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Abstract

We consider the Gel’fand inverse problem and continue studies of
[Mandache,2001]. We show that the Mandache-type instability remains
valid even in the case of Dirichlet-to-Neumann map given on the en-
ergy intervals. These instability results show, in particular, that the
logarithmic stability estimates of [Alessandrini,1988], [Novikov, Santace-
saria,2010] and especially of [Novikov,2010] are optimal (up to the value
of the exponent).

1 Introdution
We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ D, (1.1)

where

D is an open bounded domain in Rd, d ≥ 2, ∂D ∈ C2, v ∈ L∞(D). (1.2)

Consider the map Φ(E) such that

Φ(E)(ψ|∂D) =
∂ψ

∂ν
|∂D. (1.3)

for all sufficiently regular solutions ψ of (1.1) in D̄ = D ∪ ∂D, where ν is the
outward normal to ∂D. Here we assume also that

E is not a Dirichlet eigenvalue for operator −∆ + v in D. (1.4)

The map Φ(E) is called the Dirichlet-to-Neumann map and is considered as
boundary measurements.

We consider the following inverse boundary value problem for equation (1.1).

Problem 1.1. Given Φ(E) on the union of the energy intervals S =
K⋃
j=1

Ij ,

find v.
Here we suppose that condition (1.4) is fulfilled for any E ∈ S.
This problem can be considered as the GelŠfand inverse boundary value

problem for the Schrödinger equation on the energy intervals (see [2], [6]).
Problem 1.1 includes, in particular, the following questions: (a) uniqueness,

(b) reconstruction, (c) stability.
Global uniqueness for Problem 1.1 was obtained for the first time by Novikov

(see Theorem 5.3 in [4]). Some global reconstruction method for Problem 1.1
was proposed for the first time in [4] also. Global uniqueness theorems and
global reconstruction methods in the case of fixed energy were given for the first
time in [6] in dimension d ≥ 3 and in [9] in dimension d = 2.

Global stability estimates for Problem 1.1 were given for the first time in [1]
in dimension d ≥ 3 and in [8] in dimension d = 2. The Alessandrini result of [1]
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was recently improved by Novikov in [7]. In the case of fixed energy, Mandache
showed in [3] that these logarithmic stability results are optimal (up to the value
of the exponent). Mandache-type instability estimates for inverse inclusion and
scattering problems are given in [12].

In the present work we extend studies of Mandache to the case of Dirichlet-
to-Neumann map given on the energy intervals. The stability estimates and
our instability results for Problem 1.1 are presented and discussed in Section 2.
In Section 5 we prove the main results, using a ball packing and covering by
ball arguments. In Section 3 we prove some basic properties of the Dirichlet-to-
Neumann map, using some Lemmas about the Bessel functions wich we proved
in Section 6.

2 Stability estimates and main results
As in [7] we assume for simplicity that

D is an open bounded domain in Rd, ∂D ∈ C2,
v ∈Wm,1(Rd) for some m > d, supp v ⊂ D, d ≥ 2, (2.1)

where
Wm,1(Rd) = {v : ∂Jv ∈ L1(Rd), |J | ≤ m}, m ∈ N ∪ 0, (2.2)

where

J ∈ (N ∪ 0)d, |J | =
d∑
i=1

Ji, ∂
Jv(x) =

∂|J|v(x)
∂xJ1

1 . . . ∂xJdd
. (2.3)

Let
||v||m,1 = max

|J|≤m
||∂Jv||L1(Rd). (2.4)

We recall that if v1, v2 are potentials satisfying (1.4),(1.3), where E and D are
fixed, then

Φ1 − Φ2 is a compact operator in L∞(∂D), (2.5)

where Φ1, Φ2 are the DtN maps for v1, v2 respectively, see [6]. Note also that
(2.1) ⇒ (1.2).

Theorem 2.1 (variation of the result of [1], see [7]). Let conditions (1.4),
(2.1) hold for potentials v1 and v2, where E and D are fixed, d ≥ 3. Let
||vj ||m,1 ≤ N, j = 1, 2, for some N > 0. Let Φ1, Φ2 denote DtN maps for v1,
v2 respectively. Then

||v1 − v2||L∞(D) ≤ c1(ln(3 + ||Φ1 − Φ2||−1))−α1 , (2.6)

where c1 = c1(N,D,m), α1 = (m−d)/m, ||Φ1−Φ2|| = ||Φ1−Φ2||L∞(∂D)→L∞(∂D).

An analog of stability estimate of [1] for d = 2 is given in [8].
A disadvantage of estimate (2.6) is that

α1 < 1 for any m > d even if m is very great. (2.7)
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Theorem 2.2 (the result of [7]). Let the assumptions of Theorem 2.1 hold.
Then

||v1 − v2||L∞(D) ≤ c2(ln(3 + ||Φ1 − Φ2||−1))−α2 , (2.8)

where c2 = c2(N,D,m), α2 = m− d, ||Φ1 −Φ2|| = ||Φ1 −Φ2||L∞(∂D)→L∞(∂D).

A principal advantage of estimate (2.8) in comparison with (2.6) is that

α2 → +∞ as m→ +∞, (2.9)

in contrast with (2.7). Note that strictly speaking Theorem 2.2 was proved
in [7] for E = 0 with the condition that supp v ⊂ D, so we cant make use of
substitution vE = v − E, since condition supp vE ⊂ D does not hold.

We would like to mention that, under the assumptions of Theorems 2.1 and
2.2, according to the Mandache results of [3], estimate (2.8) can not hold with
α2 > m(2d − 1)/d for real-valued potentials and with α2 > m for complex
potentials.

As in [3] in what follows we fix D = B(0, 1), where B(x, r) is the open ball
of radius r centred at x. We fix an orthonormal basis in L2(Sd−1) = L2(∂D)

{fjp : j ≥ 0; 1 ≤ p ≤ pj},
fjp is a spherical harmonic of degree j, (2.10)

where pj is the dimension of the space of spherical harmonics of order j,

pj =
(
j + d− 1
d− 1

)
−
(
j + d− 3
d− 1

)
, (2.11)

where (
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
for n ≥ 0 (2.12)

and (
n

k

)
= 0 for n < 0. (2.13)

The precise choice of fjp is irrelevant for our purposes. Besides orthonormality,
we only need fjp to be the restriction of a homogeneous harmonic polynomial of
degree j to the sphere and so |x|jfjp(x/|x|) is harmonic. In the Sobolev spaces
Hs(Sd−1) we will use the norm

||
∑
j,p

cjpfjp||2Hs =
∑
j,p

(1 + j)2s|cjp|2. (2.14)

The notation (ajpiq) stands for a multiple sequence. We will drop the subscript

0 ≤ j, 1 ≤ p ≤ pj , 0 ≤ i, 1 ≤ q ≤ pi. (2.15)

We use notations: |A| is the cardinality of a set A, [a] is the integer part of real
number a and (r, ω) ∈ R+ × Sd−1 are polar coordinates for rω = x ∈ Rd.

3



The interval I = [a, b] will be referred as σ-regular interval if for any potential
v ∈ L∞(D) with ||v||L∞(D) ≤ σ and any E ∈ I condition (1.4) is fulfilled. Note
that for any E ∈ I and any Dirichlet eigenvalue λ for operator −∆ in D we
have that

|E − λ| ≥ σ. (2.16)

It follows from the definition of σ-regular interval, taking v ≡ E − λ.

Theorem 2.3. For σ > 0 and dimension d ≥ 2 consider the union S =
K⋃
j=1

Ij

of σ-regular intervals. Then for any m > 0 and any s ≥ 0 there is a constant
β > 0, such that for any ε ∈ (0, σ/3) and v0 ∈ Cm(D) with ||v0||L∞(D) ≤ σ/3
and supp v0 ⊂ B(0, 1/3) there are real-valued potentials v1, v2 ∈ Cm(D), also
supported in B(0, 1/3), such that

sup
E∈S

(
||Φ1(E)− Φ2(E)||H−s→Hs

)
≤ exp

(
− ε− 1

2m

)
,

||v1 − v2||L∞(D) ≥ ε,
||vi − v0||Cm(D) ≤ β, i = 1, 2,
||vi − v0||L∞(D) ≤ ε, i = 1, 2,

(2.17)

where Φ1(E), Φ2(E) are the DtN maps for v1 and v2 respectively.

Remark 2.1. We can allow β to be arbitrarily small in Theorem 2.3, if we
require ε ≤ ε0 and replace the right-hand side in the instability estimate by
exp(−cε− 1

2m ), with ε0 > 0 and c > 0, depending on β.
In addition to Theorem 2.3, we consider explicit instability example with a

complex potential given by Mandache in [3]. We show that it gives exponen-
tial instability even in case of Dirichlet-to-Neumann map given on the energy
intervals. Consider the cylindrical variables (r1, θ, x′) ∈ R+ × R/2πZ × Rd−2,
with x′ = (x3, . . . , xd), r1 cos θ = x1 and r1 sin θ = x2. Take φ ∈ C∞(R2) with
support in B(0, 1/3) ∩ {x1 > 1/4} and with ||φ||L∞ = 1.

Theorem 2.4. For σ > 0, m > 0, integer n > 0 and dimension d ≥ 2 consider

the union S =
K⋃
j=1

Ij of σ-regular intervals and define the complex potential

vnm(x) =
σ

3
n−meinθφ(r1, |x′|). (2.18)

Then ||vmn||L∞(D) = σ
3n
−m and for every s ≥ 0 and m > 0 there are constants

c, c′ such that ||vmn||Cm(D) ≤ c and for every n

sup
E∈S

(
||Φmn(E)− Φ0(E)||H−s→Hs

)
≤ c′2−n/4, (2.19)

where Φmn(E), Φ0(E) are the DtN maps for vmn and v0 ≡ 0 respectively.

In some important sense, this is stronger than Theorem 2.3. Indeed, if we take
ε = σ

3n
−m we obtain (2.17) with exp(−Cε−1/m) in the right-hand side. An
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explicit real-valued counterexample should be difficult to find. This is due to
nonlinearity of the map v → Φ.
Remark 2.2. Note that for sufficient large s one can see that

||Φ1 − Φ2||L∞(∂D)→L∞(∂D) ≤ C||Φ1 − Φ2||H−s→Hs . (2.20)

So Theorem 2.3 and Theorem 2.4 imply, in particular, that the estimate

||v1 − v2||L∞(D) ≤ c3 sup
E∈S

(
ln(3 + ||Φ1(E)− Φ2(E)||−1)

)−α3
, (2.21)

where c3 = c3(N,D,m, S) and ||Φ1(E)−Φ2(E)|| = ||Φ1(E)−Φ2(E)||L∞(∂D)→L∞(∂D),
can not hold with α3 > 2m for real-valued potentials and with α3 > m for com-
plex potentials. Thus Theorem 2.3 and Theorem 2.4 show optimality of loga-
rithmic stability results of Alessandrini and Novikov in considerably stronger
sense that results of Mandache.

3 Some basic properties of Dirichlet-to-Neumann
map

We continue to consider D = B(0, 1) and also to use polar coordinates (r, ω) ∈
R+ × Sd−1, with x = rω. Solutions of equation −∆ψ = Eψ in D can be
expressed by the Bessel functions Jα and Yα with integer or half-integer order
α, see definitions of Section 6. Here we state some Lemmas about these functions
(Lemma 3.1, Lemma 3.2 and Lemma 3.3).

Lemma 3.1. Suppose k 6= 0 and k2 is not a Dirichlet eigenvalue for operator
−∆ in D. Then

ψ0(r, ω) = r−
d−2
2

Jj+ d−2
2

(kr)

Jj+ d−2
2

(k)
fjp(ω) (3.1)

is the solution of equation (1.1) with v ≡ 0, E = k2 and boundary condition
ψ|∂D = fjp.

Remark 3.1. Note that the assumptions of Lemma 3.1 imply Jj+ d−2
2

(k) 6= 0.

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Then system of functions

{ψjp(r, ω) = Rj(k, r)fjp(ω) : j ≥ 0; 1 ≤ p ≤ pj} , (3.2)

where

Rj(k, r) = r−
d−2
2

(
Yj+ d−2

2
(kr)Jj+ d−2

2
(k)− Jj+ d−2

2
(kr)Yj+ d−2

2
(k)
)
, (3.3)

is complete orthogonal system (in the sense of L2) in the space of solutions of
equation (1.1) in D′ = B(0, 1) \ B(0, 1/3) with v ≡ 0, E = k2 and boundary
condition ψ|r=1 = 0.
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Lemma 3.3. For any C > 0 and integer d ≥ 2 there is a constant N > 3
depending on C such that for any integer n ≥ N and any |z| ≤ C

1
2

(|z|/2)α

Γ(α+ 1)
≤ |Jα(z)| ≤ 3

2
(|z|/2)α

Γ(α+ 1)
, (3.4)

|J ′α(z)| ≤ 3
(|z|/2)α−1

Γ(α)
, (3.5)

1
2π

(|z|/2)−αΓ(α) ≤ |Yα(z)| ≤ 3
2π

(|z|/2)−αΓ(α) (3.6)

|Y ′α(z)| ≤ 3
π

(|z|/2)−α−1Γ(α+ 1) (3.7)

where ′ denotes derivation with respect to z, α = n+ d−2
2 and Γ(x) is the Gamma

function.

Proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3 are given in Section 6.

Lemma 3.4. Consider a compact W ⊂ C. Suppose, that v is bounded, supp v ⊂
B(0, 1/3) and condition (1.4) is fulfilled for any E ∈ W and potentials v and
v0, where v0 ≡ 0. Denote Λv,E = Φ(E) − Φ0(E). Then there is a constant
ρ = ρ(W,d), such that for any 0 ≤ j, 1 ≤ p ≤ pj, 0 ≤ i, 1 ≤ q ≤ pi, we have

|〈Λv,Efjp, fiq〉| ≤ ρ 2−max(j,i)||v||L∞(D)||(−∆ + v − E)−1||L2(D), (3.8)

where Φ(E), Φ0(E) are the DtN maps for v and v0 respectively and (−∆ + v −
E)−1 is considered with the Dirichlet boundary condition.

Proof of Lemma 3.4. For simplicity we give first a proof under the additional
assumtions that 0 /∈W and there is a holomorphic germ

√
E for E ∈W . Since

W is compact there is C > 0 such that for any z ∈ W we have |z| ≤ C. We
take N from Lemma 3.3 for this C. We fix indeces j, p. Consider solutions
ψ(E), ψ0(E) of equation (1.1) with E ∈ W , boundary condition ψ|∂D = fjp
and potentials v and v0 respectively. Then ψ(E) − ψ0(E) has zero boundary
values, so it is domain of −∆ + v − E, and since

(−∆ + v − E) (ψ(E)− ψ0(E)) = −vψ0(E) in D, (3.9)

we obtain that

ψ(E)− ψ0(E) = −(−∆ + v − E)−1vψ0(E). (3.10)

If j ≥ N from Lemma 3.1 and Lemma 3.3 we have that

||ψ0(E)||2L2(B(0,1/3)) = ||fjp||2L2(Sd−1)

∫ 1/3

0

∣∣∣∣∣r− d−2
2

Jj+ d−2
2

(
√
E r)

Jj+ d−2
2

(
√
E)

∣∣∣∣∣
2

rd−1dr ≤

≤
∫ 1/3

0

(
3
2

(|E|1/2r/2)j+
d−2
2

Γ(j + d−2
2 + 1)

)2/(1
2

(|E|1/2/2)j+
d−2
2

Γ(j + d−2
2 + 1)

)2

r dr =

= 3
∫ 1/3

0

r2j+d−1dr =
3

2j + d

(
1
3

)2j+d

< 2−2j .

(3.11)
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For j < N we use fact that ||ψ0(E)||L2(B(0,1)) is continuous function on compact
W and, since N depends only on W , we get that there is a constant ρ1 =
ρ1(W,d) such that

||ψ0(E)||L2(B(0,1/3)) ≤ ρ12−j . (3.12)

Since v has support in B(0, 1/3) from (3.10) we get that

||ψ(E)− ψ0(E)||L2(B(0,1)) ≤ ρ12−j ||v||L∞(D)||(−∆ + v − E)−1||L2(D). (3.13)

Note that ψ(E) − ψ0(E) is the solution of equation (1.1) in D′ = B(0, 1) \
B(0, 1/3) with potential v0 ≡ 0 and boundary condition ψ|r=1 = 0. From
Lemma 3.2 we have that

ψ(E)− ψ0(E) =
∑

0≤i,1≤q≤pi

ciq(E)ψiq(E) in D′ (3.14)

for some ciq, where

ψiq(E)(r, ω) = Ri(
√
E, r)fiq(ω). (3.15)

Since Ri(
√
E, 1) = 0

∂Ri(
√
E, r)

∂r

∣∣∣∣∣
r=1

=
∂
(
r
d−2
2 Ri(

√
E, r)

)
∂r

∣∣∣∣∣∣
r=1

. (3.16)

For i ≥ N from Lemma 3.3 we have that∣∣∣∣∣∣
∂Ri(

√
E,r)

∂r

∣∣∣
r=1

Yα(
√
E)Jα(

√
E)

∣∣∣∣∣∣ = |E|1/2
∣∣∣∣∣Y ′α(
√
E)

Yα(
√
E)
− J ′α(

√
E)

Jα(
√
E)

∣∣∣∣∣ ≤
≤ 6|E|1/2

(
(|E|1/2/2)−α−1Γ(α+ 1)

(|E|1/2/2)−αΓ(α)
+

(|E|1/2/2)α−1Γ(α+ 1)
(|E|1/2/2)αΓ(α)

)
= 6α,

(3.17)(
||r− d−2

2 Yα(
√
Er)||L2({1/3<|x|<2/5})

|Yα(
√
E)|

)2

≥
∫ 2/5

1/3

(
1
3

(|E|1/2r/2)−αΓ(α)
(|E|1/2/2)−αΓ(α)

)2

r dr

≥
(

2
5
− 1

3

)
1
3

(
1
3

(5/2)α
)2

,

(3.18)(
||r− d−2

2 Jα(
√
Er)||L2({1/3<|x|<2/5})

|Jα(
√
E)|

)2

≤
∫ 2/5

1/3

(
3

(|E|1/2r/2)αΓ(α)
(|E|1/2/2)αΓ(α)

)2

r dr

≤
(

2
5
− 1

3

)
1
3

(3(2/5)α)2 ,

(3.19)
where α = i + d−2

2 . Since N > 3 we have that α > 3. Using (3.18) and (3.19)
we get that
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||ψiq(E)||L2({1/3<|x|<2/5})∣∣∣Yα(
√
E)Jα(

√
E)
∣∣∣ ≥

((2
5
− 1

3

)1
3

)1/2(1
3

(5/2)α − 3(2/5)α
)
≥ 1

1000
(5/2)α.

(3.20)
For i ≥ N we get that∣∣∣∣∣ ∂Ri(

√
E, r)

∂r

∣∣∣∣∣
r=1

∣∣∣∣∣ ≤ 1000α(5/2)−α||ψiq(E)||L2({1/3<|x|<1}). (3.21)

For i < N we use the fact that
∣∣∣ ∂Ri(√E,r)∂r

∣∣∣
r=1

∣∣∣ /||ψiq(E)||L2({1/3<|x|<1}) is con-
tinuous function on compact W and get that for any i ≥ 0 there is a constant
ρ2 = ρ2(W,d) such that∣∣∣∣∣ ∂Ri(

√
E, r)

∂r

∣∣∣∣∣
r=1

∣∣∣∣∣ ≤ ρ2 2−i||ψiq(E)||L2({1/3<|x|<1}). (3.22)

Proceeding from (3.14) and using the CauchyŰSchwarz inequality we get that

|ciq(E)| =

∣∣∣∣∣∣∣
〈
ψ(E)− ψ0(E), ψiq(E)

〉
L2({1/3<|x|<1})

||ψiq(E)||2L2({1/3<|x|<1})

∣∣∣∣∣∣∣ ≤
||ψ(E)− ψ0(E)||L2(B(0,1))

||ψiq(E)||L2({1/3<|x|<1})
.

(3.23)
Taking into account

〈Λv,Efjp, fiq〉 =
〈
∂(ψ(E)− ψ0(E))

∂ν

∣∣∣∣
∂D

, fiq

〉
= ciq(E)

∂Ri(
√
E, r)

∂r

∣∣∣∣∣
r=1
(3.24)

and combining (3.22) and (3.23) we obtain that

|〈Λv,Efjp, fiq〉| ≤ ρ22−i||ψ(E)− ψ0(E)||L2(B(0,1)). (3.25)

From (3.13) and (3.25) we get (3.8).
For the general case we consider two compacts

W± = W ∩ {z | ± Imz ≥ 0} . (3.26)

Note that
J
j+ d−2

2
(
√
Er)

J
j+ d−2

2
(
√
E)

and
Y
j+ d−2

2
(
√
Er)

Y
j+ d−2

2
(
√
E)

have removable singularity in E = 0

or, more precisely,
Jj+ d−2

2
(
√
Er)

Jj+ d−2
2

(
√
E)
−→ rj+

d−2
2 ,

Yj+ d−2
2

(
√
Er)

Yj+ d−2
2

(
√
E)
−→ r−j−

d−2
2

as E −→ 0.

(3.27)
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Considering the limit as E → 0 we get that (3.13), (3.25) and consequently (3.8)
are valid for W±. To complete proof we can take ρ = max{ρ+, ρ−}. �

Remark 3.2. From (3.1) and (3.10) we get that

〈Λv,Efjp, fiq〉 is holomorphic function in W. (3.28)

4 A fat metric space and a thin metric space
Definition 4.1. Let (X, dist) be a metric space and ε > 0. We say that a
set Y ⊂ X is an ε-net for X1 ⊂ X if for any x ∈ X1 there is y ∈ Y such
that dist(x, y) ≤ ε. We call ε-entropy of the set X1 the number Hε(X1) :=
log2 min{|Y | : Y is an ε-net fot X1}.

A set Z ⊂ X is called ε-discrete if for any distinct z1, z2 ∈ Z, we have
dist(z1, z2) ≥ ε. We call ε-capacity of the setX1 the number Cε := log2 max{|Z| :
Z ⊂ X1 and Z is ε-discrete}.

The use of ε-entropy and ε-capacity to derive properties of mappings between
metric spaces goes back to Vitushkin and Kolmogorov (see [10] and references
therein). One notable application was HilbertŠs 13th problem (about repre-
senting a function of several variables as a composition of functions of a smaller
number of variables). In essence, Lemma 4.1 and Lemma 4.2 are parts of the
Theorem XIV and the Theorem XVII in [10].

Lemma 4.1. Let d ≥ 2 è m > 0. For ε, β > 0, consider the real metric space

Xmεβ = {f ∈ Cm(D) | supp f ⊂ B(0, 1/3), ||f ||L∞(D) ≤ ε, ||f ||Cm(D) ≤ β},

with the metric induced by L∞. Then there is a µ > 0 such that for any
β > 0 and ε ∈ (0, µβ), there is an ε-discrete set Z ⊂ Xmεβ with at least
exp

(
2−d−1(µβ/ε)d/m

)
elements.

Lemma 4.1 was also formulated and proved in [3].

Lemma 4.2. For the interval I = [a, b] with a < b and γ > 0 consider ellipse
WI,γ ∈ C

WI,γ = {a+ b

2
+
a− b

2
cos z | |Imz| ≤ γ}. (4.1)

Then there is a constant ν = ν(C, γ) > 0, such that for every δ ∈ (0, e−1),
there is a δ-net for the space functions on I with L∞-norm, having holomorphic
continuation to WI,γ with module bounded above on WI,γ by the constant C,
with at most exp(ν(ln δ−1)2) elements.

Proof of Lemma 4.2. Theorem XVII in [10] provides asymptotic behaviour of
the entropy of this space with respect to δ → 0. Here we get upper estimate of
it. Suppose g(z) is holomorphic function in WI,γ with module bounded above
by the constant C. Consider the function f(z) = g(a+b2 + a−b

2 cos z). By the
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choise ofWI,γ we get that f(z) is 2π-periodic holomorphic function in the stripe
|Im z| ≤ γ. Then for any integer n

|cn| =
∣∣∣∣∫ 2π

0

einxf(x)dx
∣∣∣∣ ≤ ∫ 2π

0

e−|n|γCdx ≤ 2πCe−|n|γ . (4.2)

Let nδ be the smallest natural number such that 2πCe−nγ ≤ 6π−2(n + 1)−2δ
for any n ≥ nδ. Taking natural logarithm and using ln δ−1 ≥ 1, we get that

nδ ≤ C ′ ln δ−1, (4.3)

where C ′ depends only on C and γ. We denote δ′ = 3π−2(nδ + 1)−2δ. Consider
the set

Yδ = δ′Z
⋂

[−2πC, 2πC] + i · δ′Z
⋂

[−2πC, 2πC]. (4.4)

Using (4.3), we have that

|Yδ| = (1 + 2[2πC/δ′])2 ≤ C ′′δ−2 ln4 δ−1, (4.5)

with C ′′ depending only on C and γ. We set

Y =

{ ∞∑
n=0

dn cos

(
n arccos

x− a+b
2

a−b
2

)
| dn ∈ Yδ for n ≤ nδ, dn = 0 otherwise

}
.

(4.6)
For given f(z) in case of n ≤ nδ we take dn to be one of the closest elements of
Yδ to cn. Since |cn| ≤ 2πC, this ensures |cn − dn| ≤ 2δ′. For n > nδ we take
dn = 0. We have then

|cn − dn| ≤ 6π−2(n+ 1)−2δ. (4.7)

For n > nδ this is true by the construction of nδ, otherwise by the choise of δ′.
Since f(x) is 2π-periodic even function, we get gY (x) ∈ Y such that

||g(x)− gY (x)||L∞(a,b) ≤
∞∑
n=0

|cn − dn| ≤ 6π−2δ

∞∑
n=1

1
n2

= δ. (4.8)

We have that |Y | = |Yδ|nδ . Taking into account (4.3),(4.5) and ln δ−1 ≥ 1, we
get

|Y | ≤ (C ′′δ−2 ln4 δ−1)C
′ ln δ−1

≤ exp
(
C ′′′ ln δ−1C ′ ln δ−1

)
≤ exp(ν(ln δ−1)2).

(4.9)
�

Remark 4.1. The assertion is valid even in the case of a = b. As δ-net we can
take

Y =
δ

2
Z
⋂

[−C,C] + i · δ
2

Z
⋂

[−C,C]. (4.10)
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Consider an operator A : H−s(Sd−1) → Hs(Sd−1). We denote its matrix
elements in the basis {fjp} by ajpiq = 〈Afjp, fiq〉. From [3] we have that

||A||H−s→Hs ≤ 4 sup
j,p,i,q

(1 + max(j, i))2s+d|ajpiq|. (4.11)

Consider system S =
K⋃
j=1

Ij of σ-regular intervals. We introduce the Banach

space

XS,s =
{(

ajpiq(E)
)
|
∥∥∥(ajpiq(E)

)∥∥∥
XS,s

<∞
}
, (4.12)

where∥∥∥(ajpiq(E)
)∥∥∥

XS,s
= sup
j,p,i,q

(
(1 + max(j, i))2s+d sup

E∈S
|ajpiq(E)|

)
. (4.13)

Denote by B∞ the ball of centre 0 and radius 2σ/3 in L∞(B(0, 1/3)). We
identify in the sequel an operator A(E) : H−s(Sd−1) → Hs(Sd−1) with its
matrix

(
ajpiq(E)

)
. Note that the estimate (4.11) implies that

sup
E∈S
‖A(E)‖H−s→Hs ≤ 4

∥∥∥(ajpiq(E)
)∥∥∥

XS,s
. (4.14)

We consider operator Λv,E from Lemma 3.4 as

Λ : B∞ →
{(
ajpiq(E)

)}
, (4.15)

where ajpiq(E) are matrix elements in the basis {fjp} of operator Λv,E .

Lemma 4.3. Λ maps B∞ into XS,s for any s. There is a constant η =
η(S, s, d) > 0 such that for every δ ∈ (0, e−1) there is a δ-net Y for Λ(B∞)
in XS,s with at most exp(η(ln δ−1)2d) elements.

Proof of Lemma 4.3. For simplicity we give first a proof in case of S consists of
only one σ-regular interval I. From (4.1) we take WI = WI,γ , where constant
γ > 0 is such as for any E ∈WI there is EI in I such as |E −EI | < σ/6. From
(2.16) we get that

|E − λ| ≥ |EI − λ| − |E − EI | ≥ 5σ/6, (4.16)

with λ being Dirichlet eigenvalue for operator −∆ in D which is closest to E.
Then for potential v ∈ B∞ and E ∈WI we have that

||(−∆+v−E)−1||L2(D) ≤ (|λ−E|−2σ/3)−1 ≤ (5σ/6−2σ/3)−1 = 6/σ (4.17)

and
||v||L∞(D)||(−∆ + v − E)−1||L2(D) ≤ (2σ/3)(6/σ) = 4, (4.18)

11



where (−∆ +v−E)−1 is considered with the Dirichlet boundary condition. We
obtain from Lemma 3.4 that

|ajpiq(E)| ≤ 4ρ 2−max(j,i), (4.19)

where ρ = ρ(WI , d). Hence ||(ajpiq(E))||XS,s ≤ supl(1 + l)2s+d4ρ 2−l < ∞ for
any s and d and so the first assertion of the Lemma 4.3 is proved.

Let lδs be the smallest natural number such that (1 + l)2s+d4ρ 2−l ≤ δ for
any l ≥ lδs. Taking natural logarithm and using ln δ−1 ≥ 1, we get that

lδs ≤ C ′ ln δ−1, (4.20)

where the constant C ′ depends only on s, d and I. Denote Yjpiq is δjpiq-net
from Lemma 4.2 with constant C = supl(1 + l)2s+d4ρ 2−l, where δjpiq = (1 +
max(j, i))−2s−dδ. We set

Y = {(ajpiq(E)) | ajpiq(E) ∈ Yjpiq for max(j, i) ≤ lδs, ajpiq(E) = 0 otherwise} .
(4.21)

For any (ajpiq(E)) ∈ Λ(B∞) there is an element (bjpiq(E)) ∈ Y such that

(1 + max(j, i))2s+d|ajpiq(E)− bjpiq(E)| ≤ (1 + max(j, i))2s+dδjpiq = δ, (4.22)

in case of max(j, i) ≤ lδs and

(1 + max(j, i))2s+d|ajpiq(E)− bjpiq(E)| ≤ (1 + max(j, i))2s+d2ρ 2−max(j,i) ≤ δ,
(4.23)

otherwise.
It remains to count the elements of Y . Using again the fact that ln δ−1 ≥ 1

and (4.20) we get for max(j, i) ≤ lδs

|Yjpiq| ≤ exp(ν(ln δ−1
jpiq)

2) ≤ exp(ν′(ln δ−1)2). (4.24)

From [3] we have that nδs ≤ 8(1 + lδs)2d−2, where nδs is the number of four-
tuples (j, p, i, q) with max(j, i) ≤ lδs. Taking η to be big enough we get that

|Y | ≤
(
exp(ν′(ln δ−1)2)

)nδs
≤ exp

(
ν′(ln δ−1)28(1 + C ′ ln δ−1)2d−2

)
≤ exp

(
η(ln δ−1)2d

)
.

(4.25)

For S =
K⋃
j=1

Ij assertion follows immediately, taking η to be in K times more

and Y as composition (Y1, . . . , YK) of δ-nets for each interval. �
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5 Proofs of the main results
In this section we give proofs of Theorem 2.3 and Theorem 2.4.

Proof of Theorem 2.3. Take v0 ∈ L∞(B(0, 1/3)), ||v0||L∞(D) ≤ σ/3 and ε ∈
(0, σ/3). By Lemma 4.1, the set v0 + Xmεβ has an ε-discrete subset v0 + Z.
Since for ε ∈ (0, σ/3) we have v0 +Xmεβ ⊂ B∞, where B∞ is the ball of centre
0 and radius 2σ/3 in L∞(B(0, 1/3)). The set Y constructed in Lemma 4.3 is
also δ-net for Λ(v0 +Xmεβ). We take δ such that 8δ = exp

(
−ε− 1

2m

)
. Note that

inequalities of (2.17) follow from

|v0 + Z| > |Y |. (5.1)

In fact, if |v0 + Z| > |Y |, then there are two potentials v1, v2 ∈ v0 + Z with
images under Λ in the same XS,s-ball radius δ centered at a point of Y , so we
get from (4.14)

sup
E∈S
||Φ1(E)− Φ2(E)||H−s→Hs ≤ 4||Λv1,E − Λv2,E ||XS,s ≤ 8δ = exp

(
−ε− 1

2m

)
.

(5.2)
It remains to find β such as (5.1) is fullfiled. By Lemma 4.3

|Y | ≤ exp
(
η
(

ln 8 + ε−
1

2m

)2d
)
≤ max

(
exp

(
(2 ln 8)2dη

)
, exp

(
22dηε−d/m

))
.

(5.3)
Now we take

β > µ−1 max
(
σ/3, ηm/d23m,

σ

3
ηm/d2m(2 ln 8)2m

)
(5.4)

This fulfils requirement ε < µβ in Lemma 4.1, which gives

|v0 + Z| = |Z| ≥ exp
(

2−d−1(µβ/ε)d/m
) (5.4)

>

> max
(

exp
(

2−d−1(ηm/d23m/ε)d/m
)
, exp

(
2−d−1(ηm/d2m(2 ln 8)2m)d/m

)) (5.3)

≥ |Y |.
(5.5)

�

Proof of Theorem 2.4. In a similar way with the proof of Theorem 2 of [3] we
obtain that

〈(Φmn(E)− Φ0(E)) fjp, fiq〉 = 0 (5.6)
for j, i ≤

[
n−1

2

]
. The only difference is that instead of the operator −∆ we

consider the operator −∆− E. From (4.11), (4.19) and (5.6) we get

||Φmn(E)− Φ0(E)||H−s→Hs ≤ 16ρ sup
l≥n/2

(1 + l)2s+d2−l ≤ c′2−n/4. (5.7)

The fact that ||vmn||Cm(D) is bounded as n → ∞ is also a part of Theorem 2
of [3]. �
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6 Bessel functions
In this section we prove Lemma 3.1, Lemma 3.2 and Lemma 3.3 about the
Bessel functions. Consider the problem of finding solutions of the form ψ(r, ω) =
R(r)fjp(ω) of equation (1.1) with v ≡ 0 . We have that

∆ =
∂2

(∂r)2
+ (d− 1)r−1 ∂

∂r
+ r−2∆Sd−1 , (6.1)

where ∆Sd−1 is Laplace-Beltrami operator on Sd−1. We have that

∆Sd−1fjp = −j(j + d− 2)fjp. (6.2)

Then we have the following equation for R(r):

−R′′ − d− 1
r

R′ +
j(j + d− 2)

r2
R = ER. (6.3)

Taking R(r) = r−
d−2
2 R̃(r), we get

r2R̃′′ + rR̃′ +

(
Er2 −

(
j +

d− 2
2

)2
)
R̃ = 0. (6.4)

This equation is known as Bessel’s equation. For E = k2 6= 0 it has two linearly
independent solutions Jj+ d−2

2
(kr) and Yj+ d−2

2
(kr), where

Jα(z) =
∞∑
m=0

(−1)m(z/2)2m+α

Γ(m+ 1)Γ(m+ α+ 1)
, (6.5)

Yα(z) =
Jα(z) cosπα− J−α(z)

sinπα
for α /∈ Z, (6.6)

and
Yα(z) = lim

α′→α
Yα′(z) for α ∈ Z. (6.7)

The following Lemma is called the Nielsen inequality. A proof can be found
in [5]

Lemma 6.1.

Jα(z) =
(z/2)α

Γ(α+ 1)
(1 + θ),

|θ| < exp
(
|z|2/4
|α0 + 1|

)
− 1,

(6.8)

where |α0 + 1| is the least of numbers |α+ 1|, |α+ 2|, |α+ 3|, . . . .

Lemma 6.1 implies that r−
d−2
2 Jj+ d−2

2
(kr) has removable singularity at r = 0.

Then, using the boundary conditions R(1) = 1 and R(1) = 0, one can obtain
assertions of Lemma 3.1 and Lemma 3.2, respectively.
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Proof of Lemma 3.3 Formula (3.4) follows immediately from Lemma 6.1. We
have from [5] that

J ′α(z) = Jα−1(z)− α

z
Jα(z). (6.9)

Further, taking α big enough we get

|J ′α(z)| ≤ |Jα−1(z)|+ |α
z
Jα(z)| ≤ 3

2
(|z|/2)α−1

Γ(α)
+

3α
2|z|

(|z|/2)α

Γ(α+ 1)
≤ 3

(|z|/2)α−1

Γ(α)
.

(6.10)
For α = n+ 1/2 we have Yα = (−1)n+1J−α. Consider its series expansion, see
(6.5).

J−α(z) =
∞∑
m=0

(−1)m(z/2)2m−α

m! Γ(m− α+ 1)
=
∞∑
m=0

cm(z/2)2m−α. (6.11)

Note that |cm/cm+1| = (m+ 1)|m− α+ 1| ≥ n/2. As corollary we obtain that

|Yα(z)| = (|z|/2)−α

|Γ(−α+ 1)|
(1 + θ) =

1
π

(|z|/2)−αΓ(α)(1 + θ),

|θ| ≤
∞∑
m=1

(
|z|2

2n

)2m

≤ |z|2/2n
1− |z|2/2n

.
(6.12)

For α = n we have from [5] that

Yn(z) =
2
π
Jn(z) ln

(z
2

)
− 1
π

n−1∑
m=0

(z
2

)2m−n (n−m− 1)!
m!

−

− 1
π

∞∑
m=0

(−1)m(z/2)2m+n

m!(m+ n)!

(
Γ′(m+ 1)
Γ(m+ 1)

+
Γ′(m+ n+ 1)
Γ(m+ n+ 1)

)
=

=
2
π
Jn(z) ln

(z
2

)
− 1
π

n−1∑
m=0

c̃m(z/2)2m−n − 1
π

∞∑
m=0

bm(z/2)2m+n.

(6.13)

Using well-known equality Γ′(x)/Γ(x) < lnx, x > 1, see [11], we get following
estimation for the coefficients bm are defined in (6.13).

|bm| <
ln(m+ 1) + ln(n+m+ 1)

m!(n+m)!
<

2(n+m)
m!(n+m)!

<
1
m!
. (6.14)

Note also that |c̃m/c̃m+1| = (m+1)(n−m−1) ≥ n/2. Combining it with (6.13)
and (6.14), we obtain that

|Yn(z)| = 1
π

(|z|/2)−nΓ(n)(1 + θ),

|θ| ≤ 3
(|z|/2)2n| ln(z/2)|

Γ(n)
+

n−1∑
m=1

(
|z|2

2n

)2m

+
(|z|/2)2n

Γ(n)

∞∑
m=0

(|z|/2)2m

m!
≤

≤ 3π
max

(
1, (|z|/2)2n+1

)
Γ(n)

+
|z|2/2n

1− |z|2/2n
+

(|z|/2)2ne|z|
2/4

Γ(n)
.

(6.15)
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Formula (3.6) follows from (6.12) and (6.15). We have from [5] that

Y ′α(z) = Yα−1(z)− α

z
Yα(z). (6.16)

Taking n big enough, we get that

|Y ′α(z)| ≤ |Yα−1(z)|+ |α
z
Yα(z)| ≤

≤ 3
2π

(
(|z|/2)−α+1 Γ(α− 1) +

α

|z|
(|z|/2)αΓ(α)

)
≤ 3
π

(|z|/2)−α−1Γ(α+ 1).

(6.17)
Combining reqirements for n, stated above, we get that for any n ≥ N + 1 all
inequalities of Lemma 3.3 are fullfiled, where N such that

N > 3,

exp
(
C2/4
N + 1

)
− 1 ≤ 1/2,

3π
max

(
1, (C/2)2N+1

)
Γ(N)

+
C2

2N − C2
+

(C/2)2NeC
2/4

Γ(N)
≤ 1/2.

(6.18)

�
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