
RT ln

(
yiRT

mi(v − b)pst

)
− a

b
ln
(
1 +

b

v

)
, (9)

where fPG⋆
i = fPG⋆

i (T ) is the perfect-gas free energy per unit mass of the ith species at the
standard pressure pst. The perfect gas properties are evaluated as usual from relations like

fPG⋆
i = esti +

∫ T

T st

cPG

vi (τ) dτ − T
(
ssti +

∫ T

T st

cPG

vi (τ) + ri
τ

dτ
)
, (10)

where esti and ssti are the formation energy and entropy at standard temperature T st and pressure
pst of the ith species, respectively, cPG

vi the perfect gas specific heat at constant volume of the
ith species, and ri = R/mi the specific gas constant of the ith species. Other thermodynamic
properties may be evaluated as well and more details are presented in Appendix A. In the
following, we will need in particular the real gas Gibbs function of the ith species gi and the
corresponding molar dimensionless chemical potentials µi, i ∈ S, defined by

µi =
migi
RT

, i ∈ S. (11)

According to Beattie [27], Van der Waals has been the first to derive thermodynamic properties
of real gases by using a high pressure equation of state and matching with perfect gases, but
he did not eliminate improper integrals in the expressions of entropy [27], and Gillepsie [26] has
been the first to properly compute the entropy and fugacity of a gas mixture at high pressure by
these techniques [27].

2.3 Chemical production rates

We consider an arbitrary complex reaction mechanism with nr reactions involving ne species
which may be written symbolically

∑

i∈S

νfijMi ⇄

∑

i∈S

νbijMi, j ∈ R, (12)

where νfij and νbij denote the forward and backward stoichiometric coefficients of the ith species
in the jth reaction, Mi the symbol of the ith species, and R = {1, . . . , nr} the reaction indexing
set. The molar production rate of the ith species ωi is then given by [22]

ωi =
∑

j∈R

(νbij − νfij)τj , (13)

where τj denotes the rate of progress of the jth reaction. The proper form for the rate of progress
of the jth reaction τj is deduced from statistical thermodynamics [22]

τj = κsj

(
exp

(∑

i∈S

νfijµi
)
− exp

(∑

i∈S

νbijµi
))
, (14)

where κsj is the symmetric reaction constant of the jth reaction. This form for rates of progress—
which does not seem to have previously been used—insures that entropy production due to
chemical reactions is nonnegative, coincides with the ideal gas rate in the perfect gas limit and
is compatible with traditional nonidealities used to estimate equilibrium constants.

In the perfect gas limit, we indeed recover the ideal gas rate of progress of the jth reaction
τPG

j given by

τPG

j = κfj

∏

i∈S

(γPG

i )ν
f
ij − κbj

∏

i∈S

(γPG

i )ν
b
ij , (15)
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where κfj and κbj denote the forward and backward reaction constants of the jth reaction, re-
spectively, γPG

i = yi/(v
PGmi) = xip/RT the perfect gas molar concentration of the ith species,

vPG = RT/mp the perfect gas massic volume, xi = yim/mi, i ∈ S, the species mole fractions, m
the molar mass of the mixture defined as in Appendix A, and where the superscript PG refers to
ideal solutions of perfect gases. The reaction constants κfj and κbj are related through the ideal

gas equilibrium constant κeq,PG

j of the jth reaction

κfj = κbjκ
eq,PG

j , κeq,PG

j = exp
(∑

i∈S

(
νfij − νbij

)
µu,PG

i

)
, (16)

where µu,PG

i denotes the perfect gas reduced chemical potential of the ith species at unit concen-
tration. This standard potential is given by

µu,PG

i =
mig

PG⋆
i (T )

RT
+ ln

(RT
pst

)
, (17)

where gPG⋆
i denotes the perfect gas specific Gibbs function of the ith species at the standard

pressure pst. The perfect gas dimensionless potential µPG

i = mig
PG

i /RT , where gPG

i is the perfect
gas Gibbs function of the ith species, is then given by µPG

i = µu,PG

i + ln γPG

i . Defining the
symmetric constant κsj of the jth reaction by

κsj = κfj exp
(
−
∑

i∈S

νfijµ
u,PG

i

)
= κbj exp

(
−
∑

i∈S

νbijµ
u,PG

i

)
, (18)

we then recover the ideal gas rate of progress (15) from the symmetric form (14) and from the
relations µPG

i = µu,PG

i + ln γPG

i , i ∈ S. Identification of both forms for rates of progress (18) also
yields a method for estimating the symmetric reaction constants κsj , j ∈ R.

The nonideal rates of progress derived from statistical thermodynamics (14) may equivalently
be obtained by defining the activity coefficient ai of the ith species

ai = exp
(
µi − µu,PG

i

)
, (19)

and by replacing γPG

i by ai in the classical form of the rates of progress (15), keeping in mind
that in the ideal gas limit we have γPG

i = exp
(
µi

PG − µu,PG

i

)
, i ∈ S.

Various intermediate forms for rates of progress are discussed in Section 4 and investigated
in Section 6. Note that changing only the equilibrium constant by taking into account nonide-
alities while keeping an ideal gas form (15) for either the direct or the reverse reaction rates is
inconsistent.

To the authors’ knowledge, the symmetric expression for the rates of progress in nonideal gas
mixtures has first been written by Keizer [22] in the framework of statistical thermodynamics.
For ideal gas mixtures, it corresponds to the usual law of mass action and may also be derived
from the kinetic theory of dilute reactive gases [29, 30]. It is interesting to note that neither
the ideal gas rates of progress (15) nor a fortiori the nonideal rates (14) may be derived in the
framework of Onsager irreversible thermodynamics which only yields linear relations for rates of
progress in terms of affinities [16, 17, 18] instead of exponential expressions.

2.4 Transport fluxes

The transport fluxes in a dense fluid mixture can be derived from thermodynamics of irreversible
processes [16, 17, 18], statistical mechanics, [20, 21], statistical thermodynamics [22], as well as
the kinetic theory of dense gases [24, 25]. In a one dimensional framework, and in the absence of
forces acting on the species, the corresponding mass and heat fluxes are in the form

Fi = −
∑

j∈S

Lij

(gj
T

)′
− Liq

(
− 1

T

)′
, i ∈ S, (20)

q = −
∑

j∈S

Lqj

(gj
T

)′
− Lqq

(
− 1

T

)′
, (21)

5



where Lij, i, j ∈ S ∪ {q}, are the phenomenological coefficients. The transport coefficient matrix
L defined by

L =




L11 · · · L1ne L1q
...

. . .
...

...
Lne1 · · · Lnene Lneq

Lq1 · · · Lqne Lqq


 , (22)

is then symmetric positive semi-definite and has nullspace N(L) = RU , where U ∈ R
ne+1 and

U =
(
1, · · · , 1, 0

)t
. Since µj = mjgj/RT , j ∈ S, we deduce from Gibbs’ relation that dµj =

mjvj
RT dp+

∑
l∈S ∂xl

µjdxl − mjhj

RT 2 dT, where xj denotes the mole fraction of the jth species, hj the
enthalpy per unit mass of the jth species, vj the partial volume per unit mass of the jth species,
and d the total differential operator. We may thus introduce the gradient of µj at constant
temperature (µj)

′
T and the generalized diffusion driving force dj = xj(µj)

′
T in such a way that

xjµ
′
j = dj −

xjmjhj
RT 2

T ′, j ∈ S, (23)

and dj may be written

dj =
xjmjvj
RT

p′ +
∑

l∈S

Γjlx
′
l, j ∈ S, (24)

where Γjl = xj∂xl
µj, j, l ∈ S. For isobaric planar flames, the generalized diffusion driving force

dj reduces to dj =
∑

l∈S Γjlx
′
l, and, for perfect gases, letting

∑
l∈S xl = 1 we recover the usual

formula dPG

j = x
′
j and ΓPG reduces to the identity matrix. Using the diffusion driving forces dj ,

j ∈ S, the transport fluxes are then rewritten in the form

Fi = −
∑

j∈S

L̂ijR

xjmj
dj −

L̂iq

T 2
T ′, i ∈ S, (25)

q −
∑

i∈S

hiFi = −
∑

j∈S

L̂qjR

xjmj
dj −

L̂qq

T 2
T ′, (26)

where the modified transport coefficients matrix L̂ is given by L̂ = AtLA with

L̂ =




L̂11 · · · L̂1ne L̂1q
...

. . .
...

...

L̂ne1 · · · L̂nene L̂neq

L̂q1 · · · L̂qne L̂qq


 , A =




−h1
Ine

...
−hne

0 · · · 0 1


 , (27)

and Ine denotes the identity matrix in R
ne

. Since L̂ = AtLA, the matrix L̂ is symmetric positive
semi-definite and has nullspace N(L̂) = RU . Thanks to the properties

∑
j∈S L̂ij = 0, i ∈ S,

and
∑

j∈S L̂qj = 0, the transport fluxes may also easily be rewritten in terms of the linearly

dependent generalized diffusion driving forces d̃j = dj − yj

∑
l∈S dl. When the forces per unit

mass acting on the species are species independent—as for gravity—the corresponding terms are
proportional to the mass fractions and are automatically eliminated from the linearly dependent
diffusion driving forces and thus from transport fluxes.

The expressions (25)(26) for transport fluxes allow the identification of the coefficients of L̂
with generalized diffusion coefficients Dij , i, j ∈ S, thermal diffusion coefficients θi, i ∈ S, and
partial thermal conductivity λ̂, by defining [25]

L̂ijR

ρyiyjm
= Dij , i, j ∈ S, L̂iq

T
= ρyiθi,

L̂qq

T 2
= λ̂. (28)
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These symmetric multicomponent diffusion coefficients Dij , i, j ∈ S, introduced by Kurochkin
[25], generalize the symmetric coefficients introduced for dilute gases by Waldmann [50, 51, 52].
These coefficients (28) satisfy the natural symmetry relations Dij = Dji, i, j ∈ S, the mass
conservation constraints

∑
j∈S Dijyj = 0, i ∈ S, ∑i∈S θiyi = 0, and the matrix D is positive

semi-definite with N(D) = Ry where y = (y1, . . . ,yne)t is the mass fraction vector. On the
contrary, Hirschfelder, Curtiss, and Bird have artificially destroyed the natural symmetries of
transport models as discussed by Van de Ree [51]. Using the generalized diffusion coefficients
Dij, i, j ∈ S, thermal diffusion coefficients θi, i ∈ S, and partial thermal conductivity λ̂, the
fluxes (25)(26) are rewritten in the familiar form

Fi = −
∑

j∈S

ρyiDijdj − ρyiθi(lnT )
′, i ∈ S, (29)

q =
∑

i∈S

hiFi −
ρRT

m

∑

j∈S

θjdj − λ̂T ′. (30)

An alternative form—similar to that of dilute gases—is also possible by introducing the general-
ized thermal diffusion ratios χi, i ∈ S, and the thermal conductivity λ defined by [16, 25, 52]

θi =
∑

j∈S

Dijχj,
∑

j∈S

χj = 0, λ = λ̂− ρR

m

∑

i,j∈S

Dijχiχj. (31)

The transport linear system defining the thermal diffusion ratios is easily shown to be well posed
[65] and the transport fluxes can be rewritten

Fi = −
∑

j∈S

ρyiDij

(
dj + χj(ln T )

′
)
, i ∈ S, (32)

q =
∑

i∈S

hiFi +
∑

j∈S

RT

mj
χ̃jFj − λT ′, (33)

where χ̃j is the rescaled thermal diffusion ratio of the jth species χ̃j = χj/xj . After some algebra,

one establishes that the matrix L̂ is symmetric positive semi-definite with nullspace N(L̂) = RU
if and only if the matrix D is symmetric positive semi-definite with nullspace N(D) = Ry and
λ > 0.

Since the thermal diffusion coefficients θ = (θ1, . . . , θne)t form a vector it is sufficient to
introduce a vector of thermal diffusion ratios χ = (χ1, . . . , χne)t in order to factorize the multi-
component diffusion matrix D with θ = Dχ. Similarly, introducing the reduced thermal diffusion
ratios χ̂j = RTχ̃j/mj , j ∈ S, we may factorize the matrix L̂ in the coefficients (L̂1q, . . . , L̂neq)

t

with L̂iq =
∑

j∈S L̂ijχ̂j , i ∈ S. It is thus unnecessary to define antisymmetric matrices in order to

factorize the matrices D, L̂, or L in the vectors (θ1, . . . , θne)t, (L̂1q, . . . , L̂neq)
t, or (L1q, . . . , Lneq)

t,
respectively. Such matrices α are indeed simply expressed as tensor products between the ther-
mal diffusion ratios vector and the matrix nullspace vectors and are even not unique as soon as
ne ≥ 4. Defining for instance α̂ij = χ̂i − χ̂j , i, j ∈ S, we have L̂iq =

∑
j∈S Lijα̂ij, i ∈ S, and

α̂ = χ̂⊗u− u⊗χ̂, where u = (1, . . . , 1)t. Similarly, we have Liq =
∑

j∈S Lij(χ̂j +hj), and defining
αij = α̂ij + hi − hj , i, j ∈ S, we also have Liq =

∑
j∈S Lijαij , i ∈ S.

To the authors’ knowledge, the expressions (20)(21) associated with nonideal gas mixtures—
taking into account the symmetry of the transport matrix—have first been written in the frame-
work of thermodynamics of irreversible processes by Meixner [15, 16] and later by Prigogine
[17, 18]. Similar expressions had been written previously by Eckart [53] but only for ideal gas
mixtures and without symmetry properties of the transport coefficients. The expressions (20)(21)
have then been rederived in various frameworks, in particular by Bearman and Kirkwood [20]
(only partially) and Mori [21] with statistical mechanics, by Keizer [22] in the framework of sta-
tistical thermodynamics, and by Van Beijeren and Ernst [24] and Kurochkin et al. [25] in the
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framework of the kinetic theory of dense gases, thanks to a modified form of Enskog equation [23].
The importance of Keizer’s results in statistical thermodynamics for high pressure combustion
modeling has been emphasized in particular by Bellan, Harstad and coworkers [54, 11].

From a terminology point of view, the transport fluxes Fi, i ∈ S, q, and q − ∑
i∈S hiFi,

are usually termed the species diffusion fluxes, the heat flux, and the reduced heat flux, re-
spectively. In their remarkable paper on statistical mechanics, Irving and Kirkwood [19] have
expressed the heat flux in terms of averages over molecular distribution functions and the cor-
responding expression has been termed the ‘Irving Kirkwood’ expression by Sarman and Evans
[55]. This expression, however, is not a phenomenological relation expressing the heat flux in
terms of macroscopic variable gradients and moreover does not concern mixtures [19]. It is thus
inappropriate to term the heat flux or expression (21) the ‘Irving Kirkwood’ form of the heat
flux. For a similar reason, it is inappropriate to term either the reduced heat flux or expression
(26) the ‘Bearman Kirkwood’ form of the heat flux. Only the expressions of these fluxes in the
framework of statistical mechanics and in terms of averages over molecular distributions should
be termed the ‘Irving-Kirkwood’ and ‘Bearman-Kirkwood’ forms of the heat flux as originally
meant by Sarman and Evans [55].

2.5 Entropy production

In order to assess the mathematical quality of the theoretical model presented in the previous
sections, we have to establish that entropy production is nonnegative. The concavity properties
of entropy—resulting from the construction of thermodynamics from the pressure law—will be
discussed in Section 5.1. We only consider here the case of planar flame equations since it
contains the main ingredients and since multidimensional problems are out of the scope of the
present paper.

Introducing the entropy per unit mass of the mixture s, it is easily deduced from Gibbs
relation that

Tds = −vdp−
∑

k∈S

gkdyk + dh,

where d denotes the total differential operator. Thanks to the isobaric flame equations we obtain
Tm s′ =

∑
i∈S giF ′

i −
∑

i∈S gimiωi − q′ so that the entropy governing equations reads

ms′ +
(
−
∑

i∈S

gi
T
Fi +

q

T

)′
= −

∑

i∈S

(gi
T

)′
Fi +

( 1

T

)′
q −

∑

i∈S

gimiωi

T
.

Entropy production associated with macroscopic gradients vL may thus be written

vL = −
∑

i∈S

(gi
T

)′
Fi +

( 1

T

)′
q = 〈Lw′, w′〉, (34)

where w is the variable w = (− g1
T , . . . ,−

gne

T , 1
T )

t, w′ its derivative, and the bracket 〈 , 〉 denotes
the Euclidean scalar product. Since the matrix L is positive semi-definite, we conclude that
entropy production associated with macroscopic gradients vL is nonnegative. Incidentally w is
essentially the entropic variable [30] associated with the system of differential equations (1)(2).

In addition, vL is zero only when all gradients vanish, assuming that the mass fractions sum
up to unity 〈y, u〉 = 1 and that we are in the thermodynamic stability domain where the Hessian
matrix ∂2ξξs with respect to the thermodynamic variable ξ = (v,y1, . . . ,yne , e)t is negative semi-

definite with nullspace N(∂2ξξs) = Rξ. Denoting ζ = ( p
T ,−

g1
T , . . . ,−

gne

T , 1
T )

t we first note that

ζ ′ = (∂2ξξs)ξ
′ from Gibbs relation. Assuming that vL is zero, we then deduce from N(L) = RU

that w′ = αU with α ∈ R, so that T ′ = 0 since the last component of U is zero, and next that
〈ζ ′, ξ′〉 = 0 using T ′ = 0, p′ = 0 thanks to the isobaric framework, and 〈y′, u〉 = 0. Then from
〈ξ′, ζ ′〉 = 0 and ζ ′ = (∂2ξξs)ξ

′ we obtain that 〈ξ′, (∂2ξξs)ξ′〉 = 0 so that ξ′ ∈ Rξ and ξ′ = 0 since
〈y′, u〉 = 0 and all gradients vanish.
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On the other hand, entropy production associated with chemistry vω can be written

vω = −
∑

i∈S

gimiωi

T
= −R

∑

i∈S

µiωi = −R〈µ, ω〉, (35)

where µ = (µ1, . . . , µne)t and ω = (ω1, . . . , ωne)t. Using then the vector relations ω =
∑

j∈R(ν
b
j −

νfj )τj where νbj = (νb1j , . . . , ν
b
nej)

t and νfj = (νf1j , . . . , ν
f
nej)

t, for j ∈ R, we obtain that vω =

−R∑
j∈R〈µ, νbj − νfj 〉τj. However, we also have τj = κsj

(
exp〈νfj , µ〉 − exp〈νbj , µ〉

)
, j ∈ R, so that

vω = R
∑

j∈R

κsj
(
〈νfj , µ〉 − 〈νbj , µ〉

)(
exp〈νfj , µ〉 − exp〈νbj , µ〉

)
. (36)

Therefore, entropy production due to chemical reactions vω is a sum of terms in the form α(x−
y)(ex−ey) where α is positive so that vω is nonnegative and only vanishes at chemical equilibrium,

i.e., when 〈νfj , µ〉 = 〈νbj , µ〉, j ∈ R [30, 49].

3 Thermochemistry and transport coefficients

We discuss in this section various coefficients associated with the theoretical model presented in
Section 2.

3.1 Thermodynamics coefficients

The pure species attractive and repulsive massic parameters ai and bi, i ∈ S, associated with
the equation of state (7) may first be obtained from the species critical points. More specifically,
assuming that the ith species is chemically stable, the attractive and repulsive parameters may
be evaluated in the form [28]

ai
(
Tc,i

)
= 0.42748

R2T 2
c,i

m2
i pc,i

, bi = 0.08664
RTc,i
mipc,i

, (37)

where Tc,i and pc,i denote the corresponding critical temperature and pressure, respectively. A
pure component fluid with the equation of state (7) and parameters (37) indeed displays a critical
point located at temperature Tc,i and pressure pc,i. All the attractive and repulsive parameters
of chemically stable species like H2, O2, N2 or H2O, may thus be determined from critical states
conditions.

This procedure, however, cannot be generalized in a straightforward way to chemically un-
stable species like radicals since critical states do not exist for such species. More specifically,
part of these molecules always recombine and prevent the existence of pure species states and the
corresponding critical points. Moreover, combustion mixtures frequently contain such radicals
or chemically unstable species. Arguing that these species are in small concentrations is neither
satisfactory nor always true since—for instance—in the combustion products of a stoichiometric
H2-O2 flame at 50 atm there are more than 18% of radicals like H, O, OH, or HO2.

However, the only physical quantities experienced by molecules during collisions are interac-
tion potentials. One may thus wonder why state laws are not solely written in terms of interaction
potentials parameters, eliminating any ambiguities with species critical states. Assuming that
the ith species is a Lennard-Jones gas, for instance, it is possible to estimate [46, 47] the critical
massic volume vc,i and the critical temperature Tc,i from

vc,i =
(
3.29 ± 0.07

)nσ3i
mi

, Tc,i =
(
1.316 ± 0.006

) ǫi
k
, (38)
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where n is the Avogadro number, σi and ǫi the molecular diameter and Lennard-Jones potential
well depth of the ith species, respectively. In term of attractive and repulsive parameters, this
leads to the following expressions

ai
(
Tc,i

)
=

(
5.55± 0.12

)n2ǫiσ
3
i

m2
i

, bi =
(
0.855 ± 0.018

)nσ3i
mi

. (39)

One could thus completely eliminate critical states data from an equation of state and use only
molecular potential parameters as exemplified by Saur [6]. This procedure certainly clarifies
the use of cubic equations of states for general mixtures involving radicals and in particular for
combustion applications. More fundamentally, the success of the principle of corresponding states
is closely associated with the existence of interaction potentials in the form ǫφ(r/σ) where σ is a
characteristic length and ǫ a characteristic energy as discussed by Beattie [27] and Hirschfelder,
Curtiss, and Bird [56].

Nevertheless, such a procedure—although theoretically satisfactory—is not accurate enough
since chemically stable species do not exactly behave as Lennard-Jones gases or Stockmayer
gases for polar molecules. Introducing the stable species critical states may thus be seen as a
way of correcting interaction potential parameters taking into account a more complex behavior
than that of Lennard-Jones. But we may still use the definitions associated with Lennard-Jones
potentials for chemically unstable species and define for convenience a corresponding pseudo-
critical state as given by (38). The relations (37) may thus finally be used for chemically stable
species and the relations (39) for chemically unstable species like radicals with usual values for
the Lennard-Jones parameters.

Once the attractive parameter ai(Tc,i) at temperature Tc,i is evaluated, its temperature de-
pendence ai(T ) is evaluated following Soave [41]

ai(T ) = ai(Tc,i)αi(T
∗
i ), (40)

where T ∗
i = T/Tc,i is the ith species reduced temperature and αi a nonnegative function of T ∗

i .
From physical considerations the coefficient αi should be a decreasing function of the reduced
temperatures T ∗

i as pointed out by Ozokwelu and Erbar [57] and Grabovski and Daubert [58].
Since the coefficient αi introduced by Soave does not satisfy such a property, it is first possible
to truncate its temperature dependence in the form

√
αi =




1 + si(1−

√
T ∗
i ), if T ∗

i ≤
(
1 + 1

si

)2
,

0, if T ∗
i ≥

(
1 + 1

si

)2
,

(41)

where the quantity si depends on the ith species acentric factor ̟i [48]

si = 0.48508 + 1.5517̟i − 0.151613̟2
i . (42)

These truncated coefficients
√
αi, i ∈ S, and the original coefficients introduced by Soave√

αi =
∣∣1 + si(1 −

√
T ∗
i )
∣∣, i ∈ S, yield results that are in very close agreement since the cross-

ing temperatures Tc,i(1 + 1/si)
2, i ∈ S, are generally above 1000 K. At these temperatures, the

specific volume is indeed already large and nonidealities then play a minor rôle.
A disadvantage of Soave corrective factors or their truncated version (41) is that they are not

smooth with respect to temperature. In particular, for mixture of gases, they introduce small
jumps in the temperature derivative of the attractive factor

√
ai and thereby of the attractive

parameter a =
∑

i,j∈S yiyj
√
aiaj at the crossing temperatures Tc,i(1+1/si)

2, i ∈ S. Even though
such small jumps only arise in regions where the temperature is high and where nonidealities are
negligible, it is sometimes preferable—at least from a numerical point of view—to have smooth
attractive factors. Numerical spurious behavior has indeed been observed due to these small
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discontinuities of the attractive factor temperature derivative. To this aim, we have preferred to
use the new simple correlation

√
αi =




1 + si(1−

√
T ∗
i ), if T ∗

i ≤ 1,

1 + tanh
(
si(1−

√
T ∗
i )
)
, if T ∗

i ≥ 1.
(43)

The left and right first and second derivatives of
√
αi in (43) are identical for T ∗

i = 1 so that
the coefficient

√
αi resulting from (43) is smoother than that of Soave

√
αi =

∣∣1 + si(1 −
√
T ∗
i )
∣∣

or truncated Soave (41). All these coefficients yield thermodynamic properties that are in very
close agreement. Note that other exponential correlations have already been proposed in the
literature but involving the square root of the acentric factor [57] which is negative for species
like hydrogen.
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Figure 1: Specific heat at constant pressure cp of the O2 species at p = 100 atm

The thermodynamic properties of perfect gases have finally been evaluated from the NIST/JANAF
Thermochemical Tables as well as from the NASA coefficients [59, 60]. As a typical illustration,
we present in Figure 1 the constant pressure specific heat cp of the species O2 evaluated from
the Soave-Redlich-Kwong equation of state as well as NIST Standard Reference Data for com-
parison. This figure shows that the SRK equation of state and the associated thermochemistry
parameters yield very good predictions unlike the perfect gas model which is not accurate at low
temperatures.

3.2 Chemical kinetic coefficients

The symmetric reaction constant κsj of the jth reaction may be determined from the forward

reaction constant κfj thanks to (18) as discussed in Section 2.3. From a practical point of view,
however, it is somewhat more convenient to use the classical formalism (15) and to replace the
perfect gas molar concentrations γPG

i , i ∈ S, by the activities ai = exp(µi − µu,PG

i ), i ∈ S,
respectively.

We have used a reaction mechanism mainly due to Warnatz [61] with forward rates in Ar-

rhénius form κfj (T ) = AjT
bj exp

(
−Ej/RT

)
, j ∈ R, and with kinetic parameters Aj bj and Ej ,

11



j ∈ R, as in Table 1.

Table 1: Warnatz kinetics scheme for hydrogen combustion [61]

i Reaction Ai bi Ei

1 H + O2 ⇆ OH+O 2.00E+14 0.00 16802.
2 O + H2 ⇆ OH+H 5.06E+04 2.67 6286.
3 OH+ H2 ⇆ H2O+H 1.00E+08 1.60 3298.
4 2OH ⇆ O+H2O 1.50E+09 1.14 100.
5 H + H +M ⇆ H2 +Ma 6.30E+17 -1.00 0.
6 H + OH+M ⇆ H2O+Ma 7.70E+21 -2.00 0.
7 O + O+M ⇆ O2 +Ma 1.00E+17 -1.00 0.
8 H + O2 +M ⇆ HO2 +Ma 8.05E+17 -0.80 0.
9 H + HO2 ⇆ 2OH 1.50E+14 0.00 1004.
10 H + HO2 ⇆ H2 + O2 2.50E+13 0.00 693.
11 H + HO2 ⇆ H2O+O 3.00E+13 0.00 1721.
12 O + HO2 ⇆ O2 +OH 1.80E+13 0.00 -406.
13 OH+ HO2 ⇆ H2O+O2 6.00E+13 0.00 0.
14 HO2 +HO2 ⇆ H2O2 +O2 2.50E+11 0.00 -1242.
15 OH+OH+M ⇆ H2O2 +Ma 1.14E+22 -2.00 0.
16 H2O2 +H ⇆ HO2 +H2 1.70E+12 0.00 3752.
17 H2O2 +H ⇆ H2O+OH 1.00E+13 0.00 3585.
18 H2O2 +O ⇆ HO2 +OH 2.80E+13 0.00 6405.
19 H2O2 +OH ⇆ H2O+HO2 5.40E+12 0.00 1004.
a third body efficiency H2 = 2.86, N2 = 1.43, H2O = 18.6
Units are moles, centimeters, seconds, calories, and Kelvins

3.3 Transport coefficients

The species diffusion fluxes—or equivalently the species diffusion velocities—are evaluated by
using Stefan-Maxwell equations derived from the kinetic theory of dense gases by Kurochkin,
Makarenko, and Tirskii [25] as well as from various experiments with liquid mixtures as com-
prehensively discussed by Taylor and Krishna [31]. Another variant is to use Grad’s moments
method as done by Harstad and Bellan [54]. Grad’s moments method, however, has been shown
to be equivalent to the Chapman-Enskog method by Zhdanov in the framework of weakly ion-
ized plasmas [62]. In particular, Harstad and Bellan have also obtained Stefan-Maxwell type
equations for high pressure diffusion coefficients [54]. On the other hand, even though the ther-
modynamics of irreversible processes yields the structure of transport fluxes, it cannot provide
the corresponding transport coefficients.

The Stefan-Maxwell equations associated with first order diffusion coefficients are the ne linear
systems of size ne in the form [65, 25]

{
∆ak = bk,

〈ak, y〉 = 0,
k ∈ S, (44)

where ∆ ∈ R
ne,ne

is the Stefan-Maxwell matrix, bk, y ∈ R
ne
, k ∈ S, are given vectors, ak ∈ R

ne
,

k ∈ S, are the unknown vector, and 〈, 〉 denotes the Euclidean scalar product. The Stefan-Maxwell
matrix ∆ is given by [25, 64, 65, 30, 54]

∆kk =
∑

l∈S
l 6=k

xkxl

Dkl
, k ∈ S, ∆kl = − xkxl

Dkl
, k, l ∈ S, k 6= l,

where x1, . . . ,xne are the species mole fractions, Dkl, k, l ∈ S, the species binary diffusion co-
efficients, and y = (y1, . . . ,yne)t is the mass fractions vector. The right hand sides bk, k ∈ S,

12



are given by bk = ek − y, k ∈ S, where ek, k ∈ S, are the standard basis vectors of Rne
or

equivalently by bki = δki − yi, i, k ∈ S, and we have assumed that the mass fractions sum up to
unity 〈y, u〉 = 1. The transport linear systems (44) are easily shown to be well posed [65, 30] and
the first order diffusion coefficients are evaluated from

Dkl = 〈ak,bl〉 = akl = alk, k, l ∈ S. (45)

The matrix D is positive semi-definite with nullspace Ry [64, 65, 30] and the numerical inversion
of the Stefan-Maxwell equations is discussed in Section 4.1.

The diffusion velocities, defined by Fi = ρyiUi, are then given by

Ui = −
∑

j∈S

Dij(dj + χjT
′/T ), i ∈ S, (46)

where χ1, . . . , χne are the thermal diffusion ratios. By multiplying the kth linear system (44)
by dk + χkT

′/T and by summing over k we also obtain the Stefan-Maxwell equations in vector
form. More specifically, introducing the linearly constrained diffusion driving forces d̃i = di −
yi

∑
j∈S dj , i ∈ S, the corresponding vector d̃ = (d̃1, . . . , d̃ne)t, the diffusion velocities vector

U = (U1, . . . , Une)t, and the thermal diffusion ratios vector χ = (χ1, . . . , χne)t, the Stefan-Maxwell
equations in vector form read [64, 31, 30, 78, 77]

{
∆U = −(d̃+ χT ′/T ),

〈U, y〉 = 0.
(47)

These equations are equivalent to the Stefan-Maxwell equations for the diffusion coefficients (44)
upon giving all possible values to the driving forces d1, . . . , dne .

In order to evaluate the binary diffusion coefficients at high pressure Dij, i, j ∈ S, we have
used the kinetic theory of dense gas mixtures [25]. The corresponding binary diffusion coefficients
are in the form

Dij =
nstDst

ij

n

1

Υij
, (48)

where n denotes the molar concentration of the mixture, nst the perfect gas concentration at
the standard pressure pst, Dst

ij the binary diffusion coefficient at the standard pressure pst given
by the kinetic theory of dilute gases [50, 52, 65, 30], and Υij a statistical factor associated with
the reduction of the free volume during collisions between molecules of the ith and jth species.
Within the framework of the kinetic theory of dense gas mixtures the factor Υij can be written
[25]

Υij = 1 +
∑

k∈S

πnk
12

(
8(σ3ik + σ3jk)− 6(σ2ik + σ2jk)σij − 3(σ2ik − σ2jk)

2σ−1
ij + σ3ij

)
, (49)

where ni denotes the density number of the ith species and σij the collision diameter between
the ith and jth species. For binary mixtures, that is, for S = {i, j}, this factor Υij reduces to
the one given by the Enskog-Thorne theory.

The matrix Γ is given by Γjl = xj∂xl
µj , j, l ∈ S, and we have the vector relation d = Γx′

where x
′ = (x′

1, . . . ,x
′
ne)t denotes the vector of mole fractions derivatives. As a consequence, we

can write the diffusion velocities vector U in the form

U = −D(Γx′ + χT ′/T ), (50)

so that thermodynamic nonidealities are factorized through the matrix Γ even though high pres-
sure effects are also taken into account in the multicomponent diffusion matrix D. This point is
of fundamental importance since numerous experiments have established that the multicompo-
nent diffusion coefficient matrix D is much smoother and more convenient to evaluate than the
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combined matrix DΓ as discussed by Hirschfelder, Curtiss, and Bird [56] and Taylor and Krishna
[31].

Thermal diffusion effects are generally important in H2-Air and H2-O2 flames [67, 68, 69]. On
the one hand, the usual liquid part of the Soret coefficient for the jth species associated with the
formulation (20)(21) simply corresponds to the derivative of mjgj/T with respect to temperature
at constant pressure and mass—or mole—fractions ∂T (mjgj/T ) = −mjhj/T

2 although it is often
written in a confusing form [66]. On the other hand, using the formulation (25)(26) and in order
to evaluate the thermal diffusion ratios χi, i ∈ S, we have generally used the limiting dilute gas
value for χi, i ∈ S. The main idea is that thermal diffusion will mainly influence the part of the
flame which is sufficiently warm. Note that high pressure effects are still taken into account in the
corresponding thermal diffusion coefficients θ = Dχ through the matrix D which involves high
pressure diffusion coefficients. A high pressure correction—of thermodynamic origin—for the
thermal diffusion ratios has also been suggested by Kurochkin, Makarenko, and Tirskii [25]. This
correction, however, seems to be incompatible with the thermodynamics of irreversible processes,
since the derivative of the reduced potential mjgj/T strictly yields the enthalpy term −mjhj/T

2.
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Figure 2: Thermal conductivity λ of the O2 species at p = 100 atm

The thermal conductivity has been evaluated from the correlation proposed by Chung et al.
[70] and the correlation proposed by Ely and Hanley [71] yields similar results. Chung et al.
have written the thermal conductivity as the sum of a dilute-gas conductivity λdil corrected by a
density dependent factor β and a specific high-density thermal conductivity λhp

λ = λdilβ + λhp. (51)

Detailed expressions for β and λhp can be found in [70] and are presented in Appendix B. The
thermal conductivity of dilute mixtures λdil has been evaluated by solving the corresponding
transport linear system obtained from the kinetic theory of dilute gases [65, 72, 67]. As a typical
illustration, we present in Figure 2 the thermal conductivity λ of the species O2 obtained from
(51) as a function of temperature T together with experimental data from NIST/Laesecke et al.
[73] and Vargaftik et al. [74], as well as the thermal conductivity λdil of dilute gases which is not
accurate for low temperatures.
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4 Computational considerations

We discuss here numerical details which are important for a successful implementation of the
high pressure flame model presented in the previous sections and we discuss various test cases
for the chemical source terms investigated in Section 6.1.

4.1 Diffusion matrices

Evaluating diffusion coefficients by solving the ne Stefan-Maxwell transport linear systems (44) is
generally required when an implicit time marching technique is used to solve the flame equations.
On the contrary, when an explicit time technique is used, it is sufficient to solely evaluate the
diffusion velocities by solving the Stefan-Maxwell equations in vector form (47).

The Stefan-Maxwell matrix ∆ is symmetric positive semi-definite with nullspace N(∆) = Ru

where u = (1, . . . , 1)t ∈ R
ne

and 2diag(∆) − ∆ is positive definite when ne ≥ 3 [64, 30, 75].
Defining Q = Ine − y⊗u = [b1, . . . ,bn

e

], the transport linear systems (44) can be rewritten in the
matrix form

∆D = Q,

and we also have Dy = 0 where it has been assumed that 〈y, u〉 = 1. One can establish that D is
the generalized inverse of ∆ with prescribed nullspace Ry and range y⊥ and that for any α > 0
we have D = (∆ + αy⊗y)−1 − (1/α)u⊗u [64, 65, 75, 30].

As a direct application of the theory of iterative algorithms for singular systems [64, 65, 75, 30]
we deduce that, using the splitting ∆ =M −W where

M = diag
( ∆11

1− y1

, . . . ,
∆nene

1− yne

)
, (52)

and letting T =M−1W and P = Qt = Ine − u⊗y, we have the convergent asymptotic expansion
[64, 65, 75, 30]

D =
∑

0≤j<∞

(PT )jPM−1P t. (53)

Considering the first term PM−1P t, the matrix M−1 corresponds to a generalization to high
pressure of the Hirschfelder-Curtiss approximation and the projector P to the addition of a
species independent mass conservation corrector [64, 78]. The next approximation of D with
two terms is more interesting since it is much more accurate and still yields (ne)2 coefficients
within O

(
(ne)2

)
operations [67, 64, 75]. Harstad and Bellan have checked in particular that this

two term approximation is accurate for high pressures [54]. Even the highly accurate three term
approximation is interesting from a computational point of view since—thanks to symmetry—it is
still approximately half the cost of a direct method using Cholesky algorithm with ne backsolves.
These iterative algorithms have generally been found to be very effective for fast and accurate
evaluation of multicomponent diffusion matrices [64, 75, 76, 77].

4.2 Nonidealities in diffusion fluxes

From the expression of diffusion velocities U = −D(Γx′ + χT ′/T ) one may first think that it is
necessary to evaluate the matrix Γ associated with nonidealities and next to perform the matrix
product DΓ in order to evaluate the species diffusion velocities U . Such a procedure, however,
would be costly and turns out to be unnecessary.

Indeed, the diffusion driving force di of the ith species is given by di = xi(µi)
′
T where ′

T denotes
the derivative operator at fixed temperature in the variables (p,x1, . . . ,xne , T ) or equivalently
(p,y1, . . . ,yne , T ). We may thus directly evaluate the derivatives (µi)

′
T , i ∈ S, and then the

diffusion velocities, thereby avoiding both the evaluation of the matrix Γ and the matrix product
DΓ. The derivatives at constant temperature are easily evaluated whatever the discretization
method, finite differences, finite elements, or finite volumes. For finite differences, for instance,
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and in a one dimensional isobaric context associated with planar flames, the derivative (µi)
′
T,k+ 1

2

at the grid midpoint xk+ 1

2

= 1
2
(xk + xk+1) is simply evaluated in the form

(µi)
′
T,k+ 1

2

=
µi(p,y1,k+1, . . . ,yne,k+1, Tk+ 1

2

)− µi(p,y1,k, . . . ,yne,k, Tk+ 1

2

)

xk+1 − xk
,

where Tk+ 1

2

denotes the temperature at the grid midpoint xk+ 1

2

, p the constant pressure, and

yi,k the mass fraction of the ith species at the kth grid point.
One more precaution is actually necessary since the potential µi is singular when the molar

fraction of the ith species goes to zero. However, this potential µi may be decomposed in the
form

µi = lnxi + µsmi , (54)

where the smooth part µsmi = µui − ln(mv) is given by

µi
sm =

mig
PG⋆
i

RT
+ ln

( RT

(v − b)pstm

)
+

∑

j∈S

yj

mj

mibi
v − b

− miabi
RTb(v + b)

+
abi − b∂yi

a

b2
mi

RT
ln
(
1 +

b

v

)
, (55)

where gPG⋆
i denotes the perfect gas Gibbs function of the ith species at pressure pst, so that di may

be evaluated as di = x
′
i + xi(µ

sm
i )′T . A similar procedure may also be used with the formulation

(20)(21) involving the full derivatives µ′i, i ∈ S, of the potentials µi, i ∈ S. We have preferred
to use (25)(26) in order to accurately evaluate the species enthalpies hj, j ∈ S, appearing in the
transport fluxes.

4.3 Continuation methods

The flame governing equations are discretized by using finite differences and solved by using
Newton’s method and self adaptive grids [79]. Pseudo unsteady iterations are used to bring the
initial guess into the domain of convergence of steady Newton’s iterations [79]. We typically use
one thousand grid points with the flame front located at xfx = 1 with T fx = 500 K.

Once a first flame structure is obtained, continuation techniques are used to generate solution
branches depending on a parameter like the equivalence ratio ϕ or the fresh gas temperature
T fr. These techniques involve reparameterization of solution branches and global static rezone
adaptive griding [80]. The quantity used to reparameterize solution branches corresponds to the
solution component whose tangent derivative is the largest in absolute value [80]. This method
is optimal and automatically selects the best component to be used for reparameterization [80],
such as the temperature in a moving flame front. In comparison, techniques using an a priori
selected fixed solution component are suboptimal implementations of continuation algorithms.

Highly optimized thermochemistry and transport routines have been extended to the high
pressure domain and have been used in order to evaluate chemical production rates, thermody-
namic properties and transport coefficients [81, 82, 76].

Similar continuation techniques have also been used to investigate the location of nontrivial
zero eigenvalues of entropy Hessian matrices in order to determine the thermodynamic stability
domains of fresh mixtures as discussed in Section 5.

4.4 Chemistry test cases

In order to evaluate the influence of reaction rates nonidealities on laminar flame structures, four
different chemistry models have been investigated.

The first model—referred to as PG—uses the perfect gas formulation (15) with the species
molar concentration evaluated as for perfect gases

γPG

j =
xjp

RT
, j ∈ S. (56)
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In this model, the forward reaction constant is in standard Arrhenius form and the equilibrium
constant is given by (16).

The second model—referred to as PG-HP—uses the the perfect gas formulation (15) but with
concentrations evaluated from the high pressure massic volume v

γj =
yj

mjv
. (57)

The equilibrium displacement is then a consequence of the Le Chatellier’s principle.
The third model—referred to as Hybrid—is an inconsistent attempt to take into account real-

gas effects in chemical source terms. The real-gas predicted molar concentrations (57) are used
and the equilibrium constant takes into account nonidealities in the form

κeqj = exp
(∑

l∈S

(νflj − νblj)µ
u
l

)
, j ∈ R. (58)

In other words, the concentrations γj, j ∈ S, are used in the forward rates wheras the activities
aj , j ∈ S, are used in the equilibrium constants, so that this often used model is inconsistent. In
addition, the forward and reverse reactions do not play a symmetric rôle.

The last model—referred to as Nonideal—is the rate of progress given by statistical thermo-
dynamics (14). This formulation is equivalent to using the classical reaction rates formulation
(15) with the molar concentration γj replaced by the activities

aj = exp
(
µj − µu,PG

j

)
. (59)

In contrast with the hybrid model, the activities now are used in both the forward rates and the
equilibrium constants—and therefore also in the reverse rates. Finally, this model is the only one
consistent with nonideal thermodynamics, i.e., the only model which insures positivity of entropy
production.

5 Thermodynamic stability of premixed states

We discuss in this section the thermodynamic stability of mixture states. Thermodynamic sta-
bility of fresh premixed reactants is naturally of fundamental importance for planar transcritical
flames.

5.1 Entropy concavity

From the second principle of thermodynamics, the evolution of an isolated system tends to max-
imize its entropy. The entropy of a stable isolated homogeneous system should thus be a concave
function of its volume, composition variables, and internal energy. Whenever it is not the case, the
system loses its homogeneity and splits between two or more phases in order to reach equilibrium.

Denoting by ξ = (v,y1, . . . ,yne , e)t the thermodynamic variable, the Hessian matrix ∂2ξξs

must therefore be negative semi-definite with nullspace N(∂2ξξs) = Rξ. The thermodynamic
variable ξ is always in the nullspace of the Hessian matrix thanks to homogeneity properties of
Gibbsian type thermochemistry [30]. The semi-definite negativity of the entropy hessian ∂2ξξs has
been checked by investigating its eigenvalues.

Let us denote by φ the difference between the pressure p and the perfect gas pressure pPG

obtained for the same ξ so that
p = pPG + φ. (60)

Let also denote by ∂̃ the derivative operator with respect to the natural variable ψ = (v,y1, . . . ,yne , T )t

and by fv, f1, . . . , fn
e

, fe the canonical basis of Rne+2. After lengthy calculations, the Hessian ma-
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trix ∂2ξξs with respect to the thermodynamic variable ξ can be written in the form

∂2ξξs =
∂̃vφ

T
fv⊗fv +

∑

i∈S

∂̃yi
φ

T
(fv⊗fi + fi⊗fv)−

∑

i∈S

Ryi

v2mi
(fv − v

yi
fi)⊗(fv − v

yi
fi)

−
∑

i,j∈S

fi⊗fj

T

∫ ∞

v

∂̃2
yiyj

φdv′ − t⊗t

T 2cv
, (61)

where t = −∂̃ve fv −
∑

i∈S ∂̃yi
e fi + fe and ⊗ is the tensor product symbol. Moreover, we have

〈t, ξ〉 = 0, (∂2ξξs)ξ = 0, and ξ can be written ξ = vfv +
∑

i∈S yif
i + efe.

After some linear algebra, thanks to cv > 0, one can establish that ∂2ξξs is negative semi-

definite with nullspace N(∂2ξξs) = Rξ if and only if the matrix Λ of size ne defined by

Λ =
∑

i∈S

R

miyi
ei⊗ei +

∑

i,j∈S

ei⊗ej

T

∫ ∞

v

∂̃2
yiyj

φdv′, (62)

is positive definite, where e1, . . . , en
e

denotes the canonical basis of Rne

. The required thermal
stability condition cv > 0 is further guaranteed by the SRK equation of state as detailed in
Appendix C.

The thermodynamic stability domain where the mixture is locally stable is thus the domain
where the matrix Λ is positive definite. Moreover, the mixture is also globally stable on every
convex set—with respect to the variable ξ—included in this stability domain. Several informations
may be gained on this stability domain by inspecting various limiting cases. A first important
situation is the low density limit v → ∞. In this limit, the matrix Λ is effectively positive definite
since it asymptotically reduces to the positive definite diagonal matrix

lim
v→∞

Λ = R diag
( 1

m1y1

, . . . ,
1

mneyne

)
.

A second interesting asymptotic limit is that of pure species states. Assuming for instance that
asymptotically y = (y1, . . . ,yne)t approaches the base vector ei, then the terms R/mjyj on the
diagonal of Λ become dominant for j 6= i. In addition, the base vector ei is asymptotically the
ith eigenvector and the identity

∑

i,j∈S

yiyjΛij = −v
2

T
∂vp, (63)

indicates that the ith eigenvalue is also positive as soon as ∂vp < 0. This stability condition
is guaranteed for all temperatures if the pressure p is above the critical pressure pc,i of the ith
species.

5.2 Stability limit

The eigenvalue decomposition of the matrix Λ is a rather expensive operation. Thermodynamic
stability of planar flames mixture states has thus been checked after the calculation of each
flame structure. When nonidealities are not taken into account in diffusive processes, numerical
experience shows that it is indeed possible to compute flames with thermodynamically unstable
fresh mixtures associated with positive eigenvalues of the entropy Hessian matrix ∂2ξξs. On
the contrary, when transport nonidealities are taken into account, whenever the fresh mixture
is thermodynamically unstable, numerical methods generally diverge, the system of equations
having lost its elliptic nature. In this situation, at the worst, a converged solution may eventually
be at the onset of the instability domain.

Independently, an exhaustive study of the thermodynamic stability of ternary mixtures H2-
O2-N2 has been performed at pressure 100 atm. Similar results have also been obtained at
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Figure 3: Thermodynamic stability limits isotherms for ternary H2-O2-N2 mixture at 100 atm

different pressures as long as they are above the critical pressures of H2, O2, and N2. In order
to investigate the corresponding stability domain, we have located the points where the first
eigenvalue of the matrix Λ is changing of sign by inspecting the zero values of its determinant.
To this aim, we have used continuation methods in order to generate the whole stability domain.

Note that the thermodynamic stability domain only depends on the equation of state. That
is, it depends on the state of the mixture T, v,y1, . . . ,yne , on the attractive and repulsive pa-
rameters a and b, and on R, m1, . . . ,mne . In particular, this thermodynamic stability domain is
independent of the perfect gas thermodynamic properties cPG

pi , e
PG

i , and sPG

i , i ∈ S, and may be
computed for all temperatures where a is defined. Of course, when the temperature is too low,
the equation of state is not anymore valid, and the species may be in solid state, but we still
performed the calculation to investigate the numerical behavior of the Hessian matrix.

The boundaries of the stability domain for various fixed temperatures and at p = 100 atm
are presented in Figure 3. The lines correspond to the locus of the first zero of the determinant
of Λ for various fixed temperatures. The stable zones are easily identified since they include
the corners associated with pure species states. The unstable zone starts above 140 K between
H2 and O2, increases as T decreases, and reach the H2-N2 boundary around 100 K. The binary
O2-N2 mixture is also predicted to be stable down to very low temperatures. The presence of H2

thus has a destabilizing effect and rises the stability limit up to 140 K in H2-O2 binary mixtures
and up to 100 K in H2-N2 binary mixtures.

Figures 4 and 5 give some views of the previous ternary diagram for specific mixtures such
as binary, stoichiometric, H2-Air, and H2-O2, mixtures.

The stability limits presented in Figure 3 should not be confused with fixed composition
mechanical stability limits. More specifically, if we only require that the matrix Λ is positive
definite along the vector y = (y1, . . . ,yne)t then, from (63), we will solely require that ∂vp < 0
which is precisely the fixed-composition mechanical equilibrium condition. The corresponding
fixed composition stability limit is then such that ∂vp = 0 and we investigated the extreme fixed
composition mechanical stability limits for which we both have ∂vp = 0 and ∂2vvp = 0. We found
that each fixed-composition mixture can be considered in a supercritical state above p = 51 atm
and in particular at p = 100 atm. In other words, the instabilities presented in Figure 5 are not
fixed-composition mechanical instabilities as confirmed by experimental results discussed in the
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next section.

5.3 Comparison with experiments

Verschoyle [34] and Eubanks [35] have investigated binary mixtures of H2 and N2 at high pressure
and low temperature. A first important experimental result is that binary mixtures of H2 and
N2 may not be thermodynamically stable at sufficiently high pressure and low temperature. In
these situations, a mixture of H2 and N2 splits between a hydrogen-rich gaseous-like phase and
a hydrogen-poor liquid-like phase [34, 35] in qualitative agreement with the theoretical results
obtained from the SRK equation of state and the eigenvalue analysis of the entropy Hessian
matrix ∂2ξξs discussed in Section 5.2.

In order to compare quantitatively experimental results with numerical simulations, we have
used the data of Eubanks [35]. Since the experiment is at fixed temperature and pressure, it is
more natural to consider the Gibbs function g = h − Ts rather than the entropy s. At fixed
pressure and temperature the Gibbs function is a convex function of y such that ∂2

yy
g is positive

semi-definite and N(∂2
yy
g) = Ry since (∂2

yy
g)/T = Λ−Λy⊗Λy/〈Λy, y〉 as investigated in Appendix

C.
For a given temperature T and pressure p corresponding to experimental measurements,

we first computed the two split phases y♯ and y♭ from the SRK equation of state. In order to
investigate thermodynamic stability, we present in Figure 6 the profile of a modified specific Gibbs
function g−gaf as function of the hydrogen mass fraction yH2

along the line y = αy♯+(1−α)y♭ at
temperature T = 83.15 K and pressure p = 95.2 atm. The values of α insure that the hydrogen
mass fraction remains positive. We have subtracted the quantity gaf = −6.56 109 − 4.67 1010 yH2

which is an affine function of yH2
in order to better emphasize the loss of stability. Figure 6 shows

the loss of convexity of Gibbs function and thus of thermodynamic stability along the line passing
through y♯ and y♭. In the zone where the Gibbs function is not anymore convex, the equilibrium
limit is given by the convex envelope, obtained here with a segment twice tangent to the curve,
and consists in a mixture of the two states y♯ and y♭ associated with the tangency points. We thus
observe in Figure 6 a very good agreement between the tangency points y♯ and y♭ represented by
squares � and the experimental measurements of Eubanks represented by diamonds ⋄. On the
other hand, the points represented by triangles △ correspond to the loss of stability and must
be of course within the domain where convexity is loss and within the tangency points. Note
that these points △ are not exactly inflexion points since the eigenvector associated with the loss
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of stability is not necessarily the direction of the line y♭ − y♯. Between the tangency points (⋄)
and the stability points (△) the mixture is only meta-stable. That is, small perturbations do not
change the meta-stable equilibrium but with a large perturbation the system jumps to its convex
envelope and split between the two mixtures associated with the tangency points.

The calculation of the two split phases y♯ and y♭ has been performed by integrating the system
of ordinary differential equations





dtp
♯ = 0,

dtn
♯
i = κi

(
exp(µ♭i)− exp(µ♯i)

)
, i ∈ {H2,N2},

dtT
♯ = 0,

dtp
♭ = 0,

dtn
♭
i = κi

(
exp(µ♯i)− exp(µ♭i)

)
, i ∈ {H2,N2},

dtT
♭ = 0,

where ♯ and ♭ are the indexes of the split phases. The initial conditions must insure that T ♯ =
T ♭ = T and p♯ = p♭ = p and it is easily established that n♯i + n♭i remains contants for all i ∈
{H2,N2}. This system corresponds to the chemical reaction mechanism M♯

i ⇄ M♭
i , i ∈ {H2,N2},

where each species Mi, i ∈ {H2,N2}, is exchanged between the two phases ♯ and ♭. Defining

G =
∑

i∈{H2,N2}

(
n♯iµ

♯
i + n♭iµ

♭
i

)
it is easily established that

dtG = −
∑

i∈{H2,N2}

(
exp(µ♭i)− exp(µ♯i)

)(
µ♭i − µ♯i

)
, (64)

so that at equilibrium we have µ♯i = µ♭i, i ∈ {H2,N2}, or equivalently, g♯i = g♭i , i ∈ {H2,N2}. The
constants κi, i ∈ S, are the symmetric change of phase constants of the species. Numerically,
these constants are taken to be large numbers since we are only interested in the equilibrium
limit obtained for t→ ∞.
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In Figure 7 are presented experimental stability diagrams for H2-N2 mixtures at T = 83.15 K
and T = 99.82 K in the plane (xH2

, p). The solid lines correspond to the two split phases obtained
by continuation techniques and the dash lines correspond to the stability limits obtained by
similar techniques. The symbols ⋄ correspond to the hydrogen mole fractions of the two split
phases at T = 83.15 K and the symbols ◦ to the hydrogen mole fractions of the two split phases at
T = 99.82 K as measured by Eubanks [35]. The gaseous-like one on the right is rich in hydrogen
wheras the liquid-like one on the left is poor in hydrogen and rich in nitrogen [34, 35]. We observe
an excellent agreement for T = 83.15 K and a rather good agreement for T = 99.82 K. These
equilibrium points are very sensitive to temperature and for T = 97.5 K instead of T = 99.82 K
the agreement is again very good. Moreover, the stability limits where the entropy Hessian Λ
has a first zero eigenvalue are well within the measured hydrogen mole fractions of both split
phases. Overall, considering the simplicity of the SRK equation of state and the fact that there
are no adjustable parameters, the agreement with experiment is very good. It is thus remarkable
that the high pressure fluid model compares favorably with experiments at high pressure and low
temperature as well as for large v or large T where we recover the perfect gas model.

6 Transcritical flame structure

We discuss in this section the structure of transcritical flames and perform a sensitivity analysis
with respect to the model. All computed flames are anchored by the condition T (xfx) = T fx

at xfx = 1 cm with T fx = 500 K. In the next section, we will analyze the influence of various
parameters associated with the fresh mixture. Note that, to the authors’ knowledge, there are
no available experimental data on transcritical—or even supercritical—plane flames.
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6.1 Flame structure

We first discuss the structure of a H2-Air flame with ϕ = 1 and T fr = 100 K where ϕ denotes
the equivalence ratio. The dense fluid model presented in Section 2 and Section 3 is used in
the calculation with real gas thermodynamics, nonideal transport, density dependent transport
coefficients, as well as nonideal chemical productions rates. Figure 8 shows the temperature
T , density ρ and mole fractions Xi, i ∈ S, profiles as function of the flame normal coordinate
x. The general structure of H2-Air low pressure flames has been investigated in particular by
Smooke et al. [84], J. Warnatz [85], and F. A. Williams [86]. Since the pressure is of p = 100
atm, the resulting flame front is much thinner than at atmospheric pressure [84, 85, 86]. The
flame front is roughly 40 µm wide and presents large density gradients due to the cold fresh gas
temperature T fr = 100 K and to the combustion heat release. The mass flow rate is found to be
m = 0.981 g cm−2 s−1 and the flame speed of uad = 1.866 cm s−1.
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Figure 8: Structure of a transcritical stoichiometric H2-Air flame with T fr = 100 K and p =
100 atm. Density (g cm−3), temperature (K) and species mole fractions as functions of spatial
coordinate (cm)

In H2-Air flames, the HO2 radical is generally formed early in the flame front by the reaction
H+O2+M −→ HO2+M until it is dominated by the reaction H+O2 −→ OH+O at sufficiently
high temperatures [85]. The HO2 radical is then consumed through its reactions with more active
radicals like H or OH. In high pressure flames, however, the reaction H+O2 +M −→ HO2 +M,
which decreases the number of moles, dominates H + O2 −→ OH+ O over a larger temperature
domain thanks to the Le Chatellier effect. More specifically, the crossing temperature is around
1400 K for atmospheric flames and around 2100 K at p = 100 atm. A remarkable feature of high
pressure H2-Air flames is thus the high concentrations of the HO2 radical as also discussed by
El Gamal et al. [5]. Large concentrations of the H2O2 radical are subsequently obtained mainly
through the reactions HO2 + HO2 −→ H2O2 + O2 and H2O + HO2 −→ H2O2 + OH and the
radical H2O2 peaks before the radical HO2.

6.2 Influence of the equation of state

We investigate in this section the influence of the equation of state on the structure of the H2-Air
flame presented in Section 6.1. Since the pressure p = 100 atm is above the critical pressure of
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the reactants H2, O2, and N2, and since the fresh gas temperature T fr = 100 K is lower than the
critical temperature of both nitrogen and oxygen, real gas effects are expected to be important
in these conditions. The flame structure of Section 6.1, computed with the SRK equation of
state, is compared to the similar flame computed with the perfect gas equation of state. The
corresponding temperature and density profiles are presented in Figure 9.
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Figure 9: Influence of the state law on the structure of a stoichiometric H2-Air flame with
T fr = 100 K and p = 100 atm; Density (g cm−3) and temperature (K) profiles; —— : SRK;
−−− : PG

Figure 9 shows the dramatic difference between the density of the fresh mixture predicted
by the perfect gas equation of state ρfr,PG = 0.255 g cm−3 and the one predicted by the SRK
equation of state ρfr = 0.525 g cm−3. The pure component densities at this temperature and
pressure are respectively 1.116 g cm−3 for O2, 0.734 g cm−3 for N2, and 0.0232 g cm−3 for H2.
An ideal mixing model—even using these values—would further yield a mixture density of 0.401
g cm−3 which also differs significantly from the density predicted by the SRK equation of state.

We further observe a modification of the equilibrium temperature when real gas effects are
taken into account. The equilibrium state at +∞ is indeed the unique chemical equilibrium point
such that heq = hfr, peq = p, ỹ

eq
H = ỹ

fr
H, ỹ

eq
O = ỹ

fr
O, and ỹ

eq
N = ỹ

fr
N. We have denoted here by ỹH,

ỹO, ỹN, the atom mass fractions of the elements H, O, and N, respectively, by eq the superscript
associated with the equilibrium state at +∞, and by fr the superscript associated with the fresh
mixture state at −∞. Therefore, the equilibrium point at +∞ depends on thermodynamic
properties and is thus modified by nonidealities.

6.3 Influence of transport nonidealities

The influence of transport nonidealities is now investigated by comparing the flame structure of
Section 6.1 computed with dj = xj(µj)

′
T with the flame structure computed with dj = x

′
j as

for ideal mixtures. In other words, the flame structure of Section 6.1 which takes into account
the full matrix Γ associated with nonidealities is compared with a flame where Γ is replaced by
the identity matrix ΓPG. The corresponding temperature T , density ρ and mole fractions Xi,
i ∈ S, profiles are presented in Figure 10 as function of the flame normal coordinate x. We can
see at once on Figure 10 that the full transport model prevents the migration of light H2 toward
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the flame front. The same behavior is also observed for the heavier molecules O2 and N2. This
hindering of mass diffusion in the dense part of the flame leads to steeper gradients for hydrogen
in the flame front and the mixture loses this impermeability only by warming.
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Figure 10: Influence of transport nonidealities on the structure of a stoichiometric H2-Air flame
with T fr = 100 K and p = 100 atm; Density (g cm−3), temperature (K), and mole fraction
profiles; —— : ∇µi; −−− : ∇xi

To gain more insight into diffusive processes, we present in Figure 11 the contributions to the
overall diffusion force di of the ideal part ∇xi and of the nonideal part xi(µ

sm
i )′T for the species

H2 and O2, and we also plotted the Soret term χi(log T )
′. The nonideal contributions xi(µ

sm
i )′T

are strongly bound to density gradients and are negligible out of a narrow domain located early
in the flame front. Neither the mole fraction gradient ∇xi nor the Soret term χi(log T )

′ are
confined in this high density region as can be seen for the species O2 and H2 in Figure 11. The
main effect of the nonideal parts of the diffusion forces seems to hinder mass diffusion between
the denser liquid-like region and the flame front. The impact of transport nonidealities may thus
even be stronger when the temperature and density profiles stiffen.

The influence of thermal diffusion is analyzed in Figure 12 where the flame structure of
Section 6.1 is compared to the analogous flame structure computed without thermal diffusion
effets. As for low pressure flames, we observe that, with the Soret effect, the heavy species are
more prone to stay in cold zones and the light species try to reach the hotter zones. The species
that are mostly influenced are H2, N2 and O2 as for atmospheric flames [67, 68].

6.4 Influence of transport coefficients

We analyze in this section the impact of the density dependence of transport coefficients expected
to be important for transcritical flames. Figure 2 indeed shows that the thermal conductivity of
liquid-like states is much greater than the one given by the kinetic theory of dilute gases. We
compare in Figure 13 the flame structure of Section 6.1 computed with the Chung high pressure
thermal conductivity with the flame structure computed with the dilute gas thermal conductivity.
We can see in Figure 13 the enhancement of heat penetration in the dense cold zone leading to
smoother density gradients. This is a direct consequence of the much larger thermal conductivity
of dense states. The corresponding species mole fraction profiles are also modified and this effect
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partially compensates the effect of transport nonidealities.
We compare in Figure 14, the flame structure obtained with the dilute gas binary diffusion

coefficients with the flame structure of Section 6.1 computed with high pressure binary thermal
diffusion coefficients. The temperature T , density ρ and some mole fractionsXi, i ∈ S, profiles are
presented as function of the flame normal coordinate x. The influence of high pressure corrections
to binary diffusion coefficient takes place in a narrow zone between the dense fluid region and the
flame front as can be seen for the species H2O, HO2, and H2O2. The other species are mostly
absent from this zone and are essentially not modified.

Table 2: Influence of the thermodynamic and transport models on the flame speed

Flame type EOS Transport model Flow rate Flame speed

H2−Air SRK Dij λ χi ∇µi 0.981 1.866
H2−Air PG Dij λ χi ∇µi 1.263 4.957
H2−Air SRK Ddil

ij λdil χi ∇xi 0.965 1.836
H2−Air SRK Dij λdil χi ∇µi 0.977 1.858
H2−Air SRK Dij λ 0 ∇µi 0.976 1.856

The influence of the thermodynamic and transport models on flame speed is summarized in
Table 2. The greatest influence on the flame speed is that of the equation of state. The other
effects, although they may change the temperature and species profiles, only influence the flame
speed within a few percents.

6.5 Influence of the chemistry model

In a laminar flame, chemical production is mostly significant in a high temperature zone around
the flame front. As a consequence, the influence of reaction rates nonidealities is expected to be
weak on planar flames unless the pressure is sufficiently high. This is exemplified in Figures 15
and 16 where the rates of progress of the Reaction OH+H2 ⇆ H2O+H are plotted at p = 100 atm
and p = 1000 atm, respectively, for the four chemistry models described in Section 4.4.
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Figure 12: Influence of thermal diffusion on the structure of a stoichiometric H2-Air flame with
T fr = 100 K and p = 100 atm; Density (g cm−3), temperature (K), and mole fraction profiles;
—— : Thermal diffusion included; - - - : Thermal diffusion suppressed

Table 3: Influence of the chemistry model on flame speed at p = 100 atm

Flame type EOS Chemistry model Flow rate Flame speed

H2−Air SRK Nonideal 0.981 1.866
H2−Air SRK PG 0.979 1.862
H2−Air SRK PG−HP 0.977 1.858
H2−Air SRK Hybrid 0.972 1.850

In Figure 15 the rates of progress are evaluated for the flame structure of Section 6.1 and in
Figure 16 they are evaluated for the analogous flame structure at p = 1000 atm. We found it
more convenient to plot the various rates of progress for a given flame structure, at each pressure,
in order to avoid the small spatial translations obtained when the flame is recalculated for each
rate. We have used Reaction 3 of the chemical mechanism since the corresponding rates are large
are we remind that the various rates of progress are detailed in Section 4.4. We observe that
the influence of nonidealities is still weak at p = 100 atm but is very strong at p = 1000 atm.
It is interesting to note that the worse rates of progress are obtained with the chemistry models
PG-HP and Hybrid. In other words, the perfect gas model is closer to the nonideal model than
the ‘intermediate’ models. The corresponding flame velocities and mass flow rates are presented
in Tables 3 and 4. The influence is weak at p = 100 atm but is strong at p = 1000 atm with a
25% increase in flame speed between the Hybrid and the Nonideal models.

7 Dependence on initial reactants

We investigate in this section how transcritical flame structures depend on various parameters
associated with the incoming fresh mixture.
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Figure 13: Influence of thermal conductivity on the structure of a stoichiometric H2-Air flame
with T fr = 100 K and p = 100 atm; Density (g cm−3), temperature (K), and mole fraction
profiles; —— : high pressure coefficient λ; −−− : dilute gas coefficient λdil

Table 4: Influence of the chemistry model on the flame speed at p = 1000 atm

Flame type EOS Chemistry model Flow rate Flame speed

H2−Air SRK Nonideal 4.007 5.449
H2−Air SRK PG 3.652 4.966
H2−Air SRK PG−HP 3.292 4.476
H2−Air SRK Hybrid 3.227 4.389

7.1 Influence of the equivalence ratio

In order to evaluate the influence of the equivalence ratio ϕ on H2-Air flames, we have computed
a lean flame with ϕ = 0.6, T fr = 100 K and p = 100 atm. The corresponding flame structure is
presented in Figure 17.

Compared to the stoichiometric flame structure described in Figure 8 the flame is much thicker
and the flame front is 0.7 mm wide. The flame is also cooler with the maximum temperature
reduced by 700 K. The OH radical also presents a much higher concentration than H which nearly
disappears at equilibrium, unlike with the stoichiometric flame. The importance of the HO2 and
H2O2 radicals is even more pronounced than for the stoichiometric flame since now the reaction
H+O2 +M −→ HO2 +M always dominate the reaction H+O2 −→ OH+O. The radical H2O2

is formed through the reactions HO2 + HO2 −→ H2O2 + O2, HO2 + H2 −→ H2O2 + H, and
H2O+HO2 −→ H2O2 +OH and peaks before the radical HO2.

7.2 Influence of the dilution ratio

In order to investigate the influence of the dilution ratio, we have computed a stoichiometric
H2-O2 transcritical flame. The ambiant pressure is still of p = 100 atm but for thermodynamic
stability reasons the fresh gas temperature is T fr = 110 K and the corresponding flame structure
is presented in Figure 18. The mass flow rate is found to be m = 44.64 g cm−2 s−1 and the flame
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Figure 14: Influence of binary diffusion coefficients on the structure of a stoichiometric H2-Air
flame with T fr = 100 K and p = 100 atm; Density (g cm−3), temperature (K), and mole fraction
profiles; —— : high pressure coefficient Dij ; −−− : dilute gas coefficient Ddil

ij

speed uad = 253.3 cm s−1.
The higher flame speed and flow rate are responsible for the steeper gradients in the flame

and the flame front thickness is about 1 µm. Another important difference with the H2-Air
stoichiometric case is the much higher maximum gas temperature, as it is for low pressure flames.
Thanks to this higher temperature, the radicals H, O, and OH are in much higher concentrations
than the radicals HO2 and H2O2, at variance with H2-Air flames where the reaction H+O2+M −→
HO2 + M mostly dominates H + O2 −→ OH + O. Indeed, the maximum temperature around
3800 K is well above the crossing temperature 2100 K at p = 100 atm.

7.3 Lean and rich extinction limits

We investigate in this section the flammability domains of H2-Air and H2-O2 flames in the plane
(ϕ, T fr) where ϕ denotes the equivalence ratio and T fr the fresh gas temperature at p = 100 atm.

Combustion theory has established that heat losses are required in order to obtain turning
points with respect to the equivalence ratio ϕ and well defined extinction limits even though the
precise form of the heat loss rate is not significant [86, 87, 88]. In order to investigate composition
extinction limits, radiative volumetric heat losses to the surroundings have been added to the
energy equation in the form

mh′ + q′ = −H, (65)

where H denotes the heat loss term. The radiative heat loss term H is modeled by assuming an
optically thin transfer between the fluid and the cold surroundings and reads

H =




4σpH2O

cH2O
(T 4 − T 4

0 ), if T ≥ T0,

0, otherwise,
(66)

where σ denotes the Stefan-Boltzmann constant, pH2O the partial pressure of H2O, cH2O the
Planck mean absorption coefficient for H2O, and T0 an ambient temperature towards which the
combustion products ultimately relax. The Planck mean absorption coefficient of H2O is modeled
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Figure 15: Rates of progress of Reaction OH +
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Figure 16: Rates of progress of Reaction OH+
H2 ⇆ H2O+H for various chemistry models at
1000 atm

as a polynomial in temperature [89]. The choice of the temperature T0 is not as straighforward
as for ideal mixtures since mixtures rich in H2O—as combustion products in a Hydrogen flame—
may not be thermodynamically stable at pressure p = 100 atm. More specifically, it is forbidden
to choose a temperature T0 below the thermodynamic stability limit of the combustion products.
To prevent this phenomenon we have used a rather high ambient temperature of T0 = 650 K,
which insures the super-criticality of water in the burnt gases and forbids unstable states in the
wake of the flame.

Typical extinction diagrams are presented on Figure 19 for H2-Air flames and on Figure 20
for H2-O2 flames, with T fr = 100, 150, 200, 250, 300 K and p = 100 atm. We observe typical
bell-shaped curves [80, 88] with two turning points. The lean extinction limit is on the left and
the rich extinction limit on the right. Various tests have shown that the position of these turning
points is insensitive to the precise form of the heat loss rate as for dilute gases [86]. The most
inner curves correspond to the lowest temperature. Note that, contrarily to usual diagrams, the
upper part of these curves are not closed for T fr = 100 K since they cross the thermodynamic
stability limit of the fresh gases.

The flammability domains in the (ϕ, T fr) plane are presented in Figure 21 for H2-Air flames
and Figure 22 for H2-O2 flames. These figures show the influence of the fresh gases temperature
T fr on the localization of the lean and rich extinction limits. In addition, the whole (ϕ, T fr) domain
is not accessible and the flammability domain is bounded from below by the thermodynamic
stability limit of the injected mixture for H2-Air and H2-O2 flames. There are also rare situations
where some mixture states within the flame are unstable due to species diffusion from the flame
front into the cold preheat zone. This situation only occurs for lean H2-O2 flames with equivalence
ratios around 0.15–0.2.

8 Conclusion

A detailed high pressure flame model has been derived from macroscopic and/or molecular the-
ories and the corresponding entropy production has been shown to be nonnegative. Using the
SRK equation of state, we have established that at sufficiently low temperatures, fresh mixtures
of H2-O2-N2 flames are thermodynamically unstable, as confirmed by experimental results. The
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Figure 17: Structure of a transcritical lean H2-Air flame with ϕ = 0.6, T fr = 100 K and p = 100
atm. Density (g cm−3), temperature (K) and species mole fractions as functions of spatial
coordinate (cm)

structure of planar transcritical H2-O2-N2 flames has been analyzed and we have performed a
sensitivity analysis with respect to the model. Nonidealities in the equation of state and in the
transport fluxes have a strong influence on the cold part of the flame as well as the dependence
of thermal conductivity on density. Finally, we have established that the flamability domain
in the plane (ϕ, T fr) is bounded on the left by the lean extinction curve, on the right by the
rich extinction curve, and at the bottom by the thermodynamic stability limit of the fresh mix-
ture. To the authors’ knowledge, it is the first time that such flammability domains bounded by
thermodynamic limits are presented.

A Thermodynamic properties

The determination of thermodynamics properties of a gas following a SRK equation of state is
based on the determination of its Helmholtz free energy f . This thermodynamical function f is
easily expressed in terms of the pressure deviation φ = p − pPG and the perfect gas free energy
fPG

f
(
v,y1, . . . ,yne , T

)
= fPG

(
v,y1, . . . ,yne , T

)
+

∫ ∞

v

φ
(
v′,y1, . . . ,yne , T

)
dv′. (67)

Using then the SRK equation of state, the previous expression yields

f =
∑

i∈S

yif
PG⋆
i +

∑

i∈S

yi

mi
RT ln

(
yiRT

mi(v − b)pst

)
− a

b
ln
(
1 +

b

v

)
, (68)

where fPG⋆
i = fPG⋆

i (T ) denotes the perfect gas specific free energy of the ith species at pressure
pst.

The other usual thermodynamical functions are then deduced from the Helmholtz free energy
f . More specifically, the mixture entropy s can be obtained from s = −(∂f/∂T )v,yi

and reads

s =
∑

i∈S

yis
PG⋆
i −

∑

i∈S

yi

mi
R ln

(
yiRT

mi(v − b)pst

)
+
∂Ta

b
ln
(
1 +

b

v

)
, (69)
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Figure 18: Structure of a transcritical stoichiometric H2-O2 flame with T fr = 110 K and p = 100
atm. Density (g cm−3), temperature (K) and species mole fractions as functions of spatial
coordinate (cm)

where sPG⋆
i = sPG⋆

i (T ) denotes the perfect gas specific entropy of the ith species at pressure pst.
The mixture internal energy e = f + Ts is then given by

e =
∑

i∈S

yie
PG

i +
(
T∂T a− a

)1
b
ln
(
1 +

b

v

)
, (70)

where ePG

i = ePG

i (T ) denotes the perfect gas specific energy of the ith species whereas the enthalpy
h = f + pv reads

h =
∑

i∈S

yih
PG

i +
(
T∂Ta− a

)1
b
ln
(
1 +

b

v

)
+

∑

i∈S

yi

mi

RTb

v − b
− a

v + b
, (71)

where hPG

i = hPG

i (T ) denotes the perfect gas specific enthalpy of the ith species Finally, the Gibbs
function g = f + pv is given by

g =
∑

i∈S

yi

(
hPG

i − TsPG⋆
i

)
+

∑

i∈S

yi

mi
RT ln

( yiRT

mi(v − b)pst
)

+
∑

i∈S

yi

mi

RTb

v − b
− a

b
ln
(
1 +

b

v

)
− a

v + b
. (72)

The thermodynamic properties may also easily be expressed in terms of the species mole
fractions x1, . . . ,xne defined by

xi =
yim

mi
, i ∈ S,

∑
i∈S yi

m
=

∑

i∈S

yi

mi
, (73)

where m is the molar mass of the mixture. Note the factor
∑

i∈S yi in the definition of the
mixture molar mass m which insures that m is a zero-homogeneous function of the mass or mole
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Figure 19: Maximum temperature as function of the equivalence ratio in a H2-Air flame with
T fr = 100, 150, 200, 250, 300 K and p = 100 atm. Lower temperatures correspond to more inner
curves.

fractions and that the mole/mass relations are invertible [30]. It is easily established in particular
that

∑
i∈S yi =

∑
i∈S xi so that

yi =
ximi

m
, i ∈ S,

(∑

i∈S

xi

)
m =

∑

i∈S

ximi.

B Thermal conductivity

The Chung coefficients β and λhp used for the evaluation of the thermal conductivity

λ = λdilβ + λhp, (74)

are discussed in this section [70]. The Chung correlation is based on the definition of critical
properties of the mixture built on molecular parameters in the following way

Tc,m = 1.2593
ǫm
k
, vc,m = 1.8887σ3m, (75)

where the Lennard Jones well depth of the mixture ǫm is expressed in J, the Boltzmann constant
k in J K−1, the mean molecular diameter σm in Å, the critical temperature Tc,m in K, and the
critical volume vc,m in cm3 mol−1. The mean molecular parameters of the mixture are computed
from the pure species parameters using mixing rules

σ3m =
∑

i,j∈S

xixjσ
3
ij, ǫmσ

3
m =

∑

i,j∈S

xixjǫijσ
3
ij , (76)

̟mσ
3
m =

∑

i,j∈S

xixj̟ijσ
3
ij, m

1

2
mǫmσ

2
m =

∑

i,j∈S

xixjm
1

2

ijǫijσ
2
ij, (77)

µ4m
ǫmσ3m

=
∑

i,j∈S

xixj

µ2iµ
2
j

ǫijσ
3
ij

, κm =
∑

i,j∈S

xixjκij , (78)
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Figure 20: Maximum temperature as function of the equivalence ratio in a H2-O2 flame with
T fr = 100, 150, 200, 250, 300 K and p = 100 atm. Lower temperatures correspond to more inner
curves.

where κij is the association parameter and µi the dipole moment. The species pair parameter

are evaluated as σij =
(
σiσj

) 1

2 , ǫij =
(
ǫiǫj

) 1

2 , ̟ij =
̟i+̟j

2
, mij =

2mimj

mi+mj
, κij =

(
κiκj

) 1

2 .

The association parameter for H2O is κH2O = 0.075908 and is otherwise zero. The thermal
conductivity correction β proposed by Chung is then written

β =
( 1

H2

+B6γ
∗
)
, γ∗ = γ

vc,m

6
. (79)

where γ is the number density and γ∗ the reduced molar density of the mixture. The high density
thermal conductivity λhp is given, in cal cm−1 s−1 K−1, as

λhp =
(
3.039 × 10−4 T

1

2
c,m

m
1

2
mv

2

3
c,m

)
B7γ

∗2H2

(
T ∗

) 1

2 , (80)

the reduced temperature T ∗ being evaluated as T ∗ = kT/ǫm. The H2 coefficient is computed as

H2 =
B1(1− exp(−B4γ

∗)/γ∗ +B2G1 exp(B5γ
∗) +B3G1

B1B4 +B2 +B3

, (81)

with G1 = (2− γ∗)/
(
2(1− γ∗)3

)
. The various Bi coefficients are obtained through the parameter

correlation

Bi = b0(i) + b1(i)̟m + b2(i)µ
4
m

131.34

v2c,mT
2
c,m

+ b3(i)κm, (82)

with the bk (i) coefficients given in table 5.
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Figure 21: Flammability domain of H2-Air flames in the (ϕ, T fr) plane; − − − lean and rich
extinction limits; —— fresh mixture thermodynamic stability limit.

Table 5: Coefficient for the evaluation of Bi parameters

i b0 (i) b1 (i) b2 (i) b3 (i)
1 2,41657 0,74824 -0,91858 121,72100
2 -0,50924 -1,50936 -49,99120 69,98340
3 6,61069 5,62073 64,75990 27,03890
4 14,54250 -8,91387 -5,63794 74,34350
5 0,79274 0,82019 -0,69369 6,31734
6 -5,86340 12,80050 9,58926 -65,52920
7 81,17100 114,15800 -60,84100 466,77500

C Entropy hessian and stability

We investigate in this section various properties of the matrix Λ associated with the entropy
hessian. We first establish that the relation

∑

i,j∈S

yiyjΛij = −v
2

T
∂̃vp, (83)

is a consequence of homogeneity. Since the pressure law is 0-homogeneous with respect to the
variable

(
v,y1, · · · ,yne

)
, we have the Euler relations

∑

i∈S

yi∂̃yi
φ+ v∂̃vφ = 0, (84)

and ∑

i∈S

yi∂̃
2
yiyj

φ+ v∂̃2vyj
φ = −∂̃yj

φ, j ∈ S,
∑

i∈S

yi∂̃
2
yiv
φ+ v∂̃2vvφ = −∂̃vφ. (85)
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Figure 22: Flammability domain of H2-O2 flames in the (ϕ, T fr) plane; − − − lean and rich
extinction limits; —— fresh mixture thermodynamic stability limit; – · – preheat zone states
thermodynamic limit.

After some algebra, we easily obtain
∑

i,j∈S yiyj ∂̃
2
yi,yj

φ = ∂̃v(v
2∂̃vφ) and integrating over (v,+∞)

we get ∫ ∞

v

∑

i,j∈S

yiyj ∂̃yi,yj
φdv′ = −v2∂̃vφ, (86)

since φ ∼ v−2 and ∂̃vφ ∼ v−3 for large v so that limv→∞(v2∂̃vφ) = 0. Equation (83) is then a

consequence of Λij =
R

miyi
δij +

1
T

∫∞
v ∂̃2

yiyj
φdv′,

∑
i∈S

Ryi

mi
= − v2

T ∂̃vp
PG and p = pPG + φ.

In the case of a Soave-Redlich-Kwong equation of state with Van der Waals mixing rules, the
coefficients Λij can be further evaluated analytically

Λij =
Rδij
miyi

+
R

v − b

( bi
mj

+
bj
mi

)
+

∑

k∈S

yk

mk

R

(v − b)2
bibj −

2

T

aij
b

ln
(
1 +

b

v

)

+
2

T

∑

k∈S

yk

(
aikbj + ajkbi

)( 1
b2

ln
(
1 +

b

v

)
− 1

b(v + b)

)

+
1

T
abibj

(
− 2

b3
ln
(
1 +

b

v

)
+

2

b2(v + b)
+

1

b(v + b)2
)
, i, j ∈ S. (87)

Finally, the stability condition cv > 0 is easily checked since

cv = cPG

v +
T∂2TTa

b
ln
(
1 +

b

v

)
, (88)

and the Soave temperature dependance insures that ∂2TTa ≥ 0 since a =
∑

i,j∈S yiyjaij and

∂2TTaij ≥ 0. Note that with the exponential form of the temperature coefficient αi the coefficient
cv is smooth whereas with the Soave form, original or truncated, there are Dirac masses at the
crossover temperatures Tc,i(1 + 1/si)

2, i ∈ S. These Dirac masses usually have a negligible

36



influence since the temperatures Tc,i(1 + 1/si)
2, i ∈ S, are large and then nonidealities are

generally negligible.
Finally, an explicit calculation establishes that ∂2

yiyj
g = TΛij + vivj ∂̃vp and furthermore that

T (Λy)k = −vkv∂̃vp in such a way that

∂2
yy
g

T
= Λ− Λy⊗Λy

〈Λy, y〉 .

Therefore, we have 〈
(∂2

yy
g)x, x

〉

T
=

〈
Λ
(
x− y

〈Λx,y〉
〈Λy,y〉

)
,
(
x− y

〈Λx,y〉
〈Λy,y〉

)〉
,

and ∂2
yy
g is positive semi-definite with nullspace Ry when Λ is positive definite. Similarly, above

the critical pressure, we have 〈Λy, y〉 > 0 and if Λ has a negative eigenvalue, then automatically
∂2
yy
g also has a negative eigenvalue.
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