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Large time asymptotics for the Grinevich-Zakharov potentials

A. V. Kazeykina1 and R. G. Novikov2

Abstract. In this article we show that the large time asymptotics for
the Grinevich–Zakharov rational solutions of the Novikov–Veselov equation
at positive energy (an analog of KdV in 2+1 dimensions) is given by a finite
sum of localized travel waves (solitons).

1 Introduction
We consider the following 2 + 1–dimensional analog of the KdV equation
(Novikov–Veselov equation):

∂tv = 4Re
(
4∂3

zv + ∂z(vw)− E∂zw
)
,

∂z̄w = −3∂zv, v = v̄, E ∈ R,
v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R2, t ∈ R,

(1.1)

where

∂t =
∂

∂t
, ∂z =

1

2

(
∂

∂x1

− i
∂

∂x2

)
, ∂z̄ =

1

2

(
∂

∂x1

+ i
∂

∂x2

)
. (1.2)

We assume that

v is sufficiently regular and has sufficient decay as |x| → ∞,

w is decaying as |x| → ∞.
(1.3)

Equation (1.1) is contained implicitly in the paper of S.V. Manakov [1]
as an equation possessing the following representation:

∂(L− E)

∂t
= [L− E,A] +B(L− E) (1.4)

(Manakov L − A − B triple), where L = −∆ + v(x, t), ∆ = 4∂z∂z̄, A and
B are suitable differential operators of the third and zero order respectively.
Equation (1.1) was written in an explicit form by S.P. Novikov and A.P.
Veselov in [2], [3], where higher analogs of (1.1) were also constructed.
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In the present article we are focused on a very interesting family of solu-
tions for equation (1.1) for E = Efix > 0 constructed by P.G. Grinevich and
V.E. Zakharov, see [4], [5]. The solutions of this family are given by

v(x, t) = −4∂z∂z̄ ln detA,

w(x, t) = 12∂2
z ln detA,

(1.5)

where A = (Alm) is 4N × 4N–matrix,

All =
iE1/2

2

(
z̄ − z

λ2
l

)
− 3iE3/2t

(
λ2
l −

1

λ4
l

)
− γl,

Alm =
1

λl − λm
for l 6= m,

(1.6)

E1/2 > 0, z = x1 + ix2, z̄ = x1 − ix2, ∂z, ∂z̄ are defined in (1.2), and
λ1, . . . , λ4N , γ1, . . . , γ4N are complex numbers such that

λj 6= 0, |λj| 6= 1, j = 1, . . . , 4N, λl 6= λm for l 6= m,

λ2j = −λ2j−1, γ2j−1 − γ2j =
1

λ2j−1

, j = 1, . . . , 2N,

λ4j−1 =
1

λ4j−3

, γ4j−1 = λ̄2
4j−3γ̄4j−3, j = 1, . . . , N.

(1.7)

The functions v, w of (1.5)–(1.7) satisfy the Novikov–Veselov equation
(1.1) for positive E of (1.6) and have also, in particular, the following prop-
erties (see [4], [5]):

v = v̄, w ∈ C∞(R2 × R),

v(x, t), w(x, t) are rational functions of x and t,
v(x, t) = O

(
|x|−2

)
, w(x, t) = O

(
|x|−2

)
, |x| → ∞, for each t ∈ R;

(1.8)

the Schrödinger equation Lψ = Eψ, where L = −∆ + v(x, t),

has zero scattering amplitude for fixed E > 0 and t ∈ R. (1.9)

Because of property (1.9) the potentials v of (1.5)–(1.7) are called trans-
parent potentials.

We say that a solution (v, w) of (1.1) is a travel wave iff

v(x, t) = V (x− ct), w(x, t) = W (x− ct), x ∈ R2, t ∈ R, (1.10)

for some functions V , W on R2 and some velocity c ∈ R2. In addition, we
identify c = (c1, c2) ∈ R2 with c = c1 + ic2 ∈ C.

The main results of the present note consist of the following:
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(1) We show that (v, w) of the form (1.5)–(1.7) is a travel wave iff N = 1.
See Lemma 2.1 of Section 2.

(2) We show that there are no travel waves of the form (1.5)–(1.7), N = 1,
for c ∈ UE, and that there is an unique (modulo translations) travel
wave of the form (1.5)–(1.7), N = 1, for c ∈ C\UE, where c denotes
travel wave velocity and UE is defined by formula (2.2). In addition
we show that there is one–to–one correspondence between permitted
velocities c ∈ C\UE and λ–sets {λ1, λ2, λ3, λ4} of (1.5)–(1.7), N = 1.
See Lemma 2.2 of Section 2.

(3) We show that the large time asymptotics for the Grinevich–Zakharov
potentials, that is for (v, w) defined by (1.5)–(1.7), is described by a
sum of N localized travel waves propagating with different velocities.
See Theorem 2.1 of Section 2.

2 Main results
The main results of this article consist of Lemmas 2.1, 2.2 and Theorem 2.1
presented below.

Lemma 2.1. Let (v, w) be defined by (1.5)–(1.7). Then (v, w) admits the
representation (1.10) (and is a travel wave solution for (1.1)) if and only if
N = 1. In addition,

c = 6E

(
λ̄2 +

1

λ2
+
λ2

λ
2

)
(2.1)

where c is the travel wave velocity and λ is any of λj, j = 1, 2, 3, 4, which, in
virtue of (1.7), determines uniquely the λ set {λ1, λ2, λ3, λ4} for E > 0.

Lemma 2.1 is proved in Section 3.
Let

U = {u ∈ C : u = reiϕ, r ≤ |6(2e−iϕ + e2iϕ)|, ϕ ∈ [0, 2π]},
UE = {u ∈ C : u/E ∈ U}.

(2.2)

One can see that U1 = U.

Lemma 2.2. (a) Let c ∈ UE. Then there is no travel wave solution of
(1.1) of the form (1.5)–(1.7) with N = 1 and the given travel wave
velocity c.

(b) Let c ∈ C\UE. Then there exists unique (modulo translations) solution
of (1.1) of the form (1.5)–(1.7) with N = 1 and the given travel wave
velocity c.
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(c) There is a one–to–one correspondence between c ∈ C\UE and the sets
{λ1, λ2, λ3, λ4} satisfying (1.7).

The proof of this Lemma is given in Section 3 and is based principally on
the following auxiliary lemma.

Lemma 2.3. (a) Let c ∈ UE. Then equation (2.1) has no solution λ sat-
isfying |λ| 6= 1.

(b) Let c ∈ C\UE, then equation (2.1) has exactly four solutions λ1, λ2,
λ3, λ4 satisfying the conditions indicated in (1.7) for N = 1.

This Lemma is a corollary of Lemma 3.1 from [6].

Theorem 2.1. Let (v, w) be a solution of (1.1) constructed via (1.5)–(1.7).
Then the asymptotical behavior of (v, w) can be described as follows:

v ∼
N∑
k=1

νk(ξk), w ∼
N∑
k=1

ωk(ξk) as t→∞, (2.3)

where ξk = z − c4kt and

cl = 6E

(
λ̄2
l +

1

λ2
l

+
λ2
l

λ
2

l

)
. (2.4)

The functions νk, ωk are defined by the formulas

νk = −4∂z∂z̄ ln detA(k),

ωk = 12∂2
z ln detA(k),

(2.5)

where matrix A(k) is a 4×4 submatrix of matrix A, defined by formulas (1.6),
such that

A(k) = {Alm}4k
l,m=4(k−1)+1. (2.6)

Remark. The relation (2.3) is understood in the following sense:

lim
t→∞

v = lim
t→∞

N∑
k=1

νk(ξk) for fixed ξ = z − ct, (2.7)

where

lim
t→∞

νk(ξk) =

{
0, for fixed ξ = z − ct, c 6= c4k,

νk(ξ), for fixed ξ = z − c4kt.
(2.8)

Theorem 2.1 is proved in Section 3. The scheme of the proof of this
theorem follows principally the scheme of the derivation of the large time
asymptotics for the multi–soliton solutions of the classic KdV equation (see,
for example, [7]).
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3 Proofs of Lemmas 2.1, 2.2 and Theorem 2.1
The text of the proofs presented below does not completely follow the order
of statements in Section 2 as it was constructed to form a whole logical unit.
However, we specify in due course which statement is being proved.

3.1 Proof of the sufficiency part of Lemma 2.1
Let us first consider the Grinevich–Zakharov potentials defined by (1.5)–

(1.7) with N = 1. Then A is a 4×4 matrix and, in virtue of (1.7), the choice
of any of λj, j = 1, 2, 3, 4, uniquely determines the set {λ1, λ2, λ3, λ4}. Let
us find cj such that Ajj = Ajj(z − cjt). Such value cj is a solution of the
following equation

i

2
E1/2

(
z̄ − c̄t− 1

λ2
j

(z − ct)

)
=
i

2
E1/2

(
z̄ − z

λ2
j

)
− 3iE3/2t

(
λ2
j −

1

λ4
j

)
.

(3.1)
If |λj| 6= 1, then this equation is uniquely solvable and its solution is given
by

cj = 6E

(
λ̄2
j +

1

λ2
j

+
λ2
j

λ̄2
j

)
. (3.2)

It is easy to see that due to (1.7) c1 = c2 = c3 = c4. Thus A = A(z − ct),
and the representation (1.10) with c defined by (2.1) holds. Thus sufficiency
in Lemma 2.1 is proved.

3.2 Proof of Lemma 2.2
If c ∈ UE, then, as follows from item (a) of Lemma 2.3, c 6= cj, defined by

(3.2), j = 1, 2, 3, 4 for any λ1, λ2, λ3, λ4 satisfying the conditions indicated
in (1.7) for N = 1. This and the sufficiency part of Lemma 2.1 imply item
(a) of Lemma 2.2.

If c ∈ C\UE, then, as follows from item (b) of Lemma 2.3, it determines
via (3.2) uniquely the set of λ1, λ2, λ3, λ4 satisfying the conditions indicated
in (1.7) for N = 1. Then the solution (v, w), constructed according to for-
mulas (1.5)–(1.7) with N = 1, constitutes a travel wave solution of equation
(1.1) with the given velocity c. In the construction procedure one of the pa-
rameters γj can be chosen arbitrarily and it determines uniquely the whole
set {γ1, . . . , γ4}.

One can see that the transform

z → z + ζ,

t→ t+ τ

5



turns the potential (v, w) into another Grinevich–Zakharov potential (ṽ, w̃)
with the parameters {λ1, . . . , λ4, γ̃1, . . . , γ̃4}, where

γj − γ̃j =
iE

2

(
ζ̄ − ζ

λ2
j

)
− 3iE3/2τ

(
λ2
j −

1

λ4
j

)
(3.3)

for j = 1, 2, 3, 4.
On the other hand, if (ṽ, w̃) is a Grinevich–Zakharov potential with the

set of parameters {λ1, . . . , λ4, γ̃1, . . . , γ̃4}, then it can be obtained from (v, w)
by a translation, i.e. ṽ(z, t) = v(z + ζ, t + τ), w̃(z, t) = w(z + ζ, t + τ) for
appropriate ζ ∈ C and t ∈ R such that (3.3) holds for some j (equations
(3.3) are equivalent for j = 1, 2, 3, 4 in virtue of (1.7)). In addition, one can
assume, for example, that τ = 0 in this translation.

Thus we have proved that any c ∈ C\UE determines uniquely, modulo
translations, the solution of (1.1) of the form (1.5)–(1.7) with N = 1 and the
given travel velocity c. This proves the point (b) of Lemma 2.2.

Item (c) of Lemma 2.2 follows immediately from Lemma 2.3. Lemma 2.2
is proved.

3.3 Proof of Theorem 2.1
Let us consider a more convenient representation of (v, w) defined by

(1.5)–(1.7). For this purpose we first perform the differentiation with respect
to z̄ in the right–hand side of formula for v in (1.5):

v = −4∂z
[
(detA)−1∂z̄(detA)

]
= −4∂z

[
(detA)−1

4N∑
i,j=1

∂Aij
∂z̄

Âij

]
, (3.4)

where Âij is the (i, j) cofactor of the matrix A. Similarly,

w = 12∂z

[
(detA)−1

4N∑
i,j=1

∂Aij
∂z

Âij

]
. (3.5)

In matrix A only diagonal elements depend on z, z̄, thus

v = −2iE1/2∂z

[
(detA)−1

4N∑
j=1

Âjj

]
, w = −6iE1/2∂z

[
(detA)−1

4N∑
j=1

1

λ2
j

Âjj

]
.

(3.6)
Let us consider the following families V (j) and W (j) of systems of linear
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algebraic equations for functions ψ(j)
k , η(j)

k , j, k = 1, . . . 4N :

V (j) :
4N∑
k=1

Amkψ
(j)
k = −2iE1/2δmj, m = 1, . . . , 4N, (3.7)

W (j) :
4N∑
k=1

Amkη
(j)
k = −6iE1/2 1

λ2
j

δmj, m = 1, . . . , 4N. (3.8)

Then the functions v, w can be represented in the following form

v =
4N∑
j=1

∂ψ
(j)
j

∂z
, w =

4N∑
j=1

∂η
(j)
j

∂z
. (3.9)

In order to write a system of linear algebraic equations for ∂ψ
(j)
k

∂z
=
(
ψ

(j)
k

)
z
,

we differentiate (3.7) with respect to z:

4N∑
k=1

(Amk)z ψ
(j)
k +

4N∑
k=1

Amk

(
ψ

(j)
k

)
z

= 0, m = 1, . . . , 4N,

and thus obtain

4N∑
k=1

Amk

(
ψ

(j)
k

)
z

=
iE1/2

2λ2
m

ψ(j)
m , m = 1, . . . , 4N. (3.10)

Now let us note that Ajj can be represented in the form

Ajj =
iE1/2

2

[
(z̄ − c̄jt)−

1

λ2
j

(z − cjt)

]
− γj,

where cj is given by formula (2.4). As follows from item (c) of Lemma 2.2
cj = ck iff b(j−1)/4c = b(k−1)/4c, where bxc denotes the integer part of x.

Now let us fix
ξ = z − ct

and find the limits ψ(j)
k

∣∣∣ t→∞
ξ fixed

,
(
ψ

(j)
k

)
z

∣∣∣ t→∞
ξ fixed

. We note that

Ajj =
iE1/2

2

[
{ξ̄ + (c̄− c̄j)t} −

1

λ2
j

{ξ + (c− cj)t}
]
.
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If c = cj, then Ajj = iE1/2

2

[
ξ̄ − 1

λ2
j
ξ
]

and is independent of t. Otherwise,
|Ajj| → ∞ as t → ∞ at fixed ξ. We substitute this into (3.7) and consider
the leading term in the Cramer’s formula for ψ(j)

k as t→∞. Thus we obtain

ψ
(j)
k

∣∣∣ t→∞
ξ fixed

= ψ̂
(j)
k (ξ), k, j : ck = cj = c,

ψ
(j)
k

∣∣∣ t→∞
ξ fixed

= 0, k : ck 6= c or j : cj 6= c.

Here ψ̂(j)
k (ξ) denotes some function of ξ independent of t at fixed ξ.

Similarly, from (3.10) we obtain that(
ψ

(j)
k

)
z

∣∣∣ t→∞
ξ fixed

= ψ̄
(j)
k (ξ), k, j : ck = cj = c,

(
ψ

(j)
k

)
z

∣∣∣ t→∞
ξ fixed

= 0, k : ck 6= c or j : cj 6= c,

and, as previously, ψ̄(j)
k (ξ) denotes some function of ξ independent of t at

fixed ξ.
In addition, one can see that if there exists k such that c = c4(k−1)+1 =

. . . = c4k, then

v|
t→∞
ξ fixed

=
4k∑

j=4(k−1)+1

ψ̄
(j)
j (ξ) = νk(ξ), (3.11)

where νk is defined by formula

νk = −4∂z∂z̄ ln detA(k), (3.12)

matrix A(k) is a 4 × 4 submatrix of matrix A from (1.6), such that A(k) =
{Alm}4k

l,m=4(k−1)+1.
Similarly, for the case of function w we have

η
(j)
k

∣∣∣ t→∞
ξ fixed

= η̂
(j)
k (ξ),

(
η

(j)
k

)
z

∣∣∣ t→∞
ξ fixed

= η̄
(j)
k (ξ), k, j : ck = cj = c,

η
(j)
k

∣∣∣ t→∞
ξ fixed

= 0,
(
η

(j)
k

)
z

∣∣∣ t→∞
ξ fixed

= 0, k : ck 6= c or j : cj 6= c,
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where η̂jk(ξ), η̄
j
k(ξ) are some functions of ξ independent of t at fixed ξ. If

there exists k such that c = c4(k−1)+1 = . . . = c4k, then

w|
t→∞
ξ fixed

=
4k∑

j=4(k−1)+1

η̄
(j)
j (ξ) = ωk(ξ), (3.13)

where ωk is defined by formula

ωk = 12∂2
z ln detA(k) (3.14)

and matrix A(k) is the same as in (3.12).
From (3.9), (3.11)–(3.14) it follows that

v ∼
N∑
k=1

νk(ξk), w ∼
N∑
k=1

ωk(ξk), t→∞. (3.15)

Here ξk = z − c4kt, νk, ωk are defined by (2.5)–(2.6) and the meaning of the
relation (3.15) is specified by (2.7)–(2.8). Theorem 2.1 is proved.

3.4 Proof of the necessity part of Lemma 2.1
From (3.15), taking into account (2.7)–(2.8), one can see that (v, w) can

be a travel wave only if N = 1. This completes the proof of Lemma 2.1.
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