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Abstract. In this note we show that the Novikov-Veselov equation (NV-equation)
at positive energy (an analog of KdV in 241 dimensions) has no exponentially localized
solitons in the two- dimensional sense.

1.Introduction and Theorem 1. We consider the following 241 - dimensional analog

of the KdV equaion ( Novikov-Veselov equation):

O = 4Re (4020 + 0, (vw) — E0,w),
ozw = —-30,v, v=10v, EeR, (1)
v=uv(z,t), w=w(rt), r=(x,r) €R? teR,

where . ) :
= — = == — ) —— s 7 = — ) —— . 2
o=y 0:=5(g ~ig-) 0:=5(5, tig) (2)
We assume that

v is sufficiently regular and has sufficient decay as |z| — oo,

(3)

w is decaying as |x| — oc.

Equation (1) is contained implicitly in the paper of S.V.Manakov [M] as an equation
possessing the following representation

(L —E)

" =[L— B, A+ B(L-E), (4)

where L = —A + v(x,t), A = 40,0z, A and B are suitable differential operators of the
third and zero order respectively, |-, -] denotes the commutator. Equation (1) was written
in an explicit form by S.P.Novikov and A.P.Veselov in [NV1], [NV2], where higher analogs
of (1) were also constructed.

For the case when

v(x1,x2,t), w(z1,z2,t) are independent of o (5)
equation (1) is reduced to
O = 2020 — 1200,v + 6Ed,v, v €R, tcR. (6)
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In terms of u(z,t) such that
v(z,t) =u(—2t,x +6Ft), z€R, teR, (7)
equation (6) takes the standard form of the KdV equation (see [NMPZ]):
Opu — 6udyu +0u=0, z€R, teR. (8)
It is well-known (see [NMPZ]) that (8) has the soliton solutions

22

w(at) = unp(t = 46°1) = = g

zeR, teR, k€l0,+0[, ¢ €R.
(9)
In addition, one can see that
Uy, € CC(R),

. , (10)
Oy, p(x) = O(e™ ’"“'x‘) as x — o0, j=0,1,2,3,...

Properties (10) show, in particular, that the solitons of (9) are exponentially localized
in x.
In the present note we obtain, in particular, the following result:

Theorem 1. Let v, w satisfy (1) for E = Ey;; > 0, where

v(z,t) =V(z —ct), x€R?* c=(c1,c2) € R?,

) _ (11a)
Ve C3(R?), dV(z)=0( ) forlz| — co, |j| <3 and some a >0,
(where j = (j1,j2) € (OUN)?, |4] = |j1| + |g2|, 82 = 871772 /9]  0x?),
w(-,t) € C(R?), w(z,t) —0 as |z| — o0, tER. (11d)

ThenV =0,v=0, w=0.

Theorem 1 shows that equation (1) has no nonzero solitons (travel wave solutions)
exponentially localized in x in the two-dimensional sense.

The proof of Theorem 1 is based on Proposition 1 and Proposition 2, see Section 4.
In turn, Proposition 2 is based, in particular, on Lemma 1 and Lemma 2.

Lemma 1, Lemma 2 and Proposition 1 are recalled in Section 2. Proposition 2 is given
in Section 3. It seems that the result of Proposition 2 (that sufficiently localized travel
wave solutions for the NV-equation (1) for E = Ey;, > 0 have zero scattering amplitude for
the two-dimensional Schrédinger equation (12)) was not yet formulated in the literature.

2. Lemma 1, Lemma 2 and Proposition 1. Consider the equation
— A +v(x)) = B, x€R? E=FE}, >0, (12)
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where

v(z) =v(z), =€R?

13
(1+ |z))**v(z) € L®°(R?) (as a function of z € R?) for some & > 0. (13)

It is known that for any k € R?, such that k2 = E, there exists an unique bounded
solution 1 (z, k) of equation (12) with the following asymptotics:

+ ike —im/4 x| ekl 1
v (x, k) = e —imyV/27e f(k, |k|]—) + of

VAT VA

kx

) as |z| — oo. (14)

This solution describes scattering of incident plane wave e
function f on

on the potential v. The

Mp={keR? IcR*: K =1’=F} (15)

arising in (14) is the scattering amplitude for v in the framework of equation (12). Under
assumptions (13), it is known, in particular, that

feCMg). (16)

Lemma 1. Let v satisfy (13) and v,, y € R?, be defined by
vy(z) = v(z —y), =€R% (17)

Then the scattering amplitude f for v and the scattering amplitude f, for v, are related
by the formula

Fo(k, 1) = f(k,)e* 0 (k1) € Mp, y=(y1,92) € R (18)

Lemma 1 follows, for example, from the definition of the scattering amplitude by
means of (14) and the fact that ¢*(z — y, k) solves (12) for v replaced by v,, where
k> =F.

Lemma 1 was given, for example, in [N3].

Lemma 2. Let v,w satisfy (1), (3), where E = Ey;;, > 0. Then the scattering
amplitude f(-,-,t) for v(-,t) and the scattering amplitude f(-,-,0) for v(-,0) are related by

f(k,1,t) = f(k,1,0) exp[2it(k? — 3k1k3 — I3 +31113)], (k,1) € Mg, tER. (19)

Lemma 2 was given for the first time in [N1].

Note that in the framework of Lemma 2 properties (3) can be specified as follows:
v,w € C(R* x R) and for each t € R the following properties are fulfiled :
v(-,t) € C3(R?), &uv(x,t) = O(|z|727°) for |z| — oo, |j| <3 and some e >0, (20)

w(z,t) — 0 for |z| — oo.



Proosition 1. Let
v(z) = v(x), ea|w|v(:v) € L*°(R?) (as a function of ) for some a > 0 (21)

and the scattering amplitude f = 0 on Mg for this potential for some E = Ey;; > 0.
Then v = 0 in L>=(R?).

In the general case the result of Proposition 1 was given for the first time in [GN].
Under the additional assumption that v is sufficiently small (in comparison with E) the
result of Proposition 1 was given for the first time in [N2]-[N4].

3. Transparency of solitons. In this section we show that sufficiently localized solitons
(travel wave solutions) for the NV-equation (1) for £ = Ey;, > 0 have zero scattering
amplitude for the two-dimensional Schrédinger equation (12).

Proposition 2. Let v, w satisty (1) for E = Ey;, > 0, where

v(z,t) =V(z —ct), ©€R?* c=(c1,c2) € R?,

2 j 2 (22@)
Ve C3(R?), 9V(x)=0(z|"*¢) forlz| — oo, |j| <3 and some e >0,
w(-,t) € C(R?), w(z,t) =0 as |z| — o0, tER. (220)
Then
f=0 on Mg, (23)

where f is the scattering amplitude for v(x) = V(z) in the framework of the Schrédinger
equation (12).

The proof of Proposition 2 consists in the following.

We consider

T={\eC: |\=1} (24)

We use that
Mp~=TxT, E=FE,; >0, (25)

where diffeomorphism (25) is given by the formulas:

]{71 + ’L]{JQ / l1 + Zl2
A= , N = , (k1) e Mg, 26
VE 1 ivVE 1
n=20+9), b="E0G ),
VE 1 iVE 1
llzT()\/—Fy), l2: 5 (y—)\/), ()\,)\,)GTXT.
We use that in the variables A, X’ formulas (18), (19) take the form
f,OWN,E) = f(\ N, E) exp[%\/ﬁ(mj + % —Ng— %)], (28)
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where (A, \) € T'x T, y is considered as y = y; + iya,

. 1 3
FONLE, 1) = fOL X B, 0)exp[iB* 21X + 15 = (X)* = (7)), (29)
where (\,\) e T x T, t e R.
The assumptions of Proposition 2 and Lemmas 1 and 2 (with (18), (19) written as
(28), (29)) imply that

fFWNLE) eXp[%\/Et(Aé+ ; _Ne— %)} _

. 1 1.3
FON, B)exp[iB*24(X° + o5 = (V) = (5)7)]
for (A, N) € T x T, t € R, where f is the scattering amplitude for v(z,0) = V(z), ¢ is
considered as ¢ = ¢1 + ico.
Property (16), identity (30) and the fact that A3, A3, A, A1, 1 are linear independent
on each nonempty open subset of T imply (23).

(30)

4. Proof of Theorem 1 and final remark. Theorem 1 follows from Proposition 1 and
Proposition 2.

Finally, note that the result of Theorem 1 does not hold, in general, without the
assumption that V(z) = O(e~?) as |z| — oo for some a > 0: ”counter examples”
to Theorem 1 with rational bounded V decaying at infinity as O(|z|™2) are implicitly
contained in [G].
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