ECOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES APPLIQUÉES

UMR CNRS 7641

91128 PALAISEAU CEDEX (FRANCE). Tél: 01693346 00. Fax: 0169334646
http://www.cmap.polytechnique.fr/

Volume-constrained minimizers for the prescribed curvature problem in periodic media

Goldman Michael

R.I. 705

Janvier 2011

Volume-constrained minimizers for the prescribed curvature problem in periodic media

M. Goldman * M. Novaga ${ }^{\dagger}$

Abstract

We establish existence of compact minimizers of the prescribed mean curvature problem with volume constraint in periodic media. As a consequence, we construct compact approximate solutions to the prescribed mean curvature equation. We also show convergence after rescaling of the volume-constrained minimizers towards a suitable Wulff Shape, when the volume tends to infinity.

1 Introduction

In recent years, a lot of attention has been drawn towards the problem of constructing surfaces with prescribed mean curvature. More precisely, given an assigned function $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the problem is finding a hypersurface having mean curvature κ satisfying

$$
\begin{equation*}
\kappa=g . \tag{1}
\end{equation*}
$$

To our knowledge, this problem was first posed by S.T. Yau in [23], under the additional constraint of the hypersurface being diffeomorphic to a sphere, and a solution was provided in $[20,12]$ when the function g satisfies suitable decay conditions at infinity, namely that it decays faster than the mean curvature of concentric spheres. Another approach was presented in [2, 11], by means of conformal parametrizations and a clever use of the mountain pass lemma. A serious limitation of this method is the impossibility to extend it to dimension higher than three, due to the lack of a good equivalent of a conformal parametrization.

Motivated by some homogenization problems in front propagation [15], in this paper we look for solutions to (1) without any topological constraint but with a periodic function

[^0]g, so that in particular, it does not decay to zero at infinity. A natural idea is to look for critical points of the prescribed curvature functional
$$
F(E)=P(E)-\int_{E} g d x,
$$
as it is well-known that such critical points solve (1), whenever they are smooth [10]. Observe that, in general, it is not possible to construct solutions of (1) by a direct minimization of the functional F, because such minimizers may not exist or be empty.

The first result in this setting was obtained by Caffarelli and de la Llave in [5] (see also [7]) where the authors construct planelike solutions of (1) under the assumption that g is small and has zero average, by minimizing F among sets with boundary contained in a given strip, and then show that the constraint does not affect the curvature of the solution.

Here we are rather interested in compact solutions of (1). This problem seems difficult in this generality and only some preliminary results, in the two-dimensional case are presently available [13]. However, the following perturbative result has been proved in [15]: given a periodic function g with zero average and small L^{∞}-norm and ε arbitrarily small, there exists a compact solution of

$$
\kappa=g_{\varepsilon}
$$

where $\left\|g_{\varepsilon}-g\right\|_{L^{1}} \leq \varepsilon$. Since the L^{1}-norm does not seem very well suited for this problem, a natural question raised in [15] was whether the same result holds when the L^{1}-norm is replaced by the L^{∞}-norm.

In this paper we answer this question. More precisely, we prove the following result (see Theorem 4.4): let g be a periodic Hölder continuous function with zero average and such that

$$
\begin{equation*}
\int_{E} g d x \leq(1-\Lambda) P(E, Q) \quad \forall E \subset Q \tag{2}
\end{equation*}
$$

for some $\Lambda>0$. Then for every $\varepsilon>0$ there exist $0<\varepsilon^{\prime}<\varepsilon$ and a compact solution of

$$
\begin{equation*}
\kappa=g+\varepsilon^{\prime} . \tag{3}
\end{equation*}
$$

We observe that (2) is the same assumption made in [7] in order to prove existence of planelike minimizers.

We construct approximate solutions of (3) as volume constrained minimizers of F for big volumes. This motivates the study of the isovolumetric function $f:[0,+\infty) \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
f(v)=\min _{|E|=v} F(E) . \tag{4}
\end{equation*}
$$

As a by-product of our analysis, we are able to characterize the asymptotic shape of minimizers as the volume tends to infinity, showing that they converge after appropriate rescaling to the Wulff Shape (i.e. the solution of the isoperimetric problem) relative to an anisotropy ϕ_{g} depending on g. We mention that, in the small volume regime, the contribution of g becomes irrelevant and the minimizers converge to standard spheres (see [9] and references therein).

The plan of the paper is the following: in Section 2 we show existence of compact minimizers of (4). In Section 3 we prove that the function f is locally Lipschitz continuous and link its derivative to the curvature of the minimizers. We also provide an example of a function f which is not differentiable everywhere. Let us notice that in these first two parts no assumption is made on the average of g or on its size. In Section 4 we use the isovolumetric function to find solutions of (3). Eventually, in Section 4.1 we investigate the behavior of the constrained minimizers of (4) as the volume goes to infinity.

Notation and general assumptions. We shall assume that g is a $\mathcal{C}^{0, \alpha}$ periodic function, with periodicity cell $Q=[0,1]^{d}$. For simplicity, we shall also suppose that the dimension of the ambient space is smaller or equal to 7 , so that quasi-minimizers of the perimeter have boundary of class $\mathcal{C}^{2, \alpha}[10]$. For a set of finite perimeter we denote by $P(E)$ its perimeter and by $\partial^{*} E$ its reduced boundary (see [10] for precise definitions). We take as a convention that the mean curvature (which we define as the sum of all principal curvatures) of a convex set is positive. If ν is the outward normal to a set, this amounts to say that the mean curvature κ is equal to $\operatorname{div}(\nu)$.

Acknowledgements. The authors would like to thank Antonin Chambolle for very helpful comments and suggestions. The first author wish to thank Gilles Thouroude for several discussions on this problem.

2 Existence of minimizers

In this section we prove existence of compact volume-constrained minimizers of F, by showing that the problem is equivalent to the unconstrained problem

$$
\begin{equation*}
\min _{E \subset \mathbb{R}^{d}} F_{\mu}(E)=\min _{E \subset \mathbb{R}^{d}} P(E)-\int_{E} g d x+\mu| | E|-v|, \tag{5}
\end{equation*}
$$

for $\mu>0$ large enough. We start by studying (5), showing existence of smooth compact minimizers. We then show that there exists μ_{0} such that, for $\mu \geq \mu_{0}$, every compact minimizer of F_{μ} has volume v. In particular, this will provide existence of minimizers of (4), since $f(v) \leq \min _{E} F_{\mu}(E)$ for every $\mu \geq 0$.

Denoting by Q_{R} the cube $[-R / 2, R / 2]^{d}$ of sidelength R, we consider the spatially constrained problem

$$
\begin{equation*}
\min _{E \subset Q_{R}} F_{\mu}(E) \tag{6}
\end{equation*}
$$

Having restrained our problem to a bounded domain, we gain compactness of minimizing sequences and thus existence of minimizers for (6) by the direct method [10]. We want to show that these minimizers do not depend on R for R big enough. In order to do so, we need density estimates as [5].

Proposition 2.1. There exist two constants $C(d)$ and γ depending only on the dimension d such that, if we set $r_{0}(\mu)=\frac{C(d)}{\mu+\|g\|_{\infty}}$, then for every minimizer E of (σ) and every $x \in \mathbb{R}^{d}$,

- $\left|E \cap B_{r}(x)\right| \geq \gamma r^{d}$ for every $r \leq r_{0}$ if $\left|B_{r}(x) \cap E\right|>0$ for any $r>0$,
- $\left|B_{r}(x) \backslash E\right| \geq \gamma r^{d}$ for every $r \leq r_{0}$ if $\left|B_{r}(x) \backslash E\right|>0$ for any $r>0$.

Proof. Let $x \in \partial^{*} E$ then by minimality of E we have

$$
P(E)-\int_{E} g d x+\mu| | E|-v| \leq P\left(E \backslash B_{r}(x)\right)-\int_{E \backslash B_{r}(x)} g d x+\mu| | E \backslash B_{r}(x)|-v|
$$

hence

$$
\begin{aligned}
P(E) & \leq \int_{E \cap B_{r}} g d x+P\left(E \backslash B_{r}\right)+\mu| | E\left|-\left|E \backslash B_{r}\right|\right| \\
& =\int_{E \cap B_{r}} g d x+P\left(E \backslash B_{r}\right)+\mu\left|E \cap B_{r}\right| \\
& \leq\left|E \cap B_{r}\right|\left(\|g\|_{\infty}+\mu\right)+P\left(E \backslash B_{r}\right) .
\end{aligned}
$$

On the other hand we have

$$
P(E)=\mathcal{H}^{d-1}\left(\partial^{*} E \cap B_{r}\right)+\mathcal{H}^{d-1}\left(\partial^{*} E \cap B_{r}^{c}\right)
$$

and

$$
P\left(E \backslash B_{r}\right)=\mathcal{H}^{d-1}\left(E \cap \partial B_{r}\right)+\mathcal{H}^{d-1}\left(\partial^{*} E \cap B_{r}^{c}\right)
$$

From these inequalities we get

$$
\mathcal{H}^{d-1}\left(\partial^{*} E \cap B_{r}\right) \leq \mathcal{H}^{d-1}\left(E \cap \partial B_{r}\right)+\left(\|g\|_{\infty}+\mu\right)\left|E \cap B_{r}\right|
$$

Letting $U(r)=\left|E \cap B_{r}\right|$ and using the isoperimetric inequality [10], we have

$$
\begin{aligned}
c(d) U(r)^{\frac{d-1}{d}} & \leq P\left(E \cap B_{r}\right) \\
& =\mathcal{H}^{d-1}\left(\partial^{*} E \cap B_{r}\right)+\mathcal{H}^{d-1}\left(\partial B_{r} \cap E\right) \\
& \leq 2 \mathcal{H}^{d-1}\left(\partial B_{r} \cap E\right)+\left(\|g\|_{\infty}+\mu\right) U(r)
\end{aligned}
$$

Recalling that $\mathcal{H}^{d-1}\left(\partial B_{r} \cap E\right)=U^{\prime}(r)$ for a.e. $r>0$, we find

$$
\begin{equation*}
c(d) U(r)^{\frac{d-1}{d}} \leq 2 U^{\prime}(r)+\left(\|g\|_{\infty}+\mu\right) U(r) \tag{7}
\end{equation*}
$$

The idea is that, when U is small, the term $U^{\frac{d-1}{d}}$ dominates the term which is linear in U so that we can get ride of it. Letting ω_{d} be the volume of the unit ball and $r \leq$ $\omega_{d}^{-\frac{1}{d}}\left(\frac{c(d)}{2\left(\mu+\|g\|_{\infty}\right)}\right)$, we then have

$$
U(r) \leq\left|B_{r}\right|=\omega_{d} r^{d} \leq\left(\frac{c(d)}{2\left(\mu+\|g\|_{\infty}\right)}\right)^{d}
$$

Elevating each side of the inequality to the power $-\frac{1}{d}$ and multiplying by U we get

$$
U(r)^{\frac{d-1}{d}} \geq \frac{2\left(\mu+\|g\|_{\infty}\right)}{c(d)} U
$$

and from this

$$
\frac{c(d)}{2} U(r)^{\frac{d-1}{d}}-\left(\mu+\|g\|_{\infty}\right) U \geq 0
$$

thus finally

$$
c(d) U(r)^{\frac{d-1}{d}}-\left(\mu+\|g\|_{\infty}\right) U \geq \frac{c(d)}{2} U(r)^{\frac{d-1}{d}}
$$

Putting this back in (7) and letting $C(d)=c(d) \omega_{d}^{-\frac{1}{d}} / 2$ we have

$$
\frac{c(d)}{4} U(r)^{\frac{d-1}{d}} \leq U^{\prime}(r) \quad \forall r \leq \frac{C(d)}{\left(\mu+\|g\|_{\infty}\right)}
$$

If we set $V(r)=U^{\frac{1}{d}}(r)$ we have

$$
V^{\prime}(r)=\frac{1}{d} U^{\prime}(r) U^{\frac{1-d}{d}}(r) \geq \frac{c(d)}{4 d}
$$

Integrating we get

$$
V(r) \geq \frac{c(d)}{4 d} r \quad \text { hence } \quad U(r) \geq\left(\frac{c(d)}{4 d}\right)^{d} r^{d}
$$

The second inequality is obtained by repeating the argument with $E \cup B_{r}(x)$ instead of $E \backslash B_{r}(x)$.

We now estimate the error made by relaxing the constraint on the volume.
Lemma 2.2. For every set of finite perimeter E and every $\mu>\|g\|_{\infty}$ we have

$$
||E|-v| \leq \frac{F_{\mu}(E)+v\left\|^{\prime}\right\|_{\infty}}{\mu-\|g\|_{\infty}} .
$$

Proof. If $|E|>v$ we have

$$
F_{\mu}(E)=P(E)-\int_{E} g+\mu(|E|-v)
$$

thus

$$
\mu(|E|-v) \leq F_{\mu}(E)+\|g\|_{\infty}|E|
$$

and from this we find

$$
\left(\mu-\|g\|_{\infty}\right)(|E|-v) \leq F_{\mu}(E)+v\|g\|_{\infty} .
$$

Dividing by $\mu-\|g\|_{\infty}$ we get

$$
||E|-v| \leq \frac{F_{\mu}(E)+v\left\|^{2}\right\|_{\infty}}{\mu-\|g\|_{\infty}}
$$

If $|E| \leq v$ we similarly get

$$
\left(\mu+\|g\|_{\infty}\right)(|E|-v) \leq F_{\mu}(E)+v\|g\|_{\infty}
$$

hence

$$
||E|-v| \leq \frac{F_{\mu}(E)+v\|g\|_{\infty}}{\mu+\|g\|_{\infty}} \leq \frac{F_{\mu}(E)+v\|g\|_{\infty}}{\mu-\|g\|_{\infty}} .
$$

We now prove that the minimizers do not depend on R, for R big enough. Here the periodicity of g is crucial.

Proposition 2.3. For every $\mu>\|g\|_{\infty}$, there exists $R_{0}(\mu)$ such that for every $R \geq R_{0}$, there exists a minimizer E_{R} of (6) verifying diam $\left(E_{R}\right) \leq R_{0}$. Equivalently we have

$$
\min _{E \subset Q_{R}} F_{\mu}(E)=\min _{E \subset Q_{R_{0}}} F_{\mu}(E)
$$

for all $R \geq R_{0}$.

Proof. Let Q be the unit square and

$$
N=\sharp\left\{z \in \mathbb{Z}^{d} /\left|\{z+Q\} \cap E_{R}\right| \neq 0\right\}
$$

We want to bound N from above by a constant independent of R.
Let $r_{0}=\frac{C(d)}{\mu+\|g\|_{\infty}}$ as in Proposition 2.1. For all $x \in E_{R}$ we have

$$
\left|E_{R} \cap B_{r}(x)\right| \geq \gamma r^{d} \quad \forall r \leq r_{0}
$$

Letting $r_{1}=\min \left(r_{0}, \frac{1}{2}\right)$, for all $x \in \mathbb{R}^{d}$ we have

$$
\sharp\left\{z \in \mathbb{Z}^{d} /\{z+Q\} \cap B_{r_{1}}(x) \neq \emptyset\right\} \leq 2^{d} .
$$

We can now find at least $N / 2^{d}$ points x_{i} in E_{R} such that $B_{r_{1}}\left(x_{i}\right) \cap B_{r_{1}}\left(x_{j}\right)=\emptyset$ for every $i \neq j$ and such that $x_{i} \in Q+z_{i}$ with $\left|\left\{z_{i}+Q\right\} \cap E_{R}\right| \neq 0$.
We thus have

$$
\left|E_{R}\right| \geq \sum_{i}\left|B_{r_{1}}\left(x_{i}\right) \cap E_{R}\right| \geq \frac{N}{2^{d}} \gamma r_{1}^{d}
$$

This gives us

$$
N \leq \frac{2^{d}\left|E_{R}\right|}{\gamma r_{1}^{d}}
$$

Letting B^{v} be a ball of volume v, by Lemma 2.2 we have

$$
\begin{aligned}
\left|\left|E_{R}\right|-v\right| & \leq \frac{F_{\mu}\left(B^{v}\right)+v\|g\|_{\infty}}{\mu-\|g\|_{\infty}} \\
& \leq \frac{c(d) v^{\frac{d-1}{d}}+2 v\|g\|_{\infty}}{\mu-\|g\|_{\infty}}
\end{aligned}
$$

This shows that

$$
\left|E_{R}\right| \leq v+\frac{c(d) v^{\frac{d-1}{d}}+2 v\|g\|_{\infty}}{\mu-\|g\|_{\infty}}
$$

so that N is bounded by a constant independent of R.
We now prove that $\operatorname{diam}\left(E_{R}\right) \leq C(d) N$. Indeed let $x \in E_{R}$ and let $P_{0}=[0,1] \times$ $[-R / 2, R / 2]^{d-1}$ be a slice of Q_{R} orthogonal to the direction e_{1}. For $i \in \mathbb{Z}$ we also set $P_{i}=P_{0}+i e_{1}$. Our aim is showing that E_{R} is contained in a box of size N in the direction e_{1}. Up to translation we can suppose that $E_{R} \cap P_{i}=\emptyset$ for all $i<0$. We want to show that we can choose $E_{R} \subset \bigcup_{0 \leq i \leq N} P_{i}$.
Let $I \leq R$ be the least integer such that $E_{R} \subset \bigcup_{0 \leq i \leq I} P_{i}$ and suppose $I \geq N$. Because of the definition of N, there is at most N slices P_{i} such that $P_{i} \cap E_{R} \neq \emptyset$. Hence there exists

Figure 1: the construction in the proof of Proposition 2.3.
i between 0 and $N-1$ such that $P_{i} \cap E_{R}=\emptyset$. Let $E_{i}^{+}=\bigcup_{j>i} E_{R} \cap P_{j}$ and $E_{i}^{-}=\bigcup_{j<i} E_{R} \cap P_{j}$ then if we set $\widetilde{E}_{R}=E_{i}^{-} \cup\left\{E_{i}^{+}-e_{1}\right\}$ we have $F_{\mu}\left(\widetilde{E}_{R}\right)=F_{\mu}\left(E_{R}\right)$ and $\widetilde{E}_{R} \subset \bigcup_{0 \leq i \leq I-1} P_{i}$ giving a contradiction (see Figure 1).

The same argument applies to any orthonormal direction e_{k}, hence $E_{R} \subset Q_{2 N}$.
We now prove existence of minimizers for F_{μ}.
Proposition 2.4. For $\mu>\|g\|_{\infty}$, there exists a bounded minimizer of F_{μ}. Moreover such minimizer has boundary of class $\mathcal{C}^{2, \alpha}$, where α is the Hölder exponent of the function g.

Proof. By Proposition 2.3 there exists R_{0} such that $E_{R} \subset B_{R_{0}}$ for every $R>0$. Suppose
now that there exists E with $F_{\mu}(E)<F_{\mu}\left(E_{R_{0}}\right)$. Then there exists $\varepsilon>0$ such that

$$
F_{\mu}(E)+\varepsilon \leq F_{\mu}\left(E_{R_{0}}\right) .
$$

Let us show that there exists $R>R_{0}$ such that

$$
F_{\mu}\left(E \cap B_{R}\right)+\frac{\varepsilon}{2} \leq F_{\mu}\left(E_{R_{0}}\right) .
$$

We start by noticing that $\left|E \cap B_{R}\right|$ tends to $|E|$ and that $\int_{E \cap B_{R}} g d x$ tends to $\int_{E} g d x$ when $R \rightarrow+\infty$. On the other hand,

$$
P\left(E \cap B_{R}\right)=\mathcal{H}^{d-1}\left(E \cap \partial B_{R}\right)+\mathcal{H}^{d-1}\left(\partial^{*} E \cap B_{R}\right)
$$

and we have

$$
\lim _{R \rightarrow+\infty} \mathcal{H}^{d-1}\left(\partial^{*} E \cap B_{R}\right)=P(E)
$$

and

$$
\lim _{R \rightarrow+\infty} \int_{0}^{R} \mathcal{H}^{d-1}\left(E \cap \partial B_{s}\right) d s=\lim _{R \rightarrow+\infty}\left|E \cap B_{R}\right|=|E|
$$

The last equality shows that $\mathcal{H}^{d-1}\left(E \cap \partial B_{R}\right)$ is integrable so that, for every $R>0$, there exists $R^{\prime}>R$ such that $\mathcal{H}^{d-1}\left(E \cap \partial B_{R^{\prime}}\right)$ is arbitrarily small. This implies that we can find a R large enough so that

$$
F_{\mu}\left(E \cap B_{R}\right)+\frac{\varepsilon}{2} \leq F_{\mu}\left(E_{R_{0}}\right) .
$$

The minimality of $E_{R_{0}}$ yields to a contradiction.
We now focus on the regularity. Let E be a minimizer of F_{μ} then for every G,

$$
P(E)-\int_{E} g d x+\mu| | E|-v| \leq P(G)-\int_{G} g d x+\mu| | G|-v|
$$

Hence

$$
\begin{aligned}
P(E) & \leq P(G)+\|g\|_{\infty}|E \Delta G|+\mu| | E|-|G|| \\
& \leq P(G)+\left(\|g\|_{\infty}+\mu\right)|E \Delta G|
\end{aligned}
$$

E is thus a quasi-minimizer of the perimeter so that, by classical regularity theory [10], we get that ∂E is of class $\mathcal{C}^{2, \alpha}$.

Before stating the equivalence between the constrained and unconstrained problems, we prove a generalization of the Alexandrov-Fenchel inequality (see Schneider [16]) for smooth non convex sets which will be useful for us and, we believe, is of independent interest.

Lemma 2.5. Let $E \subset \mathbb{R}^{d}$ be a compact set with \mathcal{C}^{2} boundary, then

$$
\begin{equation*}
\frac{d-1}{d} P(E)^{2} \geq|E| \int_{\partial E} \kappa d \mathcal{H}^{d-1} \tag{8}
\end{equation*}
$$

Proof. Let $\varphi(t)=|(1-t) E+t B|^{\frac{1}{d}}$ which is concave by the Brunn-Minkowski inequality [4]. If we set

$$
\psi(t)=|E+t B|
$$

We have

$$
\varphi(t)=(1-t) \psi\left(\frac{t}{1-t}\right)^{\frac{1}{d}}
$$

We can now compute $\varphi^{\prime \prime}(0)$. The first derivative of φ is given by

$$
\varphi^{\prime}(t)=-\psi\left(\frac{t}{1-t}\right)^{\frac{1}{d}}+\frac{1}{d(1-t)} \psi^{\prime}\left(\frac{t}{1-t}\right) \psi\left(\frac{t}{1-t}\right)^{\frac{1-d}{d}}
$$

Differentiating again we find

$$
\varphi^{\prime \prime}(t)=\frac{1}{(1-t)^{3}} \psi^{\prime \prime}\left(\frac{t}{1-t}\right) \psi\left(\frac{t}{1-t}\right)^{\frac{1-d}{d}}+\frac{1-d}{d(1-t)^{3}} \psi^{\prime 2}\left(\frac{t}{1-t}\right) \psi\left(\frac{t}{1-t}\right)^{\frac{1-2 d}{d}}
$$

This gives

$$
\varphi^{\prime \prime}(0)=\frac{\psi(0)^{\frac{1-2 d}{d}}}{d}\left(\psi^{\prime \prime}(0) \psi(0)-\frac{d-1}{d} \psi^{\prime 2}(0)\right)
$$

The concavity of φ thus implies

$$
\psi^{\prime \prime}(0) \psi(0) \leq \frac{d-1}{d} \psi^{\prime 2}(0)
$$

As E is smooth, for t small we have

$$
E+t B=E \cup\{x+s \nu(x) / x \in \partial E, s \in[0, t]\}
$$

thus

$$
|E+t B|=|E|+t P(E)+\frac{t^{2}}{2} \int_{\partial E} \kappa d \mathcal{H}^{d-1}+o\left(t^{2}\right)
$$

This shows that $\psi^{\prime}(0)=P(E)$ and $\psi^{\prime \prime}(0)=\int_{\partial E} \kappa d \mathcal{H}^{d-1}$ giving the desired result.

We are finally in position to prove existence of minimizers of problem (4).
Theorem 2.6. For all $v>0$ there exists a compact minimizer E_{v} of (4), with ∂E_{v} of class $\mathcal{C}^{2, \alpha}$. Moreover, E_{v} is also a minimizer of F_{μ} for all

$$
\begin{equation*}
\mu \geq C_{1}(d)\|g\|_{\infty}+C_{2}(d) v^{-\frac{1}{d}} \tag{9}
\end{equation*}
$$

where $C_{1}(d)$ and $C_{2}(d)$ are two positive constants depending only on d.
Proof. Letting E_{μ} be a bounded and smooth minimizer of F_{μ}, given by the Proposition 2.4, We will show that $\left|E_{\mu}\right|=v$, for μ large enough. Let μ be larger than $\|g\|_{\infty}$ and suppose by contradiction $\left|E_{\mu}\right| \neq v$. Then, if $\left|E_{\mu}\right|>v$, the Euler-Lagrange equation for F_{μ} writes

$$
\kappa_{E_{\mu}}=g-\mu
$$

where $\kappa_{E_{\mu}}$ is the mean curvature of E_{μ}. But this is impossible since $\mu>\|g\|_{\infty}$, which would lead to $\kappa_{E_{\mu}}<0$, contradicting the compactness of E_{μ}.

Thus for $\mu>\|g\|_{\infty}$, we have $\left|E_{\mu}\right|<v$ and

$$
\kappa_{E_{\mu}}=g+\mu .
$$

Using the inequality (8) with $E=E_{\mu}$ we get

$$
\begin{aligned}
F_{\mu}\left(E_{\mu}\right) & \geq \frac{d}{d-1}\left(\mu-\|g\|_{\infty}\right)\left|E_{\mu}\right|-\|g\|_{\infty}\left|E_{\mu}\right| \\
& \geq \frac{d}{d-1}\left(\mu-\|g\|_{\infty}\right) \frac{v}{2}-\|g\|_{\infty} v .
\end{aligned}
$$

On the other hand, $F_{\mu}\left(E_{\mu}\right) \leq F_{\mu}\left(B^{v}\right)$, where B^{v} is a ball of volume v, so that

$$
C(d) v^{\frac{d-1}{d}}+\|g\|_{\infty} v \geq F_{\mu}\left(B^{v}\right) \geq \frac{d}{d-1}\left(\mu-\|g\|_{\infty}\right) \frac{v}{2}-\|g\|_{\infty} v
$$

and we finally obtain

$$
\mu \leq C_{1}(d)\|g\|_{\infty}+C_{2}(d) v^{-\frac{1}{d}} .
$$

Remark 2.7. The minimizer E_{v} satisfies the Euler-Lagrange equation

$$
\kappa_{E}=g+\lambda_{v} \quad \text { with }\left|\lambda_{v}\right| \leq \mu,
$$

where μ verifies (9). In particular, λ_{v} and thus also $\left\|\kappa_{E}\right\|_{\infty}$ are uniformly bounded in v, for $v \in[\varepsilon,+\infty)$.

The regularity of ∂E_{v} also follows from the works of Rigot [17] and Xia [22] on quasiminimizers of the perimeter with a volume constraint.

3 Properties of the isovolumetric function

We show here some of the properties of the isovolumetric f defined by (4).
Proposition 3.1. The function f is sub-additive and locally Lipschitz continuous. Let v be a point of differentiability of f and E_{v} be a minimizer of (4) then $f^{\prime}(v)=\lambda_{v}$ where λ_{v} is the Lagrange multiplier associated to E_{v}, that is, $\kappa_{E_{v}}=g+\lambda_{v}$. As a consequence, λ_{v} is unique for almost every $v>0$, in the sense that it does not depend on the specific minimizer E_{v}.

Proof. Let E_{v} and $E_{v^{\prime}}$ be compact minimizers associated to v and v^{\prime}. Up to a translation we can suppose that $F\left(E_{v} \cup E_{v^{\prime}}\right)=F\left(E_{v}\right)+F\left(E_{v^{\prime}}\right)$, so that

$$
f\left(v+v^{\prime}\right) \leq F\left(E_{v} \cup E_{v^{\prime}}\right)=F\left(E_{v}\right)+F\left(E_{v^{\prime}}\right)=f(v)+f\left(v^{\prime}\right)
$$

and f is sub-additive.
By Theorem 2.6, for every $\alpha>0$ there exists μ_{α} such that, for every $v \geq \alpha$, the constrained problem (4) and the relaxed one (5) are equivalent for $\mu \geq \mu_{\alpha}$. Let $v, v^{\prime} \in$ $[\alpha,+\infty)$, then

$$
f(v)=F\left(E_{v}\right) \leq P\left(E_{v^{\prime}}\right)-\int_{E_{v^{\prime}}} g d x+\mu_{\alpha}\left|v-v^{\prime}\right|=f\left(v^{\prime}\right)+\mu_{\alpha}\left|v-v^{\prime}\right|
$$

thus $\left|f(v)-f\left(v^{\prime}\right)\right| \leq \mu_{\alpha}\left|v-v^{\prime}\right|$ and f is Lipschitz continuous on $[\alpha,+\infty)$.
We now compute the derivative of f. For $v, \varepsilon>0$ we have

$$
f(v+\varepsilon)-f(v) \leq F\left((1+\varepsilon / v)^{\frac{1}{d}} E_{v}\right)-F\left(E_{v}\right)
$$

Let $\delta_{\varepsilon}=(1+\varepsilon / v)^{\frac{1}{d}}-1$; then $(1+\varepsilon / v)^{\frac{1}{d}} E_{v}=E_{v}+\delta_{\varepsilon} E_{v}$. Recalling that $\kappa_{E_{v}}=g+\lambda_{v}$ we get

$$
\begin{aligned}
P\left(\left(1+\delta_{\varepsilon}\right) E_{v}\right) & =P\left(E_{v}\right)+\delta_{\varepsilon} \int_{\partial E_{v}} \kappa_{E_{v}} x \cdot \nu d \mathcal{H}^{d-1}+o\left(\delta_{\varepsilon}\right) \\
& =P\left(E_{v}\right)+\delta_{\varepsilon} \int_{\partial E_{v}} g(x) x \cdot \nu d \mathcal{H}^{d-1}+\delta_{\varepsilon} \int_{\partial E_{v}} \lambda_{v} x \cdot \nu d \mathcal{H}^{d-1}+o\left(\delta_{\varepsilon}\right) \\
& =P\left(E_{v}\right)+\delta_{\varepsilon} \int_{\partial E_{v}} g(x) x \cdot \nu d \mathcal{H}^{d-1}+\delta_{\varepsilon} \lambda_{v} d\left|E_{v}\right|+o\left(\delta_{\varepsilon}\right) \\
\int_{\left(1+\delta_{\varepsilon}\right) E_{v}} g & =\int_{E_{v}} g d x+\delta_{\varepsilon} \int_{\partial E_{v}} g(x) x \cdot \nu d \mathcal{H}^{d-1}+o\left(\delta_{\varepsilon}\right) .
\end{aligned}
$$

From this we obtain

$$
F\left((1+\varepsilon / v)^{\frac{1}{d}} E_{v}\right)-F\left(E_{v}\right)=\delta_{\varepsilon} v d \lambda_{v}+o\left(\delta_{\varepsilon}\right) .
$$

As $\delta_{\varepsilon}=\varepsilon /(v d)+o(\varepsilon)$, we find

$$
\begin{aligned}
& \limsup _{\varepsilon \rightarrow 0^{+}} \frac{f(v+\varepsilon)-f(v)}{\varepsilon} \leq \lambda_{v} \\
& \liminf _{\varepsilon \rightarrow 0^{-}} \frac{f(v+\varepsilon)-f(v)}{\varepsilon} \geq \lambda_{v}
\end{aligned}
$$

In particular, if f is differentiable in v we have

$$
f^{\prime}(v)=\lambda_{v}
$$

In fact, the isovolumetric function f is slightly more regular.
Proposition 3.2. Let $\lambda_{v}^{\max }$ and $\lambda_{v}^{\min }$ be respectively the bigger and the smaller Lagrange multipliers associated with v then f has left and right derivatives in v and

$$
\begin{equation*}
\lim _{h \rightarrow 0^{+}} \frac{f(v+h)-f(v)}{h}=\lambda_{v}^{\min } \leq \lambda_{v}^{\max }=\lim _{h \rightarrow 0^{-}} \frac{f(v+h)-f(v)}{h} . \tag{10}
\end{equation*}
$$

The proof is based on the following lemma:
Lemma 3.3. Let v_{n} be a sequence converging to v. Then there exist sets E_{n} with $\left|E_{n}\right|=v_{n}$ and

$$
f\left(v_{n}\right)=F\left(E_{n}\right),
$$

and a set E with $|E|=v$ and

$$
f(v)=F(E)
$$

such that, up to extraction, E_{n} tends to E in the L^{1}-topology, ∂E_{n} tends to ∂E in the Hausdorff sense, and λ_{n} tends to λ, where λ_{n} (resp. λ) is the Lagrange multiplier corresponding to E_{n} (resp. to E).
Proof. By Theorem 2.6, we can find minimizers E_{n} of (4), with $\left|E_{n}\right|=v_{n}$. Moreover, by Proposition 2.3 we can assume that $E_{n} \subset B_{R}$ with R independent of n. Since $P\left(E_{n}\right)$ is uniformly bounded from above, it then follows that there exists a (not relabelled) subsequence of E_{n} converging in the L^{1}-topology to a set $E \subset B_{R}$ with volume $v=\lim _{n} v_{n}$. Moreover, by the lower-semi-continuity of the perimeter and the continuity of f, the set E verifies

$$
f(v)=F(E) .
$$

Let us now prove that the convergence also occurs in the sense of Hausdorff.
Let $\varepsilon>0$ be fixed and let $x \in E \cap\{y / d(y, \partial E)>\varepsilon\}$. If x is not in E_{n} then by Proposition 2.1 we have

$$
\left|E_{n} \Delta E\right| \geq\left|B_{\varepsilon}(x) \backslash E_{n}\right| \geq \gamma \varepsilon^{d}
$$

This is impossible if n is big enough because $\left|E_{n} \Delta E\right|$ tends to zero. Similarly, we can show that for n big enough, all the points of $E^{c} \cap\{y / d(y, \partial E)>\varepsilon\}$ are outside E_{n}. This shows that $\partial E_{n} \subset\{y / d(y, \partial E) \leq \varepsilon\}$. Inverting the rôles of E_{n} and E, the same argument proves that $\partial E \subset\left\{y / d\left(y, \partial E_{n}\right) \leq \varepsilon\right\}$ giving the Hausdorff convergence of ∂E_{n} to ∂E. Now if λ_{n} is the Lagrange multiplier associated with E_{n}, it is uniformly bounded and we can extract a converging subsequence which converges to some $\lambda \in \mathbb{R}$.

To conclude the proof we must show that $\kappa_{E}=g+\lambda$. As proved for instance in [18], for every $x \in \partial E$ there exists $r>0$ such that for n large enough the set $B_{r}(x) \cap \partial E_{n}$ is the graph of a function φ_{n}, and the set $B_{r}(x) \cap \partial E$ is the graph of a function φ, in a suitable coordinate system. We then have that φ_{n} tends uniformly to φ, as $n \rightarrow+\infty$, and

$$
\begin{equation*}
-\operatorname{div}\left(\frac{\nabla \varphi_{n}}{\sqrt{1+\left|\nabla \varphi_{n}\right|^{2}}}\right)=g\left(x, \varphi_{n}(x)\right)+\lambda_{n} \tag{11}
\end{equation*}
$$

for all n big enough. By elliptic regularity [6], we can pass to the limit in (11) and obtain that ϕ solves

$$
-\operatorname{div}\left(\frac{\nabla \varphi}{\sqrt{1+|\nabla \varphi|^{2}}}\right)=\kappa_{E}=g(x, \varphi(x))+\lambda .
$$

Proof of Proposition 3.2. Let $v>0$ and let

$$
\begin{equation*}
\lambda=\liminf _{\varepsilon \rightarrow 0+} f^{\prime}(v+\varepsilon) \tag{12}
\end{equation*}
$$

Notice that, for every $\varepsilon>0$, there exists a $\left.v_{\varepsilon} \in\right] v, v+\varepsilon[$ such that

$$
\begin{equation*}
f^{\prime}\left(v_{\varepsilon}\right) \leq \frac{f(v+\varepsilon)-f(v)}{\varepsilon} . \tag{13}
\end{equation*}
$$

From (13) we get

$$
\lambda \leq \liminf _{\varepsilon \rightarrow 0+} \frac{f(v+\varepsilon)-f(v)}{\varepsilon} .
$$

Let ε_{n} be a sequence realizing the infimum in (12) and let $E_{n} \subset B_{R}$ be a set of volume $v_{n}=v+\varepsilon_{n}$ such that

$$
f\left(v_{n}\right)=F\left(E_{n}\right) .
$$

By Lemma 3.3 the sets E_{n} converge, up to a subsequence in the L^{1}-topology, to a limit set E, with $|E|=v$ and $\kappa_{E}=g+\lambda$, where $\lambda=\lim _{n} \lambda_{n}$. Reasoning as in Proposition 3.1, we see that

$$
\liminf _{\varepsilon \rightarrow 0+} \frac{f(v+\varepsilon)-f(v)}{\varepsilon} \geq \lambda \geq \limsup _{\varepsilon \rightarrow 0^{+}} \frac{f(v+\varepsilon)-f(v)}{\varepsilon}
$$

hence f admits a right derivative which is equal to $\lambda_{v}^{\min }$. Analogously one can show that f has a left derivative equal to $\lambda_{v}^{\max }$.

Notice that (10) implies that f is differentiable at any local minimum so that, if equation (1) has no solution, either f is increasing on $[0,+\infty)$, or there exists $\bar{v}>0$ such that f is increasing on $[0, \bar{v}]$, decreasing on $[\bar{v},+\infty)$, and is not differentiable at \bar{v}.

We now give an example of a isovolumetric function f which has a point of nondifferentiability. It is not clear to which extent this is a generic phenomenon.

Example. Consider a periodic function g which is equal to 0 everywhere in the unit cell Q, except in the neighborhood of two points a and b. Around these points, g is taken to be equal to radial parabolas centered at the point, one parabola high and thin, and the other small and large (see Figure 2).

It is shown in [9] that, when the volume v is sufficiently small, the minimizer E_{v} is connected. Since the bound on v depends only on $\|g\|_{\infty}$, which can be fixed as small as we want, we can suppose that the minimizers E_{v} are connected and are located near a or b.

By the isoperimetric inequality [10] we then get that E_{v} is a disk with volume v centered at a or b, and will be denoted by $D_{v}(a), D_{v}(b)$, respectively.

Therefore, for small volumes the global minimizer is $D_{v}(a)$ and, once the equality

$$
\int_{D_{v}(a)} g=\int_{D_{v}(b)} g
$$

is attained, it switches to the disk $D_{v}(b)$. When this transition occurs, there is a jump singularity of the derivative f^{\prime}.

4 Existence of surfaces with prescribed mean curvature

In this section we shall assume that g has zero average and satisfies

$$
\begin{equation*}
\int_{E} g \leq(1-\Lambda) P(E, Q) \quad \forall E \subset Q \tag{14}
\end{equation*}
$$

for some $\Lambda>0$. Notice that (14) is always satisfied if $\|g\|_{L^{d}(Q)}$ is small enough, and is precisely the assumption needed in [7] (see also [5]) to prove existence of planelike

Figure 2: example of a function f with a point of nondifferentiability.
minimizers of F. Notice also that, if g satisfies (14), then the inequality in (14) holds for all sets $E \subset \mathbb{R}^{d}$ of finite perimeter. In particular, this implies the following estimate on the function f :

$$
\begin{equation*}
c v^{\frac{d-1}{d}} \leq f(v) \leq C v^{\frac{d-1}{d}} \quad \text { for some } 0<c<C . \tag{15}
\end{equation*}
$$

In the sequel we will need a representation result for the functional F, due to Bourgain and Brezis [3].

Theorem 4.1. Let g be a function verifying (14) then there exists a periodic and continuous function σ with $\max \sigma(x)<1$ satisfying $\operatorname{div} \sigma=g$. The energy F can thus be written as an anisotropic perimeter:

$$
F(E)=\int_{\partial^{*} E}(1+\sigma(x) \cdot \nu)
$$

Theorem 4.1 implies that

$$
\begin{equation*}
\Lambda P(E) \leq F(E) \leq 2 P(E) \tag{16}
\end{equation*}
$$

for all sets E of finite perimeter.

The next Lemma gives an upper bound on the number of "large" connected components of a volume-constrained minimizer.

Lemma 4.2. Let g be a periodic $\mathcal{C}^{0, \alpha}$ function with zero average and satisfying (14). Let E_{v} be a compact minimizer of (4), and let E_{i} be the connected components of E_{v}. We can order the sets E_{i} in such a way that $\left|E_{i}\right|$ is decreasing in i. Given $\delta>0$ let

$$
N_{\delta}=\left[1+\left(\frac{C}{c}\right)^{d} \frac{1}{\delta^{d}}\right] .
$$

Then

$$
\begin{equation*}
\sum_{i=N_{\delta}}^{\infty}\left|E_{i}\right| \leq \delta v \tag{17}
\end{equation*}
$$

Proof. Let $x_{i}=\frac{\left|E_{i}\right|}{v} \in[0,1]$. Recalling (15), we have

$$
c v^{\frac{d-1}{d}} \sum_{i=1}^{\infty} x_{i}^{\frac{d-1}{d}} \leq \sum_{i=1}^{\infty} f\left(\left|E_{i}\right|\right)=f(v) \leq C v^{\frac{d-1}{d}}
$$

hence

$$
\sum_{i=1}^{\infty} x_{i}^{\frac{d-1}{d}} \leq \frac{C}{c} \quad \text { and } \quad \sum_{i=1}^{\infty} x_{i}=1
$$

Let now M be the smallest integer such that

$$
\sum_{i=M+1}^{\infty} x_{i}<\delta
$$

we want to prove that $M<N_{\delta}$. Indeed, we have

$$
\delta \leq \sum_{n=M}^{\infty} x_{i}=\sum_{n=M}^{\infty} x_{i}^{\frac{1}{d}} x_{i}^{\frac{d-1}{d}} \leq x_{M}^{\frac{1}{d}} \sum_{n=M}^{\infty} x_{i}^{\frac{d-1}{d}} \leq \frac{C}{c} x_{M}^{\frac{1}{d}}
$$

We then obtain

$$
x_{M} \geq\left(\frac{c}{C}\right)^{d} \delta^{d}
$$

Hence we get

$$
1 \geq M x_{M} \geq M\left(\frac{c}{C}\right)^{d} \delta^{d}
$$

which gives

$$
M \leq\left(\frac{C}{c}\right)^{d} \frac{1}{\delta^{d}}<N_{\delta}
$$

4.1 Compact solutions with big volume

From (15) and Proposition 3.2, we immediately obtain the following result.
Proposition 4.3. Let g be a periodic $\mathcal{C}^{0, \alpha}$ function of zero average satisfying (14). Assume that $f^{\prime}(v) \leq 0$ for some $v>0$. Then there exists $w>0$ such that $f^{\prime}(w)=0$, therefore problem (1) admits a compact solution.

Theorem 4.4. Let g be a periodic $\mathcal{C}^{0, \alpha}$ function with zero average and satisfying (14). There exist $v_{n} \rightarrow+\infty$ and compact minimizers E_{n} of (4) such that $\left|E_{n}\right|=v_{n}$ and E_{n} solves

$$
\kappa=g+\lambda_{n}
$$

with $\lambda_{n} \geq 0$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow+\infty$.
Proof. Two situations can occur:
Case 1. There exists a sequence $\tilde{v}_{n} \rightarrow+\infty$ such that $f^{\prime}\left(\tilde{v}_{n}\right) \leq 0$. Recalling (15) we have $f(v) \geq c v^{\frac{d-1}{d}}$, which implies that we can find $v_{n} \geq \tilde{v}_{n}$ such that f has a local minimum in v_{n}, hence $\lambda_{v}=f^{\prime}\left(v_{n}\right)=0$.
Case 2. There exists $v_{0}>0$ such that $f^{\prime}(v)>0$ for every $v \geq v_{0}$. By (15) we have $f(v) \leq C v^{\frac{d-1}{d}}$, and

$$
f(v)=f\left(v_{0}\right)+\int_{v_{0}}^{v} f^{\prime}(s) d s
$$

It follows that there exists a sequence $v_{n} \rightarrow+\infty$ such that

$$
\lim _{n \rightarrow+\infty} f^{\prime}\left(v_{n}\right)=0
$$

Corollary 4.5. Let g be a periodic $\mathcal{C}^{0, \alpha}$ function with zero average and satisfying (14). Then for every $\varepsilon>0$ there exists $\varepsilon^{\prime} \in[0, \varepsilon]$ such that there exists a compact solution of

$$
\kappa=g+\varepsilon^{\prime}
$$

Notice that for a general function g we cannot let $\varepsilon^{\prime}=0$ in Corollary 4.5. Indeed, as shown in [1], there are no compact solutions to (1) for periodic functions g, of zero average, which are translation invariant in some direction.

We expect that condition (14) is not necessary for the thesis of Corollary 4.5 to hold, as suggested by the following result:

Theorem 4.6. Let g be a periodic $\mathcal{C}^{0, \alpha}$ function with zero average and such that $\left.g\right|_{\partial Q}=0$. Then for every $\varepsilon>0$ there exists a compact solution of

$$
\kappa=g+\varepsilon
$$

Proof. Fix $\varepsilon>0$. For $N \in \mathbb{N}$ we let E_{N} be a minimizer of the problem

$$
\min _{E \subset Q_{N}} P(E)-\int_{E}(g(x)+\varepsilon) d x
$$

Since $\left.g\right|_{\partial Q}=0$, by strong maximum principle, E_{N} is contained in the interior of Q_{N} and either $E_{N}=\emptyset$ or ∂E_{N} is a $\mathcal{C}^{2, \alpha}$ solution of $\kappa=g+\varepsilon$.

However, from the inequality

$$
P\left(E_{N}\right)-\int_{E_{N}}(g(x)+\varepsilon) d x \leq P\left(Q_{N}\right)-\varepsilon N^{d}+=N^{d-1}\left(2^{d}-\varepsilon N\right)<0
$$

which holds for all $N>2^{d} / \varepsilon$, it follows $E_{N} \neq \emptyset$.

4.2 Asymptotic behavior of minimizers.

For $\varepsilon>0$ and $E \subset \mathbb{R}^{d}$ of finite perimeter, we let

$$
F_{\varepsilon}(E)=\varepsilon^{(d-1)} F\left(\varepsilon^{-1} E\right)=P(E)-\frac{1}{\varepsilon} \int_{E} g\left(\frac{x}{\varepsilon}\right) d x .
$$

Notice that, given a minimizer E_{v} of (4), the set εE_{v} is a volume-constrained minimizer of F_{ε}. We recall from [7, Theorem 2] the following result.

Theorem 4.7. Let g be a periodic $\mathcal{C}^{0, \alpha}$ function with zero average and satisfying (14). Then there exists a convex positively one-homogeneous function $\phi_{g}: \mathbb{R}^{d} \rightarrow[0,+\infty)$, with $\phi_{g}(x)>0$ for all $x \neq 0$, such that the functionals $F_{\varepsilon} \Gamma$-converge, with respect to the L^{1}-convergence of the characteristic functions, to the anisotropic functional

$$
F_{0}(E)=\int_{\partial^{*} E} \phi_{g}(\nu) d \mathcal{H}^{d-1} \quad E \subset \mathbb{R}^{d} \text { of finite perimeter. }
$$

We remark that, with a minor modification of the proof, the result of Theorem 4.7 also holds if we restrict the functionals F_{ε} and F_{0} to set of prescribed volume. In particular, by a general property of Γ-converging sequences [8], we have the following consequence of Theorem 4.7.

Corollary 4.8. Let $\widetilde{E}_{\varepsilon}$ be minimizers of F_{ε} with volume constraint $\left|\widetilde{E}_{\varepsilon}\right|=v$, then

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(\widetilde{E}_{\varepsilon}\right) \leq \min _{|\widetilde{E}|=v} F_{0}(\widetilde{E}) \tag{18}
\end{equation*}
$$

Moreover, if $\left|\widetilde{E}_{\varepsilon} \Delta \widetilde{E}\right| \rightarrow 0$ for some $\widetilde{E} \subset \mathbb{R}^{d}$, as $\varepsilon \rightarrow 0$, then $|\widetilde{E}|=v$ and \widetilde{E} is a volumeconstrained minimizer of F_{0}. More generally, if $\widetilde{E}_{\varepsilon} \rightarrow \widetilde{E}$ in the L_{loc}^{1} topology, then \widetilde{E} is a minimizer of F_{0} with volume constraint $|\widetilde{E}| \leq v$.

Given the function ϕ_{g} as above, we let

$$
W_{g}=\left\{x \in \mathbb{R}^{d}: \max _{\phi_{g}(y) \leq 1} x \cdot y \leq 1\right\}
$$

be the Wulff Shape corresponding to ϕ_{g}. It is well-known that W_{g} is the unique minimizer of F_{0} with volume constraint, up to homothety and translation [21, 19].

By Theorem 4.7 we can characterize the asymptotic shape of the constrained minimizers as the volume tend to infinity.
Theorem 4.9. For $v>0$ we let E_{v} be volume-constrained minimizers of (4), whose existence is guaranteed by Theorem 2.6. Then, there exist points $z_{v} \in \mathbb{R}^{d}$ such that letting

$$
\widetilde{E}_{v}=\left(\frac{\left|W_{g}\right|}{v}\right)^{\frac{1}{d}} E_{v}+z_{v}
$$

it holds

$$
\begin{equation*}
\lim _{v \rightarrow+\infty}\left|\widetilde{E}_{v} \Delta W_{g}\right|=0 \tag{19}
\end{equation*}
$$

Proof. Notice first that \widetilde{E}_{v} is a minimizer of $F_{\left(\frac{\left|W_{g}\right|}{v}\right)^{\frac{1}{d}}}$, with volume constraint $\left|\widetilde{E}_{v}\right|=\left|W_{g}\right|$. Moreover, by (15) the perimeter of \widetilde{E}_{v} is uniformly bounded in v.

Case 1. Let us consider the case $d=2$. Assume first that \widetilde{E}_{v} is connected. Then we have

$$
\operatorname{diam}\left(\widetilde{E}_{v}\right) \leq P\left(\widetilde{E}_{v}\right) / \pi,
$$

hence the sets \widetilde{E}_{v} are all contained, up to a translation, in a fixed ball centered in the origin. By the compactness theorem for sets of finite perimeter [10], there exist a bounded set \widetilde{E}_{∞} of finite perimeter and a sequence $v_{k} \rightarrow \infty$ such that $\left|\widetilde{E}_{\infty}\right|=\left|W_{g}\right|$ and

$$
\lim _{k \rightarrow+\infty}\left|\widetilde{E}_{v_{k}} \Delta \widetilde{E}_{\infty}\right|=0
$$

Since by Theorem 4.7 the set \widetilde{E}_{∞} is also a volume-constrained minimizer of F_{0}, by uniqueness of the minimizer it follows that \widetilde{E}_{∞} is equal to W_{g} up to a translation.

We now consider the general case when the sets \widetilde{E}_{v} are not necessarily connected. In particular we can write $\widetilde{E}_{v}=\cup_{i \geq 1} \widetilde{E}_{v}^{i}$, with $\left|\widetilde{E}_{v}^{i}\right|$ a decreasing sequence and $\sum_{i \geq 1}\left|\widetilde{E}_{v}^{i}\right|=1$. Reasoning as before, there exists a sequence $v_{k} \rightarrow+\infty$ such that for all $i \in \mathbb{N}$ the sets $\widetilde{E}_{v_{k}}^{i}$ converge to $\rho_{i} W_{g}$, up to a translation, where $\rho_{i} \in[0,1]$ is a decreasing sequence. Moreover, by Lemma 4.2 , for all $\delta>0$ there exists $N_{\delta} \in \mathbb{N}$ such that $\sum_{i=N_{\delta}}^{\infty}\left|\widetilde{E}_{v}^{i}\right| \leq \delta\left|W_{g}\right|$ for all $\delta>0$, which implies in the limit

$$
\begin{equation*}
\sum_{i=1}^{\infty} \rho_{i}^{2}=1 . \tag{20}
\end{equation*}
$$

We claim that $\rho_{1}=1$ and $\rho_{i}=0$ for all $i>1$. Indeed, from (18) we have

$$
F_{0}\left(W_{g}\right) \geq \limsup _{k \rightarrow+\infty} F_{\left(\frac{\left|W_{g}\right|}{v_{k}}\right)^{\frac{1}{2}}}\left(\widetilde{E}_{v_{k}}\right) \geq \sum_{i=1}^{+\infty} F_{0}\left(\rho_{i} W_{g}\right)=F_{0}\left(W_{g}\right) \sum_{i=1}^{+\infty} \rho_{i} .
$$

Recalling (20), this implies

$$
\sum_{i=1}^{+\infty} \rho_{i}=\sum_{i=1}^{+\infty} \rho_{i}^{2}=1
$$

which proves the claim.
Case 2. We now turn to the general case. Let $v_{k} \rightarrow+\infty$ and let $\varepsilon_{k}=\left(\left|W_{g}\right| / v_{k}\right)^{\frac{1}{d}}$. For all k, let $\left\{Q_{i, k}\right\}_{i \in \mathbb{N}}$ be a partition of \mathbb{R}^{d} into disjoint cubes of equal volume larger than $2\left|W_{g}\right|$, such that the sets $\widetilde{E}_{v_{k}} \cap Q_{i, k}$ are of decreasing measure, and let $x_{i, k}=\left|\widetilde{E}_{v_{k}} \cap Q_{i, k}\right| /\left|W_{g}\right|$. By the isoperimetric inequality [10], there exist $0<c<C$ such that

$$
\begin{aligned}
c \sum_{i} x_{i, k}^{\frac{d-1}{d}} & =c \sum_{i} \min \left(\frac{\left|\widetilde{E}_{v_{k}} \cap Q_{i, k}\right|}{\left|W_{g}\right|}, \frac{\left|Q_{i, k} \backslash \widetilde{E}_{v_{k}}\right|}{\left|W_{g}\right|}\right)^{\frac{d-1}{d}} \\
& \leq \sum_{i} P\left(\widetilde{E}_{v_{k}}, Q_{i, k}\right) \\
& \leq \sum_{i} \frac{1}{\Lambda} \int_{\partial \widetilde{E}_{v_{k}} \cap Q_{i, k}}\left(1+\sigma\left(\frac{x}{\varepsilon_{k}}\right) \cdot \nu\right) d \mathcal{H}^{d-1} \\
& \leq \frac{1}{\Lambda} F_{\varepsilon_{k}}\left(\widetilde{E}_{v_{k}}\right) \leq C
\end{aligned}
$$

hence

$$
\sum_{i=1}^{+\infty} x_{i, k}=1 \quad \text { and } \quad \sum_{i=1}^{+\infty} x_{i, k}^{\frac{d-1}{d}} \leq \frac{C}{c} .
$$

Reasoning as in Lemma 4.2 we obtain that for all $\delta>0$ there exists $N_{\delta} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i=N_{\delta}}^{\infty} x_{i, k} \leq \delta \tag{21}
\end{equation*}
$$

Up to extracting a subsequence, we can suppose that $x_{i, k} \rightarrow \alpha_{i}^{d} \in[0,1]$ as $k \rightarrow+\infty$ for every $i \in \mathbb{N}$, so that by (21) we have

$$
\begin{equation*}
\sum_{i} \alpha_{i}^{d}=1 \tag{22}
\end{equation*}
$$

Let $z_{i, k} \in Q_{i, k}$. Up to extracting a further subsequence, we can suppose that $d\left(z_{i, k}, z_{j, k}\right) \rightarrow$ $c_{i j} \in[0,+\infty]$, and

$$
\left(\widetilde{E}_{v_{k}}-z_{i, k}\right) \rightarrow E_{i} \quad \text { in the } L_{\mathrm{loc}}^{1} \text {-convergence }
$$

for every $i \in \mathbb{N}$ (see Figure 3). By Corollary 4.8 we thus have

$$
E_{i}=\rho_{i} W_{g} \quad \rho_{i} \in[0,1]
$$

We say that $i \sim j$ if $c_{i j}<+\infty$ and we denote by $[i]$ the equivalence class of i. Notice that E_{i} equals E_{j} up to a traslation, if $i \sim j$. We want to prove that

$$
\begin{equation*}
\sum_{[i]} \rho_{i}^{d} \geq 1 \tag{23}
\end{equation*}
$$

where the sum is taken over all equivalence classes. For all $R>0$ let $Q_{R}=[-R / 2, R / 2]^{d}$ be the cube of sidelength R. Then for every $i \in \mathbb{N}$,

$$
\left|E_{i}\right| \geq\left|E_{i} \cap Q_{R}\right|=\lim _{k \rightarrow+\infty}\left|\left(\widetilde{E}_{v_{k}}-z_{i, k}\right) \cap Q_{R}\right| .
$$

If j is such that $j \sim i$ and $c_{i j} \leq \frac{R}{2}$, possibly increasing R we have $Q_{j, k}-z_{i, k} \subset Q_{R}$ for all $k \in \mathbb{N}$, so that

$$
\lim _{k \rightarrow+\infty}\left|\left(\widetilde{E}_{v_{k}}-z_{i, k}\right) \cap Q_{R}\right| \geq \lim _{k \rightarrow+\infty} \sum_{c_{i j} \leq \frac{R}{2}}\left|\widetilde{E}_{v_{k}} \cap Q_{j, k}\right|=\sum_{c_{i j} \leq \frac{R}{2}} \alpha_{j}^{d}\left|W_{g}\right|
$$

Letting $R \rightarrow+\infty$ we then have

$$
\left|E_{i}\right| \geq \sum_{i \sim j} \alpha_{j}^{d}\left|W_{g}\right|
$$

hence, recalling (22),

$$
\sum_{[i]}\left|E_{i}\right| \geq\left|W_{g}\right|
$$

thus proving (23).
Let us now show that

$$
\begin{equation*}
\sum_{[i]} \rho_{i}^{d-1}=1 \tag{24}
\end{equation*}
$$

Up to passing to a subsequence, from now on we shall assume that $c_{i j}=+\infty$ for all $i \neq j$. Let $I \in \mathbb{N}$ be fixed. Then for every $R>0$ there exists $K \in \mathbb{N}$ such that for every $k \geq K$ and i, j less than I, we have

$$
d\left(z_{i, k}, z_{j, k}\right)>R
$$

Figure 3: the construction in the proof of Theorem 4.9.

For $k \geq K$ we thus have

$$
\begin{aligned}
F_{\varepsilon_{k}}\left(\widetilde{E}_{v_{k}}\right) & \geq \sum_{i=1}^{I} \int_{\partial \widetilde{E}_{v_{k}} \cap\left(B_{R}+z_{i, k}\right)}\left(1+\sigma\left(\frac{x}{\varepsilon_{k}}\right) \cdot \nu\right) d \mathcal{H}^{d-1} \\
& =\sum_{i=1}^{I} \int_{\partial\left(\widetilde{E}_{v_{k}}-z_{i, k}\right) \cap B_{R}}\left(1+\sigma\left(\frac{x}{\varepsilon_{k}}\right) \cdot \nu\right) d \mathcal{H}^{d-1} \\
& =\sum_{i=1}^{I} F_{\varepsilon_{k}}\left(\widetilde{E}_{v_{k}}-z_{i, k}, B_{R}\right)
\end{aligned}
$$

where

$$
F_{\varepsilon}\left(E, B_{R}\right)=\int_{\partial E \cap B_{R}}\left(1+\sigma\left(\frac{x}{\varepsilon_{k}}\right) \cdot \nu\right) d \mathcal{H}^{d-1} .
$$

From this, (18) and the Γ-convergence of $F_{\varepsilon}\left(\cdot, B_{R}\right)$ to $F_{0}\left(\cdot, B_{R}\right)$, we get

$$
F_{0}\left(W_{g}\right) \geq \limsup _{\varepsilon_{k} \rightarrow 0} F_{\varepsilon_{k}}\left(\widetilde{E}_{v_{k}}\right) \geq \sum_{i=1}^{I} \liminf _{\varepsilon_{k} \rightarrow 0} F_{\varepsilon_{k}}\left(\widetilde{E}_{v_{k}}-z_{i, k}, B_{R}\right) \geq \sum_{i=1}^{I} F_{0}\left(E_{i}, B_{R}\right)
$$

For $R>\operatorname{diam}\left(W_{g}\right)$ we have $F_{0}\left(E_{i}, B_{R}\right)=F_{0}\left(E_{i}\right)$ because $E_{i}=\rho_{i} W_{g}$ and therefore

$$
F_{0}\left(W_{g}\right) \geq \sum_{i=1}^{I} F_{0}\left(E_{i}\right)=\sum_{i=1}^{I} \rho_{i}^{d-1} F_{0}\left(W_{g}\right)
$$

Letting $I \rightarrow+\infty$ we get (24).
Recalling (23), from (24) we then obtain

$$
\sum_{i} \rho_{i}^{d-1}=\sum_{i} \rho_{i}^{d}=1
$$

As before, this implies $\rho_{1}=1$ and $\rho_{i}=0$ for all $i>1$, thus giving

$$
\lim _{k \rightarrow+\infty}\left|\left(\widetilde{E}_{v_{k}}-z_{1, k}\right) \Delta W_{g}\right|=0
$$

By the uniqueness of the limit this shows that the whole sequence \widetilde{E}_{v} tends to W_{g} as $v \rightarrow+\infty$, up to suitable translations.

Remark 4.10. Let us point out that, if uniform density estimates for \widetilde{E}_{v} were available, we would get Hausdorff convergence instead of L^{1} convergence in (19), showing in particular that the sets \widetilde{E}_{v} are connected for v large enough. We believe that such estimates are true even if we were not able to prove them.

Remark 4.11. The asymptotic behavior of minimizers of (4), in the small volume regime, have been considered in [9], where the authors prove a result similar to Theorem 4.9, with the Wulff Shape W_{g} replaced by the Euclidean ball, showing in particular that the volume term becomes irrelevant for small volumes.

Remark 4.12. Notice that the results of this paper can be extended to anisotropic perimeters of the form

$$
P_{\phi}(E)=\int_{\partial^{*} E} \phi(\nu) d \mathcal{H}^{d-1}
$$

where $\phi: \mathbb{R}^{d} \rightarrow[0,+\infty)$ is a smooth and uniformly convex norm on \mathbb{R}^{d}.

References

[1] G. Barles, A. Cesaroni and M. Novaga, Homogenization of fronts in highly heterogeneous media, SIAM J. on Math. Anal., vol. 43 n. 1, 212-227, 2011.
[2] F. Bethuel, P. Caldiroli and M. Guida, Parametric Surfaces with Prescribed Mean Curvature, Rend. Sem. Mat. Univ. Torino, vol. 60 n. 4, 175Ũ231, 2002.
[3] J. Bourgain and H. Brezis, On the Equation div $Y=f$ and Application to Control of Phases, Jour. of Amer. Math. Soc., vol. 16 n. 2, 393-426, 2002.
[4] Y.D. Burago and Z.A. Zalgaller, Geometric Inequalities, Grundlehren der math. Wiss., Springer-Verlag, vol. 285, 1988.
[5] L. Caffarelli and R. de la Llave, Planelike Minimizers in Periodic Media, Comm. Pure Appl. Math., vol. 54, 1403-1441, 2001.
[6] L. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, AMS, 1991.
[7] A. Chambolle and G. Thouroude, Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem, Netw. Heterog. Media, vol. 4 n. 1, 127 Ú152, 2009.
[8] G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser, 1993.
[9] A. Figalli and F. Maggi, On The Equilibrium Shapes Of Liquid Drops And Crystals, to appear on Arch. Rat. Mech. Anal.
[10] E. Giusti, Minimal Surfaces and functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser, 1984.
[11] M. Guida and S. Rolando, Symmetric κ-loops, Diff. Int. Equations, vol. 23, 861898, 2010.
[12] X. Huang, Closed Surface with Prescribed Mean Curvature in \mathbb{R}^{3}, Science in China, vol. 34 n. 10, 1991.
[13] S. Kirsch, PhD Thesis, Université Pierre et Marie Curie, 2007.
[14] F. Morgan, Geometric Measure Theory. A Beginner's Guide, Fourth Edition, Elsevier Academic Press, 2009.
[15] M. Novaga and E. Valdinoci, Bump solutions for the mesoscopic Allen-Cahn equation in periodic media, Calc. Var. PDE, vol. 40 n. 1-2, pp. 37-49, 2011.
[16] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, Cambridge university Press, 1993.
[17] S. Rigot, Ensembles Quasi-Minimaux avec Contrainte de Volume et Rectifiabilité Uniforme, Mémoires de la Société Mathématiques de France, vol. 82, 2000.
[18] I. Tamanini, Boundaries of Caccioppoli sets with Hölder continuous normal vector, J. Reine Angew. Math., vol. 334, 27-39, 1982.
[19] J. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc., vol. 84 n. 4, 568-588, 1978.
[20] A.E. Treibergs and S.W. Wei, Embedded hyperspheres with prescribed mean curvature, J. Differential Geom., vol. 18 n. 3, 513Ŭ521, 1983.
[21] G. Wulff, Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der Kristallflichen, Z. Kristallogr., vol. 34, 449-530, 1901.
[22] Q. XIA, Regularity of minimizers of quasi perimeters with a volume constraint, Interfaces and Free Boundaries, vol. 7 n. 3, 2005.
[23] S.T. Yau, Problem section. Seminar on Differential Geometry. Ann. of Math. Stud., vol. 102, 669Ú7706, Princeton Univ. Press, Princeton, N.J., 1982.

[^0]: *CMAP, CNRS UMR 7641, Ecole Polytechnique, 91128 Palaiseau, France, email: goldman@cmap.polytechnique.fr
 ${ }^{\dagger}$ Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy, email: novaga@math.unipd.it

