ECOLE POLYTECHNIQUE
 CENTRE DE MATHÉMATIQUES APPLIQUÉES

 UMR CNRS 764191128 PALAISEAU CEDEX (FRANCE). Tél: 01693346 00. Fax: 0169334646 http://www.cmap.polytechnique.fr/

Exponential instability in the
 Gel'fand inverse problem on the energy intervals

Mikhail Isaev
R.I. 701
December 2010

Abstract

We consider the Gel'fand inverse problem and continue studies of [Mandache,2001]. We show that the Mandache-type instability remains valid even in the case of Dirichlet-to-Neumann map given on the energy intervals. These instability results show, in particular, that the logarithmic stability estimates of [Alessandrini,1988], [Novikov, Santacesaria,2010] and especially of [Novikov,2010] are optimal (up to the value of the exponent).

1 Introdution

We consider the Schrödinger equation

$$
\begin{equation*}
-\Delta \psi+v(x) \psi=E \psi, \quad x \in D \tag{1.1}
\end{equation*}
$$

where
D is an open bounded domain in $\mathbb{R}^{d}, d \geq 2, \partial D \in C^{2}, v \in L^{\infty}(D)$.
Consider the map $\Phi(E)$ such that

$$
\begin{equation*}
\Phi(E)\left(\left.\psi\right|_{\partial D}\right)=\left.\frac{\partial \psi}{\partial \nu}\right|_{\partial D} \tag{1.3}
\end{equation*}
$$

for all sufficiently regular solutions ψ of (1.1) in $\bar{D}=D \cup \partial D$, where ν is the outward normal to ∂D. Here we assume also that
E is not a Dirichlet eigenvalue for operator $-\Delta+v$ in D.
The map $\Phi(E)$ is called the Dirichlet-to-Neumann map and is considered as boundary measurements.

We consider the following inverse boundary value problem for equation (1.1).
Problem 1.1. Given $\Phi(E)$ on the union of the energy intervals $S=\bigcup_{j=1}^{K} I_{j}$, find v.

Here we suppose that condition (1.4) is fulfilled for any $E \in S$.
This problem can be considered as the GelŠfand inverse boundary value problem for the Schrödinger equation on the energy intervals (see [2], [6]).

Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction, (c) stability.

Global uniqueness for Problem 1.1 was obtained for the first time by Novikov (see Theorem 5.3 in [4]). Some global reconstruction method for Problem 1.1 was proposed for the first time in [4] also. Global uniqueness theorems and global reconstruction methods in the case of fixed energy were given for the first time in [6] in dimension $d \geq 3$ and in [9] in dimension $d=2$.

Global stability estimates for Problem 1.1 were given for the first time in [1] in dimension $d \geq 3$ and in [8] in dimension $d=2$. The Alessandrini result of [1]
was recently improved by Novikov in [7]. In the case of fixed energy, Mandache showed in [3] that these logarithmic stability results are optimal (up to the value of the exponent). Mandache-type instability estimates for inverse inclusion and scattering problems are given in [12].

In the present work we extend studies of Mandache to the case of Dirichlet-to-Neumann map given on the energy intervals. The stability estimates and our instability results for Problem 1.1 are presented and discussed in Section 2. In Section 5 we prove the main results, using a ball packing and covering by ball arguments. In Section 3 we prove some basic properties of the Dirichlet-toNeumann map, using some Lemmas about the Bessel functions wich we proved in Section 6.

2 Stability estimates and main results

As in [7] we assume for simplicity that
D is an open bounded domain in $\mathbb{R}^{d}, \partial D \in C^{2}$, $v \in W^{m, 1}\left(\mathbb{R}^{d}\right)$ for some $m>d, \operatorname{supp} v \subset D, d \geq 2$,
where

$$
\begin{equation*}
W^{m, 1}\left(\mathbb{R}^{d}\right)=\left\{v: \partial^{J} v \in L^{1}\left(\mathbb{R}^{d}\right),|J| \leq m\right\}, m \in \mathbb{N} \cup 0, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
J \in(\mathbb{N} \cup 0)^{d},|J|=\sum_{i=1}^{d} J_{i}, \partial^{J} v(x)=\frac{\partial^{|J|} v(x)}{\partial x_{1}^{J_{1}} \ldots \partial x_{d}^{J_{d}}} \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
\|v\|_{m, 1}=\max _{|J| \leq m}\left\|\partial^{J} v\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \tag{2.4}
\end{equation*}
$$

We recall that if v_{1}, v_{2} are potentials satisfying (1.4),(1.3), where E and D are fixed, then

$$
\begin{equation*}
\Phi_{1}-\Phi_{2} \text { is a compact operator in } L^{\infty}(\partial D) \tag{2.5}
\end{equation*}
$$

where Φ_{1}, Φ_{2} are the DtN maps for v_{1}, v_{2} respectively, see [6]. Note also that $(2.1) \Rightarrow(1.2)$.

Theorem 2.1 (variation of the result of [1], see [7]). Let conditions (1.4), (2.1) hold for potentials v_{1} and v_{2}, where E and D are fixed, $d \geq 3$. Let $\left\|v_{j}\right\|_{m, 1} \leq N, j=1,2$, for some $N>0$. Let Φ_{1}, Φ_{2} denote DtN maps for v_{1}, v_{2} respectively. Then

$$
\begin{equation*}
\left\|v_{1}-v_{2}\right\|_{L^{\infty}(D)} \leq c_{1}\left(\ln \left(3+\left\|\Phi_{1}-\Phi_{2}\right\|^{-1}\right)\right)^{-\alpha_{1}} \tag{2.6}
\end{equation*}
$$

where $c_{1}=c_{1}(N, D, m), \alpha_{1}=(m-d) / m,\left\|\Phi_{1}-\Phi_{2}\right\|=\left\|\Phi_{1}-\Phi_{2}\right\|_{L^{\infty}(\partial D) \rightarrow L^{\infty}(\partial D)}$.
An analog of stability estimate of [1] for $d=2$ is given in [8].
A disadvantage of estimate (2.6) is that

$$
\begin{equation*}
\alpha_{1}<1 \text { for any } m>d \text { even if } m \text { is very great. } \tag{2.7}
\end{equation*}
$$

Theorem 2.2 (the result of [7]). Let the assumptions of Theorem 2.1 hold. Then

$$
\begin{equation*}
\left\|v_{1}-v_{2}\right\|_{L^{\infty}(D)} \leq c_{2}\left(\ln \left(3+\left\|\Phi_{1}-\Phi_{2}\right\|^{-1}\right)\right)^{-\alpha_{2}} \tag{2.8}
\end{equation*}
$$

where $c_{2}=c_{2}(N, D, m), \alpha_{2}=m-d,\left\|\Phi_{1}-\Phi_{2}\right\|=\left\|\Phi_{1}-\Phi_{2}\right\|_{L^{\infty}(\partial D) \rightarrow L^{\infty}(\partial D)}$.
A principal advantage of estimate (2.8) in comparison with (2.6) is that

$$
\begin{equation*}
\alpha_{2} \rightarrow+\infty \text { as } m \rightarrow+\infty \tag{2.9}
\end{equation*}
$$

in contrast with (2.7). Note that strictly speaking Theorem 2.2 was proved in [7] for $E=0$ with the condition that $\operatorname{supp} v \subset D$, so we cant make use of substitution $v_{E}=v-E$, since condition $\operatorname{supp} v_{E} \subset D$ does not hold.

We would like to mention that, under the assumptions of Theorems 2.1 and 2.2, according to the Mandache results of [3], estimate (2.8) can not hold with $\alpha_{2}>m(2 d-1) / d$ for real-valued potentials and with $\alpha_{2}>m$ for complex potentials.

As in [3] in what follows we fix $D=B(0,1)$, where $B(x, r)$ is the open ball of radius r centred at x. We fix an orthonormal basis in $L^{2}\left(S^{d-1}\right)=L^{2}(\partial D)$

$$
\begin{align*}
& \left\{f_{j p}: j \geq 0 ; 1 \leq p \leq p_{j}\right\} \\
& f_{j p} \text { is a spherical harmonic of degree } j, \tag{2.10}
\end{align*}
$$

where p_{j} is the dimension of the space of spherical harmonics of order j,

$$
\begin{equation*}
p_{j}=\binom{j+d-1}{d-1}-\binom{j+d-3}{d-1} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!} \quad \text { for } n \geq 0 \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{n}{k}=0 \quad \text { for } n<0 \tag{2.13}
\end{equation*}
$$

The precise choice of $f_{j p}$ is irrelevant for our purposes. Besides orthonormality, we only need $f_{j p}$ to be the restriction of a homogeneous harmonic polynomial of degree j to the sphere and so $|x|^{j} f_{j p}(x /|x|)$ is harmonic. In the Sobolev spaces $H^{s}\left(S^{d-1}\right)$ we will use the norm

$$
\begin{equation*}
\left\|\sum_{j, p} c_{j p} f_{j p}\right\|_{H^{s}}^{2}=\sum_{j, p}(1+j)^{2 s}\left|c_{j p}\right|^{2} \tag{2.14}
\end{equation*}
$$

The notation $\left(a_{j p i q}\right)$ stands for a multiple sequence. We will drop the subscript

$$
\begin{equation*}
0 \leq j, 1 \leq p \leq p_{j}, 0 \leq i, 1 \leq q \leq p_{i} \tag{2.15}
\end{equation*}
$$

We use notations: $|A|$ is the cardinality of a set $A,[a]$ is the integer part of real number a and $(r, \omega) \in \mathbb{R}_{+} \times S^{d-1}$ are polar coordinates for $r \omega=x \in \mathbb{R}^{d}$.

The interval $I=[a, b]$ will be referred as σ-regular interval if for any potential $v \in L^{\infty}(D)$ with $\|v\|_{L^{\infty}(D)} \leq \sigma$ and any $E \in I$ condition (1.4) is fulfilled. Note that for any $E \in I$ and any Dirichlet eigenvalue λ for operator $-\Delta$ in D we have that

$$
\begin{equation*}
|E-\lambda| \geq \sigma \tag{2.16}
\end{equation*}
$$

It follows from the definition of σ-regular interval, taking $v \equiv E-\lambda$.
Theorem 2.3. For $\sigma>0$ and dimension $d \geq 2$ consider the union $S=\bigcup_{j=1}^{K} I_{j}$ of σ-regular intervals. Then for any $m>0$ and any $s \geq 0$ there is a constant $\beta>0$, such that for any $\epsilon \in(0, \sigma / 3)$ and $v_{0} \in C^{m}(D)$ with $\left\|v_{0}\right\|_{L^{\infty}(D)} \leq \sigma / 3$ and supp $v_{0} \subset B(0,1 / 3)$ there are real-valued potentials $v_{1}, v_{2} \in C^{m}(D)$, also supported in $B(0,1 / 3)$, such that

$$
\begin{align*}
& \sup _{E \in S}\left(\left\|\Phi_{1}(E)-\Phi_{2}(E)\right\|_{H^{-s} \rightarrow H^{s}}\right) \leq \exp \left(-\epsilon^{-\frac{1}{2 m}}\right), \\
& \left\|v_{1}-v_{2}\right\|_{L^{\infty}(D)} \geq \epsilon, \tag{2.17}\\
& \left\|v_{i}-v_{0}\right\|_{C^{m}(D)} \leq \beta, \quad i=1,2 \\
& \left\|v_{i}-v_{0}\right\|_{L^{\infty}(D)} \leq \epsilon, \quad i=1,2
\end{align*}
$$

where $\Phi_{1}(E), \Phi_{2}(E)$ are the DtN maps for v_{1} and v_{2} respectively.
Remark 2.1. We can allow β to be arbitrarily small in Theorem 2.3, if we require $\epsilon \leq \epsilon_{0}$ and replace the right-hand side in the instability estimate by $\exp \left(-c \epsilon^{-\frac{1}{2 m}}\right)$, with $\epsilon_{0}>0$ and $c>0$, depending on β.

In addition to Theorem 2.3, we consider explicit instability example with a complex potential given by Mandache in [3]. We show that it gives exponential instability even in case of Dirichlet-to-Neumann map given on the energy intervals. Consider the cylindrical variables $\left(r_{1}, \theta, x^{\prime}\right) \in \mathbb{R}_{+} \times \mathbb{R} / 2 \pi \mathbb{Z} \times \mathbb{R}^{d-2}$, with $x^{\prime}=\left(x_{3}, \ldots, x_{d}\right), r_{1} \cos \theta=x_{1}$ and $r_{1} \sin \theta=x_{2}$. Take $\phi \in C^{\infty}\left(\mathbb{R}^{2}\right)$ with support in $B(0,1 / 3) \cap\left\{x_{1}>1 / 4\right\}$ and with $\|\phi\|_{L^{\infty}}=1$.

Theorem 2.4. For $\sigma>0, m>0$, integer $n>0$ and dimension $d \geq 2$ consider the union $S=\bigcup_{j=1}^{K} I_{j}$ of σ-regular intervals and define the complex potential

$$
\begin{equation*}
v_{n m}(x)=\frac{\sigma}{3} n^{-m} e^{i n \theta} \phi\left(r_{1},\left|x^{\prime}\right|\right) . \tag{2.18}
\end{equation*}
$$

Then $\left\|v_{m n}\right\|_{L^{\infty}(D)}=\frac{\sigma}{3} n^{-m}$ and for every $s \geq 0$ and $m>0$ there are constants c, c^{\prime} such that $\left\|v_{m n}\right\|_{C^{m}(D)} \leq c$ and for every n

$$
\begin{equation*}
\sup _{E \in S}\left(\left\|\Phi_{m n}(E)-\Phi_{0}(E)\right\|_{H^{-s} \rightarrow H^{s}}\right) \leq c^{\prime} 2^{-n / 4} \tag{2.19}
\end{equation*}
$$

where $\Phi_{m n}(E), \Phi_{0}(E)$ are the DtN maps for $v_{m n}$ and $v_{0} \equiv 0$ respectively.
In some important sense, this is stronger than Theorem 2.3. Indeed, if we take $\epsilon=\frac{\sigma}{3} n^{-m}$ we obtain (2.17) with $\exp \left(-C \epsilon^{-1 / m}\right)$ in the right-hand side. An
explicit real-valued counterexample should be difficult to find. This is due to nonlinearity of the map $v \rightarrow \Phi$.
Remark 2.2. Note that for sufficient large s one can see that

$$
\begin{equation*}
\left\|\Phi_{1}-\Phi_{2}\right\|_{L^{\infty}(\partial D) \rightarrow L^{\infty}(\partial D)} \leq C\left\|\Phi_{1}-\Phi_{2}\right\|_{H^{-s} \rightarrow H^{s}} \tag{2.20}
\end{equation*}
$$

So Theorem 2.3 and Theorem 2.4 imply, in particular, that the estimate

$$
\begin{equation*}
\left\|v_{1}-v_{2}\right\|_{L^{\infty}(D)} \leq c_{3} \sup _{E \in S}\left(\ln \left(3+\left\|\Phi_{1}(E)-\Phi_{2}(E)\right\|^{-1}\right)\right)^{-\alpha_{3}} \tag{2.21}
\end{equation*}
$$

where $c_{3}=c_{3}(N, D, m, S)$ and $\left\|\Phi_{1}(E)-\Phi_{2}(E)\right\|=\left\|\Phi_{1}(E)-\Phi_{2}(E)\right\|_{L^{\infty}(\partial D) \rightarrow L^{\infty}(\partial D)}$, can not hold with $\alpha_{3}>2 m$ for real-valued potentials and with $\alpha_{3}>m$ for complex potentials. Thus Theorem 2.3 and Theorem 2.4 show optimality of logarithmic stability results of Alessandrini and Novikov in considerably stronger sense that results of Mandache.

3 Some basic properties of Dirichlet-to-Neumann map

We continue to consider $D=B(0,1)$ and also to use polar coordinates $(r, \omega) \in$ $\mathbb{R}_{+} \times S^{d-1}$, with $x=r \omega$. Solutions of equation $-\Delta \psi=E \psi$ in D can be expressed by the Bessel functions J_{α} and Y_{α} with integer or half-integer order α, see definitions of Section 6. Here we state some Lemmas about these functions (Lemma 3.1, Lemma 3.2 and Lemma 3.3).

Lemma 3.1. Suppose $k \neq 0$ and k^{2} is not a Dirichlet eigenvalue for operator $-\Delta$ in D. Then

$$
\begin{equation*}
\psi_{0}(r, \omega)=r^{-\frac{d-2}{2}} \frac{J_{j+\frac{d-2}{2}}(k r)}{J_{j+\frac{d-2}{2}}(k)} f_{j p}(\omega) \tag{3.1}
\end{equation*}
$$

is the solution of equation (1.1) with $v \equiv 0, E=k^{2}$ and boundary condition $\left.\psi\right|_{\partial D}=f_{j p}$.

Remark 3.1. Note that the assumptions of Lemma 3.1 imply $J_{j+\frac{d-2}{2}}(k) \neq 0$.
Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Then system of functions

$$
\begin{equation*}
\left\{\psi_{j p}(r, \omega)=R_{j}(k, r) f_{j p}(\omega): j \geq 0 ; 1 \leq p \leq p_{j}\right\} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{j}(k, r)=r^{-\frac{d-2}{2}}\left(Y_{j+\frac{d-2}{2}}(k r) J_{j+\frac{d-2}{2}}(k)-J_{j+\frac{d-2}{2}}(k r) Y_{j+\frac{d-2}{2}}(k)\right), \tag{3.3}
\end{equation*}
$$

is complete orthogonal system (in the sense of L_{2}) in the space of solutions of equation (1.1) in $D^{\prime}=B(0,1) \backslash B(0,1 / 3)$ with $v \equiv 0, E=k^{2}$ and boundary condition $\left.\psi\right|_{r=1}=0$.

Lemma 3.3. For any $C>0$ and integer $d \geq 2$ there is a constant $N>3$ depending on C such that for any integer $n \geq N$ and any $|z| \leq C$

$$
\begin{gather*}
\frac{1}{2} \frac{(|z| / 2)^{\alpha}}{\Gamma(\alpha+1)} \leq\left|J_{\alpha}(z)\right| \leq \frac{3}{2} \frac{(|z| / 2)^{\alpha}}{\Gamma(\alpha+1)} \tag{3.4}\\
\left|J_{\alpha}^{\prime}(z)\right| \leq 3 \frac{(|z| / 2)^{\alpha-1}}{\Gamma(\alpha)} \tag{3.5}\\
\frac{1}{2 \pi}(|z| / 2)^{-\alpha} \Gamma(\alpha) \tag{3.6}\\
\left.\left|Y_{\alpha}^{\prime}(z)\right| \leq \frac{3}{\pi}(|z| / 2)^{-\alpha-1} \Gamma(z) \right\rvert\, \leq \frac{3}{2 \pi}(|z| / 2)^{-\alpha} \Gamma(\alpha) \tag{3.7}\\
\end{gather*}
$$

where' denotes derivation with respect to $z, \alpha=n+\frac{d-2}{2}$ and $\Gamma(x)$ is the Gamma function.

Proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3 are given in Section 6.
Lemma 3.4. Consider a compact $W \subset \mathbb{C}$. Suppose, that v is bounded, supp $v \subset$ $B(0,1 / 3)$ and condition (1.4) is fulfilled for any $E \in W$ and potentials v and v_{0}, where $v_{0} \equiv 0$. Denote $\Lambda_{v, E}=\Phi(E)-\Phi_{0}(E)$. Then there is a constant $\rho=\rho(W, d)$, such that for any $0 \leq j, 1 \leq p \leq p_{j}, 0 \leq i, 1 \leq q \leq p_{i}$, we have

$$
\begin{equation*}
\left|\left\langle\Lambda_{v, E} f_{j p}, f_{i q}\right\rangle\right| \leq \rho 2^{-\max (j, i)}\|v\|_{L^{\infty}(D)}\left\|(-\Delta+v-E)^{-1}\right\|_{L^{2}(D)} \tag{3.8}
\end{equation*}
$$

where $\Phi(E), \Phi_{0}(E)$ are the DtN maps for v and v_{0} respectively and $(-\Delta+v-$ $E)^{-1}$ is considered with the Dirichlet boundary condition.
Proof of Lemma 3.4. For simplicity we give first a proof under the additional assumtions that $0 \notin W$ and there is a holomorphic germ \sqrt{E} for $E \in W$. Since W is compact there is $C>0$ such that for any $z \in W$ we have $|z| \leq C$. We take N from Lemma 3.3 for this C. We fix indeces j, p. Consider solutions $\psi(E), \psi_{0}(E)$ of equation (1.1) with $E \in W$, boundary condition $\left.\psi\right|_{\partial D}=f_{j p}$ and potentials v and v_{0} respectively. Then $\psi(E)-\psi_{0}(E)$ has zero boundary values, so it is domain of $-\Delta+v-E$, and since

$$
\begin{equation*}
(-\Delta+v-E)\left(\psi(E)-\psi_{0}(E)\right)=-v \psi_{0}(E) \text { in } D, \tag{3.9}
\end{equation*}
$$

we obtain that

$$
\begin{equation*}
\psi(E)-\psi_{0}(E)=-(-\Delta+v-E)^{-1} v \psi_{0}(E) . \tag{3.10}
\end{equation*}
$$

If $j \geq N$ from Lemma 3.1 and Lemma 3.3 we have that

$$
\begin{align*}
& \left\|\psi_{0}(E)\right\|_{L^{2}(B(0,1 / 3))}^{2}=\left\|f_{j p}\right\|_{L^{2}\left(S^{d-1}\right)}^{2} \int_{0}^{1 / 3}\left|r^{-\frac{d-2}{2}} \frac{J_{j+\frac{d-2}{2}}(\sqrt{E} r)}{J_{j+\frac{d-2}{2}}(\sqrt{E})}\right|^{2} r^{d-1} d r \leq \\
& \leq \int_{0}^{1 / 3}\left(\frac{3}{2} \frac{\left(|E|^{1 / 2} r / 2\right)^{j+\frac{d-2}{2}}}{\Gamma\left(j+\frac{d-2}{2}+1\right)}\right)^{2} /\left(\frac{1}{2} \frac{\left(|E|^{1 / 2} / 2\right)^{j+\frac{d-2}{2}}}{\Gamma\left(j+\frac{d-2}{2}+1\right)}\right)^{2} r d r= \\
& =3 \int_{0}^{1 / 3} r^{2 j+d-1} d r=\frac{3}{2 j+d}\left(\frac{1}{3}\right)^{2 j+d}<2^{-2 j} . \tag{3.11}
\end{align*}
$$

For $j<N$ we use fact that $\left\|\psi_{0}(E)\right\|_{L^{2}(B(0,1))}$ is continuous function on compact W and, since N depends only on W, we get that there is a constant $\rho_{1}=$ $\rho_{1}(W, d)$ such that

$$
\begin{equation*}
\left\|\psi_{0}(E)\right\|_{L^{2}(B(0,1 / 3))} \leq \rho_{1} 2^{-j} \tag{3.12}
\end{equation*}
$$

Since v has support in $B(0,1 / 3)$ from (3.10) we get that

$$
\begin{equation*}
\left\|\psi(E)-\psi_{0}(E)\right\|_{L^{2}(B(0,1))} \leq \rho_{1} 2^{-j}\|v\|_{L^{\infty}(D)}\left\|(-\Delta+v-E)^{-1}\right\|_{L^{2}(D)} \tag{3.13}
\end{equation*}
$$

Note that $\psi(E)-\psi_{0}(E)$ is the solution of equation (1.1) in $D^{\prime}=B(0,1) \backslash$ $B(0,1 / 3)$ with potential $v_{0} \equiv 0$ and boundary condition $\left.\psi\right|_{r=1}=0$. From Lemma 3.2 we have that

$$
\begin{equation*}
\psi(E)-\psi_{0}(E)=\sum_{0 \leq i, 1 \leq q \leq p_{i}} c_{i q}(E) \psi_{i q}(E) \text { in } D^{\prime} \tag{3.14}
\end{equation*}
$$

for some $c_{i q}$, where

$$
\begin{equation*}
\psi_{i q}(E)(r, \omega)=R_{i}(\sqrt{E}, r) f_{i q}(\omega) \tag{3.15}
\end{equation*}
$$

Since $R_{i}(\sqrt{E}, 1)=0$

$$
\begin{equation*}
\left.\frac{\partial R_{i}(\sqrt{E}, r)}{\partial r}\right|_{r=1}=\left.\frac{\partial\left(r^{\frac{d-2}{2}} R_{i}(\sqrt{E}, r)\right)}{\partial r}\right|_{r=1} \tag{3.16}
\end{equation*}
$$

For $i \geq N$ from Lemma 3.3 we have that

$$
\begin{gather*}
\left|\frac{\left.\frac{\partial R_{i}(\sqrt{E}, r)}{\partial r}\right|_{r=1}}{Y_{\alpha}(\sqrt{E}) J_{\alpha}(\sqrt{E})}\right|=|E|^{1 / 2}\left|\frac{Y_{\alpha}^{\prime}(\sqrt{E})}{Y_{\alpha}(\sqrt{E})}-\frac{J_{\alpha}^{\prime}(\sqrt{E})}{J_{\alpha}(\sqrt{E})}\right| \leq \\
\leq 6|E|^{1 / 2}\left(\frac{\left(|E|^{1 / 2} / 2\right)^{-\alpha-1} \Gamma(\alpha+1)}{\left(|E|^{1 / 2} / 2\right)^{-\alpha} \Gamma(\alpha)}+\frac{\left(|E|^{1 / 2} / 2\right)^{\alpha-1} \Gamma(\alpha+1)}{\left(|E|^{1 / 2} / 2\right)^{\alpha} \Gamma(\alpha)}\right)=6 \alpha, \tag{3.17}\\
\left(\frac{\left.\left\|r^{-\frac{d-2}{2}} Y_{\alpha}(\sqrt{E} r)\right\|_{L^{2}(\{1 / 3<|x|<2 / 5\})}\right)^{2}}{\left|Y_{\alpha}(\sqrt{E})\right|} \geq \int_{1 / 3}^{2 / 5}\left(\frac{1}{3} \frac{\left(|E|^{1 / 2} r / 2\right)^{-\alpha} \Gamma(\alpha)}{\left(|E|^{1 / 2} / 2\right)^{-\alpha} \Gamma(\alpha)}\right)^{2} r d r\right. \\
\\
\geq\left(\frac{2}{5}-\frac{1}{3}\right) \frac{1}{3}\left(\frac{1}{3}(5 / 2)^{\alpha}\right)^{2}, \\
\left(\frac{\left.\left\|r^{-\frac{d-2}{2}} J_{\alpha}(\sqrt{E} r)\right\|_{L^{2}(\{1 / 3<|x|<2 / 5\})}\right)^{2}}{\left|J_{\alpha}(\sqrt{E})\right|} \leq \int_{1 / 3}^{2 / 5}\left(3 \frac{\left(|E|^{1 / 2} r / 2\right)^{\alpha} \Gamma(\alpha)}{\left(|E|^{1 / 2} / 2\right)^{\alpha} \Gamma(\alpha)}\right)^{2} r d r\right. \tag{3.19}\\
(3.18) \\
\end{gather*}
$$

where $\alpha=i+\frac{d-2}{2}$. Since $N>3$ we have that $\alpha>3$. Using (3.18) and (3.19) we get that

$$
\begin{equation*}
\frac{\left\|\psi_{i q}(E)\right\|_{L^{2}(\{1 / 3<|x|<2 / 5\})}}{\left|Y_{\alpha}(\sqrt{E}) J_{\alpha}(\sqrt{E})\right|} \geq\left(\left(\frac{2}{5}-\frac{1}{3}\right) \frac{1}{3}\right)^{1 / 2}\left(\frac{1}{3}(5 / 2)^{\alpha}-3(2 / 5)^{\alpha}\right) \geq \frac{1}{1000}(5 / 2)^{\alpha} \tag{3.20}
\end{equation*}
$$

For $i \geq N$ we get that

$$
\begin{equation*}
\left.\left|\frac{\partial R_{i}(\sqrt{E}, r)}{\partial r}\right|_{r=1}\left|\leq 1000 \alpha(5 / 2)^{-\alpha}\right| \right\rvert\, \psi_{i q}(E) \|_{L^{2}(\{1 / 3<|x|<1\})} \tag{3.21}
\end{equation*}
$$

For $i<N$ we use the fact that $\left.\left|\frac{\partial R_{i}(\sqrt{E}, r)}{\partial r}\right|_{r=1} \right\rvert\, /\left\|\psi_{i q}(E)\right\|_{L^{2}(\{1 / 3<|x|<1\})}$ is continuous function on compact W and get that for any $i \geq 0$ there is a constant $\rho_{2}=\rho_{2}(W, d)$ such that

$$
\begin{equation*}
\left.\left|\frac{\partial R_{i}(\sqrt{E}, r)}{\partial r}\right|_{r=1} \right\rvert\, \leq \rho_{2} 2^{-i}\left\|\psi_{i q}(E)\right\|_{L^{2}(\{1 / 3<|x|<1\})} . \tag{3.22}
\end{equation*}
$$

Proceeding from (3.14) and using the CauchyÚSchwarz inequality we get that

$$
\begin{equation*}
\left|c_{i q}(E)\right|=\left|\frac{\left\langle\psi(E)-\psi_{0}(E), \psi_{i q}(E)\right\rangle_{L^{2}(\{1 / 3<|x|<1\})}}{\left\|\psi_{i q}(E)\right\|_{L^{2}(\{1 / 3<|x|<1\})}^{2}}\right| \leq \frac{\left\|\psi(E)-\psi_{0}(E)\right\|_{L^{2}(B(0,1))}}{\left\|\psi_{i q}(E)\right\|_{L^{2}(\{1 / 3<|x|<1\})}} . \tag{3.23}
\end{equation*}
$$

Taking into account

$$
\begin{equation*}
\left\langle\Lambda_{v, E} f_{j p}, f_{i q}\right\rangle=\left\langle\left.\frac{\partial\left(\psi(E)-\psi_{0}(E)\right)}{\partial \nu}\right|_{\partial D}, f_{i q}\right\rangle=\left.c_{i q}(E) \frac{\partial R_{i}(\sqrt{E}, r)}{\partial r}\right|_{r=1} \tag{3.24}
\end{equation*}
$$

and combining (3.22) and (3.23) we obtain that

$$
\begin{equation*}
\left|\left\langle\Lambda_{v, E} f_{j p}, f_{i q}\right\rangle\right| \leq \rho_{2} 2^{-i}\left\|\psi(E)-\psi_{0}(E)\right\|_{L^{2}(B(0,1))} \tag{3.25}
\end{equation*}
$$

From (3.13) and (3.25) we get (3.8).
For the general case we consider two compacts

$$
\begin{equation*}
W_{ \pm}=W \cap\{z \mid \pm \operatorname{Im} z \geq 0\} \tag{3.26}
\end{equation*}
$$

Note that $\frac{J_{j+\frac{d-2}{2}}(\sqrt{E} r)}{J_{j+\frac{d-2}{2}}(\sqrt{E})}$ and $\frac{Y_{j+\frac{d-2}{2}}(\sqrt{E} r)}{Y_{j+\frac{d-2}{2}}(\sqrt{E})}$ have removable singularity in $E=0$ or, more precisely,

$$
\begin{align*}
& \frac{J_{j+\frac{d-2}{2}}(\sqrt{E} r)}{J_{j+\frac{d-2}{2}}(\sqrt{E})} \longrightarrow r^{j+\frac{d-2}{2}} \\
& \frac{Y_{j+\frac{d-2}{2}}(\sqrt{E} r)}{Y_{j+\frac{d-2}{2}}(\sqrt{E})} \longrightarrow r^{-j-\frac{d-2}{2}} \tag{3.27}\\
& \text { as } E \longrightarrow 0
\end{align*}
$$

Considering the limit as $E \rightarrow 0$ we get that (3.13), (3.25) and consequently (3.8) are valid for $W_{ \pm}$. To complete proof we can take $\rho=\max \left\{\rho_{+}, \rho_{-}\right\}$.

Remark 3.2. From (3.1) and (3.10) we get that

$$
\begin{equation*}
\left\langle\Lambda_{v, E} f_{j p}, f_{i q}\right\rangle \text { is holomorphic function in } W \text {. } \tag{3.28}
\end{equation*}
$$

4 A fat metric space and a thin metric space

Definition 4.1. Let $(X, d i s t)$ be a metric space and $\epsilon>0$. We say that a set $Y \subset X$ is an ϵ-net for $X_{1} \subset X$ if for any $x \in X_{1}$ there is $y \in Y$ such that $\operatorname{dist}(x, y) \leq \epsilon$. We call ϵ-entropy of the set X_{1} the number $\mathcal{H}_{\epsilon}\left(X_{1}\right):=$ $\log _{2} \min \left\{|Y|: Y\right.$ is an ϵ-net fot $\left.X_{1}\right\}$.

A set $Z \subset X$ is called ϵ-discrete if for any distinct $z_{1}, z_{2} \in Z$, we have $\operatorname{dist}\left(z_{1}, z_{2}\right) \geq \epsilon$. We call ϵ-capacity of the set X_{1} the number $\mathcal{C}_{\epsilon}:=\log _{2} \max \{|Z|:$ $Z \subset X_{1}$ and Z is ϵ-discrete $\}$.

The use of ϵ-entropy and ϵ-capacity to derive properties of mappings between metric spaces goes back to Vitushkin and Kolmogorov (see [10] and references therein). One notable application was HilbertSs 13th problem (about representing a function of several variables as a composition of functions of a smaller number of variables). In essence, Lemma 4.1 and Lemma 4.2 are parts of the Theorem XIV and the Theorem XVII in [10].
Lemma 4.1. Let $d \geq 2$ è $m>0$. For $\epsilon, \beta>0$, consider the real metric space

$$
X_{m \epsilon \beta}=\left\{f \in C^{m}(D) \mid \operatorname{supp} f \subset B(0,1 / 3),\|f\|_{L^{\infty}(D)} \leq \epsilon,\|f\|_{C^{m}(D)} \leq \beta\right\}
$$

with the metric induced by L^{∞}. Then there is a $\mu>0$ such that for any $\beta>0$ and $\epsilon \in(0, \mu \beta)$, there is an ϵ-discrete set $Z \subset X_{m \epsilon \beta}$ with at least $\exp \left(2^{-d-1}(\mu \beta / \epsilon)^{d / m}\right)$ elements.

Lemma 4.1 was also formulated and proved in [3].
Lemma 4.2. For the interval $I=[a, b]$ with $a<b$ and $\gamma>0$ consider ellipse $W_{I, \gamma} \in \mathbb{C}$

$$
\begin{equation*}
W_{I, \gamma}=\left\{\left.\frac{a+b}{2}+\frac{a-b}{2} \cos z| | \operatorname{Im} z \right\rvert\, \leq \gamma\right\} . \tag{4.1}
\end{equation*}
$$

Then there is a constant $\nu=\nu(C, \gamma)>0$, such that for every $\delta \in\left(0, e^{-1}\right)$, there is a δ-net for the space functions on I with L^{∞}-norm, having holomorphic continuation to $W_{I, \gamma}$ with module bounded above on $W_{I, \gamma}$ by the constant C, with at most $\exp \left(\nu\left(\ln \delta^{-1}\right)^{2}\right)$ elements.
Proof of Lemma 4.2. Theorem XVII in [10] provides asymptotic behaviour of the entropy of this space with respect to $\delta \rightarrow 0$. Here we get upper estimate of it. Suppose $g(z)$ is holomorphic function in $W_{I, \gamma}$ with module bounded above by the constant C. Consider the function $f(z)=g\left(\frac{a+b}{2}+\frac{a-b}{2} \cos z\right)$. By the
choise of $W_{I, \gamma}$ we get that $f(z)$ is 2π-periodic holomorphic function in the stripe $|\operatorname{Im} z| \leq \gamma$. Then for any integer n

$$
\begin{equation*}
\left|c_{n}\right|=\left|\int_{0}^{2 \pi} e^{i n x} f(x) d x\right| \leq \int_{0}^{2 \pi} e^{-|n| \gamma} C d x \leq 2 \pi C e^{-|n| \gamma} . \tag{4.2}
\end{equation*}
$$

Let n_{δ} be the smallest natural number such that $2 \pi C e^{-n \gamma} \leq 6 \pi^{-2}(n+1)^{-2} \delta$ for any $n \geq n_{\delta}$. Taking natural logarithm and using $\ln \delta^{-1} \geq 1$, we get that

$$
\begin{equation*}
n_{\delta} \leq C^{\prime} \ln \delta^{-1} \tag{4.3}
\end{equation*}
$$

where C^{\prime} depends only on C and γ. We denote $\delta^{\prime}=3 \pi^{-2}\left(n_{\delta}+1\right)^{-2} \delta$. Consider the set

$$
\begin{equation*}
Y_{\delta}=\delta^{\prime} \mathbb{Z} \bigcap[-2 \pi C, 2 \pi C]+i \cdot \delta^{\prime} \mathbb{Z} \bigcap[-2 \pi C, 2 \pi C] . \tag{4.4}
\end{equation*}
$$

Using (4.3), we have that

$$
\begin{equation*}
\left|Y_{\delta}\right|=\left(1+2\left[2 \pi C / \delta^{\prime}\right]\right)^{2} \leq C^{\prime \prime} \delta^{-2} \ln ^{4} \delta^{-1} \tag{4.5}
\end{equation*}
$$

with $C^{\prime \prime}$ depending only on C and γ. We set
$Y=\left\{\left.\sum_{n=0}^{\infty} d_{n} \cos \left(n \arccos \frac{x-\frac{a+b}{2}}{\frac{a-b}{2}}\right) \right\rvert\, d_{n} \in Y_{\delta}\right.$ for $n \leq n_{\delta}, d_{n}=0$ otherwise $\}$.
For given $f(z)$ in case of $n \leq n_{\delta}$ we take d_{n} to be one of the closest elements of Y_{δ} to c_{n}. Since $\left|c_{n}\right| \leq 2 \pi C$, this ensures $\left|c_{n}-d_{n}\right| \leq 2 \delta^{\prime}$. For $n>n_{\delta}$ we take $d_{n}=0$. We have then

$$
\begin{equation*}
\left|c_{n}-d_{n}\right| \leq 6 \pi^{-2}(n+1)^{-2} \delta \tag{4.7}
\end{equation*}
$$

For $n>n_{\delta}$ this is true by the construction of n_{δ}, otherwise by the choise of δ^{\prime}. Since $f(x)$ is 2π-periodic even function, we get $g_{Y}(x) \in Y$ such that

$$
\begin{equation*}
\left\|g(x)-g_{Y}(x)\right\|_{L^{\infty}(a, b)} \leq \sum_{n=0}^{\infty}\left|c_{n}-d_{n}\right| \leq 6 \pi^{-2} \delta \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\delta . \tag{4.8}
\end{equation*}
$$

We have that $|Y|=\left|Y_{\delta}\right|^{n_{\delta}}$. Taking into account (4.3),(4.5) and $\ln \delta^{-1} \geq 1$, we get

$$
\begin{equation*}
|Y| \leq\left(C^{\prime \prime} \delta^{-2} \ln ^{4} \delta^{-1}\right)^{C^{\prime} \ln \delta^{-1}} \leq \exp \left(C^{\prime \prime \prime} \ln \delta^{-1} C^{\prime} \ln \delta^{-1}\right) \leq \exp \left(\nu\left(\ln \delta^{-1}\right)^{2}\right) \tag{4.9}
\end{equation*}
$$

Remark 4.1. The assertion is valid even in the case of $a=b$. As δ-net we can take

$$
\begin{equation*}
Y=\frac{\delta}{2} \mathbb{Z} \bigcap[-C, C]+i \cdot \frac{\delta}{2} \mathbb{Z} \bigcap[-C, C] \tag{4.10}
\end{equation*}
$$

Consider an operator $A: H^{-s}\left(S^{d-1}\right) \rightarrow H^{s}\left(S^{d-1}\right)$. We denote its matrix elements in the basis $\left\{f_{j p}\right\}$ by $a_{j p i q}=\left\langle A f_{j p}, f_{i q}\right\rangle$. From [3] we have that

$$
\begin{equation*}
\|A\|_{H^{-s} \rightarrow H^{s}} \leq 4 \sup _{j, p, i, q}(1+\max (j, i))^{2 s+d}\left|a_{j p i q}\right| \tag{4.11}
\end{equation*}
$$

Consider system $S=\bigcup_{j=1}^{K} I_{j}$ of σ-regular intervals. We introduce the Banach space

$$
\begin{equation*}
X_{S, s}=\left\{\left(a_{j p i q}(E)\right) \mid\left\|\left(a_{j p i q}(E)\right)\right\|_{X_{S, s}}<\infty\right\} \tag{4.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\|\left(a_{j p i q}(E)\right)\right\|_{X_{S, s}}=\sup _{j, p, i, q}\left((1+\max (j, i))^{2 s+d} \sup _{E \in S}\left|a_{j p i q}(E)\right|\right) \tag{4.13}
\end{equation*}
$$

Denote by B^{∞} the ball of centre 0 and radius $2 \sigma / 3$ in $L^{\infty}(B(0,1 / 3))$. We identify in the sequel an operator $A(E): H^{-s}\left(S^{d-1}\right) \rightarrow H^{s}\left(S^{d-1}\right)$ with its matrix $\left(a_{j p i q}(E)\right)$. Note that the estimate (4.11) implies that

$$
\begin{equation*}
\sup _{E \in S}\|A(E)\|_{H^{-s} \rightarrow H^{s}} \leq 4\left\|\left(a_{j p i q}(E)\right)\right\|_{X_{S, s}} \tag{4.14}
\end{equation*}
$$

We consider operator $\Lambda_{v, E}$ from Lemma 3.4 as

$$
\begin{equation*}
\Lambda: B^{\infty} \rightarrow\left\{\left(a_{j p i q}(E)\right)\right\} \tag{4.15}
\end{equation*}
$$

where $a_{j p i q}(E)$ are matrix elements in the basis $\left\{f_{j p}\right\}$ of operator $\Lambda_{v, E}$.
Lemma 4.3. Λ maps B^{∞} into $X_{S, s}$ for any s. There is a constant $\eta=$ $\eta(S, s, d)>0$ such that for every $\delta \in\left(0, e^{-1}\right)$ there is a δ-net Y for $\Lambda\left(B^{\infty}\right)$ in $X_{S, s}$ with at most $\exp \left(\eta\left(\ln \delta^{-1}\right)^{2 d}\right)$ elements.

Proof of Lemma 4.3. For simplicity we give first a proof in case of S consists of only one σ-regular interval I. From (4.1) we take $W_{I}=W_{I, \gamma}$, where constant $\gamma>0$ is such as for any $E \in W_{I}$ there is E_{I} in I such as $\left|E-E_{I}\right|<\sigma / 6$. From (2.16) we get that

$$
\begin{equation*}
|E-\lambda| \geq\left|E_{I}-\lambda\right|-\left|E-E_{I}\right| \geq 5 \sigma / 6 \tag{4.16}
\end{equation*}
$$

with λ being Dirichlet eigenvalue for operator $-\Delta$ in D which is closest to E. Then for potential $v \in B^{\infty}$ and $E \in W_{I}$ we have that

$$
\begin{equation*}
\left\|(-\Delta+v-E)^{-1}\right\|_{L^{2}(D)} \leq(|\lambda-E|-2 \sigma / 3)^{-1} \leq(5 \sigma / 6-2 \sigma / 3)^{-1}=6 / \sigma \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\|v\|_{L^{\infty}(D)}\left\|(-\Delta+v-E)^{-1}\right\|_{L^{2}(D)} \leq(2 \sigma / 3)(6 / \sigma)=4 \tag{4.18}
\end{equation*}
$$

where $(-\Delta+v-E)^{-1}$ is considered with the Dirichlet boundary condition. We obtain from Lemma 3.4 that

$$
\begin{equation*}
\left|a_{j p i q}(E)\right| \leq 4 \rho 2^{-\max (j, i)}, \tag{4.19}
\end{equation*}
$$

where $\rho=\rho\left(W_{I}, d\right)$. Hence $\left\|\left(a_{j p i q}(E)\right)\right\|_{X_{S, s}} \leq \sup _{l}(1+l)^{2 s+d} 4 \rho 2^{-l}<\infty$ for any s and d and so the first assertion of the Lemma 4.3 is proved.

Let $l_{\delta s}$ be the smallest natural number such that $(1+l)^{2 s+d} 4 \rho 2^{-l} \leq \delta$ for any $l \geq l_{\delta s}$. Taking natural logarithm and using $\ln \delta^{-1} \geq 1$, we get that

$$
\begin{equation*}
l_{\delta s} \leq C^{\prime} \ln \delta^{-1} \tag{4.20}
\end{equation*}
$$

where the constant C^{\prime} depends only on s, d and I. Denote $Y_{j p i q}$ is $\delta_{j p i q}$-net from Lemma 4.2 with constant $C=\sup _{l}(1+l)^{2 s+d} 4 \rho 2^{-l}$, where $\delta_{j p i q}=(1+$ $\max (j, i))^{-2 s-d} \delta$. We set
$Y=\left\{\left(a_{j p i q}(E)\right) \mid a_{j p i q}(E) \in Y_{j p i q}\right.$ for $\max (j, i) \leq l_{\delta s}, a_{j p i q}(E)=0$ otherwise $\}$.
For any $\left(a_{j p i q}(E)\right) \in \Lambda\left(B^{\infty}\right)$ there is an element $\left(b_{j p i q}(E)\right) \in Y$ such that

$$
\begin{equation*}
(1+\max (j, i))^{2 s+d}\left|a_{j p i q}(E)-b_{j p i q}(E)\right| \leq(1+\max (j, i))^{2 s+d} \delta_{j p i q}=\delta \tag{4.22}
\end{equation*}
$$

in case of $\max (j, i) \leq l_{\delta s}$ and
$(1+\max (j, i))^{2 s+d}\left|a_{j p i q}(E)-b_{j p i q}(E)\right| \leq(1+\max (j, i))^{2 s+d} 2 \rho 2^{-\max (j, i)} \leq \delta$,
otherwise.
It remains to count the elements of Y. Using again the fact that $\ln \delta^{-1} \geq 1$ and (4.20) we get for $\max (j, i) \leq l_{\delta s}$

$$
\begin{equation*}
\left|Y_{j p i q}\right| \leq \exp \left(\nu\left(\ln \delta_{j p i q}^{-1}\right)^{2}\right) \leq \exp \left(\nu^{\prime}\left(\ln \delta^{-1}\right)^{2}\right) \tag{4.24}
\end{equation*}
$$

From [3] we have that $n_{\delta s} \leq 8\left(1+l_{\delta s}\right)^{2 d-2}$, where $n_{\delta s}$ is the number of fourtuples (j, p, i, q) with $\max (j, i) \leq l_{\delta s}$. Taking η to be big enough we get that

$$
\begin{align*}
|Y| & \leq\left(\exp \left(\nu^{\prime}\left(\ln \delta^{-1}\right)^{2}\right)\right)^{n_{\delta s}} \\
& \leq \exp \left(\nu^{\prime}\left(\ln \delta^{-1}\right)^{2} 8\left(1+C^{\prime} \ln \delta^{-1}\right)^{2 d-2}\right) \tag{4.25}\\
& \leq \exp \left(\eta\left(\ln \delta^{-1}\right)^{2 d}\right)
\end{align*}
$$

For $S=\bigcup_{j=1}^{K} I_{j}$ assertion follows immediately, taking η to be in K times more and Y as composition $\left(Y_{1}, \ldots, Y_{K}\right)$ of δ-nets for each interval.

5 Proofs of the main results

In this section we give proofs of Theorem 2.3 and Theorem 2.4.
Proof of Theorem 2.3. Take $v_{0} \in L^{\infty}(B(0,1 / 3)),\left\|v_{0}\right\|_{L^{\infty}(D)} \leq \sigma / 3$ and $\epsilon \in$ $(0, \sigma / 3)$. By Lemma 4.1, the set $v_{0}+X_{m \epsilon \beta}$ has an ϵ-discrete subset $v_{0}+Z$. Since for $\epsilon \in(0, \sigma / 3)$ we have $v_{0}+X_{m \epsilon \beta} \subset B^{\infty}$, where B^{∞} is the ball of centre 0 and radius $2 \sigma / 3$ in $L^{\infty}(B(0,1 / 3))$. The set Y constructed in Lemma 4.3 is also δ-net for $\Lambda\left(v_{0}+X_{m \epsilon \beta}\right)$. We take δ such that $8 \delta=\exp \left(-\epsilon^{-\frac{1}{2 m}}\right)$. Note that inequalities of (2.17) follow from

$$
\begin{equation*}
\left|v_{0}+Z\right|>|Y| \tag{5.1}
\end{equation*}
$$

In fact, if $\left|v_{0}+Z\right|>|Y|$, then there are two potentials $v_{1}, v_{2} \in v_{0}+Z$ with images under Λ in the same $X_{S, s}$-ball radius δ centered at a point of Y, so we get from (4.14)

$$
\begin{equation*}
\sup _{E \in S}\left\|\Phi_{1}(E)-\Phi_{2}(E)\right\|_{H^{-s} \rightarrow H^{s}} \leq 4\left\|\Lambda_{v_{1}, E}-\Lambda_{v_{2}, E}\right\|_{X_{S, s}} \leq 8 \delta=\exp \left(-\epsilon^{-\frac{1}{2 m}}\right) \tag{5.2}
\end{equation*}
$$

It remains to find β such as (5.1) is fullfiled. By Lemma 4.3

$$
\begin{equation*}
|Y| \leq \exp \left(\eta\left(\ln 8+\epsilon^{-\frac{1}{2 m}}\right)^{2 d}\right) \leq \max \left(\exp \left((2 \ln 8)^{2 d} \eta\right), \exp \left(2^{2 d} \eta \epsilon^{-d / m}\right)\right) \tag{5.3}
\end{equation*}
$$

Now we take

$$
\begin{equation*}
\beta>\mu^{-1} \max \left(\sigma / 3, \eta^{m / d} 2^{3 m}, \frac{\sigma}{3} \eta^{m / d} 2^{m}(2 \ln 8)^{2 m}\right) \tag{5.4}
\end{equation*}
$$

This fulfils requirement $\epsilon<\mu \beta$ in Lemma 4.1, which gives

$$
\begin{gather*}
\left|v_{0}+Z\right|=|Z| \geq \exp \left(2^{-d-1}(\mu \beta / \epsilon)^{d / m}\right) \stackrel{(5.4)}{>} \\
>\max \left(\exp \left(2^{-d-1}\left(\eta^{m / d} 2^{3 m} / \epsilon\right)^{d / m}\right), \exp \left(2^{-d-1}\left(\eta^{m / d} 2^{m}(2 \ln 8)^{2 m}\right)^{d / m}\right)\right) \stackrel{(5.3)}{\geq}|Y| \tag{5.5}
\end{gather*}
$$

Proof of Theorem 2.4. In a similar way with the proof of Theorem 2 of [3] we obtain that

$$
\begin{equation*}
\left\langle\left(\Phi_{m n}(E)-\Phi_{0}(E)\right) f_{j p}, f_{i q}\right\rangle=0 \tag{5.6}
\end{equation*}
$$

for $j, i \leq\left[\frac{n-1}{2}\right]$. The only difference is that instead of the operator $-\Delta$ we consider the operator $-\Delta-E$. From (4.11), (4.19) and (5.6) we get

$$
\begin{equation*}
\left\|\Phi_{m n}(E)-\Phi_{0}(E)\right\|_{H^{-s} \rightarrow H^{s}} \leq 16 \rho \sup _{l \geq n / 2}(1+l)^{2 s+d} 2^{-l} \leq c^{\prime} 2^{-n / 4} \tag{5.7}
\end{equation*}
$$

The fact that $\left\|v_{m n}\right\|_{C^{m}(D)}$ is bounded as $n \rightarrow \infty$ is also a part of Theorem 2 of [3].

6 Bessel functions

In this section we prove Lemma 3.1, Lemma 3.2 and Lemma 3.3 about the Bessel functions. Consider the problem of finding solutions of the form $\psi(r, \omega)=$ $R(r) f_{j p}(\omega)$ of equation (1.1) with $v \equiv 0$. We have that

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{(\partial r)^{2}}+(d-1) r^{-1} \frac{\partial}{\partial r}+r^{-2} \Delta_{S^{d-1}} \tag{6.1}
\end{equation*}
$$

where $\Delta_{S^{d-1}}$ is Laplace-Beltrami operator on S^{d-1}. We have that

$$
\begin{equation*}
\Delta_{S^{d-1}} f_{j p}=-j(j+d-2) f_{j p} \tag{6.2}
\end{equation*}
$$

Then we have the following equation for $R(r)$:

$$
\begin{equation*}
-R^{\prime \prime}-\frac{d-1}{r} R^{\prime}+\frac{j(j+d-2)}{r^{2}} R=E R \tag{6.3}
\end{equation*}
$$

Taking $R(r)=r^{-\frac{d-2}{2}} \tilde{R}(r)$, we get

$$
\begin{equation*}
r^{2} \tilde{R}^{\prime \prime}+r \tilde{R}^{\prime}+\left(E r^{2}-\left(j+\frac{d-2}{2}\right)^{2}\right) \tilde{R}=0 \tag{6.4}
\end{equation*}
$$

This equation is known as Bessel's equation. For $E=k^{2} \neq 0$ it has two linearly independent solutions $J_{j+\frac{d-2}{2}}(k r)$ and $Y_{j+\frac{d-2}{2}}(k r)$, where

$$
\begin{gather*}
J_{\alpha}(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}(z / 2)^{2 m+\alpha}}{\Gamma(m+1) \Gamma(m+\alpha+1)} \tag{6.5}\\
Y_{\alpha}(z)=\frac{J_{\alpha}(z) \cos \pi \alpha-J_{-\alpha}(z)}{\sin \pi \alpha} \text { for } \alpha \notin \mathbb{Z} \tag{6.6}
\end{gather*}
$$

and

$$
\begin{equation*}
Y_{\alpha}(z)=\lim _{\alpha^{\prime} \rightarrow \alpha} Y_{\alpha^{\prime}}(z) \text { for } \alpha \in \mathbb{Z} \tag{6.7}
\end{equation*}
$$

The following Lemma is called the Nielsen inequality. A proof can be found in [5]

Lemma 6.1.

$$
\begin{align*}
& J_{\alpha}(z)=\frac{(z / 2)^{\alpha}}{\Gamma(\alpha+1)}(1+\theta) \tag{6.8}\\
& |\theta|<\exp \left(\frac{|z|^{2} / 4}{\left|\alpha_{0}+1\right|}\right)-1
\end{align*}
$$

where $\left|\alpha_{0}+1\right|$ is the least of numbers $|\alpha+1|,|\alpha+2|,|\alpha+3|, \ldots$.
Lemma 6.1 implies that $r^{-\frac{d-2}{2}} J_{j+\frac{d-2}{2}}(k r)$ has removable singularity at $r=0$. Then, using the boundary conditions $R(1)=1$ and $R(1)=0$, one can obtain assertions of Lemma 3.1 and Lemma 3.2, respectively.

Proof of Lemma 3.3 Formula (3.4) follows immediately from Lemma 6.1. We have from [5] that

$$
\begin{equation*}
J_{\alpha}^{\prime}(z)=J_{\alpha-1}(z)-\frac{\alpha}{z} J_{\alpha}(z) \tag{6.9}
\end{equation*}
$$

Further, taking α big enough we get

$$
\begin{equation*}
\left|J_{\alpha}^{\prime}(z)\right| \leq\left|J_{\alpha-1}(z)\right|+\left|\frac{\alpha}{z} J_{\alpha}(z)\right| \leq \frac{3}{2} \frac{(|z| / 2)^{\alpha-1}}{\Gamma(\alpha)}+\frac{3 \alpha}{2|z|} \frac{(|z| / 2)^{\alpha}}{\Gamma(\alpha+1)} \leq 3 \frac{(|z| / 2)^{\alpha-1}}{\Gamma(\alpha)} \tag{6.10}
\end{equation*}
$$

For $\alpha=n+1 / 2$ we have $Y_{\alpha}=(-1)^{n+1} J_{-\alpha}$. Consider its series expansion, see (6.5).

$$
\begin{equation*}
J_{-\alpha}(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}(z / 2)^{2 m-\alpha}}{m!\Gamma(m-\alpha+1)}=\sum_{m=0}^{\infty} c_{m}(z / 2)^{2 m-\alpha} . \tag{6.11}
\end{equation*}
$$

Note that $\left|c_{m} / c_{m+1}\right|=(m+1)|m-\alpha+1| \geq n / 2$. As corollary we obtain that

$$
\begin{align*}
\left|Y_{\alpha}(z)\right|= & \frac{(|z| / 2)^{-\alpha}}{|\Gamma(-\alpha+1)|}(1+\theta)=\frac{1}{\pi}(|z| / 2)^{-\alpha} \Gamma(\alpha)(1+\theta), \\
& |\theta| \leq \sum_{m=1}^{\infty}\left(\frac{|z|^{2}}{2 n}\right)^{2 m} \leq \frac{|z|^{2} / 2 n}{1-|z|^{2} / 2 n} \tag{6.12}
\end{align*}
$$

For $\alpha=n$ we have from [5] that

$$
\begin{align*}
& Y_{n}(z)=\frac{2}{\pi} J_{n}(z) \ln \left(\frac{z}{2}\right)-\frac{1}{\pi} \sum_{m=0}^{n-1}\left(\frac{z}{2}\right)^{2 m-n} \frac{(n-m-1)!}{m!}- \\
& -\frac{1}{\pi} \sum_{m=0}^{\infty} \frac{(-1)^{m}(z / 2)^{2 m+n}}{m!(m+n)!}\left(\frac{\Gamma^{\prime}(m+1)}{\Gamma(m+1)}+\frac{\Gamma^{\prime}(m+n+1)}{\Gamma(m+n+1)}\right)= \tag{6.13}\\
= & \frac{2}{\pi} J_{n}(z) \ln \left(\frac{z}{2}\right)-\frac{1}{\pi} \sum_{m=0}^{n-1} \tilde{c}_{m}(z / 2)^{2 m-n}-\frac{1}{\pi} \sum_{m=0}^{\infty} b_{m}(z / 2)^{2 m+n} .
\end{align*}
$$

Using well-known equality $\Gamma^{\prime}(x) / \Gamma(x)<\ln x, x>1$, see [11], we get following estimation for the coefficients b_{m} are defined in (6.13).

$$
\begin{equation*}
\left|b_{m}\right|<\frac{\ln (m+1)+\ln (n+m+1)}{m!(n+m)!}<\frac{2(n+m)}{m!(n+m)!}<\frac{1}{m!} . \tag{6.14}
\end{equation*}
$$

Note also that $\left|\tilde{c}_{m} / \tilde{c}_{m+1}\right|=(m+1)(n-m-1) \geq n / 2$. Combining it with (6.13) and (6.14), we obtain that

$$
\begin{gather*}
\left|Y_{n}(z)\right|=\frac{1}{\pi}(|z| / 2)^{-n} \Gamma(n)(1+\theta), \\
|\theta| \leq 3 \frac{(|z| / 2)^{2 n}|\ln (z / 2)|}{\Gamma(n)}+\sum_{m=1}^{n-1}\left(\frac{|z|^{2}}{2 n}\right)^{2 m}+\frac{(|z| / 2)^{2 n}}{\Gamma(n)} \sum_{m=0}^{\infty} \frac{(|z| / 2)^{2 m}}{m!} \leq \\
\leq 3 \pi \frac{\max \left(1,(|z| / 2)^{2 n+1}\right)}{\Gamma(n)}+\frac{|z|^{2} / 2 n}{1-|z|^{2} / 2 n}+\frac{(|z| / 2)^{2 n} e^{|z|^{2} / 4}}{\Gamma(n)} . \tag{6.15}
\end{gather*}
$$

Formula (3.6) follows from (6.12) and (6.15). We have from [5] that

$$
\begin{equation*}
Y_{\alpha}^{\prime}(z)=Y_{\alpha-1}(z)-\frac{\alpha}{z} Y_{\alpha}(z) \tag{6.16}
\end{equation*}
$$

Taking n big enough, we get that

$$
\begin{gather*}
\left|Y_{\alpha}^{\prime}(z)\right| \leq\left|Y_{\alpha-1}(z)\right|+\left|\frac{\alpha}{z} Y_{\alpha}(z)\right| \leq \\
\leq \frac{3}{2 \pi}\left((|z| / 2)^{-\alpha+1} \Gamma(\alpha-1)+\frac{\alpha}{|z|}(|z| / 2)^{\alpha} \Gamma(\alpha)\right) \leq \frac{3}{\pi}(|z| / 2)^{-\alpha-1} \Gamma(\alpha+1) \tag{6.17}
\end{gather*}
$$

Combining reqirements for n, stated above, we get that for any $n \geq N+1$ all inequalities of Lemma 3.3 are fullfiled, where N such that

$$
\left\{\begin{array}{l}
N>3 \tag{6.18}\\
\exp \left(\frac{C^{2} / 4}{N+1}\right)-1 \leq 1 / 2 \\
3 \pi \frac{\max \left(1,(C / 2)^{2 N+1}\right)}{\Gamma(N)}+\frac{C^{2}}{2 N-C^{2}}+\frac{(C / 2)^{2 N} e^{C^{2} / 4}}{\Gamma(N)} \leq 1 / 2
\end{array}\right.
$$

Acknowledgments

This work was fulfilled under the direction of R.G.Novikov in the framework of an internship at Ecole Polytechnique.

References

[1] G.Alessandrini, Stable determination of conductivity by boundary measurements, Appl.Anal. 27 (1988) 153-172.
[2] I.M. Gelfand, Some problems of functional analysis and algebra, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, pp.253-276.
[3] N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems. 17(2001) 1435Ü1444.
[4] G.M. Henkin and R.G. Novikov, The $\bar{\partial}$-equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk 42(3) (1987), 93-152 (in Russian); English Transl.: Russ. Math. Surv. 42(3) (1987), 109-180.
[5] G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.
[6] R.G. Novikov, Multidimensional inverse spectral problem for the equation $-\Delta \psi+(v(x)-E u(x)) \psi=0$ Funkt. Anal. Prilozhen. 22(1988) 11Ŭ22 (in Russian) (Engl. Transl. Funct. Anal. Appl. 22(1988) 263Ŭ72).
[7] R.G. Novikov, New global stability estimates for the GelŠfand-Calderon inverse problem, e-print arXiv:1002.0153.
[8] R. Novikov and M. Santacesaria, A global stability estimate for the GelŠfand- Calderon inverse problem in two dimensions, e-print arXiv: 1008.4888 .
[9] A. L. Bukhgeim, Recovering a potential from Cauchy data in the twodimensional case, J. Inverse Ill-Posed Probl. 16, 2008, no. 1, 19 Ũ33.
[10] A.N. Kolmogorov,V.M. Tikhomirov ϵ-entropy and ϵ-capacity in functional spaces Usp. Mat. Nauk 14(1959) 3Ŭ86 (in Russian) (Engl. Transl. Am. Math. Soc. Transl. 17 (1961) 277Ũ364)
[11] M. Abramowitz, I.A. Stegun,(Eds.). Psi (Digamma) Function. ğ6.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 258-259, 1972
[12] M. Di Cristo and L. Rondi Examples of exponential instability for inverse inclusion and scattering problems Inverse Problems. 19 (2003) 685Ŭ701.

