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Abstract

This paper is concerned with the following optimal design problem: �nd the distri-
bution of two phases in a given domain that minimizes an objective function evaluated
through the solution of a wave equation. This type of optimization problem is known to
be ill-posed in the sense that it generically does not admit a minimizer among classical
admissible designs. Its relaxation could be found, in principle, through homogenization
theory but, unfortunately, it is not always explicit, in particular for objective func-
tions depending on the solution gradient. To circumvent this di�culty we make the
simplifying assumption that the two phases have a low constrast. Then, a second or-
der asymptotic expansion with respect to the small amplitude of the phase coe�cients
yields a simpli�ed optimal design problem which is amenable to relaxation by means
of H-measures. We prove a general existence theorem in a larger class of composite
materials and propose a numerical algorithm to compute minimizers in this context. As
in the case of an elliptic state equation, the optimal composites are shown to be rank
one laminates. However the proof that relaxation and small amplitude limit commute
is more delicate than in the elliptic case.

Keywords: optimal design, H-measures, homogenization

1 Introduction

The homogenization method is one of the most successful approaches in shape and topology
optimization. Most of the literature on the subject is devoted to problems where the state
equation is stationary [1], [4], [18]. We implicitly include in this body of literature the many
works on the optimal design of structures submitted to forced vibrations (see section 2.1.2 in
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[4]), for which the state equation is of Helmholtz type, i.e. the wave equation in the frequency
domain. Very few papers are concerned with a time dependent state equation, be it the heat
equation [16] or the wave equation (in the time domain) [11], [13], [15]. One possible reason
for this lack of contributions is the additional di�culties which arise in this context. From a
theoretical point of view, we see at least two of them. First, there are no simple situations,
like single state equations in the conductivity setting or compliance minimization in the
elasticity setting, where the optimality condition helps in reducing the complexity of the
optimal microstructure. For example, optimal microstructures are unknown for any type
of objective function in the elastodynamics setting. Second, the relaxation of a gradient-
based objective function relies on a corrector result which is not available for the wave
equation except for well-prepared initial data [6]. Of course, these theoretical di�culties
have numerical counterparts and, even when the relaxed formulation is available, the optimal
microstructures are complicated, typically laminates of high rank. Therefore there is room for
a simpli�ed setting, allowing for a complete theoretical and numerical treatment. Following
the lead of [3] we suggest to consider a second order small-amplitude approximation of the
problem and to relax it by using the theory of H-measures, due to Gérard [8] and Tartar [17].
The use of H-measures for studying small-amplitude composite materials was previously
initiated by Tartar [17]: the main advantage is the induced simpli�cation in the analysis
since the necessary tools of homogenization theory are replaced by the simpler notion of
H-measures (see Remark 13 below).

Let us present our model problem which, for simplicity, is expressed for a scalar-valued
unknown, like in a conductivity model. We hasten to say that all our results are also valid
in the elasticity setting or in any other multiphysics or multiple loads setting (see Remark
16). In particular, all our numerical computations will be made for the linearized elasticity
system. We consider a smooth bounded open set Ω in RN �lled by two isotropic materials
of nearly equal conductivity or elasticity tensors. Speci�cally we consider a region with
characteristic function χ to contain a material with conductivity (or elasticity) tensor A1,
the complementary region in Ω contains a second material of conductivity (or elasticity)
tensor A0. The two tensors are assumed to be symmetric, coercive and related by the
contrast parameter η,

A1 = (1 + η)A0,

yielding the overall tensor

Aχ(x) = A0 (1− χ(x)) + A1χ(x) = A0 (1 + ηχ(x)) .

We assume the same contrast relation for the positive material densities, i.e., ρ1 = (1 + η) ρ0

and
ρχ(x) = ρ0 (1− χ(x)) + ρ1χ(x) = ρ0 (1 + ηχ(x)) .

For a given �nal time 0 < T < +∞, we consider waves propagating in the domain Ω. In
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other words, we look at the wave equation:

ρ0 (1 + ηχ)
∂2u

∂t2
− div (A0 (1 + ηχ)∇u) = f in Ω× (0, T )

u(x, 0) = uinit (x) in Ω
∂u

∂t
(x, 0) = vinit (x) in Ω

u(x, t) = 0 on Γd × (0, T )
A0 (1 + ηχ)∇u(x, t) · n̂ = 0 on Γn × (0, T ),

(1)

where Γd,Γn is a smooth partition of the boundary ∂Ω (with Γd of positive (N − 1)-
dimensional measure). Introducing the function space V , de�ned by

V = {φ ∈ H1(Ω) such that φ = 0 on Γd}, (2)

we assume that uinit ∈ V and vinit ∈ L2 (Ω) are initial data and f ∈ L2 ((0, T )× Ω) is
an applied force. As is well-known there exists a unique solution u of (1) in the space
C0 ([0, T ];V )∩C1 ([0, T ];L2(Ω)). Actually we shall assume that the initial data are smoother
for an additional regularity of solutions (see Lemma 1 and Remark 12 for details and com-
ments).

Remark 1. There is no conceptual di�culty in replacing the homogeneous boundary data
in (1) by non homogeneous Dirichlet and/or Neumann ones, having su�cient smoothness.
For the sake of clarity in the exposition we do not treat the case of inhomogeneous boundary
data.

An optimal design problem associated to the wave equation (1) is the minimization of an
objective function

inf
χ∈L∞(Ω;{0,1})

J (χ) (3)

where J(χ) depends implicitly on χ through the solution u. Two typical examples of objective
function are

J (χ) =

∫ T

0

∫
Ω

j (x, u) dxdt, (4)

and

J (χ) =

∫ T

0

∫
Ω

j (x,∇u) dxdt. (5)

In both cases we assume that the integrand j(x, λ) is a Carathéodory function, of class C2

with adequate growth conditions with respect to its second argument. Typically, we assume
that there exists a constant C > 0 such that, for any x ∈ Ω and λ ∈ R (or λ ∈ RN),

|j(x, λ)| ≤ C(|λ|2 + 1), |j′(x, λ)| ≤ C(|λ|+ 1), |j′′(x, λ)| ≤ C, (6)

where the notation ′ means derivation with respect to the second argument λ. Of course,
more subtle and less restrictive assumptions are possible. In the sequel, for the ease of
notations we shall drop the dependence on x in the de�nition of j(x, λ).
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Remark 2. Without loss of generality it is possible to add to the objective functions (4) and
(5) a similar cost at the �nal time T . On the same token we could consider an objective
function carried by a boundary integral

J (χ) =

∫ T

0

∫
∂Ω

j (x, u) dxdt.

Note however that (4) and (5) do not depend on χ. There are other di�culties in this latter
case and we refer to Remark 10 for comments on this issue. It is also common practice to
add a volume constraint on χ in the minimization (3): there is no additional di�culty in
this case.

The next section is devoted to the so-called small-amplitude approximation of (3) which
amounts to making a second-order Taylor expansion with respect to η of the state equation
(1) and of the objective functions (4) and (5). The rest of the paper is then a theoretical
and numerical study of this small-amplitude approximation. The contents of the paper is
described at the end of Section 2.

2 Small-Amplitude Approximation

The main idea of the small-amplitude approximation [17], [3], assuming that the parameter
η is small, consists of making a (formal) second order expansion in η of the solution

u(x, t) = u0(x, t) + ηu1(x, t) + η2u2(x, t) +O
(
η3
)
. (7)

We shall come back later in Section 6 to the justi�cation of this expansion and the precise
meaning of the remainder term. Plugging this expansion of u into (1) and collecting terms
of the same order of η yields the series of equations in order 1, η, and η2:

ρ0
∂2u0

∂t2
− div (A0∇u0) = f in Ω× (0, T )

u0(x, 0) = uinit (x) in Ω
∂u0

∂t
(x, 0) = vinit (x) in Ω

u0(x, t) = 0 on Γd × (0, T )
A0∇u0(x, t) · n̂ = 0 on Γn × (0, T ),

(8)



ρ0
∂2u1

∂t2
− div (A0∇u1) = −ρ0χ

∂2u0

∂t2
+ div (A0χ∇u0) in Ω× (0, T )

u1(x, 0) = 0 in Ω
∂u1

∂t
(x, 0) = 0 in Ω

u1(x, t) = 0 on Γd × (0, T )
A0∇u1(x, t) · n̂ = −χA0∇u0(x, t) · n̂ on Γn × (0, T ),

(9)
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

ρ0
∂2u2

∂t2
− div (A0∇u2) = −ρ0χ

∂2u1

∂t2
+ div (A0χ∇u1) in Ω× (0, T )

u2(x, 0) = 0 in Ω
∂u2

∂t
(x, 0) = 0 in Ω

u2(x, t) = 0 on Γd × (0, T )
A0∇u2(x, t) · n̂ = −χA0∇u1(x, t) · n̂ on Γn × (0, T ).

(10)

Obviously (8) contains no dependency upon the characteristic function χ and it admits a
unique solution u0 in the space C0 ([0, T ];V )∩C1 ([0, T ];L2(Ω)). However problems (9) and
(10) do depend upon χ and, since their right hand sides are not smooth a priori, existence
of the solutions u1 and u2 needs to be established. We postpone this matter for the moment
and refer to Lemma 3 below.

We then plug the ansatz (7) into the objective function J(χ) which we want to minimize.
We de�ne the small-amplitude objective function Jsa(χ) as its second order truncation,
namely

J (χ) = Jsa (χ) +O
(
η3
)
,

where, for the objective function (4), we have

Jsa (χ) =

∫ T

0

∫
Ω

(
j (u0) + ηj′ (u0)u1 + η2

(
j′ (u0)u2 +

1

2
j′′ (u0) (u1)2

))
dxdt, (11)

while, for the other objective function (5), we obtain instead

Jsa (χ) =

∫ T

0

∫
Ω

(
j(∇u0)+ηj′(∇u0)·∇u1+η2

(
j′(∇u0) · ∇u2 +

1

2
j′′(∇u0)∇u1 · ∇u1

))
dxdt.

(12)
Again we have to prove that formula (11) or (12) makes sense for the solutions u0, u1, u2 of
(8), (9) and (10) (see Lemma 3 below). Note that we have dropped the dependence on x for
the integrand j and its derivative for the sake of simplicity in the presentation.

We call the following minimization the small-amplitude optimization problem,

inf
χ∈L∞(Ω;{0,1})

Jsa (χ) . (13)

Here Jsa is de�ned by (11) or (12). Although (13) is a simpli�ed approximation of (3) it
is still not a well-posed problem, namely it does not admit minimizer. Indeed, minimizing
sequences of (13) do not usually converge to another characteristic function, taking only
values 0 and 1 on Ω, but rather converge (weakly) to a density, taking values in the entire
interval [0, 1]. It is thus necessary to relax the small amplitude problem (13). In the case
of elliptic PDE's, this relaxation has already been carried out in [3] using the theory of H-
measures. Section 4 is precisely devoted to a short presentation of this necessary tool which
is simpler than the full theory of homogenization. Before this Section 3 is devoted to various
necessary a priori estimates which, in particular, will justify the existence of u1 and u2, as
well as the fact that the small-amplitude objective function Jsa is well de�ned. Section 5 will
then be devoted to the relaxation of the small-amplitude optimization problem (13). The
justi�cation that (13) is an approximation of the original problem (3) at order O (η3) is the
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topic of Section 6. Compared to the elliptic case, new di�culties arise by lack of analytic
dependence of the solution u(t, x) with respect to the small-amplitude parameter η (see
Remark 5). In particular the regularity of each term ui in the ansatz (7) depends on that of
the time derivative of the previous term ∂ui−1/∂t which makes the convergence of the ansatz
(7) tricky and requires us to introduce various a priori estimates and smoothness assumptions
for the data in Section 3. Section 7 will establish optimality conditions which prove that
optimal microstructures can always be found in the class of rank-one, or simple, laminates.
Eventually Section 8 gives a numerical algorithm for computing relaxed minimizers of (13)
which is applied to some test cases in two space dimensions.

3 A Priori Estimates

We begin with classical existence and smoothness results for the solution u0 of (8). As is
well known, the regularity of the solution increases with that of the initial data and source
term.

Lemma 1. Recall that the space V is de�ned by (2). Under the assumptions

uinit ∈ V, vinit ∈ L2(Ω), f ∈ L2 ((0, T )× Ω) , (14)

there exists a unique solution u0 of (8) in the space C0 ([0, T ];V ) ∩ C1 ([0, T ];L2(Ω)).
Under the assumptions

uinit ∈ H2(Ω) ∩ V, vinit ∈ V, f ∈ H1
(
(0, T );L2(Ω)

)
, (15)

the solution u0 belongs to the space C ([0, T ];H2(Ω))∩C1 ([0, T ];H1(Ω))∩C2 ([0, T ];L2(Ω)).
Under the assumptions

uinit ≡ 0, vinit ∈ H2(Ω) ∩ V, f ∈ H2
(
(0, T );L2(Ω)

)
and f(x, 0) ∈ V, (16)

the solution u0 belongs to the space C2 ([0, T ];H1(Ω)) ∩ C3 ([0, T ];L2(Ω)).
Under the assumptions

uinit ≡ 0, vinit ≡ 0, f ∈ H3 ((0, T );L2(Ω))

f(x, 0) ≡ 0 and ∂f
∂t

(x, 0) ∈ V,
(17)

the solution u0 belongs to the space C3 ([0, T ];H1(Ω)) ∩ C4 ([0, T ];L2(Ω)).

Remark 3. The assumptions (16) and (17) are slightly non optimal for Lemma 1 but are
motivated by their later use in Lemma 4. Since we wish to avoid multiplying the number of
di�erent assumptions, we decide to have the same smoothness assumptions (15), (16) and
(17) throughout the paper. Further comments on the use of these smoothness assumptions
are made later in Remark 12.

Proof. These results are classical (see e.g. chapter 5 in volume 2 of [12] or section 7.2 of [7])
and we simply indicate the main ideas behind them. The existence of a solution u0 of (8) in
the usual energy space is of course well known under assumption (14). The result obtained
under assumption (15) is derived by writing that ∂u0

∂t
is solution in the energy space of the

wave equation obtained by time derivation of (8). Similarly, assumption (16) corresponds to
∂2u0

∂t2
being solution of a wave equation, and (17) to ∂3u0

∂t3
.
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The next step is to prove a priori estimates for u1 and u2 that will be uniform with
respect to the characteristic function χ. To this end, we prove a lemma on a priori estimates
for the solution of a generic wave equation, similar to (9) and (10), with an integer i ≥ 1,

ρ0
∂2ui
∂t2
− div (A0∇ui) = −ρ0χ

∂2ui−1

∂t2
+ div (A0χ∇ui−1) in Ω× (0, T )

ui(x, 0) = 0 in Ω
∂ui
∂t

(x, 0) = 0 in Ω

ui(x, t) = 0 on Γd × (0, T )
A0∇ui(x, t) · n̂ = −χA0∇ui−1(x, t) · n̂ on Γn × (0, T ).

(18)

We introduce the energy space ET de�ned by

ET = {ϕ such that
∂ϕ

∂t
∈ L∞

(
(0, T );L2(Ω)

)
, and ∇ϕ ∈ L∞

(
(0, T );L2(Ω)N

)
}

with the norm

‖φ‖ET
=

∥∥∥∥∂φ∂t
∥∥∥∥
L∞((0,T );L2(Ω))

+ ‖∇φ‖L∞((0,T );L2(Ω)N ).

Lemma 2. If ui−1 belongs to ET , then there exists a unique solution ui of (18) in the space
C0 ([0, T ];L2(Ω))∩C1 ([0, T ];V ′) where V ′ is the dual space of V de�ned in (2). Furthermore,
there exists a constant C(T ), which does not depend on the characteristic function χ, such
that the solution of (18) satis�es

‖ui‖L∞((0,T );L2(Ω)) ≤ C(T )‖ui−1‖ET
. (19)

If furthermore ∂ui−1/∂t belongs to ET , then there exists a unique solution ui of (18) in
the space C0 ([0, T ];V )∩C1 ([0, T ];L2(Ω)) and there exists a constant C(T ), which does not
depend on the characteristic function χ, such that the solution of (18) satis�es

‖ui‖ET
≤ C(T )

(
‖ui−1‖ET

+ ‖∂ui−1

∂t
‖ET

)
. (20)

Proof. The existence of solutions to (18) in the proposed spaces is classical [7], [12]. Multi-
plying equation (18) by ∂ui/∂t and integrating by parts yields the usual energy equality

1

2

d

dt

∫
Ω

(
ρ0

∣∣∣∣∂ui∂t
∣∣∣∣2 + A0∇ui · ∇ui

)
dx =

∫
Ω

(
−ρ0χ

∂2ui−1

∂t2
∂ui
∂t
− A0χ∇ui−1 · ∇

∂ui
∂t

)
dx.

Integrating by parts in time the last term in the above equality leads to

−
∫ T

0

∫
Ω

A0χ∇ui−1 ·∇
∂ui
∂t
dtdx =

∫ T

0

∫
Ω

A0χ∇
∂ui−1

∂t
·∇uidtdx−

∫
Ω

A0χ∇ui−1(T )·∇ui(T )dx.

By standard arguments, and using the smoothness of ui−1, we deduce from this energy
equality the estimate (20) in the energy space ET .
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If ui−1 is less smooth, namely merely belonging to ET , we need to introduce a time
regularization, de�ned by

vi (x, t) =

∫ t

0

ui(x, s) ds .

The equation satis�ed by vi is

ρ0
∂2vi
∂t2
− div (A0∇vi) = −ρ0χ

∂ui−1

∂t
+ div (A0χ∇vi−1) in Ω× (0, T )

vi(x, 0) = 0 in Ω
∂vi
∂t

(x, 0) = 0 in Ω

vi(x, t) = 0 on Γd × (0, T )
A0∇vi(x, t) · n̂ = −A0∇vi−1(x, t) · n̂ on Γn × (0, T ).

(21)

The energy estimate for (21) is obtained by multiplying it by ∂vi

∂t

1

2

d

dt

∫
Ω

(
ρ0

∣∣∣∣∂vi∂t
∣∣∣∣2 + A0∇vi · ∇vi

)
dx =

∫
Ω

(
−ρ0χ

∂ui−1

∂t

∂vi
∂t
− A0χ∇vi−1 · ∇

∂vi
∂t

)
dx.

The �rst term in the right hand side causes no problem since −ρ0χ
∂ui−1

∂t
is bounded in

L∞ ((0, T );L2(Ω)). For the second one we perform a time integration by parts to get

−
∫ T

0

∫
Ω

A0χ∇vi−1 · ∇
∂vi
∂t
dtdx =

∫ T

0

∫
Ω

A0χ∇ui−1 · ∇vidtdx−
∫

Ω

A0χ∇vi−1(T ) · ∇vi(T )dx

which can easily be bounded since ui−1 belongs to ET . Therefore we deduce estimate (19).

As a consequence of Lemma 2 we obtain the following justi�cation of all terms involved
in our small amplitude problem.

Lemma 3. Under the assumptions (15) for the data, the solution u1 of (9) belongs to the
energy space ET and the solution u2 of (10) belongs to L∞ ((0, T );L2(Ω)). Eventually, the
small amplitude objective function (11) is well de�ned and has �nite value. The same is true
for the other objective function (12) if we add a condition on the integrand j on the boundary
Γn, namely

j′(x, λ) = g(x, λ)A0λ ∀x ∈ Γn, λ ∈ RN , (22)

for some real valued function g(x, λ).

Proof. By our assumptions on the data, Lemma 1 implies that the solution u0 of (8) is
such that ∂u0

∂t
∈ ET . Applying estimate (20) of Lemma 2 implies that u1 belongs to ET .

Subsequently, estimate (19) of Lemma 2 yields that u2 belongs to L∞ ((0, T );L2(Ω)). In
view of assumption (6) it implies that the small amplitude objective function (11) is a �nite
integral. Concerning the gradient-based objective function (12), the only di�cult term is∫ T

0

∫
Ω

η2j′(∇u0) · ∇u2dxdt

8



because ∇u2 does not belong to L
∞ ((0, T );L2(Ω)N

)
. However, since u0 ∈ C ([0, T ];H2(Ω)),

then j′(∇u0) belongs to C ([0, T ];H1(Ω)) and the above integral makes sense by an integra-
tion by parts ∫ T

0

∫
Ω

η2j′(∇u0) · ∇u2dxdt = −
∫ T

0

∫
Ω

η2div (j′(∇u0))u2dxdt (23)

because of the boundary conditions for u0, u2 and (22). Therefore (12) is well de�ned and
�nite.

Remark 4. One can avoid the technical assumption (22) for the gradient-based objective
function in Lemma 3 if we replace the smoothness assumptions (15) for the data by (16).
Then, the result (28) in Lemma 4 implies directly that ∇u2 belongs to L

∞ ((0, T );L2(Ω)) and
there is no need to perform the integration by parts (23).

Remark 5. Lemma 2 suggests a lack of analyticity for the solution u of the wave equation
(1) with respect to the parameter η, at least in the energy space ET . Indeed, writing u as a
series in η,

u(x, t) =
∑
i≥0

ηiui(x, t),

estimate (20) indicates that each term ui can be controled in ET merely by ∂ui−1

∂t
, so no

convergence in ET can be expected. Let us point out that, even if (20) is not optimal (for
example, the upper bound can be evaluated in the L1-norm in time), one cannot avoid to
"lose" one derivative in the norm of ui−1 controlling that of ui. This is in sharp contrast
with the elliptic case, where the solution depends analytically on the parameter η [17], and
explains the additional di�culties in the sequel.

As a convincing example, we now show that this lack of analyticity is obvious, for any
reasonable Sobolev-type norm, on the explicit solution for a one-dimensional wave equation
with constant coe�cients on the entire line R without any source term. Indeed, in such a
case the explicit solution is given as the superposition of two waves travelling in opposite
directions

u(x, t) = a+(x− ct) + a−(x+ ct)

where the functions a± are determined by the initial data and c =
√
A/ρ is the sound speed.

Clearly, the derivatives of u with respect to the parameter c involves derivatives of a±, which
are equivalent to time derivatives of u. Thus one cannot obtain a convergent Taylor series
of u with respect to c if u merely belongs to a functional space involving a �nite number of
derivatives (as the energy space) and is not at least ini�nitely di�erentiable with respect to
(x, t).

For the reasons detailed in Remark 5 we shall need further smoothness of the solution
of (18), beyond that provided by Lemma 2. A remarkable feature of the boundary value
problem (18) is that the time derivative of its solution wi = ∂ui/∂t satis�es a system of the
same type, except with di�erent initial data. This is of course a consequence of the fact that
the characteristic function χ does not depend on time t. More precisely, for i ≥ 1, wi = ∂ui

∂t
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is formally a solution of

ρ0
∂2wi
∂t2
− div (A0∇wi) = −ρ0χ

∂2wi−1

∂t2
+ div (A0χ∇wi−1) in Ω× (0, T )

wi(x, 0) = 0 in Ω

∂wi
∂t

(x, 0) =
∂2ui
∂t2

(x, 0) in Ω

wi(x, t) = 0 on Γd × (0, T )
A0∇wi(x, t) · n̂ = −χA0∇wi−1(x, t) · n̂ on Γn × (0, T ),

(24)

with the initial velocity

∂wi
∂t

(x, 0) =
∂2ui
∂t2

(x, 0) = −χ∂
2ui−1

∂t2
+

1

ρ0

(div (A0∇ui) + div (A0χ∇ui−1)) . (25)

Similarly, the second-order time derivative zi = ∂2ui

∂t2
formally satisifes

ρ0
∂2zi
∂t2
− div (A0∇zi) = −ρ0χ

∂2zi−1

∂t2
+ div (A0χ∇zi−1) in Ω× (0, T )

zi(x, 0) =
∂2ui
∂t2

(x, 0) in Ω

∂zi
∂t

(x, 0) =
∂2wi
∂t2

(x, 0) in Ω

zi(x, t) = 0 on Γd × (0, T )
A0∇zi(x, t) · n̂ = −χA0∇zi−1(x, t) · n̂ on Γn × (0, T )

(26)

with initial position given by (25) and initial velocity

∂zi
∂t

(x, 0) =
∂2wi
∂t2

(x, 0) = −χ∂
2wi−1

∂t2
+

1

ρ0

(div (A0∇wi) + div (A0χ∇wi−1)) . (27)

Fortunately, in the sequel we need only a priori estimates for w1 and z1, which thus depends
on the smoothness of u0. We therefore require additional smoothness of the data.

Lemma 4. Under the assumptions (16) for the data, we have

‖w1‖ET
≤ C(T ) where w1 =

∂u1

∂t
. (28)

Under the assumptions (17) for the data, we have

‖z1‖ET
≤ C(T ) where z1 =

∂2u1

∂t2
. (29)

In both (28) and (29) the constant C(T ) does not depend on the characteristic function χ.

Proof. We �rst prove (28). By Lemma 1 the assumptions (16) imply that ∂w0

∂t
= ∂2u0

∂t2
∈ ET

so the source term in (24), for i = 1, belongs to the dual of ET and causes no problem. The

10



main di�culty is to evaluate the smoothness of the initial velocity (25). Using equation (9),
and since u1(x, 0) = 0, we compute

∂w1

∂t
(x, 0) =

1

ρ0

(
− χf(x, 0) + A0∇χ · ∇uinit(x)

)
. (30)

To obtain that w1 belongs to the energy space ET we must have ∂w1

∂t
(x, 0) ∈ L2(Ω) and since

χ is discontinuous and unknown, the only possibility is to assume that uinit vanishes. This
�nishes the proof of (28).

We then prove (29). The source term in (26), for i = 1, belongs to the dual of ET if
∂z0
∂t

= ∂3u0

∂t3
∈ ET . This is the case in view of Lemma 1 and our assumptions (17). The initial

position z1(x, 0) = ∂w1

∂t
(x, 0) has already been computed in (30): it further belongs to H1(Ω)

if f(x, 0) ≡ 0 because χ is discontinuous. The initial velocity is computed through equation
(24) for i = 1:

∂z1

∂t
(x, 0) =

∂2w1

∂t2
(x, 0) =

1

ρ0

(
div (A0∇w1)− ρ0χ

∂2w0

∂t2
+ div (A0χ∇w0)

)
(x, 0) .

Since w1(x, 0) = 0 and using the time derivative of equation (8) we deduce

∂z1

∂t
(x, 0) =

1

ρ0

(
− χ∂f

∂t
(x, 0) + A0∇χ · ∇vinit(x)

)
. (31)

To obtain that z1 belongs to the energy space ET we must have ∂z1
∂t

(x, 0) ∈ L2(Ω) and since
χ is discontinuous and unknown, the only possibility is to assume that vinit vanishes. This
�nishes the proof of (29).

4 A brief review of H-measure theory

We brie�y recall the de�nition of H-measures, introduced by Gérard [8] and Tartar [17].
An H-measure is a default measure which quanti�es the lack of compactness of weakly
converging sequences in L2(RN). More precisely, it indicates where in the physical space,
and at which frequency in the Fourier space, are the obstructions to strong convergence.
Since their inception H-measures have been the right tool for studying small amplitude
homogenization [17] and related optimal design problems [3]. All results below are due to
[8] and [17], to which we refer for complete proofs.

We denote by SN−1 the unit sphere in RN , C(SN−1) is the space of continuous complex-
valued functions on SN−1, and C0(RN) is that of continuous complex-valued functions de-
creasing to 0 at in�nity in RN . As usual z denotes the complex conjugate of the complex
number z. The Fourier transform operator in L2(RN), denoted by F , is de�ned by

(Fφ) (ξ) =

∫
RN

φ(x)e−2iπx·ξdx ∀φ ∈ L2(RN).

Theorem 1. Let uε = (uiε)1≤i≤p be a sequence of functions de�ned in RN with values in Rp

which converges weakly to 0 in L2(RN)p. There exists a subsequence (still denoted by ε) and
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a family of complex-valued Radon measures (µij(x, ξ))1≤i,j≤p on RN × SN−1 such that, for
any functions φ1(x), φ2(x) ∈ C0(RN) and ψ(ξ) ∈ C(SN−1), it satis�es

lim
ε→0

∫
RN

F
(
φ1u

i
ε

)
(ξ)F

(
φ2u

j
ε

)
(ξ)ψ

(
ξ

|ξ|

)
dξ =

∫
RN

∫
SN−1

φ1(x)φ2(x)ψ(ξ)µij(dx, dξ) .

The matrix of measures µ = (µij)1≤i,j≤p is called the H-measure of the subsequence uε. It is
hermitian and non-negative, i.e.

µij = µji,

p∑
i,j=1

λiλjµij ≥ 0 ∀λ ∈ Cp.

If we consider a sequence uε which converges weakly in L2(RN)p to a limit u (instead
of 0), then, applying Theorem 1 to (uε − u), and taking ψ ≡ 1, we obtain a representation
formula for the limit of quadratic expressions of uε

lim
ε→0

∫
RN

φ1φ2u
i
εu

j
ε dx =

∫
RN

φ1φ2u
iuj dx+

∫
RN

∫
SN−1

φ1(x)φ2(x)µij(dx, dξ) . (32)

Therefore the H-measure appears as a default measure which gives a precise representation
of the compactness default, taking into account the directions of the oscillation.

If some information is known on the derivatives of the sequence uε, then more can be
said on the H-measure: this is a localization principle for the support of the H-measure.

Theorem 2. Let uε = (uiε)1≤i≤p be a sequence of functions de�ned in RN with values in Rp

which converges weakly to 0 in L2(RN)p and de�nes an H-measure µ(x, ξ) = (µij(x, ξ))1≤i,j≤p.
If, furthermore, uε satis�es the constraint

p∑
j=1

N∑
k=1

∂

∂xk

(
Cjk(x)ujε

)
→ 0 in H−1

loc (Ω) strongly,

where the coe�cients Cjk(x) are continuous functions in Ω ⊂ RN , then

p∑
j=1

N∑
k=1

ξkCjk(x)µjm(x, ξ) = 0 in Ω× SN−1, for any 1 ≤ m ≤ p.

We now recall the particular case of characteristic functions [10], [17].

Lemma 5. Let χε(x) be a sequence of characteristic functions that weakly-* converges to a
limit θ(x) in L∞(Ω; [0, 1]). Then the corresponding H-measure µ for the sequence (χε − θ)
is necessarily of the type

µ(dx, dξ) = θ(x)
(

1− θ(x)
)
ν(dx, dξ)

where, for given x, the measure ν(dx, dξ) is a probability measure with respect to ξ, i.e.
ν ∈ P(Ω,SN−1) with

P(Ω,SN−1) =


ν(x, ξ) Radon measure on Ω× SN−1 such that:

ν ≥ 0,

∫
SN−1

ν(x, ξ) dξ = 1 a.e. x ∈ Ω

 . (33)
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Conversely, for any such probability measure ν ∈ P(Ω,SN−1) there exists a sequence χε,
which weakly-* converges to θ in L∞(Ω; [0, 1]), such that θ(1 − θ)ν is the H-measure of
(χε − θ).

Remark 6. In the periodic setting the notion of H-measure has a very simple interpretation
and it is often called two-point correlation function in the context of composite materials
[14]. Indeed, let u(x, y) be a smooth function de�ned on Ω × Y , with Y = (0, 1)N , such
that y → u(x, y) is Y -periodic. Assuming that

∫
Y
u(x, y)dy = 0, it is easily seen that

uε(x) = u(x, x/ε) converges weakly to 0 in L2(Ω). By using the Fourier series decomposition
in Y , the H-measure µ of uε is simple to compute. Introducing

u(x, y) =
∑
k∈ZN

û(x, k)e2iπk·y,

we deduce

µ(x, ξ) =
∑

k 6=0∈ZN

|û(x, k)|2δ
(
ξ − k

|k|

)
,

where δ is the Dirac mass.

5 Relaxed Formulation

The optimization problem (13) is not well-posed in the sense that it usually does not admit a
minimizer. Indeed, a minimizing sequence of characteristic functions χε does not necessarily
converge to a characteristic function χ0, but rather to some limit density θ. In this section
we give the relaxed formulation of (13) using the theory of H-measures. In other words
we compute the limit, as ε goes to 0, of the state equations (9), (10) and of the objective
functions (11), (12), evaluated for the characteristic function χε.

We shall pass to the limit �rst in the state equations, which requires little smoothness of
the data, and second in the objective functions, which is more demanding on the regularity
of the data. We begin with a lemma on a priori estimates for the solutions of (9) and (10).

Lemma 6. For any sequence of characteristic functions χε we denote by uε1 and uε2 the
respective solutions of (9) and (10). Under the assumptions (15) for the data, there exists a
constant C(T ), which does not depend on ε, such that

‖uε1‖ET
≤ C(T ), (34)

and
‖uε2‖L∞((0,T );L2(Ω)) ≤ C(T ). (35)

Proof. The present lemma is just a combination of Lemmas 3 and 2. In particular, estimates
(34) and (35) are simple consequences of Lemma 2.

Lemma 7. Assume that the data satisfy the smoothness assumption (15). For any sequence
of characteristic functions χε there exist a subsequence and limits θ ∈ L∞ (Ω; [0, 1]) and
ν ∈ P(Ω,SN−1), de�ned by (33), such that:

χε ⇀ θ weakly * in L∞ (Ω; [0, 1]) and θ(1− θ)ν is the H-measure of (χε − θ) .
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Furthermore, for the same subsequence,

uε1 ⇀ u1 weakly in ET and uε2 ⇀ u2 weakly in L∞
(
(0, T );L2(Ω)

)
,

where u1 and u2 are the solutions of

ρ0
∂2u1

∂t2
− div (A0∇u1) = −ρ0θ

∂2u0

∂t2
+ div (A0θ∇u0) in Ω× (0, T )

u1(x, 0) = 0 in Ω
∂u1

∂t
(x, 0) = 0 in Ω

u1(x, t) = 0 on Γd × (0, T )
A0∇u1(x, t) · n̂ = −θA0∇u0(x, t) · n̂ on Γn × (0, T ),

(36)



ρ0
∂2u2

∂t2
− div (A0∇u2) = −ρ0θ

∂2u1

∂t2
+ div (θA0∇u1)

−div (θ (1− θ)A0MA0∇u0) in Ω× (0, T )
u2(x, 0) = 0 in Ω

∂u2

∂t
(x, 0) = 0 in Ω

u2(x, t) = 0 on Γd × (0, T )
A0∇u2 · n̂ = −θA0∇u1 · n̂+ θ (1− θ)A0MA0∇u0 · n̂ on Γn × (0, T ).

(37)

Here M is the second-order moment matrix of the H-measure ν, de�ned by

M =

∫
SN−1

ξ ⊗ ξ
ξ · A0ξ

dν (ξ) . (38)

Remark 7. The matrix M is the "trace" of the microstructure built by the sequence χε.
It is what remains from the homogenized or e�ective tensor after making a small-amplitude
expansion (see (66) and Remark 13 for more details).

Proof. The zero-order equation (8) does not involve χε and it is obvious to pass to the
limit, by weak convergence, in (9) to obtain (36). With the bounds established in Lemma
6, we focus our attention on the limit of the second-order equation (10). We decompose the
solution uε2 = ûε2 + ǔε2 in two terms which are respectively solutions of

ρ0
∂2ǔε2
∂t2
− div (A0∇ǔε2) = −ρ0χ

ε∂
2uε1
∂t2

in Ω× (0, T )

ǔε2(x, 0) = 0 in Ω
∂ǔε2
∂t

(x, 0) = 0 in Ω

ǔε2(x, t) = 0 on Γd × (0, T )
A0∇ǔε2(x, t) · n̂ = 0 on Γn × (0, T ),

(39)

and 

ρ0
∂2ûε2
∂t2
− div (A0∇ûε2) = div (A0χ

ε∇uε1) in Ω× (0, T )

ûε2(x, 0) = 0 in Ω
∂ûε2
∂t

(x, 0) = 0 in Ω

ûε2(x, t) = 0 on Γd × (0, T )
A0∇ûε2(x, t) · n̂ = −A0χ

ε∇uε1 · n̂ on Γn × (0, T ).

(40)
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It is clear from the proof of Lemma 2 that ûε2 and ǔε2 satisfy the same a priori estimate as
uε2 in Lemma 6.

It is easy to pass to the limit by standard weak convergence in (39) since, for any smooth
test function ψ(t, x) with compact support in R+ × Ω, its source term satis�es∫ ∞

0

∫
Ω

ρ0χ
ε∂

2uε1
∂t2

ψ dtdx =

∫ ∞
0

∫
Ω

ρ0χ
εuε1

∂2ψ

∂t2
dtdx

and we can pass to the limit since uε1, being bounded in ET , is compact in L2 ((0, T )× Ω).
To pass to the limit in (40) we introduce time averages, de�ned for any ϕ(t) ∈ C∞0 (R+),

by

Û ε
2 =

∫ ∞
0

ûε2ϕdt , U ε
1 =

∫ ∞
0

uε1ϕdt.

From (40) we deduce the following elliptic equation for Û ε
2

−div
(
A0∇Û ε

2

)
= div (A0χ

ε∇U ε
1 )− ρ0

∫ ∞
0

∂2ϕ

∂t2
ûε2dt in Ω

Û ε
2 = 0 on Γd

A0∇Û ε
2 · n̂ = −A0χ

ε∇U ε
1 · n̂ on Γn.

(41)

Lemma 6 implies that the sequence U ε
1 is bounded in H1(Ω) while Û ε

2 seems to be just
bounded in L2(Ω). However, thanks to the usual elliptic a priori estimate for (41), we obtain
an improved estimate which is that Û ε

2 is bounded in H1(Ω).

By Lemma 6 the second source term, ρ0

∫∞
0

∂2ϕ
∂t2
ûε2dt, is bounded in L2(Ω) and thus

compact in V ′ (the dual of V de�ned in (2)). The �rst source term in (41) is more delicate
since it is the product of two weakly converging sequences.

From (9) we also deduce an elliptic equation for U ε
1 which is

−div (A0∇U ε
1 ) = div (A0χ

ε∇U0)− ρ0χ
ε

∫ ∞
0

∂2u0

∂t2
ϕdt− ρ0

∫ ∞
0

∂2ϕ

∂t2
uε1dt in Ω

U ε
1 = 0 on Γd

A0∇U ε
1 · n̂ = −A0χ

ε∇U0 · n̂ on Γn.

(42)

We again decompose U ε
1 = Û ε

1 + Ǔ ε
1 where Ǔ ε

1 is compact in H1(Ω) and Û ε
1 depends linearly

on χε through 
−div

(
A0∇Û ε

1

)
= div (A0χ

ε∇U0) in Ω

Û ε
1 = 0 on Γd

A0∇Û ε
1 · n̂ = −A0χ

ε∇U0 · n̂ on Γn.

(43)

By using the theory of H-measures we can link the oscillations of ∇Û ε
1 and χε through a

zero-order pseudo-di�erential operator. According to Lemma 3.5 in [3] (which was devoted
to the same problem in the elliptic case), we claim that the weak L2-limit of χε∇U ε

1 is given
by

χε∇U ε
1 ⇀ θ∇U1 − θ(1− θ)MA0∇U0 weakly in L2(Ω)N ,
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where the matrix M is the second order moment of the H-measure of χε, as de�ned by (38).
We remark that M is independent of the time averaging function ϕ(t). It implies that the
weak limit of (41) is
−div

(
A0∇Û2

)
= div (A0θ∇U1)− div (θ(1− θ)A0MA0∇U0)− ρ0

∫ ∞
0

∂2ϕ

∂t2
u2dt in Ω

Û2 = 0 on Γd
A0∇Û2 · n̂ = −A0θ∇U1 · n̂+ θ(1− θ)A0MA0∇U0 · n̂ on Γn.

(44)

Recombining Û2 with Ǔ2 and eliminating the test function ϕ(t) we recover the second-order
limit system (37) above.

Remark 8. The above analysis could also be accomplished by taking the Laplace transform of
the series of PDEs (8-10) and passing to the limit as ε goes to zero in the frequency domain.

We now pass to the limit in the objective functions and consider �rst the case of an
objective function depending on the state u itself and not on its gradient (the opposite case
follows).

Lemma 8. Assume that the data satisfy the smoothness assumption (15). Take a sequence
{χε}ε>0 such that χε ⇀ θ weakly * in L∞ (Ω), and the H-measure of (χε − θ) is θ(1 − θ)ν.
Then, for the objective function (11), we have

lim
ε→0

Jsa (χε) = J∗sa (θ, ν) ,

where

J∗sa (θ, ν) =

∫ T

0

∫
Ω

(
j(u0) + ηj′(u0)u1 + η2

(
j′(u0)u2 +

1

2
j′′(u0)(u1)2

))
dxdt, (45)

and u0, u1, and u2 are the unique solutions to (8), (36), and (37) respectively.

Proof. For a sequence of characteristic functions χε we denote by uε1 and uε2 the respective
solutions of (9) and (10). The objective function (11) reads

Jsa (χε) =

∫ T

0

∫
Ω

(
j (u0) + ηj′ (u0)uε1 + η2

(
j′ (u0)uε2 +

1

2
j′′ (u0) (uε1)2

))
dxdt. (46)

Thanks to Lemma 7 we can pass to the limit in (46) by weak convergence for uε2 in L
∞ ((0, T );L2(Ω))

and by strong convergence of uε1 in L
2 ((0, T )× Ω) (because of the compact embedding of the

energy space ET in which uε1 is bounded) to obtain the relaxed objective function (45).

Lemma 9. Assume that the data satisfy the smoothness assumption (16). Take a sequence
{χε}ε>0 such that χε ⇀ θ weakly * in L∞ (Ω), and the H-measure of (χε − θ) is θ(1 − θ)ν.
Assume that the integrand j satis�es assumption (22) on the boundary Γn. Then, for the
objective function (12) , we have

lim
ε→0

Jsa (χε) = J∗sa (θ, ν) ,
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where

J∗sa (θ, ν) =

∫ T

0

∫
Ω

(
j(∇u0) + ηj′(∇u0) · ∇u1 + η2j′(∇u0) · ∇u2

+
1

2
η2 (j′′(∇u0)∇u1 · ∇u1 + θ(1− θ)A0NA0∇u0 · ∇u0)

)
dxdt,

(47)

where N(x) is a matrix de�ned by

N =

∫
SN−1

j′′(∇u0)ξ · ξ
(A0ξ · ξ)2

ξ ⊗ ξ dν(ξ) (48)

and u0, u1, and u2 are the unique solutions to (8), (36), and (37) respectively.

Remark 9. The matrix N is the "trace" of the ampli�cation factor in the gradient caused by
the microstructure built by the sequence χε. It is what remains from the notion of corrector
in homogenization theory after making a small-amplitude expansion. Recall that correctors
are necessary to get a strong convergence of the solution gradient which otherwise is merely
weak (see [1], [18] if necessary).

Proof. For a sequence of characteristic functions χε, denoting by uε1 and uε2 the respective
solutions of (9) and (10), the objective function (12) reads

Jsa(χ
ε) =

∫ T

0

∫
Ω

(
j(∇u0)+ηj′(∇u0)·∇uε1+η2

(
j′(∇u0) · ∇uε2 +

1

2
j′′(∇u0)∇uε1 · ∇uε1

))
dxdt.

(49)
To pass to the limit in the third term of (49) we perform an integration by parts, like in
Lemma 3 under the technical assumption (22),∫ T

0

∫
Ω

j′(∇u0) · ∇uε2 dxdt = −
∫ T

0

∫
Ω

div (j′(∇u0))uε2 dxdt

and we use the weak convergence of uε2 as given by Lemma 7. To pass to the limit in the
fourth term of (49) we use again H-measure theory but, contrary to the simple proof of
Lemma 7, we need to compute the H-measure of ∇uε1 in terms of that of χε and not merely
the H-measure of a time average of ∇uε1. The argument is thus a little bit more involved
and requires the additional smoothness provided by assumption (16).

We introduce the vector-valued sequence gε(t, x) of the partial derivatives of uε1 plus the
characteristic function χε

gε =

(
∂uε1
∂t

,
∂uε1
∂x1

, · · · , ∂u
ε
1

∂xN
, χε
)

and for the ease of notations we shall denote the time t by x0. Similarly the Fourier dual
variable of t will be denoted by ξ0. Although gε(t, x) is de�ned on R+ × Ω we extend
it by 0 outside Ω and by solving backward the wave equation (9) for negative time, so
we may consider it as a bounded sequence in L2(RN+1)N+2. In truth, gε is bounded in
L∞(R;L2(RN))N+2, but multiplying it by a cut-o� function ϕ(t) ∈ C∞c (R) yields the required
L2 bound and, since (49) is an integral on a �nite time interval, this cut-o� trick is enough
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to pass to the limit (we do not give all the details to simplify the exposition). We apply the
de�nition of H-measures to this sequence gε (with p = N + 2 and replacing RN by RN+1

in Theorem 1) and it yields, after substraction of its weak limit and up to a subsequence,
a H-measure µ = (µij(x̃, ξ̃))1≤i,j≤N+2 with x̃ = (t, x) = (x0, x1, · · · , xN) ∈ RN+1 and ξ̃ =
(ξ0, ξ) = (ξ0, ξ1, · · · , ξN) ∈ SN .

Recall that χε(x) does not depend on time and, by Lemma 4, our assumption (16) implies

that the sequence wε1 =
∂uε

1

∂t
is uniformly bounded in the energy space ET . This implies in

particular that the sequence ∂gε

∂t
is bounded in L2(RN+1)N+2. Applying the localization

principle of Theorem 2 we deduce that

ξ0µ(x̃, ξ̃) = 0 in RN+1 × SN ,

which implies that the support of the H-measure µ is concentrated on the hyperplane {ξ0 =
0} (in other words, there are no oscillations in the time variable x0). We now adapt the
proof of Lemma 3.10 in [17] to our wave equation (9) where, contrary to the case of Lemma
3.10 in [17], the source term is converging weakly (and not strongly) in H−1

loc (RN+1). First,
the compatibility conditions between the �rst (N + 1) components of gε, namely

∂gεi
∂xk

=
∂gεk
∂xi

0 ≤ i, k ≤ N,

imply by virtue of Theorem 2 that ξkµij = ξiµkj for any j ∈ {1, 2, · · · , N+2}. By a standard
algebra (if necessary, see the proof of Lemma 3.10 in [17]) we deduce the following form for
the hermitian measure µ

µ =

(
ξ ⊗ ξ κ ξα
ξTα θ(1− θ)ν

)
(50)

where κ(x̃, ξ̃) is a scalar real non-negative H-measure, α(x̃, ξ̃) is a possibly complex-valued
scalar H-measure, and µN+2,N+2 = θ(1− θ)ν is just the H-measure of χε. Second, we apply
again Theorem 2 to the conservation equation deduced from (9)

ρ0
∂gε0
∂x0

− div
(
A0(gε1, · · · , gεN)T

)
= −ρ0χ

ε∂
2u0

∂t2
+ div (A0χ

ε∇u0) .

After substraction of its weak limit, remarking that χε converges strongly in H−1(RN+1), we
obtain, for any k ∈ {1, 2, · · · , N + 2},

ρ0ξ0µ0k −
N∑

i,j=1

(A0)ijξiµjk =
N∑

i,j=1

(A0)ijξi
∂u0

∂xj
µN+2,k. (51)

Taking into account the structure (50) of µ, we deduce from (51), for 1 ≤ k ≤ N + 1,(
ρ0(ξ0)2 − A0ξ · ξ

)
ξkκ = A0∇u0 · ξ ξkα, (52)

while for k = N + 2 we obtain(
ρ0(ξ0)2 − A0ξ · ξ

)
α = A0∇u0 · ξ θ(1− θ)ν. (53)
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Since the support of µ, and thus of κ and α, are restricted to the hyperplane {ξ0 = 0}, we
can simply cancel the term (ξ0)2 in (52) and (53). We also check that α is a real-valued
measure and combining (52) and (53) we deduce the following relation between κ and ν

κ(x̃, ξ̃) = θ(1− θ)
(
A0∇u0 · ξ
A0ξ · ξ

)2

ν(x, ξ)δ(ξ0) (54)

where δ is the usual Dirac mass. From (54) we thus obtain the H-measure of ∇uε1 =
(gε1, · · · , gεN)T which is

ξ ⊗ ξκ = θ(1− θ)
(
A0∇u0 · ξ
A0ξ · ξ

)2

ξ ⊗ ξ ν(x, ξ)δ(ξ0).

Therefore, the limit of ∫ T

0

∫
Ω

j′′(∇u0)∇uε1 · ∇uε1 dxdt

is∫ T

0

∫
Ω

j′′(∇u0)∇u1 · ∇u1 dxdt+

∫ T

0

∫
Ω

∫
SN−1

θ(1− θ)j′′(∇u0)ξ · ξ
(
A0∇u0 · ξ
A0ξ · ξ

)2

dν(x, ξ) dt

which is precisely the last line of (47) with formula (48).

Theorem 3. Under the respective assumptions of Lemmas 8 and 9 (depending on our choice
of objective function), the relaxation of (13) is

min
(θ,ν)∈U∗ad

J∗sa(θ, ν) (55)

where J∗sa is de�ned by (45), or (47), and U∗ad is de�ned by

U∗ad = {(θ, ν) ∈ L∞(Ω; [0, 1])× P(Ω,SN−1)} , (56)

where the set of probability measures P(Ω,SN−1) is de�ned in (33). More precisely,

1. there exists at least one minimizer (θ, ν) of (55),

2. any minimizer (θ, ν) of (55) is attained by a minimizing sequence χε of (13) in the sense
that χε converges weakly-* to θ in L∞(Ω), θ(1− θ)ν is the H-measure of (χε− θ), and
limn→+∞ Jsa(χε) = J∗sa(θ, ν),

3. any minimizing sequence χε of (13) converges in the previous sense to a minimizer
(θ, ν) of (55).

Proof. It is a direct consequence of the previous Lemmas. Existence of a minimizer for (55) is
obtained by taking a minimizing sequence in the original small amplitude problem (13) and
passing to the limit thanks to Lemmas 8 or 9. The fact that any minimizer of (55) is attained
by a minimizing sequence of (13) stems from Lemma 5 which states that any probability
measure, upon multiplication by θ(1 − θ) is the H-measure of a sequence of characteristic
functions χε weakly converging to a limit density θ.
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Remark 10. In the de�nitions (11) and (12) of the objective functions we assumed that the
integrand j(x, λ), with λ = u(x) or λ = ∇u(x), does not directly depend on the characteristic
function χ (but that this dependence is implicit, through the solution of the state equation).
Actually, as already remarked in [3], our approach does not apply directly to an objective
function where the integrand depends on χ as, for example,

J(χ) =

∫ T

0

∫
Ω

(
(1− χ)j0(u) + χj1(u)

)
dxdt.

Indeed, in the second-order term of (11) we would have di�culties passing to the limit, as ε
goes to zero, in the integral∫ T

0

∫
Ω

(
(1− χε)j′0(u0) + χεj′1(u0)

)
uε2 dxdt (57)

because uε2 is merely weakly converging, as well as χε. It would thus be impossible to char-
acterize the relaxed small amplitude objective function, at least in terms of H-measures.
However, if we assume that the two integrands also have a small contrast of order η, i.e.

j1(λ) = j0(λ) + ηk(λ) ∀λ ∈ R,

then, the second order expansion yields

Jsa(u0, u1, u2) =

∫ T

0

∫
Ω

j0(u0) dxdt+ η

∫ T

0

∫
Ω

(j′0(u0)u1 + χk(u0)) dxdt

+η2

∫ T

0

∫
Ω

(
j′(u0)u2 +

1

2
j′′(u0)(u1)2 + χk′(u0)u1

)
dxdt

in which the highest order terms in χ are quadratic. We can thus pass to the limit by using
H-measures as before and obtain a relaxation result that we do not detail here.

6 Error estimate

The previous section was devoted to the relaxation of the small amplitude optimization
problem (13) which is a second-order approximation of the original problem (3). However, it
is not clear if the relaxed small amplitude problem (55) is still close, up to second-order, of
the original problem (3). The purpose of the present section is thus to obtain an estimate of
the remainder between the true solution of (1) and its second-order ansatz, which has to be
uniform with respect to the characteristic function χ so it will still hold true after relaxation.
In turn, it will yield an error estimate between the original objective function and its small
amplitude approximation.

Lemma 10. De�ne the remainder, r = u − u0 − ηu1 − η2u2, where u, u0, u1, u2 are the
solutions of (1), (8), (9), (10), respectively. Under the assumptions (16) for the data, there
exists a constant C(T ), which depends neither on the characteristic function χ nor on the
contrast parameter η, such that

‖r‖L∞((0,T );L2(Ω)) ≤ C (T ) η3. (58)
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Under the assumptions (17) for the data, we further have

‖r‖ET
≤ C (T ) η3. (59)

Proof. Plugging the de�nition of r into a partial di�erential equation of the type of (1) yields

ρ0(1 + ηχ)
∂2r

∂t2
− div (A0(1 + ηχ)∇r) = −η3

[
ρ0χ

∂2u2

∂t2
− div (A0χ∇u2)

]
(60)

with homogeneous boundary and initial conditions. Equation (60) is similar to (18) so that
Lemma 2 still applies and we deduce that

‖r‖L∞((0,T );L2(Ω)) ≤ C(T )η3‖u2‖ET
,

and

‖r‖ET
≤ C(T )η3‖∂u2

∂t
‖ET

.

Applying again Lemma 2 for i = 2 we deduce that

‖r‖L∞((0,T );L2(Ω)) ≤ C(T )η3‖∂u1

∂t
‖ET

, (61)

and

‖r‖ET
≤ C(T )η3‖∂

2u1

∂t2
‖ET

. (62)

Lemma 4 furnishes a priori estimates on the time derivatives of u1, which are independent
of χ, under appropriate smoothness assumptions on the initial data. Combining them with
(61) and (62) yields the desired result.

Theorem 4. Assume that the integrand j(λ) of the objective function is a quadratic function
of λ. Under assumption (16) for the displacement-based objective function (4) and under
assumption (17) for the gradient-based objective function (5), there exists a constant C > 0
such that, for any characteristic function χ,

|J (χ)− Jsa (χ) | ≤ Cη3. (63)

In particular, it implies that∣∣∣∣ inf
χ∈L∞(Ω;{0,1})

Jsa (χ)− min
(θ,ν)∈U∗ad

J∗sa(θ, ν)

∣∣∣∣ ≤ Cη3.

Proof. Let us consider the case of the displacement-based objective function (4) (the proof
for the gradient-based objective function is similar). Since the integrand j is quadratic we
write a second order Taylor expansion for which there is no remainder

j(u) = j(u0) + j′(u0)(u− u0) +
1

2
j′′(u0)(u− u0)2.

Furthermore we have u− u0 = ηu1 + η2u2 + r, which implies

J (χ) = Jsa (χ)+

∫ T

0

∫
Ω

(
j′(u0)r +

1

2
j′′(u0)

(
2η3u1u2 + η4(u2)2 + 2ηu1r + 2η2u2r + r2

))
dt dx.

By using assumption (6) on the integrand j, assumption (16) on the data and the result
(58), we easily bound the last above integral by Cη3 which yields (63).
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Remark 11. Our assumption of a quadratic integrand j is quite restrictive but all our nu-
merical examples will be of this type. With some extra assumptions it is possible to address
the case of non-quadratic integrand as well. To avoid unnecessary technicalities we content
ourselves to indicate how Theorem 4 can be generalized with the following non-optimal hy-
potheses for the displacement-based objective function (4). Assume that the third derivative
of j exists and is uniformly bounded, and take assumption (17). We write a third order
Taylor expansion with exact remainder

j(u) = j(u0) + j′(u0)(u− u0) +
1

2
j′′(u0)(u− u0)2 +

1

6
j′′′(um)(u− u0)3,

where um(x, t) is a function taking values in the non-ordered interval
(
u(x, t), u0(x, t)

)
. We

bound the new remainder term by∣∣∣∣∫ T

0

∫
Ω

j′′′(um)(u− u0)3dt dx

∣∣∣∣ ≤ C‖u− u0‖3
L∞((0,T );L3(Ω)) ≤ C‖∇(u− u0)‖3

L∞((0,T );L2(Ω)N )

by Sobolev embedding which is valid, at least, for the space dimensions N ≤ 6. Then, since
u− u0 = ηu1 + η2u2 + r, we obtain

‖∇(u− u0)‖3
L∞((0,T );L2(Ω)N ) ≤ C (η + ‖r‖ET

)3

which yields the desired result by virtue of Lemma 10. There is certainly room for improving
the hypotheses, but we do not want to dwell on that issue.

Remark 12. The attentive reader has certainly already noticed that we used a graduation
of three di�erent smoothness assumptions on the data (initial position and velocity, applied
load). Let us draw a global picture of their respective applications so far. The minimal
hypothesis is (15) which is enough to give a meaning to the small-amplitude optimization
problem (see Lemma 3), to compute the relaxed state equations (see Lemma 7) and the
relaxed displacement-based objective function (see Lemma 8). A stronger assumption is (16)
(that unfortunately enforces a zero initial position) which is used to compute the relaxed
gradient-based objective function (see Lemma 9) and to estimate the error made in relaxing
the displacement-based objective function (see Theorem 4). The strongest assumption (17)
(that, very unfortunately, enforces both zero initial position and zero initial velocity) is used
merely for the error estimate in the relaxation of the gradient-based objective function (see
again Theorem 4).

Remark 13. As in the elliptic case (see section 3.3 in [3]), if the large amplitude opti-
mization problem (3) is amenable to homogenization, then we can prove that the processes
of relaxation and small-amplitude approximation are commutable. Indeed, our approach in
the present paper is to, �rst, make a small-amplitude expansion and, second, relax by using
H-measures. A di�erent strategy is, �rst, to relax by using homogenization theory (which is
not always possible, unfortunately), and, second, to make a small-amplitude expansion. Let
us brie�y indicate how this second method (if available) would lead to the same result. The
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homogenized version of the wave equation (1) is

ρeff
∂2ū

∂t2
− div (Aeff∇ū) = f in Ω× (0, T )

ū(x, 0) = uinit (x) in Ω
∂ū

∂t
(x, 0) = vinit (x) in Ω

ū(x, t) = 0 on Γd × (0, T )
Aeff∇ū(x, t) · n̂ = 0 on Γn × (0, T ).

(64)

Following [17] one can compute the small-amplitude approximation of the homogenized coef-
�cients. For the density we exactly �nd

ρeff = ρ0 (1 + ηθ) , (65)

while Tartar has proved in [17] that

Aeff = A0 + ηθA0 − θ (1− θ) η2A0

(∫
SN−1

ξ ⊗ ξ
ξ · A0ξ

dν

)
A0 +O

(
η3
)
, (66)

where ν is the H-measure associated to the microstructure of Aeff . In turn, it implies the
following small-amplitude expansion of the solution, ū, of (64)

ū = u0 + ηu1 + η2u2 +O
(
η3
)

where u0 is a solution of (8), u1 is a solution to (36), and u2 is a solution to (37). A similar
expansion has to be made in the relaxed objective function (which unfortunately is rarely
known !): it would yield our previous formulas (45) and (47). We skip the details and refer
to section 3.3 in [3] for the elliptic case.

7 Optimality Conditions

After establishing a relaxed formulation of our small-amplitude optimization problem, prov-
ing that it is well-posed and establishing an error estimate with the original problem, it makes
sense to �nd optimality conditions which hopefully will simplify the problem by character-
izing optimal microstructures. In Section 8 it will be an essential ingredient for numerical
gradient-based optimization methods.

We �rst consider the objective function (4), or (45), depending only on the state u and
not on its gradient. The relaxed objective function J∗sa (θ, ν) depends implicitly of the H-
measure ν through the term u2 in (45). To eliminate u2 and make the dependence on ν
explicit in J∗sa (θ, ν), we introduce a �rst adjoint state p0, de�ned as the solution of

ρ0
∂2p0

∂t2
− div (A0∇p0) = j′ (u0) in Ω× (0, T )

p0 (T ) =
∂p0

∂t
(T ) = 0 in Ω

p0 = 0 on Γd × (0, T )
(A0∇p0) · n̂ = 0 on Γn × (0, T ).

(67)
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Lemma 11. The relaxed objective function simpli�es to

J∗sa (θ, ν) =

∫ T

0

∫
Ω

(
j (u0) + ηj′ (u0)u1 +

1

2
η2j′′ (u0) (u1)2

)
dxdt (68)

+η2

∫ T

0

∫
Ω

(
−ρ0θ

∂2p0

∂t2
u1 − θA0∇u1 · ∇p0 + θ (1− θ)MA0∇u0 · A0∇p0

)
dxdt,

where M is, as before, de�ned by (38) as the second order moment of the H-measure ν.
Furthermore, there exists a function x → ξ∗(x) from Ω to the unit sphere SN−1, which
depends solely on ∇u0 and ∇p0 (and not on θ or u1) such that, for any density θ, an optimal
H-measure is the Dirac mass δξ∗, i.e.,

J∗sa (θ, δξ∗) = min
ν
J∗sa (θ, ν) .

Remark 14. The precise de�nition of δξ∗ is δξ∗(x, ξ) = δ
(
ξ − ξ∗(x)

)
. As a consequence

of Lemma 11, in the hyperbolic case as in the elliptic one, the minimizing microstructure
can be chosen as a rank-one laminate. The lamination direction of this microstructure may
vary at each point, independently of the phase fraction �eld θ. As such, the relaxed objective
function may be optimized with respect to the lamination direction separately from θ. Note
that there is no uniqueness of the optimal microstructure in general.

The fact that rank-one laminates are optimal is shared with the high porosity regime of
shape optimization studied in [5].

Proof. The only term to modify in de�nition (45) of J∗sa is∫ T

0

∫
Ω

j′(u0)u2dxdt. (69)

We multiply the adjoint equation (67) by u2 and multiply equation (37) by p0, proceed to
integrate by parts and make a comparison. This classical computation yields that (69) is
equal to ∫ T

0

∫
Ω

(
−ρ0θ

∂2u1

∂t2
p0 − θA0∇u1 · ∇p0 + θ (1− θ)MA0∇u0 · A0∇p0

)
dxdt.

In this last term we further perform another integration by parts in time and exploiting the
initial and �nal conditions p0 (T ) = ∂p0

∂t
(T ) = 0 and u1 (0) = ∂u1

∂t
(0) = 0, we obtain∫ T

0

∫
Ω

ρ0θ
∂2u1

∂t2
p0dxdt =

∫ T

0

∫
Ω

ρ0θ
∂2p0

∂t2
u1dxdt

which �nishes the proof of formula (68). This last integration by parts is useful only for
numerical considerations in order to avoid calculation of the second time derivative of the
�rst-order displacement �eld u1 which has to be evaluated at each iteration of the optimiza-
tion algorithm (see Section 8).
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It is remarkable at this point to notice that the relaxed objective function J∗sa is a�ne in
M , which is the only term containing the H-measure ν. To minimize J∗sa (θ, ν) with respect
to ν it is enough to minimize at each point x ∈ Ω the integrand∫ T

0

MA0∇u0 · A0∇p0 dt =

(∫
SN−1

ξ ⊗ ξ
ξ · A0ξ

dν(ξ)

)
·
(∫ T

0

A0∇p0 ⊗ A0∇u0dt

)
.

By linearity in ν a possible minimizer is a Dirac mass in the direction ξ∗(x) given by

ξ∗ (x) = argminξ∈SN−1

∫ T

0

(A0∇p0(x, t) · ξ)(A0∇u0(x, t) · ξ)
ξ · A0ξ

dt. (70)

We readily check from (70) that the optimal H-measure δξ∗ does not depend on θ.

Remark 15. It is possible to eliminate u1 from the O (η) term in (68) by using again the
adjoint state p0. This will simplify a bit the computation of the gradient of the objective
function. We �nd

J∗sa (θ, ν) =

∫ T

0

∫
Ω

(
j (u0)− η

(
ρ0θ

∂2u0

∂t2
p0 + θA0∇u0 · ∇p0

))
dxdt(71)

+η2

∫ T

0

∫
Ω

(1

2
j′′ (u0) (u1)2 − ρ0θ

∂2p0

∂t2
u1 − θA0∇u1 · ∇p0 + θ (1− θ)MA0∇u0 · A0∇p0

)
dxdt.

We now introduce a second adjoint state to compute the derivative of the objective
function with respect to θ. We de�ne p1, which is the solution to:

ρ0
∂2p1

∂t2
− div (A0∇p1) = −θρ0

∂2p0

∂t2
+ div (θA0∇p0) + j′′(u0)u1 in Ω× (0, T ),

p1 (T ) =
∂p1

∂t
(T ) = 0 in Ω,

p1 = 0 on Γd × (0, T ),
(A0∇p1) · n̂ = − (θA0∇p0) · n̂ on Γn × (0, T ).

(72)

Lemma 12. The relaxed objective function (45) is Fréchet di�erentiable with respect to θ
and its derivative is

∇θJ
∗
sa(θ, ν) = −η

∫ T

0

(
ρ0
∂2u0

∂t2
p0 + A0∇u0 · ∇p0

)
dt (73)

−η2

∫ T

0

(
ρ0
∂2p0

∂t2
u1 + A0∇u1 · ∇p0 − (1− 2θ)MA0∇u0 · A0∇p0

)
dt

−η2

∫ T

0

(
ρ0
∂2u0

∂t2
p1 + A0∇u0 · ∇p1

)
dt.

Proof. The fact that J∗sa is Fréchet di�erentiable with respect to θ is classical and follows
from the fact that J∗sa, de�ned by (71), is obviously di�erentiable with respect to θ ∈ L∞(Ω)
and u1 ∈ ET , taken as independent variables, and further that u1 ∈ ET is also di�erentiable
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in terms of θ ∈ L∞(Ω) (see [2] if necessary). We denote by z = 〈∂u1

∂θ
, s〉 the derivative of u1

in the direction s ∈ L∞(Ω) which satis�es
ρ0
∂2z

∂t2
− div (A0∇z) = −sρ0

∂2u0

∂t2
+ div (sA0∇u0) in Ω× (0, T ),

z (0) =
∂z

∂t
(0) = 0 in Ω,

z = 0 on Γd × (0, T ),
A0∇z · n̂ = −sA0∇u0 · n̂ on Γn × (0, T ).

(74)

The directional derivative of the cost function (71) is then

〈∇θJsa, s〉 = −η
∫ T

0

∫
Ω

(
sρ0

∂2u0

∂t2
p0 + sA0∇u0 · ∇p0

)
dxdt (75)

+η2

∫ T

0

∫
Ω

(
j′′(u0)u1z − sρ0

∂2p0

∂t2
u1 − θρ0

∂2p0

∂t2
z

− sA0∇u1 · ∇p0 − θA0∇z · ∇p0 + s (1− 2θ)A0MA0∇u0 · ∇p0

)
dxdt.

To eliminate z, we use the adjoint state p1. This classical computation, similar to the one
made in the proof of Lemma 11, gives the desired result (73).

We now turn to objective functions depending on the gradient like (5) and (47). We
introduce an alternate version of the zero-order adjoint equation

ρ0
∂2p0

∂t2
− div (A0∇p0) = −div (j′ (∇u0)) in Ω× (0, T )

p0 (T ) =
∂p0

∂t
(T ) = 0 in Ω

p0 = 0 on Γd × (0, T )
A0∇p0 · n̂ = 0 on Γn × (0, T ).

(76)

Lemma 13. The relaxed objective function simpli�es to

J∗sa (θ, ν) =

∫ T

0

∫
Ω

(
j (∇u0) + ηj′ (∇u0) · ∇u1 +

1

2
η2j′′ (∇u0)∇u1 · ∇u1

)
dxdt (77)

+η2

∫ T

0

∫
Ω

(
− ρ0θ

∂2p0

∂t2
u1 − θA0∇u1 · ∇p0 + θ (1− θ)MA0∇u0 · A0∇p0

+
1

2
θ (1− θ)NA0∇u0 · A0∇u0

)
dxdt,

where M and N are de�ned by (38) and (48) as second order moments of the H-measure
ν. Furthermore, there exists a function x → ξ∗(x) from Ω to the unit sphere SN−1, which
depends solely on ∇u0 and ∇p0 (and not on θ or u1) such that, for any density θ, an optimal
H-measure is the Dirac mass δξ∗, i.e.,

J∗sa (θ, δξ∗) = min
ν
J∗sa (θ, ν) .
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Proof. The argument to obtain (77) follows exactly the proof of Lemma 11. To prove the
second part of the lemma, we notice that the function∫ T

0

∫
Ω

θ (1− θ) (∇u0 · A0MA0∇p0 +∇u0 · A0NA0∇u0) dxdt (78)

is still linear with respect to ν and can thus be minimized by selection of a minimizing Dirac
mass, δξ∗ dependent only upon ∇u0 and ∇p0, and independent of θ.

To calculate the directional derivative of the objective, we need to introduce another
�rst-order adjoint state equation

ρ0
∂2p1

∂t2
− div (A0∇p1) = −θρ0

∂2p0

∂t2
+ div (θA0∇p0)− div (j′′(∇u0)∇u1) in Ω× (0, T ),

p1 (T ) =
∂p1

∂t
(T ) = 0 in Ω,

p1 = 0 on Γd × (0, T ),
A0∇p1 · n̂ = − (θA0∇p0 − j′′ (∇u0)∇u1) · n̂ on Γn × (0, T ).

(79)

Lemma 14. The relaxed objective function (47) is Fréchet di�erentiable with respect to θ
and its derivative is

∇θJ
∗
sa(θ, ν) = −η

∫ T

0

(
ρ0
∂2u0

∂t2
p0 + A0∇u0 · ∇p0

)
dt (80)

−η2

∫ T

0

(
ρ0
∂2p0

∂t2
u1 + A0∇u1 · ∇p0 − (1− 2θ)MA0∇u0 · A0∇p0

)
dt

−η2

∫ T

0

(
ρ0
∂2u0

∂t2
p1 + A0∇u0 · ∇p1 −

1

2
(1− 2θ)NA0∇u0 · A0∇u0

)
dt.

We safely leave to the reader the proof of Lemma 14 which is parallel to that of Lemma
12.

Remark 16. For simplicity we stated all our results so far in the case of a scalar wave
equation, but clearly we never used the scalar character of the equation. Thus the same
results hold true for the elastodynamic system of equations, including the result of Lemmas
12 and 13 that the optimal microstructure is a rank-one laminate. The same comment applies
to any multi-physics or multiple-loads problem (see [3] for details if necessary).

8 Numerical Simulations

8.1 Descent Algorithm

We now turn to the numerical minimization of the relaxed objective functions (45) and (47)
studied in the previous sections. As we have demonstrated in Section 7, this optimization
can be accomplished through the adjustment of two design parameters: the local lamination
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direction ξ(x), and the local phase fraction θ(x). The independence of the lamination direc-
tion �eld ξ from the phase fraction �eld θ allows for the exact solution of the ξ �eld before
optimization of the phase fraction. As we can see from (70) and (78), only the zero-order
displacement u0 (x, t), solution of (8), and the zero-order adjoint �eld p0 (x, t), solution of
(67) or (76), are required to calculate the optimal lamination direction. Fortunately, these
two �elds, u0 and p0 are also seen to be independent of the local phase fraction θ. We can
thus compute once and and for all the optimal lamination direction ξ at the beginning of
our algorithm. To solve the argmin problem (70) in order to �nd the optimal lamination
direction, we use a simple iterative optimization algorithm such as Conjugate Gradient.

After �nding the the optimal lamination direction, we iteratively minimize the objective
function with respect to the sole design parameter θ. We use a simple gradient descent
method based on formulas (73) or (80) for the derivative of the objective function. Volume
(weight) constraints on the design can easily be taken into account by incorporating a La-
grange multiplier into the objective function gradient. Overall the algorithm writes, at each
iteration n,

θn+1 = P
(
θn − `∇θJ

∗
sa(θ

n, δξ) + λn
)
,

where ` > 0 is the descent step, λn is the volume Lagrange multiplier and P is the projection
operator on the range [0, 1] of admissible density values. The Lagrange multiplier λn is solved
for at every step through dichotomy as in, for example, the optimization examples in [1]. We
initialize the algorithm with a constant θ0, i.e. a uniform distribution of the two phases. At
each iteration the evaluation of the gradient ∇θJ

∗
sa(θ

n, δξ) requires the �rst order �eld u
n
1 and

its adjoint pn1 which, unlike u0 and p0, are dependent upon the phase fraction θn. Therefore,
two PDE's have to be solved at each iteration. Remark however that the sti�ness and mass
matrix are always the same since the density θn appears only in the right hand side. Thus
they can be factorized once, say by Cholesky method, at the �rst iteration and stored for
the rest of the iterations.

In order to insure that the step is indeed a descent, un+1
1 and pn+1

1 are evaluated at
the proposed θn+1. If Jn+1

sa < Jnsa, the step is accepted and the descent step is possibly
increased by a factor, say 1.1. If not, the step size is reduced, say by a factor 2, the
updated θn+1 is rejected and the iteration is repeated. The algorithm terminates when further
reduction of the value of Jsa (θ) is impossible, either because the gradient ∇θJ

∗
sa(θ

n, δξ) is
very small or because the value of the step size, `, is reduced to beneath some threshold (e.g.
` ≤ 10−8). After the termination of the gradient descent algorithm we are often left with
an optimal distribution of phase fractions that contains values of θ between 0 and 1. Since
these intermediate values re�ect pointwise mixtures of the two phases which are not always
meaningful from the applied perspective, we then commence a penalization procedure on the
result of the gradient-descent with the aim of pushing the phase fraction �eld toward values
of 0 and 1. Speci�cally, denoting by θn+1

opt the optimal phase fraction de�ned by

θn+1
opt = P

(
θn − `∇θJ

∗
sa(θ

n, δξ)
)
,

we modify it to favor values close to 0 and 1

θn+1
pen = P

(1− cos
(
πθn+1

pen

)
2

+ λnpen

)
.
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Again the Lagrange multiplier λnpen is the Lagrange multiplier for the volume constraint
and is solved, as before, by dichotomy for each penalty iteration. For the examples in this
paper the results are penalized for 5 iterations. Naturally this penalization procedure stands
to perturb the design slightly from the optimal distribution of the phases achieved in the
gradient descent.

All computations of un0 , p
n
0 , u

n
1 ,p

n
1 , and θ are done by the �nite element method, using

the FreeFEM++ package [9]. The domain Ω is meshed by triangles. For each simulation
the displacement �elds (u0 and u1) and their adjoints (p0 and p1) are interpolated on P2
�nite elements. The volume fraction �eld θ is interpolated on P0 �nite elements. The time
discretization is implicit of second order.

In the sequel we plot the distribution of the sti�er phase. Since η shall be taken positive,
we thus plot θ: white corresponds to θ = 0 (weak phase A0), and black stands for θ = 1
(sti� phase A1).

8.2 Elasticity setting

Although the theoretical results of the present paper have been presented in a scalar setting,
all our numerical simulations are done in the elasticity setting. We emphasize again that
our approach works in this vector-valued case too and we refer to [3] for details if necessary.
We brie�y recall the notations and de�ned the test problem under consideration in the next
sections.

The elastic displacement is a function u(x, t) from Ω× (0, T ) into RN which is a solution
of the elastodynamic equations

ρχ
∂2u

∂t2
− div (Aχe(u)) = 0 in Ω× (0, T )

u(x, 0) = 0 in Ω
∂u

∂t
(x, 0) = 0 in Ω

u(x, t) = 0 on Γd × (0, T )
Aχe(u)(x, t) · n̂ = f(x, t) on Γn × (0, T ),

(81)

where f(x, t) is some given applied load, a function from Γn × (0, T ) into RN . The initial
data are zero. The strain tensor is

e(u) =
1

2

(
∇u+ (∇u)T

)
,

and the stress tensor is σ = Aχe(u). We assume that both phases are isotropic, namely for
i = 0, 1

Aie(u) = 2µie(u) + λi(divu)I2,

where I2 is the identity matrix and µi, λi are the Lamé coe�cients.
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8.3 Compliance minimization or dissipation maximization

In the steady-state case, a common example of many shape optimization algorithms is the
minimization of the work done by the applied load, or compliance,∫

Γn

f · u ds =

∫
Ω

e (u) · Aχe (u) dx.

In the time-dependent case, we wish to alter this formulation slightly. Speci�cally, we are
interested in minimizing not the work done by the applied load, but instead the objective of
interest is its power,

J(χ) =

∫ T

0

∫
Γn

f · ∂u
∂t

dsdt.

This integrand somehow seems more natural as it is the time derivative of the total energy
(kinetic plus potential) of the system, or energy dissipation,∫

Γn

f · ∂u
∂t

ds =
d

dt

(
1

2

∫
Ω

(
ρχ

(
∂u

∂t

)2

+ Aχe(u) · e(u)

)
dx

)
,

which implies in view of (81)

J(χ) =
1

2

∫
Ω

(
ρχ

(
∂u

∂t

)2

+ Aχe(u) · e(u)

)
(T )dx.

In other words we want to minimize the �nal energy at time T or, equivalently, to maximize
the dissipation. The test domain, Ω = [0, 2] × [−0.5, 0.5], is a long elastic cantilever beam
�xed on the left side, Γd = {x = 0, y ∈ [−0.5, 0.5]}, and loaded with a vertical force,
f0(x) = (0, 1)T , applied at the center of the right side, Γn = {x = 2, y ∈ [−0.05, 0.05]}. The
Lamé moduli are λ0 = 0.86, µ0 = 0.37 and the material density is ρ0 = 1. The contrast
parameter is η = 0.90 and the total volume fraction of the sti�er phase is maintained at 0.5.
Since this set of physical parameters admits a characteristic wave speed slightly larger than
1.0 (in the base material), we select the integration period [0, T = 10] in order to allow any
elastic waves to traverse the cantilever several times during optimization. The discretization
of the domain Ω is on a very �ne mesh consisting of 23091 vertices and 45580 triangles. The
time discretization takes 40 uniformly spaced steps with δt = 0.25.

In the �rst case (Figure 1) the applied load is f(t, x) = f0(x)a(t), where the amplitude
a(t) = sin

(
π
20
t
)
is varying sinusoidally in time from 0 to 1 over the period of integration.

The resulting structure is very similar to what is obtained in the steady-state setting [3].
Introducing a variation in the frequency of the applied load naturally varies the optimal

structure of the cantilever. This can be seen, for instance, in the case (Figure 2) in which the
frequency of load is four times that of the initial case, i.e., a(t) = sin

(
π
5
t
)
. The sti�er material

is then largely realligned towards the �xed base, abandoning the formation of structure at
the point of application of the load.

Nothing in the development of the algorithm dictates that the domain of integration
must be all of Ω. For a given subdomain Σ of Ω we can, for example, seek to maximize the

30



(a) (b)

(c)

Figure 1: Volume fraction θ of the sti� phase for the dissipation maximizing cantilever (a),
penalized con�guration (b), and convergence history (c) for the load history a(t) = sin

(
π
20
t
)

with η = 0.90 and a volume fraction of 0.50.

dissipation through that subdomain by adjusting the objective function.

J (χ) =

∫ T

0

d

dt

(
1

2

∫
Σ

(
ρχ

(
∂u

∂t

)2

+ Aχe(u) · e(u)

)
dx

)
dt.

Remark here that we do not require that the boundary of Σ contain Γn. A �rst example
(Figure 3) of a subdomain over which we choose to maximize the dissipation is the quarter of
the cantilever nearest the applied load, Σ = {x ≥ 1.5}. Since the constraint on the volume
fraction is still an average of 0.5, we anticipate the formation of structures exterior to Σ.
Somewhat surprisingly in this case, no structure forms that connect the far right quarter of
the cantilever to its base. Another, somewhat more arti�cial, example (Figure 4) is included
for a smaller, non-convex subdomain {x ≥ y, x ≤ −y, x ≤ 0.4} ∪ {x ≤ y, x ≥ −y, x ≥ 0.4}.
The area of this �bowtie� (0.32) is also much smaller than the desired volume fraction. In
this case however, the majority of the sti� material goes to form structures connecting the
desired subdomain to the base of the cantilever.

8.4 Strain and stress minimization

As we have seen, in the case where the objective is a function of the gradient (or strain) the
formulation of our algorithm must change slightly in order to incorporate the additional H-
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(a) (b)

(c)

Figure 2: Volume fraction θ of the sti� phase for the dissipation maximizing cantilever (a),
penalized con�guration (b), and convergence history (c) for the load history a(t) = sin

(
π
5
t
)

with η = 0.90 and a volume fraction of 0.50.

measure term. Numerically, since this only introduces a substantial change in the calculation
of the optimal lamination direction �eld, the iterative stage of optimizing the �eld θ is not
complicated at all. Two natural objective functions that result in an interesting contrast are
stress (e.g the time integral of the L2 norm of the stress) and strain (similarly the L2 norm
of the strain) optimization.

For the stress optimization example (Figure 5) we take a square Ω = [0, 1]× [0, 1], �xed
at the bottom Γd = {x ∈ [0, 1], y = 0}, and apply a uniformly distributed load at the top
Γn = {x ∈ [0, 1], y = 1}. The load is kept constant and vertical throughout, f(t, x) = (0, 1)T .
The objective function subject to optimization is

J(χ) =
1

2

∫ T

0

∫
Ω

|Aχe (u)|2 dxdt.

The physical parameters remain the same as above as does the period of integration, T = 10,
in order to allow the waves to traverse the domain several times during the optimization.
The optimization is performed on a mesh consisting of 12070 vertices and 23738 triangles.
The computation of the derivative (including the de�nition of the adjoint) is slightly di�erent
for a stress-based objective function than for a strain-based one (see [3] for the details).
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(a) (b)

(c)

Figure 3: Dissipation is maximized in the far right quarter of the domain without penalty
(a), and penalized after convergence (b). The convergence history is shown (c). The load
history, contrast, and volume are the same as in the example in Figure 1.

The strain optimization (Figure 6) is performed in the same manner. With,

J (χ) =
1

2

∫ T

0

∫
Ω

|e (u) |2dxdt.

The marked di�erence in the optimal structures is not surprising compared to a similar
analysis done in the elliptic case in [3].

8.5 Dynamic wheel

In the interest of presenting an example that more closely resembles an application of the
theory to an interesting physical problem we examine the case of an elastic wheel. On the
annular domain, Ω = {1.0 ≥ x2+y2 ≥ 0.0025}, we �x the inner circle Γd = {x2+y2 = 0.0025}
to model the attachment of the wheel to a rigid axle, and model the rolling of the wheel by
applying an inward radial point force along the wheel's edge Γn = {x2+y2 = 1.0}, varying the
point of application of the force continuously in time. In other words, f(x, t) is a point force
applied to the point x = (cos(t), sin(t))T and taking the value f(x, t) = (− cos(t),− sin(t))T .

The period of integration is one rotation, namely T = 2π. Instead of starting from rest
(which concentrates all of the sti�ener in the center of the wheel), the initial conditions for
the zero-order wave equation (8) are set equal to the �nal state after one hundred rotations of

33



(a) (b)

(c)

Figure 4: Dissipation is maximized in the �bowtie� subdomain without penalty (a), and
penalized after convergence (b). The convergence history is shown (c). The load history,
contrast, and volume are the same as in the example in Figure 1.

the wheel (so it is almost a time periodic solution). Thus optimization begins with non-zero
initial data, contrary to the previous examples. The volume fraction of the sti�er phase is
maintained at 0.5.

We examine two objective functions: maximization of the dissipation (Figure 7),

J (χ) =

∫ T

0

∫
Ω

(
ρχ
∂2u

∂t2
· ∂u
∂t
− div (Aχe (u)) · ∂u

∂t

)
dxdt,

and minimization of the shear stress (Figure 8),

J (χ) =

∫ T

0

∫
Ω

1

2
σ12 (u) : σ12 (u) dxdt,

on a �ne mesh of 14306 vertices and 28192 triangles.
The results of Figures 7 and 8 are very similar, up to a 90 degrees rotation. Because of

our initial conditions which somehow approximate time periodic boundary conditions, it is
expected that a non radial optimal design can not be unique since any rotation of it will
yield a new optimal design.
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(a) (b)

Figure 5: Optimal structure minimizing the L2 norm of stress under constant distributed
top load in the square without penalty (a), and after penalization (b).

(a) (b)

Figure 6: Optimal structure minimizing the L2 norm of strain under constant distributed
top load in the square without penalty (a), and after penalization (b).
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(a) (b)

Figure 7: A dynamic elastic wheel to maximize the energy dissipation in a single rotation
(a) is subsequently penalized (b).

(a) (b)

Figure 8: A dynamic elastic wheel to minimize the average shear stress in the wheel in a
single rotation (a) is subsequently penalized (b).
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