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LONG TIME BEHAVIOR OF A TWO-PHASE OPTIMAL DESIGN
FOR THE HEAT EQUATION
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Abstract. We consider a two-phase isotropic optimal design problem within the context of the
transient heat equation. The objective is to minimize the average of the dissipated thermal energy
during a fixed time interval [0,7]. The time-independent material properties are taken as design
variables. A full relaxation for this problem was established in [Relazation of an optimal design
problem for the heat equation, JMPA 89 (2008)] by using the homogenization method. In this paper,
we study the asymptotic behavior as T goes to infinity of the solutions of the relaxed problem and
prove that they converge to an optimal relaxed design of the corresponding two-phase optimization
problem for the stationary heat equation. Next, we study necessary optimality conditions for the
relaxed optimization problem under the transient heat equation and use those to characterize the
micro-structure of the optimal designs, which appears in the form of a sequential laminate of rank
at most N, the spatial dimension. An asymptotic analysis of the optimality conditions let us prove
that, for T large enough, the order of lamination is in fact of at most N — 1. Several numerical
experiments in 2D complete our study.

Key words. Optimal design, Heat equation, Relaxation by the homogenization method, Asymp-
totic behavior, Optimality conditions, Numerical simulation
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1. Introduction and problem statement. Optimal design problems in which
the goal is to know the best way of mixing two different materials in order to optimize
some physical quantity associated with the resulting structure have been extensively
studied during the last decades, mainly in the case where the underlying state equation
is elliptic [6, 13]. A common feature of these optimal design problems is that they
usually are ill-posed in the sense that minimizing sequences for the objective function
exhibit finer and finer micro-structure. Among the techniques and tools used to deal
with this type of problems, homogenization and variational formulations have played
an important role (see also [1, 3, 15, 18]). More recently, optimal design problems for
time-dependent designs and time-dependent state equations - mainly of hyperbolic
type - have been also considered ([5, 8, 9, 10]). In particular, in [8] a class of spatial-
temporal composite materials (rank-1 and rank-2 spatial-temporal laminates) were
introduced. See also [9] for some physical examples.

This paper is concerned with the heat equation, as a continuation of [11] in some
specific directions where the following problem, parameterized by the final time 7" > 0,
is addressed:

1 /7
(P;) Minimizein X e CD :  Jp (X) = T/ K (z)Vu (t,z) - Vu (t,x) dedt
0Ja
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where the state variable u = u (¢, x) is the solution of the system

B(z)u (t,x) —div(K () Vu(t,z)) = f(t,z) in (0,T)xQ
u=0 on (0,T) x 90 (1.1)
u(0,z) = up (x) in Q,

where v’ denotes the partial time derivative of u, and

{ B(x) =X (z) 51+ (1 - X(x))F2
K (z) = X (@) kily + (1 — X (@) ks In.

The design variable X is the characteristic function of the region occupied by the
material (51, k1). It belongs to the class of classical designs CD defined as

CD = {X € L™ (2:{0,1}) s-t. /Q/Y(x)dx - LQ|} , (1.2)

for some fixed 0 < L < 1. The domain Q C R is assumed to be smooth and
bounded. The two phases are homogeneous, isotropic and with mass densities p; > 0,
specific heats ¢; > 0, and thermal conductivities k; > 0, i = 1,2. Without loss of
generality we assume k1 < ky. We then define 8; = p;c;, i = 1,2. The ordering of
081, B2 is not prescribed. Iy denotes the identity matrix of order N, f is the heat
source, ug the initial temperature, and wu(t,z) the temperature at position z and
time t. For f € L?((0,T) x Q) and uy € L%*(f2), system (1.1) is well-posed in the
class u € C([0,T]; L*(€)) N L? ((0,T); H}(2)). The cost Jp represents an average
of the dissipated thermal energy during the time interval [0, T]. We refer to [19, 20|
where a similar problem with a functional cost depending on u is addressed under an
engineering viewpoint.

As indicated above, problem (Pr) is usually ill-posed in the sense that there are no
minimizers in the space of classical designs CD (see [12] for some related problems).
Using homogenization theory, in [11, Th. 2.4], the following relaxed formulation for
(P7) was found:

(RP;) Minimize in (0, K*) e RD: J7;(6,K")

where RD designates the space of relazed designs (detailed in Section 2).

The main goal of this work is to analyze, both theoretically and numerically, the
behavior of the optimal relaxed designs (6, K*) = (67, K%) as the variable T goes to
infinity. Assuming that the heat source f(z) does not depend on time, the unique
solution of (1.1) converges as t — +oo to u € HE(Q), solution of the stationary
equation

{ud_ivO(K(z)Vu(x))f (x) g; gﬂ (1.3)

Associated with this PDE we consider the design problem
(P,) Minimizein X € CD: J (&)= / K(x)Vu(z) - Vu(x)dz.
Q
A relaxed formulation (RPs) of (Px) is by now very well-understood (see [1] and

next section). In particular, an optimal micro-structure can always be found among
first order laminates.
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The outline of the paper is as follows. In Section 2, we first briefly remind the
formulations (RPr), (RPs) and introduce some notation. In Section 3, we prove that
any weak limit (as T' goes to infinity) of a converging subsequence of (67, K})r>o is
in fact an optimal design of (RPs). In Section 4, we study a necessary optimality
condition for the parabolic problem (RPr) and prove that optimal micro-structures for
this problem can be found among laminates of at most rank N, the spatial dimension.
Section 5 contains an asymptotic analysis when T" — oo of that necessary optimality
condition. As a result, we obtain that, for T' large enough, the order of lamination
of optimal designs for (RPr) is at most N — 1. Numerical experiments are given in
Section 6. We deduce from this analysis that the homogenization process and the
limit as T goes to infinity commute (see Figure 1.1).

Parabolic problem Elliptic problem
(PT7 XT) - (POC7 Xoo)
T — 400
Homagenization Homogenization
Relaxed parabolic problem Relaxed elliptic problem
(RPr, (01, K7)) (RPu, (B0, K3,))
Laminate of rank< N T = +o0 Laminate of rank= 1

Fia. 1.1. Commutation between Homogenization process and limit of the heat system as T — oo.

2. Relaxed formulations for (Pr) and (Ps). We recall here briefly the re-
laxed formulations, derived from homogenization theory, associated with (Pr) and
(Ps)- To this end, we firstly introduce the space of relaxed designs

RD = {(0, K*) € L ([0, 1] x MY) : K* () € Go(a) ae. x € Q, 0] 12 = LIQ|},

where M3, = M3 (k1,k2) is the space of real symmetric matrices M of order N
satisfying, for all £ € RV, k; |§|2 <ME-€ < ko \§|2. For a given 6 € L™ (;10,1]), the

so-called Gy-closure is the set of all symmetric matrices with eigenvalues A1, - -, Ay
satisfying
g A<, 1<j<N,
i L o L N1
SNk TN kA R (2.1)
N
1 1 N -1
) <hg = =+ +7
ko — A ko — A, ko — Xy

-1
where \; = (ki n 1,%’) is the harmonic mean and Aj = 0k, + (1 — ) ks the

arithmetic mean of (k1, k2). For more details we refer to [1].
Second, we consider the relaxzed cost

Jr(0,K*) = %/0 /QK* (z) Vu (t,z) - Vu (t, z) dedt, (2.2)
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where now w is the solution of

B* (x)u (t,z) —div (K* (2) Vu (t,z)) = f (t,z) in  (0,T) xQ
u=0 on (0,T) x 99 (2.3)
u(0,2) = up () in  Q,

with 0% (z) =0 (z) 81 + (1 — 0 (x)) B2- Homogenization theory provides the following
two results (see [11, Th. 2.4] and [1, Th. 3.2.1 and Th. 3.2.6], respectively).
THEOREM 2.1 (Parabolic case for T fixed). Consider the following problem

(RP;) Minimize in (0, K*) e RD: Jr(0,K*).

(RPr) is a relazation of (Pr) in the following sense:

(i) there exists at least one minimizer for (RPr) in the space RD,

(i) up to a subsequence, every minimizing sequence of classical designs X,, converges,
weak-x in L>° (2;[0,1]), to a relazed density 0, and its associated sequence of
tensors

K, =X ki Iy + (1 — X,) kol

H—converges to an effective tensor K* such that (0, K*) is a minimizer for
(RPr), and
(iii) conversely, every relaxed minimizer (0, K*) € RD of (RPr) is attained by a
minimizing sequence X,, of (Pr) in the sense that
X, —0 weak * in L™ (),
K, 2 K*.
Here -5 stands for the convergence in the sense of homogenization (see [1, Defini-
tion 1.2.15]). Note that a minimizer of (RPr) depends on the final time T'. To make

clearer this dependence, from now on, we shall denote such a minimizer by (67, K%.).
THEOREM 2.2 (Elliptic case). Consider the following problem

(RP_ ) Minimize in (0,K*) e RD: J (0,K*)= / K*(x)Vu(zx) - Vu(x)dz,
Q

where u € H} (Q) solves

—div(K*Vu)=f in

=0 on Of.
(RP)so is a relazation of (Px) is the sense of the previous theorem. Moreover, an
optimal effective tensor for (RPy,) can be obtained as a first-order laminate in any
direction orthogonal to V.

3. Asymptotics for T — co. We assume henceforth that f(z) € L?(Q) is time
independent. Let {7}, be an increasing sequence of positive times converging to
infinity. For each T, problem (RPr,) has (at least) a minimizer (67, ,K7. ) € RD.
Since (07, , K7, ) is bounded in L™ (9;[0,1] x M3 (k1, k2)), up to a subsequence still
labeled by n, we have, as n — 400,

H

Or, — 6Or_ weak-x in L (Q;[0,1]),
K}n - K}OO.
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Our task in this section is to prove that (07, K7 _) is an optimal solution of (RP).
We shall need the following preliminary result.
LemMA 3.1. Let u, be the solution of

B (@) up, (t,x) — div (K3, (2) Vuy (t,2)) = f(z) in  (0,00) x Q
Up =0 on (0,00) x 00 (3.1)
Unp (07I) = Uo (‘T) in Qa
with B (x) = 0, (x) b1+ (1 — b1, (z)) B2. Then,
I
lim —/ / K} Vuy, - Vupdzdt = / K} Ve - Vigodz, (3.2)
n—e Ty Jo Jo 7" o 7
where Uy (z) € HE (Q) is the solution of
- div (Kj_(2)Vis(z)) = f(z) in (3.3)
Uoo =0 on 0N

Proof. We begin by proving that there exist two constants Cy,Cs > 0, indepen-
dent of n, such that

[n (8) = Tnl 20y < Cre™ ", >0, (3.4)

where wu,, solves

—div (K}, Vu,)=f in Q
{ Ty =0 on O (3:5)
The function v, (t,2) = uy, (t,z) — @, (x) solves
B (@) v}, (t,x) — div (K7, () Vo, (t,2)) =0 in (0,00) x Q
v, =0 on (0,00) x 09
vp (0,2) = ug (x) — Ty, () in Q.
Using the spectral decomposition,
> k
va () =) afe Ml (2)
k=1
where w¥ € H}(Q), with ||wfl||:;2 @ = Ja B |wf’l|2dx = 1, are the normalized
2,

eigenfunctions of the boundary—valug problem

—div (K7 Vwl) = Xgrwl in Q
wk=0 on 09,

with 0 < AL < A2 < A3 < ... its associated eigenvalues, and

ak = /Qﬂ; () (uo (z) — Ty (2)) Wk (z)dz, k,neN.
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Using that min(fy, 82) < 8% (z) a.e. € Q and Parseval’s identity, we have

. 2 2
min(51, B2) [[vn ()| 720y < [lvn (t)HLZ L ()

o

Z —2)\F¢ |&

k=1

IN

—2l — 2
e Pt |lug — unHL%; @) -

Since K7, B8 KT and 0 < min(By,02) < B () < max(f1,02) a.e. x € Q, the
term |Jug — Tn || 12, (@) is uniformly bounded. Moreover, Rayleigh’s formula and the

uniform elhpt1c1ty of the sequence of tensors K7, lead to

M M
n — 2

©#0, peHj ||| L2, ()
kL VeV

~ max(f, B2) o#0. eeHy |7 g

ky

= —— ),

max(f1, B2) "

where Ay > 0 is the first eigenvalue of the (Dirichlet) Laplacian. This completes the
proof of (3.4).
Next, we decompose

I
—/ / K7 Vg, - Vupdzdt — / K7 Vi - Vigedr = IT" + I3
o Jo Q
where
I
It = — / / K7 Vu, (t,x) - Vu, (t, ) dedt — / K7 Vi, (z) -V, (z) dx
Q Q
and
= / K% Vi, (z) - Vi, (¢) do — / K& (2) Vs (z) - Viioo () da.
Q Q

Using the weak form of (3.5), multiplying the heat equation (3.1) by w, (¢,2) and
integrating by parts yield

I = z) — u’ x)) dx 1 " x) (u ) — Uy (x)) dx
1= g7 [ 8 (dle) = (o) dot 7 [ @) tun () = 7, (0) .

By (3.4) and the boundedness of [[@,|| 2, , the first term in the right-hand side of
this expression converges to zero as T;, — co. Using once again (3.4) and the Cauchy-
Schwartz inequality,

1 [ B LT )
Tj/o Qf(ﬂc) (un (t, ) — Uy (x)) dodt| < IIfIILa(Q)E/O [t (£) = Tn |l L2 At

T’VL
< |If 1 Cre~“2tdt
< ||L2(Q)T o 1€

— 0 asT, — oco.
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This proves that I7" — 0 as n — oco. The fact that I3 also converges to zero as n — oo
is a direct consequence of the weak forms of the elliptic systems (3.3) and (3.5) and
the convergence K7, RE K7 . |

THEOREM 3.2. If (0r,, K%, ) is an optimal solution of (RPr, ), then any weak
limit (GTw,K}w) of a converging subsequence of (01, , K7, ) is an optimal solution of

(RPs).

Proof. We argue by contradiction. Assume that ((‘)Toc , K}w) is not a solution of

(RP). Then, there exists another (5, IA(*) € RD and ¢ > 0 such that

K7 () Vi () - Vil (7) dx = K* () Vi (x) - Vu (x) dz + ¢,
Q Q

where @ (z) is the solution of the elliptic equation with conductivity K*. By (3.2),
there exists ng € N such that for all n > ng

T’Vl
x K7 (x)Vuy, (t,x) - Vuy, (t,2) dz > / K7 (2) Vi (z) - Vi (v) dz — =
T, 0 JQ " Q - 3

Now let u (¢, ) solve

B (x) ' (t,z) — div (f{ (z) Vu (m)) =f(z) in (0,T)xQ
u=0 on (0,7) x 90
u (0,z) = ug (x) in Q,

with 3* (z) = a(x) 01+ (1 - (9\(;10)) B2. Then, multiplying this equation by wu(t,x)
and integrating by parts, we get the convergence

'lTnA* Vu(t,z)dedt = | K* () Vi (z) - Vi (z) de
hm—/o/QK(:E)Vu(t,x)V(t, )ddt-/ﬂK()V()V()d.

n— oo Tn

Therefore, there exists n1 € N such that for all n > ny

1 Tn - _ R ) ]
?/o /QK “”Wu(fvx)'V“(W)dde/QK () Vi (2) - V(@) d + 5.

Hence, for n > max (ng,n;) we have
1 T ~ 9
—/ / K*Vu - Vudzdt < / K7 Vg - Vigedr — € + -
Tn 0 Q Q 3

1 /T" €
< — K% Vu, - Vu,dxdt — =
T, Jo Jo ™ 3

which contradicts the fact that (67, , K7, ) is an optimal solution of (RPr, ). 0

REMARK 3.3. In the non-composite region for the optimal solution (eToovKio) ,
i.e., both in the set of points x € Q such that 01 (z) = 0 or Op_ (x) = 1, the
convergence of the optimal densities O, towards Or_ is in fact a strong convergence
in LP for any 1 < p < co. Indeed, this is a consequence of the following general result:
if a sequence of functions f, satisfies: (a) 0 < f, < C, with C a constant, and (b)
frn — 0 weak-x in L (Q), then f, — 0 strongly in L? () for any 1 < p < co. Notice
that from the estimate f2 < Cf, we deduce that | f,| ;.= — 0. By interpolation, the
same holds true for any LP—norm, with 1 < p < co. The claim on the densities 01,
and 01 just follows by applying this result to f, = 01, on the set where Op =0 and
to fn, =1— 01, on the set where 07 = 1.
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4. Optimality conditions for the parabolic case. This section is devoted to
the study of the necessary optimality conditions that a minimizer (67, K%) of (RPrp)
must satisfy. We follow the same ideas as in the elliptic and hyperbolic cases (see
[1, 2, 21]).

In order to take into account the volume constraint on 6, we consider for any
I € R and (0, K*) € RD the augmented function

— I
JT(Q,K*):T/O/QK*Vu-Vu dxdt—i—l/ﬂé?(a:)d:r. (4.1)

Then, we have : B
THEOREM 4.1. The objective function Jy (8, K*) is Gateauz differentiable on the
space of admissible relaxed designs RD and

5T (0,K%) = fo [1 = 225520 [t o6dz

L[ . (4.2)
+7 Jo [fo Vu - (2Vp + Vu) dt] SK*dx
where 00 and 6 K* are admissible increments in RD and p the solution of the adjoint
equation

—03*p — div(K*Vp) = div(K*Vu) in (0,
(0

p:o on
p(T)=0 in €.

o9 (4.3)

Consequently, if (01, K7) is a minimizer of j;, it must satisfy 57;(9T,K}) >0 for
any admissible increments 60, 6 K*.

REMARK 4.2. We recall that an admissible increment (60,0K*) is defined as
the derivative at t = 0 of a continuously differentiable curve t — (6(t), K*(t)) that
remains in the set RD and which coincides for t = 0 with (6, K*). Notice that the
set of admissible increments is not easy to characterize, but thanks to the convezity of
Gy, if 0 is kept fized, then it is easy to obtain a large class of admissible increments
dK* at each point (8, K*).

Proof. The proof is standard (see [1, Th. 3.2.4] for the elliptic case). A direct
derivation shows that

)

1

T T
/ / OK*Vu-Vu dzxdt + 2/ / K*Vu - Viu dzdt
0Ja 0Ja

where du is the increment in the solution u caused by the increment 66 and §K*. By
differentiating the state equation (2.3), we obtain that the increment du solves the
problem

6T (0, K*) = z/

Q

B* (6u) — div(K*Véu) = (B2 — 1) /60 + div(6K*Vu) in  (0,T) x Q,
du=0 on (0,7) x 00
ou(0) =0 in Q.

(4.4)

The introduction of the adjoint state allows one to eliminate the increment du. Let
us first remark that (4.3) admits a unique solution p € L* ((0,T); H}(€)) since the
right hand side of (4.3), div (K*Vu), belongs to L? ((0,T); H~'()). Recall that f €
L?((0,T) x Q) and up € L* () imply that u € L? ((0,T); H}(Q)) N C ([0,T]; L*(<2))
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and v’ € L? ((0,T); H~1(Q)) (see [7, p. 244] for more details). In particular, it implies
that the right hand side of (4.2) is well defined. Multiplying equations (4.4) by p and
(4.3) by du, then integrating by parts, yields

T T T
/ / K*Vu-Véu dxdt = — / / (B2 — B1) u'pdOdxdt + / / 0K*Vu - Vpdxdt
0JQ 0JQ 0JQ

and finally gives (4.2). |

This result allows us to prove that an optimal tensor can always be found in the
class of sequential laminates of rank at most N (see [1] for a precise definition). We
first introduce the following definition:

DEFINITION 4.3. Let (0, K*) € RD satisfy the optimality condition 6.J5(0, K*) >
0. For any fized T > 0, we introduce the symmetric matriz of order N

1 T
My = -7 / Vu©® (2Vp+ Vu)dt (4.5)
0

where © denotes the symmetrized tensor product of two vectors, with entries
1 T

(M) =57 | [(Vu)i (2Vp + Vu), + (Vu), (2Vp + Vu), | dt,

where u and p are its associated state and adjoint state, respectively.

REMARK 4.4. The matriz Mt belongs to L*(2) since, as already explained in the
proof of Theorem 4.1, Vu and Vp belong to L? ((0,T) x Q).

THEOREM 4.5 (Order of lamination). Let (67, K}) € RD be a minimizer of
(4.1) and let u and p be its associated state and adjoint state, respectively. Then, at
the points where Mt does not vanish, the effective tensor K7, belongs to the boundary
of the set Gp, and thus corresponds to a sequential laminate of rank at most N with

lamination directions given by the eigenvectors of the matriz My, defined by (4.5). It
18 also a mazimizer of the function

f(Or,My) =Ky : Mp= max K°:Mrp. (4.6)
KOEGQT

Moreover, the function 7 —— f(07, Mr) is C* ([0,1]) and the optimal density Or
satisfies

Or(z)=0 if and only if Qr(x) >0
Or () =1 if and only if Qr(z) <0 (4.7

and Qr () =0 if 0 < 07 (x) < 1, where Qr is given by

T
Qr(a) =1=2(32 = B1) 1 [ wpdt+ Gy (0. Mr). (48)

At the points where My vanishes, if we assume in addition that 31 = (2, then there

exists another minimizer <§T,K}) of (4.1) with the same state u and adjoint state

p which satisfies the above properties with 01 replaced by éT, namely K7 is a rank-N
sequential laminate which belongs to the boundary of G@T.
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In (4.6) the notation A : B stands for the full contraction of matrices A and B.

REMARK 4.6. In the previous theorem, at the points where My vanishes, it is
necessary to change the optimal density O (but not the optimal tensor K7.). Such a
trick was first devised by U. Raitums [17]. The main interest of Theorem 4.5 is that
one can restrict the minimization of (4.1) to the subclass of effective tensors which are
given by the simple and explicit formula of sequential laminates of rank N, at most,
with orthogonal lamination directions (see Chapter 3 of [1]).

Proof. The proof follows the same lines as in the elliptic case (see [1, Th. 3.2.14]),
except for the new case when Mp = 0. We fix 67 and consider the path K7 (s) =
sK° + (1 —s) K} for any K° € Gy, 0 < s < 1 and for K} an optimal tensor
for (RPr). Consequently, 6 = 0 and §K5 = K° — K. Taking into account the
optimality condition 6.7 (67, K%) > 0 and the relation (4.2), we conclude that

/ K2 Mpdx > / K°: Mpdz VK° € Gy,. (4.9)
Q Q

By localization, (4.9) is equivalent a.e. = € Q) to the following characterization of the
optimal tensor K7,

K% :Mp= max K°:Myp, ae x€. (4.10)
KOEGQT

It is known that the optimal tensor K7 of (4.10) must be simultaneously diagonalizable
with M. Consequently, if (e;), <j<n 18 a basis of eigenvectors of My with associated
eigenvalues (4;), ;< One can restrict the maximization in (4.10) to those tensors
K that share the same eigenvectors with eigenvalues (\;) and (4.10) is equivalent to

K7 : Mr = max Ajlj. (4.11)

Assume that z € Q is such that Mp(xz) # 0. Since the cost function in (4.11) is
linear and the set Gy, convex, the solution of this problem belongs to the boundary
of Gg,.. This implies (see the proof of [1, Ths. 2.2.13 and 3.2.14]) that the optimal K7.
corresponds to a sequential laminate of rank at most N with lamination directions
given by the eigenvectors of Mr.

Let us now consider the points z € Q such that Mp(z) = 0. If the optimal tensor
K% happens to belong to the boundary of the set Gg,., defined by (2.1), we are done
since the boundary of Gy is made of sequential laminates of rank at most N. We now
restrict our attention to the case when My (z) = 0 and K7 belongs to the interior of
Gy, we denote by w C €2 the subset of such points where we shall modify the optimal
density 67. Since K7, does not belong to the boundary of Gy, , at a point = € w,
if we denote by (A;)lgjg ~ the eigenvalues of K7, they satisfy strict inequalities in
all inequalities of (2.1). (In particular it excludes the special case 67 = 0 or 1.) The
lower bounds of Gy are

N
1 1 N -1
Ay <N, —  <hy=——— ¢ : (4.12)
J j;)\j*kl Ag — k1 )\;—]ﬁ

which are (geometrically) strictly decreasing functions of § (more precisely, § — hy,
is increasing and § — A; is decreasing). See Fig. 4.1 for a better understanding of
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2.0

Fia. 4.1. Picture of the set Gg for N =2, 0 = 0.5, k1 = 1 and ko = 3. To emphasize the
geometrical decreasing character of this set we have also plotted the upper bound for 6 = 0.51 with
the same k1 and k.

what we mean by saying that the set Gy (in particular, its lower bounds (4.12)) is
geometrically decreasing as a function of 6.

Therefore, there exists a value 0 < §~ < @ such that the lower bound (4.12) is
saturated for 6~ (namely, one of the inequalities in (4.12) is actually an equality) and
thus K7, belongs to the "lower" boundary of Gp-. Similarly, the upper bounds of Gy
are

1 1 N-1
A<, —  <hf = + , 4.13
1= Zkz—A*-— N Y (4.13)

which are (geometrically) strictly decreasing functions of 6 (i.e., # — hy is decreasing
and 0 — A\ is decreasing). Therefore, there exists a value § < 6% < 1 such that the
upper bound (4.13) is saturated for 6+ (namely, one of the inequalities in (4.13) is
actually an equality) and thus K% belongs to the "upper" boundary of G- .

Overall, we have proved that, for each x € w, there exist two densities 0 < 7 (z) <
Or(x) < 67 (z) < 1 such that, K belongs simultaneously to the "upper" boundary
of G+ and to the "lower" boundary of Gy-. We can divide the subset w in two parts
wT and w™ where the density 67 is changed in

0t (z) ifzewt
Or(z) =< 0 (x) frew"
Or(x) otherwise.

Of course, we can choose wt and w™ in such a way that the volume constraint is
kept, i.e., [, 0rdz = [,0rdr. Remark that it is not necessary to change K7 which
belongs to both sets Gy, and G . The point is that, by construction, K7. lies on
the boundary of G; and is therefore a sequential laminate of rank at most N with
lamination directions given by the eigenvectors of My . Notice that since K7, does not
change and (3, = 32, u and p are the same and so is the value of the cost function.

Next, we consider a smooth path (6(s), K*(s)),<.<; € RD in the space of admis-
sible relaxed designs such that at s = 0 it coincides with a minimizer, say (61, K7}.),
of (RPr). We further ask that, for each s, K*(s) is optimal for the density 6(s), in
the sense that

K*(s): My = f(0(s), M) = Jnax. K°: My (4.14)
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where My is defined by (4.5). Such a function f is known to be differentiable with
respect to 6 (see [1, Th. 3.2.14]) and, differentiating (4.14) with respect to s, we get
of

5K* : MT = % (G,MT) 60.

Replacing this expression in (4.2) we conclude that the optimal (67, K7.) satisfies
T3 (0. K7) = [ Qr(2)30 do 2 0
Q

for any admissible increment 06, where Qr is defined by (4.8). By localization we
thus obtain (4.7). 0

REMARK 4.7. The argument we have used in the previous theorem to deal with
the case Mr(xz) = 0 does not extend to the situation in which 81 # B2. The reason is
that if K7 does not change but 51 # (2, then the corresponding uw and p do change and
therefore we cannot ensure that the associated value for the cost function is optimal.
Later on (Theorem 5.2) we provide a sufficient condition on the source term f which
enables us to conclude, for T large enough, about the order of lamination without
constraint on the values of the positive constants 81 and Bs.

REMARK 4.8. The proof of Theorem 4.5 can immediately be extended to a multiple
load case (static or parabolic). Our result is reminiscent, but different, of a recent
one in [2]. In this reference, concerned with two-phase optimal design in the static
conductivity case, the authors consider m state equations with m < N and prove
that an optimal effective tensor can always be found among sequential laminates with
matriz material ki of rank at most m. Our result has no such restriction on the
number of state equations but, on the other hand, the matriz material can be either
k1 or ko.

An optimality criteria method, based on the above necessary optimality condi-
tions, may be implemented for solving numerically the relaxed problem (RPr). Such
an algorithm reads as follows:

e Initialization: take initial values (6°, K°) in RD and [° in R for the density,
homogenized tensor and Lagrange multiplier, respectively. For instance, §° =

L, K =diag (Mg, Ao, - ,Ajo) and I° = 0.

e For n > 0, iteration until convergence as follows:

1. Compute the state u™ and the adjoint state p™ by solving (2.3) and (4.3)
respectively.

2. Compute in €2, the matrix M7 as given by (4.5). Then, the function
f (0", M}) in (4.6). For N = 2, this can be done explicitly (see [1,
Lemma 3.2.17, p. 231] and Lemma 4.10 below).

3. Compute the function Q% (z) as defined in (4.8) and then, by (4.7), com-
pute a new density gn+1 which depends on the Lagrange multiplier "
through (4.8). Since a priori "' does not necessarily satisfy the vol-
ume constraint [|0][;1q) = L[|, we determine the optimal multiplier
"1 so that the corresponding density #"*! satisfies this constraint.
This is easily done using the monotony of the (possibly multi-valued)
function

o) = /Q 01 (x) da, (4.15)

0; being the optimal density of (RPr) with multiplier ! (see Lemma 4.9
bellow).
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4. Finally, solve (4.11) to get an update tensor K™*!.

For the sake of completeness we recall a result on the monotonicity of the volume
constraint with respect to the Lagrange multiplier.

LeEMMA 4.9. The function © : [0,1] — R, defined by (4.15), is non-increasing.

Proof. Assume that [ < I’ and take any minimizer (6;, K}) (respectively (6;, K};)
of (4.1). From the optimality of (6;/, K}5), we have

T T
/ / KNy - Vuy dedt +10 (1) < / / K}Vu; - Vu, dedt +1'0 (1)
0Ja 0Ja

which is equivalent to

T T
/ / K Vup - Vup dedt +10 () < / / KV - Vg dedt +10 (1)
0Jo 0Ja
+'=-DH©O0)-061).
Since the first two terms in the right-hand side of this expression give an optimal
value, the third term must be non-negative, i.e. © (1) > © (I'). |

In two space dimensions, N = 2, the function f(6r, Mr), introduced in Theorem
4.5, can be explicitly computed (see [1, Lemma 3.2.17] and [22] for a similar compu-
tation in the case N = 3). As a byproduct, it gives the precise order of lamination of
the optimal microstructure in the optimization problem (4.11).

LEMMA 4.10. For any T > 0, we note by u? < ul the eigenvalues of the matriz
Mt of order N = 2 defined by (4.5) and by vi < vl those of the matriz K°. The
solution of the linear problem

max K°:Mp = max  vip +olud
K9€Gy,, (v wi)eGo,

is given by
W o) = (ko ko) + Vit + ik < 11 )
(N, k)~ + g, — k) VT Vil
if >0 and (il (ks — A7) > \Jud (ke — AT,
WT, 0T = (k1 k1) + Vo Vo ( ! 1 )
(Ao = k)™ + (g, = k) \/=p] /=]
if pf<0 and —nf (N, — k1) </—ud (A, — k1)

)\XT) else.

(01, 03) = (Ag,.s

(4.16)
The first and second regimes in (4.16) correspond to a rank-2 laminate while the third
one corresponds to a rank-1 laminate.  Notice that the third regime in (4.16) is

obtained in particular when p? pd" < 0.

5. Asymptotics of the optimality condition when 7" — co. From the pre-
vious analysis, we know that the optimal design (67, K7) for the parabolic problem
(RPr) - for any finite T - may be recovered by a laminate of rank at most N and
degenerates as T' — oo to a solution of the elliptic problem (RP.), this latter being
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recovered by laminates of first order. This section is devoted to the analysis of the
asymptotic behavior of the optimality conditions when T" — oc.

We shall need the following technical result. To make clear the dependence on
the space dimension, from now on in this section we denote by Gév the space Gy in
dimension N.

LEMMA 5.1. Let M, € M3 be a sequence of symmetric matrices such that

lim M,, = M, (5.1)
n—oo
with M a rank-one, non-negative matriz. Then there exists ny € N such that for
n > ng any mazximizer of

max K°: M, (5.2)
KoeG)

is a laminate of rank less than or equal to N — 1 and at least one mazximizer is a
rank-one laminate.

Proof. Assume that 0 < 8 < 1. Otherwise, there is nothing to prove. Denoting
by AL < A2 <... < AN the eigenvalues of M,,, we know that

A —0 Vie{1,2,--- ,N—1
AN N { } (5.3)
where A is the only positive eigenvalue of M. Consider first the case NV = 2 and the
problem

max K°: M. (5.4)
K%eG?

Problem (5.4) amounts to find (u1, u2) € G2, with py < o, for which the quantity
Hod = ¢ (5.5)

attains it maximum. Geometrically in the plane (1, p2), (5.5) represents an horizontal
line cutting the set G2 with the largest possible value of ¢, therefore touching G at
a single point, its upper corner corresponding to a rank-one laminate (see Fig. 4.1 or
[1, p. 121]). Thus, (5.4) admits a unique maximizer (u, us) = ()\;7)\3). If we now
consider problem (5.2), then the associated line, uaA2 + 1AL = ¢, is almost horizontal
for large n, thanks to the convergence (5.1). Since the tangent slopes at the upper
corner of G2 are neither zero nor infinity, as in the preceding case, (5.2) has a unique
maximizer too which is again a first-order laminate.

Notice also that for N = 2, problem (5.2) has been solved explicitly in Lemma
4.10. Indeed, since (A\L,A2) — (0,)) as n — 0, the inequalities of the first regime
in Lemma 4.10, i.e. AL > 0 and /AL(k2 — A;) > /A2(k2 — AJ) can not hold
simultaneously as soon as n is large enough. The second regime is also excluded since
by assumption A2 is positive for large n. Therefore, for n large enough, the maximum
in (5.4) is reached for (u1, pu2) = (A, , A§) and corresponds to a rank-1 laminate.

The above geometric argument also works in higher dimensions. The reason is
that the tangent planes to any smooth curved surface lying on the boundary of G’
are not horizontal (neither vertical by the way) so that the (almost) horizontal planes
associated with (5.2), as described above, cannot be tangent to any of the smooth
curved part of the boundary of GJ'. The only difference with respect to the two-
dimensional case is that for N > 3 the solution of (5.2) may be not unique and
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optimal laminates of rank higher than one can appear. For instance, in the case
N = 3, it is clear that if M, is horizontal (i.e., A, = A2 = 0), then every point
belonging to the flat surface which contains the points A and B in Figure 5.1 is a
solution of (5.2). This face is made of rank-2 laminates.

Fie. 5.1. Picture of the set GS.

Therefore, in dimension N any maximizer is a sequential laminate of rank at most
N — 1, but there exists at least one maximizer which is a rank-one laminate. 0

THEOREM 5.2. Let (01,,K7, ) be a minimizer of (4.1) and assume that the set
of points where f vanishes has zero measure. For a.e. x € () there ewxists a positive
time Ty, = Ty, (z) such that for T, > T,,, Kr. (z) is a laminate of rank at most
N —1.

Proof. We proceed in three steps:

Step 1: energy estimates for the solutions u (¢, z) and p (¢, z) of (2.3) and (4.3),
respectively, for f = f (z) € L?(Q) and ug € L* ().

With the change 7 = % in the time variable, systems (2.3) and (4.3) transform,
respectively, into

B (r,2) — div (K* () Vi (r,2)) = f (z) in

(0,1) x ©
u=0 on (0,1)xd (5.6)
w(0,z) = up (x) in Q
and
W5 (7, 2) — div (K* (2) VP (r,2)) = div (K* (z) Vi (r,2)) in (0,1) x Q
p=0 on (0,1) x 9Q
5(17 l‘) =0 in Q,
(5.7)

where @ (7,2) = u(t,x) and p(7,2) = p (¢, ) . The associated matrix Mr takes then
the form

My (z) = —/O Vu(r,z) © (2Vp(r,z) + Vu(r,z))dr, a.e. z €.
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Now let @ (z) and p(x) be the weak solutions of the stationary equations

_div(K*Va)=f i Q
{ u=20 on 0Of) (5.8)
and
—div (K*Vp) = div (K*Va) = —f in Q
p=20 on 09,
respectively, so that w = —p. Then, the differences v (7,2) = u(r,2) — u(x) and
g=p(r,z) —p(x) solve
B*T(:c) V' (1,z) — div (K* (z) Vo (1,2)) =0 in  (0,1) x Q
v=0 on (0,1) x 99 (5.9)
(0,2) = up () —u(x) in Q
and
—EW ¢ (7, 2) - div (K* (2) Vg (r,2)) =0 in  (0,1) x Q
g=0 on (0,1) x 99
(1,z) =u(x) in Q.

Multiplying the PDE in system (5.9) by v and integrating by parts we get the identity

/B* da:+/ /K*Vv Vodzdr = 1T/Qﬁ (z) (uo (x) —w(z)) dz.

Taking into account the ellipticity assumption on the tensor K* and the Poincaré
inequality one easily obtains

C

Iollea(0.1)x 3 @) = 77 (5.10)

Here and in the sequel, C' stands for a positive constant which may change from line
to line, but which is independent of T

Similarly,
||Q||L2((0 1)x H( Q)) T (5.11)
Step 2: consider the matrix M., = Vu ® Vu. Then we have the estimate
C
/ | My (x oo (@) dx < T (5.12)

Indeed, after some simple algebra we have

1
MT—MOO:—/ V@+v)oVE2@+q +u+v)+Vuo Valdr
0

1 1
=—Vu®V(2/ da)—/ VooV (v+2q)dr.
0 0
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Since fol qdr satisfies
div [K°V (fy )| =G @
fol qdT =0 on 99,

again by Poincaré’s inequality,

C
< —. .
<7 (5.13)

1
/ qdr
0

Therefore, from (5.10), (5.11) and (5.13), by the Cauchy-Schwartz inequality, we
obtain (5.12). In particular,

Hg ()

lim My, (£) = My (), a.e. x € Q. (5.14)

Ty —00

Step 3: conclusion. We first note that our assumption on f implies that the set
wo={z € Q:Vu(x)=0}

has zero Lebesgue measure. Indeed, this is a consequence of the weak form of (5.8).

Thus, for almost every z € Q we have V@ (x) # 0. Since the matrix My (z) has
rank 1 and is non-negative, by Lemma 5.1, there exists T,,, = Ty, («) such that for
T, > T, any solution of

ma. K°: My (z 5.15
ot KO M, () (515)

is a laminate of rank less than or equal to N — 1. In particular, K}, (x) also is. As
shown in the proof of Lemma 5.1, in the two-dimensional case it is in fact a first-order
laminate. For N > 3, if for some index 0 < ¢ < N —1 the corresponding eigenvalue )\fI
of My, (z) is different from zero, then again by Lemma 5.1, (5.15) has only a solution
which corresponds to a first-order laminate. However, if \{, = 0for all 0 <i < N —1,
then we can only ensure that K7, () is a laminate of rank less than or equal to N —1.
]

6. Numerical experiments. In this section, we present a numerical approxi-
mation of (RPr) and then study for N = 2 the behavior of the solution (67, K7) with
respect to T in three specific examples.

6.1. Numerical resolution of (RPr). In Section 4 we proposed an algorithm,
based on the optimality conditions. Actually, a tricky part of this so-called optimality
criteria algorithm is to find a root 6 of the equation Qr(x) = 0 where Qr is defined
by (4.8). In order to avoid this difficulty, as well as for stability reasons, we modify
this algorithm so that only K7. is updated thanks to the optimality condition (4.11),
while 0 is updated by a descent gradient method. For N = 2, we refer to [11] for a
pure gradient method based on a different parametrization of the optimal tensor K7.
Relation (4.2) gives the descent direction for 6:

1 T
50 = f?/o {K;,evu. (Vu+2Vp) = 2(B2 — fr)u'p|dt =1 in €, (6.1)

where K7, denotes the first derivative of K7. with respect to 6. Consequently, for any
function n € L*>°(Q, R*) with ||n]| 1~ o) small enough, we have T7(0+n80) < Tr(0).
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The multiplier [ is determined writing that (for any n € L>(Q,R™)) [|04100| 11() =
L|Q2|, which leads to

Jo0de — LIQ| =T [0 i | K4 gV (Vu+2Vp) — 2(62 — p1)u/p| dt dx
S ndx
(6.2)

At last, the function 7 is chosen so that 6 + ndf € [0,1] for all x € Q. A simple and
efficient choice consists in taking n = ef(1 — 6) with e positive and small enough (we
refer to [10] for more details).

[ =

In the sequel we denote by (vi,vs,---,vn) the eigenvalues of K7 and P =
(€1,€2,+ - ,en) the matrix of the corresponding eigenvectors so that K3 = PArP*
with A7 = diag(vy,ve,- -+ ,vx) and P! the transpose matrix of P.

Our algorithm to solve the relaxed problem (RPr) is as follows: given T' > 0,
L€ (0,1),Q CR? ug, f € L?(2) and a small convergence threshold 0 < e << 1,
e Initialization: take 6. = L, A} € 0Gy, P° the identity matrix, so that
K3 = POAG.(PO).
e For n > 1, iteration until convergence, which is detected when

77 (0771 Ko t) = T (07, K°0) | < el Tp (03, K7°) |

1. Compute the state u™ and the adjoint state p™ by solving (2.3) and (4.3)
respectively with the previous design parameters 0;1_1 and K}’"_l.

2. Compute the descent direction 66(u™,p™) given by (6.1) and the multiplier
" given by (6.2). The first derivative of K'“"i1 with respect to 6 is given
by K7 -1 PA; 91Pt where the diagonal matrix A7 91 is obtained by
dlfferentlatlng the eigenvalues v;,7 = 1,..., N with respect to 6 (given
explicitly, for N = 2, by the formula (4.16)). Then, update the density
in Q:

03 = 0371+ 0of(u", p").

3. Compute the matrix M7 (z) given by formula (4.5) which depends on
(u™,p"), its eigenvalues pf, ul, -, p% and corresponding eigenvectors
er,el, - ,e%, and set P™ = (e}, el,--- ,eR).

4. Solve the linear optimization problem maxgocg,, K° : M7 (using, for
N = 2, the formula (4.16)) yielding the maximizer A} € 0Ggn and
K7™ = PrAL(P™).

Since the optimality condition is used to update the variable K7:", we highlight
that there is a priori no guarantee that this algorithm produces a minimizing sequence
(0%, K™) for the functional J. In practice, we will observe however such a property.

Notlce that the expression for K" in Step 4 saturates Hashin-Shtrikman bounds
and therefore we may compute the derivative of K" with respect to 6. The par-
tial differential equations (2.3) and (4.3) are approximated with a @ finite element
method for the spatial discretization and with an implicit Euler scheme for the time
discretization. In all our experiments, we take simply Q@ = (0,1) x (0,1) and use
a uniform quadrangular mesh. The parameters for the meshes are h = 1/100 and
dt = h/2 for the spatial and time discretization respectively.
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6.2. Example 1: Uniform heat source f. A well-known and addressed ex-
ample in the elliptic situation corresponds to a uniform load (see for instance [4]): we
therefore take f = 11in Q = (0,1)2. We put ug =0, 31 = B2 = 1,ky = 0.07, kg = 2ky,
and take a volume fraction for the material (31, k1) equal to 50% corresponding to
L =0.5in (1.2). Table 6.1 reports the value of the optimal cost J7.(6r, K7) for increas-
ing values of T. The column T = oo corresponds to the value of J% (0, K% ) defined
in Theorem 2.2. As expected, the cost converges exponentially towards J* (0, KZ,)-
Figure 6.1 depicts the iso-values in Q of the corresponding density 6p. In particular,
we check that in the elliptic case - corresponding to the problem (RPx)-, we obtain
the well-known cross geometry (see Figure 6.1 bottom right). We observe that the
composite zone {x € 2,0 < Op(z) < 1} is rather small. For T = 0.5,1,1.5,2,4,
the eigenvalues p?, uf of the matrix My satisfy ulpd < 0 at every node of the
mesh. Consequently, at these nodes, the optimal micro-structure corresponds to a
rank-one laminate. Figure 6.3 depicts the direction of lamination given by the first
eigenvector of the optimal matrix My for T = 2 and T = oo, of interest only in
{r € Q,0 < 6(x) < 1}. We observe that for T large, the optimal direction of lam-
ination is close to the direction of lamination associated with the elliptic case. The
knowledge of the optimal density and of the lamination allows to construct a mini-
mizing sequence of classical designs (see [14]). Figure 6.2-left depicts for T' = 4 the
evolution of the cost J5(0%, K3"), and Figure 6.2-right shows the evolution of the
function ¢t — 1/2 [, K3 Vu(t) - Vu(t)dx for 0 < t < 4. These results are obtained with
the initialization (v{,v9) = (A\;,As) and seems to be independent on the initializa-
tion: for instance, we obtain the same result (K7, 0r) if we consider (v9,v9) € Gy,

th 0 — 4,0
with v] = vg.

TaBLE 6.1
(Example 1) - Value of the optimal cost J.(0r, K}) vs. T.

T=05 | T=1 | T=2 | T=4 | "I'=0"
6.17x107% [ 1.26 x 107" | 1.99 x 1071 | 249 x 10~" | 2.93 x 10~ !

6.3. Example 2 : Non-uniform heat source f. We now consider a non-
uniform source term f with both positive and negative values

f(z) = X(o.os,0.15)x(0.1,0.9)(@ - X(O.85,0.95)><(0.1,0.9)(x) (6.3)

with a support arranged as two vertical strips, positive on the left, negative on the
right. From a physical point of view, we expect to have the good conductor mainly
placed between those two strips. However, if the proportion of the good conductor
phase is not large enough, it should mix itself with the other phase as a rank-one
laminate with horizontal layers. This example has thus been cooked up to get an
optimal design with large zone of composites. We take k; = 0.035 and ky = 2k,
while the rest of numerical values are unchanged. Figure 6.4 depicts the iso-values of
the optimal density 67 as well as the direction of lamination, for 7' = 0.25,0.5,1,2,4
and T = oco. We observe a transition in the direction of lamination : for 7' small,
the laminates are oriented along (Ox1), while for T large, the laminates are oriented
along (Oxs). Corresponding numerical values of the cost are given in Table 6.2. This
example produces a larger zone of composite than the first one, especially for extreme
values of T. However, we observe once again numerically that the corresponding
optimal tensor K7 is recovered by a laminate of rank one.
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Fic. 6.1. (Example 1) - Iso-values of 01 in Q: the white color corresponds to the smallest
conductivity. From left to right and top to down, T =05, T =1,T =15, T =2, T = 4 and the
limit elliptic case "I’ = oo ".

10 20 30 40 60 70 80 0 100 o 05 1 15 2 25 3 35 4

50
Iteration t

Fic. 6.2. (Ezample 1) - For T = 4, convergence history n — Jx(0%, K1") (Left) and
evolution of the stored energy t — 1/2 [, K5 Vu(t) - Vu(t)dz (Right).
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1 1 -
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x1 x1

Fia. 6.3. (Ezample 1) - Direction of lamination for T =2 (Left) and T = oo (Right).

TABLE 6.2
(Example 2) - Value of the optimal cost J* (07, KF}) vs. T.

T=02 | T=05 | T=2 | T=4 | "T=o"
5238 x 1073 [ 7.909 x 1073 [ 1.30 x 1072 | 1.412 x 1072 | 1.540 x 102

6.4. Example 3: Interplay between f and uy - Second order laminates.
In this third example, we keep unchanged the data from the previous example, except
that we now take a non-zero initial condition

1 1
up(z) = ZX(O.2,0.8)><(0.1,0.2)(37) - ZX(OQ,O.S)X(O.S,O.Q) ()

with a support made of two horizontal strips, positive at the bottom, negative at the
top. For small enough time T, the effect of the source term is negligible and the two
phases should arrange themselves between these two horizontal strips as a rank-one
laminate with vertical layers. Therefore, as the final time T increases, we expect a
transition from vertical layers to horizontal ones and possibly the occurrence of some
rank-two laminates. Our numerical experiments are in agreement with this prediction.
Figure 6.5 depicts the iso-values of the optimal density for 7' = 0.125,0.25,0.5 and
T = 1. The subset of 2 corresponding to second order laminates is plotted on Figure
6.6. The subset of rank-two laminates is obtained from the optimality condition
(4.16) evaluated at each node of the spatial mesh. Finally, Figure 6.7 depicts the first
eigenvector of My which gives the orientation of the optimal microstructure.

TaBLE 6.3
(Example 3) - Value of the optimal cost J*(0r, KT}.) vs. T.

T=0125 | T=05 | T=1 | T=4 | "T=o"
298 x 1072 [ 1.69 x 1072 | 1.60 x 10~* | 1.58 x 10~* | 1.54 x 102
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Fic. 6.5. (Example 3) - Iso-values of 07 in Q. From left to right and top to bottom, T =

0.125,0.25,0.5 and T = 1.
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Fic. 6.7. (Example 3) - First eigenvector of the matriz My for T = 0.125,0.25,0.5 and T = 1.
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