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In this paper we undertake the rigorous homogenization of a system of partial differential equations describing
the transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid porous medium.
The motion is governed by a small static electric field and a small hydrodynamic force, which allows us to
use O’Brien’s linearized equations as the starting model. We establish convergence of the homogenization
procedure and discuss the homogenized equations. Even if the symmetry of the effective tensor is known
from the literature (Looker and Carnie1), its positive definiteness does not seem to be known. Based on the
rigorous study of the underlying equations, we prove that the effective tensor satisfies Onsager properties,
namely is symmetric positive definite. This result justifies the approach of many authors who use Onsager
theory as starting point.
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I. INTRODUCTION

The quasi-static transport of an electrolyte through an
electrically charged porous medium is an important and
well-known multiscale problem in geosciences and porous
materials modeling. An N -component electrolyte is a di-
lute solution of N species of charged particles, or ions, in
a fluid which saturates a rigid porous medium. In such a
case, an electric field can generate a so-called electroki-
netic flow. This electro-osmotic mechanism, which can
facilitate or slow down fluid flowing through clays, is due
to the electric double layer (EDL) which is formed as a re-
sult of the interaction of the ionized solution with static
charges on the pore solid-liquid interfaces. The solute
ions of opposite charge cluster near the interface, form-
ing the Stern layer. Its typical thickness is of one ionic
diameter. After the Stern layer the electrostatic diffuse
layer or Debye’s layer is formed, where the ion density
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varies. The EDL is the union of Stern and diffuse lay-
ers. The thickness of the EDL is predicted by the Debye
length λD, defined as the distance from the solid charged
interface, where the thermal energy is equal to the elec-
trokinetic potential energy. Usually, λD is smaller than
100 nanometers. Outside Debye’s layer, in the remaining
bulk fluid, the solvent can be considered as electrically
neutral.

The ion distribution in the EDL is characterized us-
ing the electrokinetic potential Ψ. Its boundary value
at the edge of Stern’s layer is known as the zeta poten-
tial ζ. In many situations it is rather the surface charge
density σ, proportional to the normal derivative of Ψ,
than ζ, which is known. Under the presence of an exter-
nal electric field E, the charged fluid may acquire a plug
flow velocity which is proportional to Eζ and given by
the so-called Smoluchowski’s formula. A more detailed,
mathematically oriented, presentation of the fundamen-
tal concepts of electroosmotic flow in nanochannels can
be found in the book2 by Karniadakis et al., pages 447-
470, from which we borrow the notations and definitions
in this introduction.

In the case of porous media with large pores, the
electro-osmotic effects are modeled by introducing an ef-
fective slip velocity at the solid-liquid interfaces, which
comes from the Smoluchowski formula. In this setting,
the effective behavior of the charge transport through
spatially periodic porous media was studied by Edwards
in3, using the volume averaging method.

On the other hand, in the case of clays, the charac-
teristic pore size is also of the order of a few hundreds
of nanometers or even less. Therefore the Debye’s layer
fills largely the pores and its effect cannot anymore be
modeled by an effective slip boundary condition at the
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liquid-solid interface. Furthermore, it was confirmed ex-
perimentally (see e.g.4) that the bulk Navier-Stokes equa-
tions still hold for pores larger than 1 nanometer. There-
fore, in the present paper we consider continuum equa-
tions at the microscopic level and, more precisely, we
couple the incompressible Stokes equations for the fluid
with the electrokinetic model made of a global electro-
static equation and one convection-diffusion equation for
each type of ions.
The microscopic electro-chemical interactions in an N -

component electrolyte in a dilute Newtonian solvent are
now well understood and given by

E∆Ψ = −NAe
N
∑

j=1

zjnj in Ωp, (1)

E∇Ψ · ν = −σ on ∂Ωp \ ∂Ω, (2)

η∆u = f +∇P +NAe
N
∑

j=1

zjnj∇Ψ in Ωp, (3)

div u = 0 in Ωp, (4)

Di∆ni + div
(

ebizini∇Ψ− uni

)

= 0 in Ωp,

i = 1, . . . , N, (5)

u = 0 on ∂Ωp \ ∂Ω, (6)
(

Di∇ni + ebizini∇Ψ
)

· ν = 0 ∂Ωp \ ∂Ω, i = 1, . . . , N.

(7)

where Ωp is the pore space of the porous medium Ω and
ν is the unit exterior normal to Ωp. We recall that the
equation (1) links the electrokinetic potential Ψ with the

electric charge density ρe = NAe
N
∑

j=1

zjnj . In the mo-

mentum equation (3), the electrokinetic force per unit
volume fEK = ρe∇Ψ is taken into account. The un-
knowns (u, P ) denote, respectively, the fluid velocity and
the pressure. Denoting by ni the concentration of the ith
species, each equation (5) is the ith mass conservation
for a multicomponent fluid, in the absence of chemical
reactions. The boundary condition (7) means that the
normal component of the ith species ionic flux, given by
ji = −Di∇ni − ebizini∇Ψ + uni, vanishes at the pore
boundaries. The various parameters appearing in (1)-(7)
are defined in Table I. There is a liberty in choosing
boundary conditions for Ψ on ∂Ωp \∂Ω and following the
literature we impose a nonhomogeneous Neumann condi-
tion with σ in (2), rather than Dirichlet’s condition with
ζ.
For simplicity we assume that Ω = (0, L)d (d = 2, 3 is

the space dimension), L > 0 and at the outer boundary
∂Ω we set

Ψ + Ψext(x) , ni , u andP areL− periodic. (8)

The applied exterior potential Ψext(x) can typically be
linear, equal to E · x, where E is an imposed electrical

QUANTITY CHARACTERISTIC VALUE

e electron charge 1.6e−19 C (Coulomb)
Di diffusivity of the ith specie Di ∈ (1.79, 9.31)e−09m2/s
kB Boltzmann constant 1.38e−23 J/K
NA Avogadro’s constant 6.022e23 1/Mole
T temperature 293◦K (Kelvin)
bi electric mobility bi = Di/(kBT ) s/kg
E dielectric constant 708e−12C/(mV )
η dynamic viscosity 1e−3 kg/(msec)
ℓ pore size 1e−6 m

λD Debye’s length

√

EkBT

NAe2
∑

j njzj
∈ (3, 300) nm

zj j-th electrolyte valence given integer

σ surface charge density C/m2

f given applied force N/m3

TABLE I. Data description

field. Note that the applied exterior force f in the Stokes
equations (3) can also be interpreted as some imposed
pressure drop or gravity force. Due to the complexity of
the geometry and of the equations, it is necessary for en-
gineering applications to upscale the system (1)-(8) and
to replace the flow equations with a Darcy type law, in-
cluding electro-osmotic effects.

It is a common practice to assume that the porous
medium has a periodic microstructure. For such media
formal two-scale asymptotic analysis of system (1)-(8)
has been performed in many previous papers. Most of
these works rely on a preliminary linearization of the
problem which is first due to O’Brien et al.5. The ear-
liest paper, considering only one ionic species, is6. It
was further extended by Looker and Carnie in1. We
also mention several important numerical works by Adler
et al. in7,8,9,10,11,12 and13. Moyne and Murad con-
sidered the case of electro-osmosis in deformable pe-
riodic porous media without linearization in the series of
articles14,15,16,17 and18. They obtained a homogenized
system involving two-scale partial differential equations
and presented numerical simulations.

Our goal here is to rigorously justify the homogeniza-
tion of a linearized version of (1)-(8) in a rigid periodic
porous medium and to clarify the analysis of the homoge-
nized problem. We feel that our rigorous approach brings
further light on the results obtained previously by the
above mentioned authors.

In Section II we present the linearization, correspond-
ing to the seminal work of O’Brien et al.5, and write the
linearized system in a non-dimensional form. This allows
us to write the microscopic ε-problem. Its solvability
and the a priori estimates (uniform with respect to ε)
are obtained in Section III where we also state our main
convergence result, Theorem 1. In Section IV, we present
rigorous passing to the homogenization limit, namely we
prove our Theorem 1. The homogenized problem, be-
ing identical to the one in1, is then studied and unique-
ness questions are discussed. We finish Section IV with
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a short discussion of the linear relation linking the ionic
current, filtration velocity and ionic fluxes with gradients
of the electrical potential, pressure and ionic concentra-
tions. In other words, in Proposition 3 we prove that
the so called Onsager relation (see e.g.19) is satisfied,
namely the full homogenized tensor is symmetric positive
definite. Finally in Section V we show that the two-scale
convergence from Section IV is actually strong. It relies
on a Γ- convergence type result, namely on the conver-
gence of the associated energy. A numerical study of the
obtained homogenized coefficients (including their sen-
sitivities to various physical parameters) is the topic of
further investigation and will appear later, together with
a comparison with previous results in the literature.

II. LINEARIZATION AND NON-DIMENSIONAL FORM

The electrolyte flows in response to the static electric
potential Ψext(x), the constant surface charge density σ
on the pore walls and the applied fluid force f(x). The
magnitude of the applied fields f and Ψext is assumed
to be sufficiently small to permit the linearization of the
ionic transport (electrokinetic) equations. Then the sys-
tem is only slightly perturbed from equilibrium and we
are permitted to linearize (1)-(8). Following the calcula-
tions by O’Brien et al. from the seminal paper5, we write
the electrokinetic unknowns as

ni(x) = n0
i (x) + δni(x), Ψ(x) = Ψ0(x) + δΨ(x),

u(x) = u0(x) + δu(x), P (x) = P 0(x) + δP (x),

where n0
i ,Ψ

0,u0, P 0 are the equilibrium quantities, cor-
responding to f = 0 and Ψext = 0. The δ prefix indicates
a perturbation. It is easy to check that, in the case f = 0
and Ψext = 0, a solution of (1)-(8) is given by

u0 = 0, P 0 = NAkBT

N
∑

j=1

n0
j ,

n0
j (x) = n0

j (∞) exp{−
ezj
kBT

Ψ0(x)}, (9)

where n0
i (∞) are constants and Ψ0 is the solution of the

Boltzmann-Poisson equation










−∆Ψ0 =
NAe

E

N
∑

j=1

n0
j (∞) exp{−

ezj
kBT

Ψ0} in Ωp,

E∇Ψ0 · ν = −σ on ∂Ωp \ ∂Ω, Ψ0 is L− periodic.

(10)

Motivated by the form of the Boltzmann equilibrium dis-
tribution and the calculation of n0

i , we follow the lead of5

and introduce a so-called ionic potential Φi which is de-
fined in terms of ni by

ni(x) = n0
i (∞) exp{−

ezj
kBT

(Ψ(x) + Φi(x) +Ψext(x))}. (11)

After linearization it leads to

δni(x) = −
ezj
kBT

n0
i (x)(δΨ(x) + Φi(x) + Ψext(x)). (12)

Introducing (12) into (1)-(8) and linearizing yields the
following equations for δΨ, δu, δP and Φi

−∆(δΨ) +
NAe

2

EkBT

( N
∑

j=1

z2jn
0
j (x)

)

δΨ =

−
NAe

2

EkBT

( N
∑

j=1

z2jn
0
j (x)(Φj +Ψext(x))

)

in Ωp, (13)

E∇δΨ · ν = 0 on ∂Ωp \ ∂Ω, (14)

δΨ(x) + Ψext(x) is L− periodic, (15)

η∆δu−∇

(

δP +NAe
N
∑

j=1

zjn
0
j (δΨ+Φj +Ψext(x))

)

=

f −NAe
N
∑

j=1

zjn
0
j (x)(∇Φj +∇Ψext) in Ωp, (16)

divδu = 0 in Ωp, δu = 0 on ∂Ωp \ ∂Ω, (17)

δu and δP are L− periodic, (18)

div
(

n0
i (ebizi∇Φi + ebizi∇Ψext + δu)

)

= 0 in Ωp; (19)

(∇Φi +∇Ψext) · ν = 0 on ∂Ωp \ ∂Ω; (20)

Φi is L− periodic. (21)

Note that the perturbed velocity is actually equal to the
overall velocity and that it is convenient to introduce a
global pressure p

δu = u, p = δP +NAe
N
∑

j=1

zjn
0
j

(

δΨ+Φj +Ψext(x)
)

.

(22)
It is important to remark that δΨ does not enter equa-
tions (16)-(21) and thus is decoupled from the main
unknowns u, p and Φi. The system (9), (10), (16)-(22)
is the microscopic linearized system for the ionic trans-
port in the papers by Adler et al.7,8,9,10,11,12 and13 and
in the work of Looker and Carnie1. Our Stokes system
coincides with theirs after redefining the pressure.

Remark 1. It is also possible to introduce the elec-
trochemical potential, relative to the j-th component,

µj(x) = µref
j + log nj(x) +

ezj
kBT

Ψ(x). Applying the same

decomposition, µj(x) = µ0
j (x) + δµj(x), it is easy to

find that µ0
j (x) is a constant and δµj(x) = −

ezj
kBT

(Φj +

Ψext(x)).

In order to obtain a dimensionless form of the equa-
tions (9), (10), (16)-(22), we first note that the known
data are the characteristic pore size ℓ, the surface charge
density σ(x) (having the characteristic value σs), the
static electrical potential Ψext and the applied fluid force
f . Following the textbook2, we introduce the ionic energy
parameter α defined by α = eζ/(kBT ). Since it is not the
zeta potential ζ which is given, but the charge density σ,
it makes sense to choose a characteristic ζ by imposing
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α = 1. This choice was taken in the articles by Adler
et al. After2, we know that, at T = 293◦K, α = 1 cor-
responds to the zeta potential ζ = 0.0254V . The small

parameter is ε =
ℓ

L
<< 1. Next, following again the non-

dimensionalization from2, we introduce the parameter β
relating the ionic energy parameter α and the characteris-
tic pore size ℓ to the Debye-Hückel parameter ω = 1/λD,
as follows

β =
(ωℓ)2

α
= (

ℓ

λD

)2.

For large β the electrical potential is concentrated in a
diffuse layer next to the liquid/solid interface.

Using the definition of Debye’s length from the Table
I, we find out that the characteristic concentration is

nc =
EkBT

NAe2λ2
D

= β
EkBT

NA(eℓ)2
.

Note that the parameters n0
j (∞) should be compatible

with nc. Following2, we find out that for ℓ = 1.5e − 6m
and λD = 136nm one has nc = 1e− 5M (Mole/liter).

Next we rescale the space variable by setting Ωε =
Ωp/L and x′ = x

L
(we shall drop the primes for simplicity

in the sequel). Recalling that ζ = kBT/e, we introduce
other characteristic quantities

pc = ncNAζe, uc = βE
ζ2

ηL
, nc

j =
n0
j (∞)

nc

,

and adimensionalized unknowns

pε =
p

pc
, uε =

u

uc

, Φε
j =

Φj

ζ
, Ψε =

Ψ0

ζ
, nε

j =
n0
j

nc

.

We also define the rescaled electric potential Ψext,∗, the
rescaled fluid force f∗ the ratio between electrical and
thermal energy Nσ and the global Péclet number for the
j-th species Pej by

Ψext,∗ =
Ψext

ζ
, f∗ =

fL

pc
, Nσ =

eσsℓ

EkBT
, Pej =

βEζ2

ηDj

.

For simplicity, in the sequel we denote by E∗ the electric
field corresponding to the potential Ψext,∗, i.e.,

E∗(x) = ∇Ψext,∗(x).

Straightforward algebra then yields

ε2∆uε −∇pε = f∗ −

N
∑

j=1

zjn
ε
j(x)(∇Φε

j +E∗) in Ωε,

(23)

uε = 0 on ∂Ωε \ ∂Ω, divuε = 0 in Ωε, (24)

uε and pε are 1− periodic in x, (25)

−ε2∆Ψε = β

N
∑

j=1

zjn
ε
j(x) in Ωε; (26)

nε
j(x) = nc

j exp{−zjΨ
ε}, (27)

ε∇Ψε · ν = −Nσσ on ∂Ωε \ ∂Ω, (28)

div

(

nε
j(x)

(

∇Φε
j +E∗ +

Pej
zj

uε
)

)

= 0 in Ωε; (29)

(∇Φε
j +E∗) · ν = 0 on ∂Ωε \ ∂Ω, (30)

Ψε and Φε
j are 1− periodic in x. (31)

System (23)-(31) is the adimensionalized scaled model
that we are going to homogenize in the sequel. We as-
sume that all constants appearing in (23)-(31) are inde-
pendent of ε, namely Nσ and Pej are of order 1 with
respect to ε. The assumption Nσ = O(1) is classical in
the literature14 and1, while the assumption Pej = O(1)
is motivated by the following exemplary computation: if
we take Dj = 1e− 9m2/sec, ℓ = 1.5e− 6m, λD = 136nm
and the parameters values from Table I, then we find
Pej = 2.77.

III. UNIFORM A PRIORI ESTIMATES AND MAIN

CONVERGENCE RESULT

Let us first make precise the geometrical structure of
the porous medium. From now on we assume that Ωε is
an ε-periodic open subset of Rd. It is built from (0, 1)d by
removing a periodic distributions of solid obstacles which,
after rescaling, are all similar to the unit obstacle Σ0.
More precisely, the unit periodicity cell Y is identified
with the flat unit torus Td on which we consider a smooth
partition Σ0∪YF where Σ0 is the solid part and YF is the
fluid part. The liquid/solid interface is S = ∂Σ0 \ ∂Y .
The fluid part is assumed to be a smooth connected open
subset (no assumption is made on the solid part). We
define Y j

ε = ε(YF + j), Σj
ε = ε(Σ0 + j), Sj

ε = ε(S + j),
Ωε =

⋃

j∈Zd

Y j
ε ∩ Ω and Sε ≡ ∂Ωε \ ∂Ω =

⋃

j∈Zd

Sj
ε ∩ Ω.

The formal homogenization of the system (23)-(31) was
undertaken in1 by the method of two-scale asymptotic
expansions. Introducing the fast variable y = x/ε, it
assumes that the solution of (23)-(25) is given by















uε(x) = u0(x, y) + εu1(x, y) + . . . ,
pε(x) = p0(x, y) + εp1(x, y) + . . . ,
Ψε(x) = Ψ0(x, y) + εΨ1(x, y) + . . . ,
Φε

j(x) = Φ0
j (x, y) + εΦ1

j (x, y) + . . . .
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They can be considered as a special case of the gen-
eral expansions of this type from the papers by Moyne
and Murad14,15,16,18. Our aim is to give a mathemati-
cally rigorous justification of the homogenization results
of Looker and Carnie1, and to shed some light on the
analysis of the homogenized problem.

A. Solvability of the ε-problem and a priori estimates

We start by noticing that the problem (26)-(28) is in-
dependent of the rest. Since Ωε is periodic as well as the
coefficients and the boundary conditions, the solution is
of the type

Ψε(x) = Ψ0(
x

ε
),

where Ψ0(y) is the minimizer of the minimization prob-
lem

inf
ϕ∈V

J(ϕ), (32)

with V = {ϕ ∈ H1(YF ), ϕ is 1− periodic} and

J(ϕ) =
1

2

∫

YF

|∇yϕ(y)|
2 dy + β

N
∑

j=1

∫

YF

nc
j exp{−zjϕ} dy

+Nσ

∫

S

σϕ dS.

Note that J is strictly convex, which give the unique-
ness of the minimizer. Nevertheless, for arbitrary non-
negative β, nc

j and Nσ, J may be not coercive on V
if all zj ’s have the same sign. Therefore, we must put
a condition on the zj ’s so that the minimization prob-
lem (32) admits a solution. Following the literature, we
impose the bulk electroneutrality condition

N
∑

j=1

zjn
c
j = 0, nc

j > 0, β > 0, (33)

which guarantees that for σ = 0, the unique solution
is Ψ0 = 0. Note that other conditions are possible like
having both positive and negative zj ’s. Under (33) it is
easy to see that J is coercive on V .
Next difficulty is that the functional J is not defined

on V (except for n = 1), but on its proper subspace
V1 = {ϕ ∈ H1(YF ), exp{maxj |zj ||ϕ|} ∈ L1(YF )}. This
situation makes the solvability of the problem (32) not
completely obvious. The corresponding result was estab-
lished in20, using a penalization, with a cut-off of the non-
linear terms and the application of the theory of pseudo-
monotone operators. It reads as follows:

Lemma 1 (20). Assume that the centering condition (33)
holds true and σ ∈ L2(S). Then problem (32) has a

unique solution Ψ0 ∈ V such that

N
∑

j=1

zje
−zjΨ

0

∈ L1(YF ) and Ψ0
N
∑

j=1

zje
−zjΨ

0

∈ L1(YF ).

Furthermore, Ψ0 ∈ H2
loc(YF ) ∩ L∞(YF ). In particular,

n0
j = nc

j exp{−zjΨ
0} satisfies the lower bound n0

j (y) ≥
C > 0 in YF .

Let now σ ∈ C∞(S). Then further regularity of Ψ0 can
be obtained by standard elliptic regularity in the Euler-
Lagrange optimality condition of (32) which is similar to
(10). Indeed, the right hand side in the equation (10) is
bounded and using the smoothness of the geometry, we
conclude that Ψ0 ∈ W 2,q(YF ) for every q < +∞. By
bootstrapping, we obtain that Ψ0 ∈ C∞(Y F ).

Therefore we have

Ψε(x) = Ψ0(
x

ε
), nε

j(x) = nc
j exp{−zjΨ

ε(x)},

j = 1, . . . , N. (34)

Having determined Ψε and nε
j , we switch to the equa-

tions for Φε
j , u

ε and pε. These functions should satisfy
the equations (23)-(25), (29)-(31) that we study by writ-
ing its variational formulation.

The functional spaces related to the velocity field are

W ε = {z ∈ H1(Ωε)d, z = 0 on ∂Ωε\∂Ω, 1−periodic in x}

and

Hε = {z ∈ W ε, div z = 0 in Ωε}.

Then, summing the variational formulation of (23)-(25)
with that of (29)-(31) (weighted by z2j /Pej) yields:

Find uε ∈ Hε and {Φε
j}j=1,...,N ∈ H1(Ωε)N ,

Φε
j being 1− periodic, such that

a
(

(uε, {Φε
j}), (ξ, {φj})

)

:= ε2
∫

Ωε

∇uε : ∇ξ dx+

+
N
∑

j=1

zj

∫

Ωε

nε
j

(

uε · ∇φj − ξ · ∇Φε
j

)

dx+

N
∑

j=1

z2j
Pej

∫

Ωε

nε
j∇Φε

j · ∇φj dx =< L, (ξ, {φj}) >:=

N
∑

j=1

zj

∫

Ωε

nε
jE

∗ ·

(

ξ −
zj
Pej

∇φj

)

dx−

∫

Ωε

f∗ · ξ dx,

(35)

for any test functions ξ ∈ Hε and {φj}j=1,...,N ∈
H1(Ωε)N , φj being 1-periodic.

Lemma 2. Let E∗ and f∗ be given elements of L2(Ω)d.
The variational formulation (35) admits a unique solu-
tion (uε, {Φε

j}) ∈ Hε × H1(Ωε)d, such that Φε
j are 1-

periodic and
∫

Ωε Φ
ε
j(x) dx = 0. Furthermore, there exists
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a constant C, which does not depend on ε, f∗ and E∗,
such that the solution satisfies the following a priori es-
timates

||uε||L2(Ωε)d + ε||∇uε||L2(Ωε)d2 ≤ C

(

||E∗||L2(Ω)d+

||f∗||L2(Ω)d

)

(36)

max
1≤j≤N

||Φε
j ||H1(Ωε) ≤ C

(

||E∗||L2(Ω)d + ||f∗||L2(Ω)d

)

. (37)

Proof. It is clear that the bilinear form a and the linear
form L are continuous on our functional spaces. Fur-
thermore for ξ = uε and φj = Φε

j , we find out that the
second integral in the definition of a cancels. In fact
one can prove that this term is antisymmetric. Hence,
since nε

j ≥ C > 0, the form a((uε, {Φε
j}), (u

ε, {Φε
j})) is

elliptic with respect to the norm of Hε × {z ∈ H1(Ωε)d,
z is 1-periodic}/R. Now, the Lax-Milgram lemma im-
plies existence and uniqueness for the problem (35).

The a priori estimates (36)-(37) follow by testing the
problem (35) by the solution, using the L∞-estimate for
Ψ0 and using the well-known scaled Poincaré inequality
in Ωε (see e.g. lemma 1.6 in section 3.1.3 of27)

||ξ||L2(Ωε)d ≤ Cε||∇ξ||
L2(Ωε)d2 (38)

for any ξ ∈ Hε.

To simplify the presentation we use an extension oper-
ator from the perforated domain Ωε into Ω (although it is
not necessary). As was proved in21, there exists such an
extension operator T ε from H1(Ωε) in H1(Ω) satisfying
T εφ|Ωε = φ and the inequalities

‖T εφ‖L2(Ω) ≤ C‖φ‖L2(Ωε), ‖∇(T εφ)‖L2(Ω) ≤ C‖∇φ‖L2(Ωε)

with a constant C independent of ε, for any φ ∈ H1(Ωε).
We keep for the extended function T εΦε

j the same nota-
tion Φε

j .
We extend uε by zero in Ω\Ωε. It is well known that

extension by zero preserves Lq and W 1,q
0 norms for 1 <

q < ∞. Therefore, we can replace Ωε by Ω in (36).
The pressure field is reconstructed using de Rham’s

theorem22 (it is thus unique up to an additive constant).
Contrary to the velocity, a priori estimates for the pres-
sure are not easy to obtain. Following the approach
from23, we define the pressure extension p̃ε by

p̃ε =







pε in Ωε,
1

|εYF |

∫

ε(YF+i)

pε in ε(Σ0 + i), (39)

for each i such that ε(Σ0 + i) ⊂ (0, 1)d. Note that the
solid part of the porous medium Ω is the union of all
ε(Σ0 + i) ⊂ (0, 1)d. Then, according to the fundamental
result of Tartar25 (see also26 or section 3.1.3 in27), the
pressure field pε satisfies uniform a priori estimates and
do not oscillate.

Lemma 3 (25). Let p̃ε be defined by (39). Then it sat-
isfies the estimates

‖p̃ε −
1

|Ω|

∫

Ω

p̃εdx‖L2(Ω) ≤ C

(

||E∗||L2(Ω)d + ||f∗||L2(Ω)d

)

,

‖∇p̃ε‖H−1(Ω)d ≤ C

(

||E∗||L2(Ω)d + ||f∗||L2(Ω)d

)

.

Furthermore, the sequence {p̃ε− 1
|Ω|

∫

Ω
p̃ε} is strongly rel-

atively compact in L2(Ω).

B. Strong and two-scale convergence for the solution to

the ε-problem

The velocity field is oscillatory and the appropri-
ate convergence is the two-scale convergence, developed
in28,29. We just recall its definition and basic properties.

Definition 1. A sequence {wε} ⊂ L2(Ω) is said to two-
scale converge to a limit w ∈ L2(Ω × Y ) if ‖wε‖L2(Ω) ≤

C, and for any ϕ ∈ C∞
0

(

Ω;C∞
per(Y )

)

(“per” denotes 1-
periodicity) one has

lim
ε→0

∫

Ω

wε(x)ϕ
(

x,
x

ε

)

dx =

∫

Ω

∫

Y

w(x, y)ϕ(x, y) dy dx

Next, we give various useful properties of two-scale
convergence.

Proposition 1 (28). 1. From each bounded sequence
{wε} in L2(Ω) one can extract a subsequence which
two-scale converges to a limit w ∈ L2(Ω× Y ).

2. Let wε and ε∇wε be bounded sequences in L2(Ω).
Then there exists a function w ∈ L2

(

Ω;H1
per(Y )

)

and a subsequence such that both wε and ε∇wε two-
scale converge to w and ∇yw, respectively.

3. Let wε two-scale converge to w ∈ L2(Ω×Y ). Then
wε converges weakly in L2(Ω) to

∫

Y
w(x, y) dy.

4. Let λ ∈ L∞
per(Y ), λε = λ(x/ε) and let a sequence

{wε} ⊂ L2(Ω) two-scale converge to a limit w ∈
L2(Ω × Y ). Then λεwε two-scale converges to the
limit λw.

5. Let vε be a bounded sequence in L2(Ω)d which two-
scale converges to v ∈ L2(Ω×Y )d. If divvε(x) = 0,
then divyv(x, y) = 0 and divx

(∫

Y
v(x, y) dy

)

= 0.

Using the a priori estimates and the notion of two-scale
convergence, we are able to prove our main convergence
result for the solutions of system (23)-(31).

Theorem 1. Let nε
j be given by (34) and

{uε, {Φε
j}j=1,...,N} be the variational solution of

(35). We extend the velocity uε by zero in
Ω \ Ωε and the pressure pε by p̃ε, given by (39)
and normalized by

∫

Ωε p̃
ε = 0. Then there ex-

ist limits (u0, p0) ∈ L2(Ω;H1
per(Y )d) × L2

0(Ω) and
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{Φ0
j ,Φ

1
j}j=1,...,N ∈

(

H1(Ω)× L2(Ω;H1
per(Y ))

)N
such

that the following convergences hold

uε → u0(x, y) in the two-scale sense (40)

ε∇uε → ∇yu
0(x, y) in the two-scale sense (41)

p̃ε → p0(x) strongly in L2(Ω) (42)

{Φε
j} → {Φ0

j (x)} weakly in H1(Ω) and strongly in L2(Ω)

(43)

{∇Φε
j} → {∇xΦ

0
j (x) +∇yΦ

1
j (x, y)} in the two-scale sense

(44)

nε
j → n0

j (y) and Ψε → Ψ0(y) in the two-scale sense.

(45)

Furthermore, (u0, p0, {Φ0
j ,Φ

1
j}) is the unique solution of

the two-scale homogenized problem

−∆yu
0(x, y) +∇yp

1(x, y) = −∇xp
0(x)− f∗(x)+

N
∑

j=1

zjn
0
j (y)(∇xΦ

0
j (x) +∇yΦ

1
j (x, y)+

E∗(x)) in Ω× YF , (46)

divyu
0(x, y) = 0 in Ω× YF , u0(x, y) = 0 on Ω× S,

(47)

divx

(∫

YF

u0 dy

)

= 0 in Ω, (48)

−divy

(

n0
j (y)

(

∇yΦ
1
j (x, y) +∇xΦ

0
j (x) +E∗(x)+

Pej
zj

u0
)

)

= 0 in Ω× YF , (49)

(

∇yΦ
1
j +∇xΦ

0
j +E∗

)

· ν(y) = 0 on Ω× S, (50)

−divx(

∫

YF

n0
j

(

∇yΦ
1
j +∇xΦ

0
j +E∗(x)+

Pej
zj

u0
)

dy) = 0 in Ω, (51)

Φ0
j ,

∫

YF

u0 dy and p0 being 1-periodic in x, (52)

with periodic boundary conditions on the unit cell YF for
all functions depending on y.

The limit problem introduced in Theorem 1 is called
the two-scale and two-pressure homogenized problem,
following the terminology of27,30. It is well posed be-
cause the two incompressibility constraints (47) and (48)
are exactly dual to the two pressures p0(x) and p1(x, y)
which are their corresponding Lagrange multipliers.

Removing the y variable from the above two-scale limit
problem and extracting the purely macroscopic homoge-
nized problem will be done later in Proposition 3.

IV. PASSING TO THE LIMIT IN THE ε PROBLEM

AND THE HOMOGENIZED PROBLEM

This section si devoted to the proof of Theorem 1 and
to the analysis of the homogenized problem (46)-(52). We
start by rewriting the variational formulation (35) with
a velocity test function which is not divergence-free, so
we can still take into account the pressure

ε2
∫

Ωε

∇uε : ∇ξ dx−

∫

Ωε

pε div ξ dx+

N
∑

j=1

∫

Ωε

zjn
ε
j

(

− ξ · ∇Φε
j + uε · ∇φj

)

dx+

N
∑

j=1

z2j
Pej

∫

Ωε

nε
j∇Φε

j · ∇φj dx = −
N
∑

j=1

z2j
Pej

∫

Ωε

nε
jE

∗ · ∇φj dx

+

N
∑

j=1

∫

Ωε

zjn
ε
jE

∗ · ξ dx−

∫

Ωε

f∗ · ξ dx, (53)

for any test functions ξ ∈ W ε and φj ∈ H1(Ωε), φj

being 1-periodic, 1 ≤ j ≤ N . Of course, one keeps the
divergence constraint divuε = 0 in Ωε. Next we define
the two-scale test functions:

ξε(x) = ξ(x, x/ε), ξ ∈ C∞
per(Ω;H

1
per(Y )d),

ξ = 0 on Ω× S, divyξ(x, y) = 0 on Ω× Y, (54)

φε
j(x) = ϕj(x) + εγj(x, x/ε), ϕj ∈ C∞

per(Ω),

γj ∈ C∞
per(Ω;H

1
per(YF )). (55)

Recalling that nε
j(x) = n0

j (x/ε) is like a two-scale test
function, we can pass to the limit in (53), along the
same lines as in the seminal papers28 or27. By virtue
of the a priori estimates in Lemmas 2 and 3, and using
the compactness of Proposition 1, there exist a subse-
quence, still denoted by ε, and limits (u0, p0, {Φ0

j ,Φ
1
j}) ∈

L2(Ω;H1
per(Y )d)×L2

0(Ω)×H1(Ω)×L2(Ω;H1
per(Y )) such

that the convergences in Theorem 1 are satisfied. Pass-
ing to the two-scale limit in (53) we get that the limit
(u0, p0, {Φ0

j ,Φ
1
j}) satisfy the following two-scale varia-

tional formulation

∫

Ω×YF

∇yu
0(x, y) : ∇yξ dxdy −

∫

Ω×YF

p0(x) divxξ dxdy

+
N
∑

j=1

∫

Ω×YF

zjn
0
j (y)

(

− ξ(x, y) · (∇xΦ
0
j (x) +∇yΦ

1
j (x, y))

+u0(x, y) · (∇xϕj(x) +∇yγj(x, y))
)

dxdy

+

N
∑

j=1

z2j
Pej

∫

Ω×YF

n0
j (y)(∇xΦ

0
j (x) +∇yΦ

1
j (x, y)) · (∇xϕj(x)

+∇yγj) dxdy = −
N
∑

j=1

z2j
Pej

∫

Ω×YF

n0
j (y)E

∗(x) · (∇xϕj(x)+
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∇yγj(x, y)) dxdy +
N
∑

j=1

∫

Ω×YF

zjn
0
j (y)E

∗(x) · ξ(x, y) dxdy

−

∫

Ω×YF

f∗(x) · ξ(x, y) dxdy, (56)

for any test functions ξ given by (54) and {ϕj , γj} given
by (55). Furthermore the velocity u0(x, y) satisfies the
incompressibility constraints (47) and (48).
The next step is to prove the well-posedness of (56)

which will automatically implies that the entire sequence
(uε, pε, {Φε

j}) converges by uniqueness of the limit.

Proposition 2. The problem (56) with incompressibility
constraints (47) and (48) has a unique solution

(u0, p0, {Φ0
j ,Φ

1
j}j=1,...,N ) ∈

L2(Ω;H1
per(Y )d)× L2

0(Ω)× (H1(Ω)/R× L2(Ω;H1
per(Y )d/R))N .

Proof. Following31 (see also section 3.1.2 in27) we intro-
duce the functional space for the velocities

V = {u0(x, y) ∈ L2
per

(

Ω;H1
per(Y )d

)

satisfying (47)−(48)},

which is known to be orthogonal in L2
per

(

Ω;H1
per(Y )d

)

to the space of gradients of the form
∇xq(x) + ∇yq1(x, y) with q(x) ∈ H1

per(Ω)/R and

q1(x, y) ∈ L2
per

(

Ω;L2
per(YF )/R

)

. We apply the Lax-
Milgram lemma to prove the existence and uniqueness
of (u0, p0, {Φ0

j ,Φ
1
j}) in V × L2

0(Ω) × H1
per(Ω)/R ×

L2
per(Ω;H

1
per(Y )d/R). The only point which requires to

be checked is the coercivity of the bilinear form. We
take ξ = u0, ϕj = Φ0

j and γj = Φ1
j as the test functions

in (56). Using the incompressibility constraints (48)
and the anti-symmetry of the third integral in (56), we
obtain the quadratic form

∫

Ω×YF

|∇yu
0(x, y)|2 dxdy+

N
∑

j=1

z2j
Pej

∫

Ω×YF

n0
j (y)|∇xΦ

0
j (x) +∇yΦ

1
j (x, y)|

2 dxdy. (57)

Recalling from Lemma 1 that n0
j (y) ≥ C > 0 in YF , it is

easy to check that each term in the sum on the second
line of (57) is bounded from below by

C

(∫

Ω

|∇xΦ
0
j (x)|

2 dx+

∫

Ω×YF

|∇yΦ
1
j (x, y)|

2 dxdy

)

,

which proves the coerciveness of the bilinear form in the
required space.

The next step is to recover the two-scale homogenized
system (46)-(52) from the variational formulation (56).
In order to get the Stokes equations (46) we choose ϕj =
0 and γj = 0 in (56). By a two-scale version of de Rham’s
theorem22 (see31 or lemma 1.5 in section 3.1.2 of27) we

deduce the existence of a pressure field p1(x, y) in L2(Ω×
YF ) such that

−∆yu
0+∇yp

1 = −∇xp
0−f∗+

N
∑

j=1

zjn
0
j (∇xΦ

0
j+∇yΦ

1
j+E∗).

The incompressibility constraints (47) and (48) are sim-
ple consequences of passing to the two-scale limit in the
equation divuε = 0 in Ωε. To obtain the cell convection-
diffusion equation (49) we now choose ξ = 0 and ϕj = 0
in (56) while the macroscopic convection-diffusion equa-
tion (51) is obtained by taking ξ = 0 and γj = 0. This
finishes the proof of Theorem 1.

It is important to separate the fast and slow scale, if
possible. This was undertaken by Looker and Carnie
in1 introducing three different type of cell problems. We
propose a different approach relying on only two type
of cell problems. We believe our approach is more sys-
tematic and simpler, at least from a mathematical point
of view. The main idea is to recognize in the two-scale
homogenized problem (46)-(52) that there are two dif-
ferent macroscopic fluxes, namely (∇xp

0(x)+ f∗(x)) and
{∇xΦ

0
j (x) + E∗(x)}1≤j≤N . Therefore we introduce two

family of cell problems, indexed by k ∈ {1, ..., d} for each
component of these fluxes. We denote by {ek}1≤k≤d the
canonical basis of Rd.

The first cell problem, corresponding to the macro-
scopic pressure gradient, is

−∆yv
0,k(y) +∇yπ

0,k(y) = ek+

N
∑

j=1

zjn
0
j (y)∇yθ

0,k
j (y) in YF (58)

divyv
0,k(y) = 0 in YF , v0,k(y) = 0 on S, (59)

−divy

(

n0
j (y)

(

∇yθ
0,k
j (y) +

Pej
zj

v0,k(y)
)

)

= 0 in YF

(60)

∇yθ
0,k
j (y) · ν = 0 on S. (61)

The second cell problem, corresponding to the macro-
scopic diffusive flux, is for each species i ∈ {1, ..., N}

−∆yv
i,k(y) +∇yπ

i,k(y) =

N
∑

j=1

zjn
0
j (y)(δije

k+

∇yθ
i,k
j (y)) in YF (62)

divyv
i,k(y) = 0 in YF , vi,k(y) = 0 on S, (63)

−divy(n
0
j (y)

(

δije
k +∇yθ

i,k
j (y)+

Pej
zj

vi,k(y)
)

) = 0 in YF (64)

(

δije
k +∇yθ

i,k
j (y)

)

· ν = 0 on S, (65)
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where δij is the Kronecker symbol. As usual the cell
problems are complemented with periodic boundary con-
ditions. The solvability of the cell problems (58)-(61) and
(62)-(65) is along the same lines as the proof of Proposi-
tion 2. Then, we can decompose the solution of (46)-(52)
as

u0(x, y) =
d
∑

k=1

(−v0,k(y)

(

∂p0

∂xk

+ f∗
k

)

(x)+

N
∑

i=1

vi,k(y)

(

E∗
k +

∂Φ0
i

∂xk

)

(x)) (66)

p1(x, y) =

d
∑

k=1

(−π0,k(y)

(

∂p0

∂xk

+ f∗
k

)

(x)+

N
∑

i=1

πi,k(y)

(

E∗
k +

∂Φ0
i

∂xk

)

(x)) (67)

Φ1
j (x, y) =

d
∑

k=1

(−θ0,kj (y)

(

∂p0

∂xk

+ f∗
k

)

(x)+

N
∑

i=1

θi,kj (y)

(

E∗
k +

∂Φ0
i

∂xk

)

(x)). (68)

We now have to average (66)-(68) in order to get a purely
macroscopic homogenized problem. From Remark 1 we
recall the non-dimensional perturbation of the electro-
chemical potential

δµε
j = −zj(Φ

ε
j +Ψext,∗)

and we introduce the ionic flux of the jth species

jj =
zj
Pej

nε
j

(

∇Φε
j +E∗ +

Pej
zj

uε

)

,

where E∗ = ∇Ψext,∗, and we define the effective quanti-
ties

µeff
j (x) = −zj(Φ

0
j (x) + Ψext,∗(x)),

j
eff
j (x) =

zj
Pej |YF |

∫

YF

n0
j (y)(∇xΦ

0
j (x)+E∗+∇yΦ

1
j (x, y)

+
Pej
zj

u0(x, y))dy,

ueff (x) =
1

|YF |

∫

YF

u0(x, y) dy and peff (x) = p0(x).

We are now able to write the homogenized or upscaled
equations for the above effective fields.

Proposition 3. The macroscopic equations are, for j =
1, . . . , N ,

divxu
eff = 0 and divxj

eff
j = 0 in Ω,

ueff (x) and j
eff
j (x) 1− periodic,

with

ueff = −
N
∑

i=1

Ji

zi
∇xµ

eff
i −K∇xp

eff −Kf∗, (69)

where the matrices Ji and K are defined by their entries

{Ji}lk =
1

|YF |

∫

YF

vi,k(y) · el dy,

{K}lk =
1

|YF |

∫

YF

v0,k(y) · el dy,

and

j
eff
j = −

N
∑

i=1

Dji

zi
∇xµ

eff
i − Lj∇xp

eff − Ljf
∗, (70)

where the matrices Dji and Lj are defined by their entries

{Dji}lk =
1

|YF |

∫

YF

n0
j (y)(v

i,k(y)+

zj
Pej

(

ek +∇yθ
i,k
j (y)

)

) · el dy, (71)

{Lj}lk =
1

|YF |

∫

YF

n0
j (y)

(

v0,k(y) +
zj
Pej

∇yθ
0,k
j (y)

)

· el dy.

(72)

Furthermore, the overall tensor M, such that J =

−MF − M(f∗, {0}) with J = (ueff , {jeffj }) and F =

(∇xp
eff , {∇xµ

eff
j /zi}), defined by

M =





















K
J1

z1
. . .

JN

zN

L1
D11

z1
· · ·

D1N

zN
...

...
. . .

...

LN

DN1

z1
· · ·

DNN

zN





















(73)

is symmetric positive definite.

The tensor K is called permeability tensor, Dji are the
electrodiffusion tensors. The symmetry of the tensor M
is equivalent to the famous Onsager’s reciprocal relations.

Remark 2. One of the important results of Looker and
Carnie in their paper1 is the proof of Onsager’s recipro-
cal relations, i.e., the symmetry of M (beware our defini-
tions of K,Lj , Jj and Dji that are slightly different from
those of1). Our proof of the symmetry of M in Propo-
sition 3 is actually similar to that in1 (the difference be-
ing that their cell problems have distinct definitions from
ours). It is also proved in1 that the diagonal blocks K

and Djj are positive definite. Nevertheless, the second
law of thermodynamics requires that the full tensor M be
positive definite and it was not established in the litera-
ture. One of the novelty in our rigorous analysis is that
Proposition 3 establishes the positive definite character of
M.
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Remark 3. The homogenized equations in Proposition
3 form a symmetric elliptic system

divx{K(∇xp
0 + f∗) +

N
∑

i=1

Ji(∇xΦ
0
i +E∗)} = 0 in Ω,

divx{Lj(∇xp
0 + f∗) +

N
∑

i=1

Dji(∇xΦ
0
i +E∗)} = 0 in Ω,

with periodic boundary conditions. In particular it im-
plies that the pressure field p0 is smoother than expected
from the convergence in Theorem 1 since it belongs to
H1(Ω).

Proof. Averaging (66)-(68) on YF yields the macroscopic
relations (69)-(72). The only thing to prove is that
M is symmetric positive. We start by showing that
it is positive definite. For any collection of vectors
λ0, {λi}1≤i≤N ∈ Rd let us introduce the following linear
combinations of the cell solutions

vλ =

d
∑

k=1

(

λ0
kv

0,k +

N
∑

i=1

λi
kv

i,k

)

, (74)

θλj =
d
∑

k=1

(

λ0
kθ

0,k
j +

N
∑

i=1

λi
kθ

i,k
j

)

, (75)

which satisfy a system of equations similar to (58)-(61)
or (62)-(65) but with λ0 or λj instead of ek as right hand
sides, namely

−∆yv
λ(y) +∇yπ

λ(y) = λ0+

N
∑

j=1

zjn
0
j (y)

(

λj +∇yθ
λ
j (y)

)

in YF (76)

divyv
λ(y) = 0 in YF , vλ(y) = 0 on S, (77)

−divy

(

n0
j (y)

(

λj +∇yθ
λ
j (y) +

Pej
zj

vλ(y)
)

)

= 0 in YF

(78)
(

λj +∇yθ
λ
j (y)

)

· ν = 0 on S, (79)

Multiplying the Stokes equation (76) by vλ, the
convection-diffusion equation (78) by θλj and doing the
same computation as the one that leads to (57), we ob-
tain

∫

YF



|∇yv
λ(y)|2 +

N
∑

j=1

z2j
Pej

n0
j (y)|∇yθ

λ
j (y)|

2



 dy

=

∫

YF

λ0 · vλ(y) dy +
N
∑

i=1

∫

YF

n0
i (y)λ

i · (ziv
λ(y)−

z2i
Pei

∇yθ
λ
i (y))dy.

We modify the left hand side which is still a positive

quadratic form

∫

YF



|∇yv
λ(y)|2 +

N
∑

j=1

z2j
Pej

n0
j (y)|∇yθ

λ
j (y) + λj |2



 dy

=

∫

YF

λ0 · vλ dy +
N
∑

i=1

∫

YF

n0
iλ

i · (ziv
λ +

z2i
Pei

(∇yθ
λ
i +

λi))dy = Kλ0 · λ0 +
N
∑

i=1

Jiλ
i · λ0 +

N
∑

i,j=1

ziλ
i · Dijλ

j

+
N
∑

i=1

ziλ
i · Liλ

0 = M(λ0, {ziλ
i})T · (λ0, {ziλ

i})T (80)

which proves the positive definite character of M.
We now turn to the symmetry of M. Similarly to

(74)-(75), for λ̃0, {λ̃i}1≤i≤N ∈ Rd, we define vλ̃ and θλ̃j .

Multiplying the Stokes equation for vλ by vλ̃ and the

convection-diffusion equation for θλ̃j by θλj (note the skew-
symmetry of this computation), then adding the two vari-
ational formulations yields

∫

YF



∇yv
λ · ∇yv

λ̃ +

N
∑

j=1

z2j
Pej

n0
j∇yθ

λ
j · ∇yθ

λ̃
j



 dy

=

∫

YF

λ0 · vλ̃ dy +

N
∑

j=1

∫

YF

zjn
0
j (λ

j · vλ̃−

zj
Pej

λ̃j · ∇yθ
λ
j )dy. (81)

Since (81) is symmetric in λ, λ̃, we deduce that

∫

YF

λ0 · vλ̃ dy +

N
∑

j=1

∫

YF

zjn
0
j

(

λj · vλ̃ +
zj
Pej

λj · ∇yθ
λ̃
j

)

dy

=

∫

YF

λ̃0 · vλ dy +
N
∑

j=1

∫

YF

zjn
0
j (λ̃

j · vλ+

zj
Pej

λ̃j · ∇yθ
λ
j )dy,

which is equivalent to

λ0 ·Kλ̃0 +
N
∑

i=1

λ0 · Jiλ̃
i +

N
∑

j=1

zjλ
j ·

(

Lj λ̃
0 +

N
∑

i=1

Djiλ̃
i

)

= λ̃0 ·Kλ0 +
N
∑

i=1

λ̃0 · Jiλ
i +

N
∑

j=1

zj λ̃
j ·

(

Ljλ
0 +

N
∑

i=1

Djiλ
i

)

,

or

M(λ̃0, {ziλ̃
i})T ·(λ0, {ziλ

i})T = M(λ0, {ziλ
i})T ·(λ̃0, {ziλ̃

i})T

from which we deduce the symmetry of M.
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V. STRONG CONVERGENCE AND CORRECTORS

Besides the standard convergences of the microscopic
variables to the effective ones, we also prove the following
convergences of the energies.

Proposition 4. We have the following convergences in
energy, for j = 1, . . . , N ,

lim
ε→0

ε2
∫

Ωε

|∇uε|2 dx =

∫

Ω×YF

|∇yu
0(x, y)|2 dydx, (82)

lim
ε→0

∫

Ωε

nε
j |∇Φε

j |
2 dx =

∫

Ω×YF

n0
j (y)|∇xΦ

0
j (x)+

∇yΦ
1
j (x, y)|

2 dxdy. (83)

Proof. The proof is standard (see Theorem 2.6 in28). We
start from the energy equality corresponding to the vari-
ational equation (35):

ε2
∫

Ωε

|∇uε|2 dx+
N
∑

j=1

z2j
Pej

∫

Ωε

nε
j |∇Φε

j |
2 dx =

−

N
∑

j=1

z2j
Pej

∫

Ωε

nε
jE

∗ · ∇Φε
j dx+

N
∑

j=1

zj

∫

Ωε

nε
jE

∗ · uε dx

−

∫

Ωε

f∗ · uε dx. (84)

For the homogenized variational problem (56) the energy
equality reads

∫

Ω×YF

|∇yu
0|2 dxdy +

N
∑

j=1

z2j
Pej

∫

Ω×YF

n0
j (y)|∇xΦ

0
j+

∇yΦ
1
j |

2 dxdy = −

N
∑

j=1

z2j
Pej

∫

Ω×YF

n0
j (y)E

∗ · (∇xΦj

+∇yΦ
1
j ) dxdy +

N
∑

j=1

zj

∫

Ω×YF

n0
j (y)E

∗ · u0 dxdy

−

∫

Ω×YF

f∗ · u0 dxdy. (85)

In (84) we observe the convergence of the right hand side
to the right hand side of (85). Next we use the lower
semicontinuity of the left hand side with respect to the
two-scale convergence and the equality (85) to conclude
(82)-(83).

Theorem 2. The following strong two-scale conver-
gences hold

lim
ε→0

∫

Ωε

∣

∣

∣
uε(x)− u0(x,

x

ε
)
∣

∣

∣

2

dx = 0 (86)

and

lim
ε→0

∫

Ωε

∣

∣

∣
∇
(

Φε
j(x)− Φ0

j (x)− εΦ1
j (x,

x

ε
)
)∣

∣

∣

2

dx = 0.

(87)

Proof. We first remark that the regularity of the solutions
of the cell problems (58)-(61) and (62)-(65) implies that
the functions u0(x, x/ε) and Φ1

j (x, x/ε) are measurable

and well defined in H1(Ω). We have

∫

Ωε

ε2|∇[u0(x,
x

ε
)]−∇uε(x)|2 dx =

∫

Ωε

|[∇yu
0](x,

x

ε
)|2 dx

+

∫

Ωε

ε2|∇uε(x)|2 dx−

2

∫

Ωε

ε[∇yu
0](x,

x

ε
) · ∇uε(x) dx+O(ε). (88)

Using Proposition 4 for the second term in the right hand
side of (88) and passing to the two-scale limit in the third
term in the right hand side of (88), we deduce

lim
ε→0

∫

Ωε

ε2
∣

∣

∣
∇
(

uε(x)− u0(x,
x

ε
)
)∣

∣

∣

2

dx = 0

Using the scaled Poincaré inequality (38) in Ωε (see the
proof of Lemma 2) yields (86).

On the other hand, by virtue of Lemma 1, nε
j is uni-

formly positive, i.e., there exists a constant C > 0, which
does not depend on ε, such that

∫

Ωε

∣

∣

∣
∇
(

Φε
j(x)− Φ0

j (x)− εΦ1
j (x,

x

ε
)
)∣

∣

∣

2

dx ≤ C

∫

Ωε

nε
j

∣

∣

∣
∇
(

Φε
j(x)− Φ0

j (x)− εΦ1
j (x,

x

ε
)
)∣

∣

∣

2

dx. (89)

Developing the right hand side of (89) as we just did for
the velocity and using the fact that nε

j(x) = n0
j (x/ε) is a

two-scale test function, we easily deduce (87).
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