ECOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES APPLIQUÉES

 UMR CNRS 764191128 PALAISEAU CEDEX (FRANCE). Tél: 01693346 00. Fax: 0169334646 http://www.cmap.polytechnique.fr/

Absence of exponentially localized solitons for the Novikov-Veselov equation at negative energy

Anna Kazeykina, Roman Novikov

R.I. 709
February 2011

Absence of exponentially localized solitons for the
Novikov-Veselov equation at negative energy

A.V. Kazeykina ${ }^{1}$, R.G. Novikov ${ }^{2}$

Abstract

We show that Novikov-Veselov equation (an analog of KdV in dimension $2+1$) does not have exponentially localized solitons at negative energy.

1 Introduction

In the present paper we are concerned with the following $(2+1)$-dimensional analog of the Korteweg-de Vries equation:

$$
\begin{align*}
& \partial_{t} v=4 \operatorname{Re}\left(4 \partial_{z}^{3} v+\partial_{z}(v w)-E \partial_{z} w\right), \\
& \partial_{\bar{z}} w=-3 \partial_{z} w, \quad v=\bar{v}, \quad E \in \mathbb{R} \tag{1.1}\\
& v=v(x, t), \quad w=w(x, t), \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \quad t \in \mathbb{R},
\end{align*}
$$

where

$$
\begin{equation*}
\partial_{t}=\frac{\partial}{\partial t}, \quad \partial_{z}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right), \quad \partial_{\bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}\right) . \tag{1.2}
\end{equation*}
$$

Equation (1.1) is contained implicitly in the paper of S.V. Manakov [M] as an equation possessing the following representation

$$
\begin{equation*}
\frac{\partial(L-E)}{\partial t}=[L-E, A]+B(L-E) \tag{1.3}
\end{equation*}
$$

(Manakov L-A-B triple), where $L=-\Delta+v(x, t), \Delta=4 \partial_{z} \partial_{\bar{z}}, A$ and B are suitable differential operators of the third and zero order respectively, $[\cdot, \cdot]$ denotes the commutator. Equation (1.1) was written in an explicit form by S.P. Novikov and A.P. Veselov in [NV1], [NV2], where higher analogs of (1.1) were also constructed. Note that both Kadomtsev-Petviashvili equations can be obtained from (1.1) by considering an appropriate limit $E \rightarrow \pm \infty$ (see [ZS], [G]).

In the case when $v\left(x_{1}, x_{2}, t\right), w\left(x_{1}, x_{2}, t\right)$ are independent of $x_{2},(1.1)$ can be reduced to the classic KdV equation:

$$
\begin{equation*}
\partial_{t} u-6 u \partial_{x} u+\partial_{x}^{3} u=0, \quad x \in \mathbb{R}, \quad t \in \mathbb{R} . \tag{1.4}
\end{equation*}
$$

[^0]It is well-known that (1.4) has the soliton solutions
$u(x, t)=u_{\kappa, \varphi}\left(x-4 \kappa^{2} t\right)=-\frac{2 \kappa^{2}}{c h^{2}\left(\kappa\left(x-4 \kappa^{2} t-\varphi\right)\right)}, \quad x \in \mathbb{R}, t \in \mathbb{R}, \kappa \in(0,+\infty), \varphi \in \mathbb{R}$.
Evidently,

$$
\begin{align*}
& u_{\kappa, \varphi} \in C^{\infty}(\mathbb{R}), \\
& \partial_{x}^{j} u_{\kappa, \varphi}(x)=O\left(e^{-2 \kappa|x|}\right) \text { as } x \rightarrow \infty, \quad j=0,1,2, \ldots \tag{1.6}
\end{align*}
$$

Properties (1.6) imply that the solitons (1.5) are exponentially localized in x.

For the 2 -dimensional case we will say that a solution (v, w) of (1.1) is an exponentially localized soliton if the following properties hold:

$$
\begin{align*}
& v(x, t)=V(x-c t), \quad x \in \mathbb{R}^{2}, \quad c=\left(c_{1}, c_{2}\right) \in \mathbb{R}^{2}, \\
& V \in C^{3}\left(\mathbb{R}^{2}\right), \quad \partial_{x}^{j} V(x)=O\left(e^{-\alpha|x|}\right) \text { for }|x| \rightarrow \infty, \quad|j| \leqslant 3 \text { and some } \alpha>0 \\
& \text { (where } \left.j=\left(j_{1}, j_{2}\right) \in(0 \cup \mathbb{N})^{2},|j|=\left|j_{1}\right|+\left|j_{2}\right|, \quad \partial_{x}^{j}=\partial^{j_{1}+j_{2}} / \partial x_{1}^{j_{1}} \partial x_{2}^{j_{2}}\right), \\
& w(\cdot, t) \in C\left(\mathbb{R}^{2}\right), \quad w(x, t) \rightarrow 0 \text { as }|x| \rightarrow \infty, \quad t \in \mathbb{R} . \tag{1.7}
\end{align*}
$$

In [N1] it was shown that, in contrast with the $(1+1)$-dimensional case, the $(2+1)$-dimensional KdV equation (1.1), at least for $E=E_{\text {fixed }}>0$, does not have exponentially localized solitons. More precisely, in [N1] it was shown that the following theorem is valid for $E=E_{\text {fixed }}>0$:
Theorem 1.1. Let (v, w) be an exponentially localized soliton solution of (1.1) in the sense (1.7). Then $v \equiv 0, w \equiv 0$.

The main result of this paper consists in the proof of Theorem 1.1 for the case $E=E_{\text {fixed }}<0$. This proof is given in Section 3 and is based on Propositions 3.1 and 3.2. In addition: Proposition 3.1 is an analog of the result of [N1] about the transparency of sufficiently localized solitons for equation (1.1) for $E>0$; Proposition 3.2 is an analog of the result of [N 2], [GN1] that there are no nonzero bounded real-valued exponentially localized transparent potentials (that is potentials with zero scattering amplitude) for the Schrödinger equation (2.1) for $E=E_{\text {fixed }}>0$.

Note that nonzero bounded algebraically localized solitons for equation (1.1) for $E<0$ are also unknown (see $[\mathrm{G}]$), but their absence is not proved.

As regards integrable systems in $2+1$ dimensions admitting exponentially decaying solitons in all directions on the plane, see [BLMP], [FS].

As regards integrable systems in $2+1$ dimensions admitting nonzero bounded algebraically decaying solitons in all directions on the plane, see [FA], [BLMP], [G], [KN] and references therein.

2 Inverse scattering for the 2-dimensional Schrödinger equation at a fixed negative energy

Consider the scattering problem for the two-dimensional Schrödinger equation at a fixed negative energy:

$$
\begin{align*}
-\Delta \psi+v(z) \psi & =E \psi, \quad E=E_{\text {fixed }}<0 \\
\Delta=4 \partial_{z} \partial_{\bar{z}}, \quad z & =x_{1}+i x_{2}, \quad x \in \mathbb{R}^{2} \tag{2.1}
\end{align*}
$$

where $\partial_{z}, \partial_{\bar{z}}$ are the same as in (1.2). We will assume that the potential $v(z)$ satisfies the following conditions

$$
\begin{align*}
& v(z)=\overline{v(z)}, \quad v(z) \in L^{\infty}(\mathbb{C}) \tag{2.2}\\
& |v(z)|<q(1+|z|)^{-2-\varepsilon} \text { for some } q>0, \varepsilon>0
\end{align*}
$$

In this paper we will be concerned with the exponentially decreasing potentials, i.e. with the potentials $v(z)$ satisfying (2.2) and the following additional condition

$$
\begin{equation*}
v(z)=O\left(e^{-\alpha|z|}\right) \text { as }|z| \rightarrow \infty \text { for some } \alpha>0 \tag{2.3}
\end{equation*}
$$

Direct and inverse scattering for the two-dimensional Schrödinger equation (2.1) at fixed negative energy under assumptions (2.2) was considered for the first time in [GN2]. For some of the results discussed in this section see also [N2], [G].

First of all, we note that by scaling transform we can reduce the scattering problem with an arbitrary fixed negative energy to the case when $E=-1$. Therefore, in our further reasoning we will assume that $E=-1$.

It is known that for $\lambda \in \mathbb{C} \backslash(0 \cup \mathcal{E})$, where

$$
\begin{equation*}
\mathcal{E} \text { is the set of zeros of the modified Fredholm determinant } \Delta \tag{2.4}
\end{equation*}
$$ for the integral equation (2.10),

there exists a unique continuous solution $\psi(z, \lambda)$ of (2.1) with the following asymptotics

$$
\begin{equation*}
\psi(z, \lambda)=e^{-\frac{1}{2}(\lambda \bar{z}+z / \lambda)} \mu(z, \lambda), \quad \mu(z, \lambda)=1+o(1), \quad|z| \rightarrow \infty \tag{2.5}
\end{equation*}
$$

In addition, the function $\mu(z, \lambda)$ satisfies the following integral equation

$$
\begin{align*}
& \mu(z, \lambda)=1+\iint_{\zeta \in \mathbb{C}} g(z-\zeta, \lambda) v(\zeta) \mu(\zeta, \lambda) d \zeta_{R} d \zeta_{I}, \tag{2.6}\\
& g(z, \lambda)=-\left(\frac{1}{2 \pi}\right)^{2} \iint_{\zeta \in \mathbb{C}} \frac{\exp (i / 2(\zeta \bar{z}+\bar{\zeta} z))}{\zeta \bar{\zeta}+i(\lambda \bar{\zeta}+\zeta / \lambda)} d \zeta_{R} d \zeta_{I}, \tag{2.7}
\end{align*}
$$

where $z \in \mathbb{C}, \lambda \in \mathbb{C} \backslash 0, \zeta_{R}=\operatorname{Re} \zeta, \zeta_{I}=\operatorname{Im} \zeta$.
In terms of ψ of (2.5) equation (2.6) takes the form

$$
\begin{align*}
& \psi(z, \lambda)=e^{-1 / 2(\lambda \bar{z}+z / \lambda)}+\iint_{\zeta \in \mathbb{C}} G(z-\zeta, \lambda) v(\zeta) \psi(\zeta, \lambda) d \zeta_{R} d \zeta_{I}, \tag{2.8}\\
& G(z, \lambda)=e^{-1 / 2(\lambda \bar{z}+z / \lambda)} g(z, \lambda) \tag{2.9}
\end{align*}
$$

where $z \in \mathbb{C}, \lambda \in \mathbb{C} \backslash 0$.
In terms of $m(z, \lambda)=(1+|z|)^{-(2+\varepsilon) / 2} \mu(z, \lambda)$ equation (2.6) takes the form $m(z, \lambda)=(1+|z|)^{-(2+\varepsilon) / 2}+\iint_{\zeta \in \mathbb{C}}(1+|z|)^{-(2+\varepsilon) / 2} g(z-\zeta, \lambda) \frac{v(\zeta)}{(1+|\zeta|)^{-(2+\varepsilon) / 2}} m(\zeta, \lambda) d \zeta_{R} d \zeta_{I}$,
where $z \in \mathbb{C}, \lambda \in \mathbb{C} \backslash 0$. In addition, $A(\cdot, \cdot, \lambda) \in L^{2}(\mathbb{C} \times \mathbb{C}),\left|\operatorname{Tr} A^{2}(\lambda)\right|<\infty$, where $A(z, \zeta, \lambda)$ is the Schwartz kernel of the integral operator $A(\lambda)$ of the integral equation (2.10). Thus, the modified Fredholm determinant for (2.10) can be defined by means of the formula:

$$
\begin{equation*}
\ln \Delta(\lambda)=\operatorname{Tr}(\ln (I-A(\lambda))+A(\lambda)) \tag{2.11}
\end{equation*}
$$

(see [GK] for more precise sense of such definition).
Taking the subsequent members in the asymptotic expansion (2.5) for $\psi(z, \lambda)$, we obtain (see [N2]):

$$
\begin{align*}
& \psi(z, \lambda)=\exp \left(-\frac{1}{2}\left(\lambda \bar{z}+\frac{z}{\lambda}\right)\right)\{1-2 \pi \operatorname{sgn}(1-\lambda \bar{\lambda}) \times \\
& \left.\times\left(\frac{i \lambda a(\lambda)}{z-\lambda^{2} \bar{z}}+\exp \left(-\frac{1}{2}\left(\left(\frac{1}{\bar{\lambda}}-\lambda\right) \bar{z}+\left(\frac{1}{\lambda}-\bar{\lambda}\right) z\right)\right) \frac{\bar{\lambda} b(\lambda)}{i\left(\bar{\lambda}^{2} z-\bar{z}\right)}\right)+o\left(\frac{1}{|z|}\right)\right\} \tag{2.12}
\end{align*}
$$

$|z| \rightarrow \infty, \lambda \in \mathbb{C} \backslash(\mathcal{E} \cup 0)$.
The functions $a(\lambda), b(\lambda)$ from (2.12) are called the "scattering" data for the problem (2.1), (2.2) with $E=-1$. It is known that for $a(\lambda), b(\lambda)$ the following formulas hold (see [N2]):
$a(\lambda)=\left(\frac{1}{2 \pi}\right)^{2} \iint_{z \in \mathbb{C}} \mu(z, \lambda) v(z) d z_{R} d z_{I}$,
$b(\lambda)=\left(\frac{1}{2 \pi}\right)^{2} \iint_{z \in \mathbb{C}} \exp \left(-\frac{1}{2}\left(\left(\lambda-\frac{1}{\bar{\lambda}}\right) \bar{z}-\left(\bar{\lambda}-\frac{1}{\lambda}\right) z\right)\right) \mu(z, \lambda) v(z) d z_{R} d z_{I}$,
where $\lambda \in \mathbb{C} \backslash(0 \cup \mathcal{E}), z_{R}=\operatorname{Re} z, z_{I}=\operatorname{Im} z$. In addition, formally, formulas (2.13), (2.14) can be written as

$$
\begin{equation*}
a(\lambda)=h(\lambda, \lambda), \quad b(\lambda)=h\left(\lambda, \frac{1}{\bar{\lambda}}\right), \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
h\left(\lambda, \lambda^{\prime}\right)=\left(\frac{1}{2 \pi}\right)^{2} \iint_{z \in \mathbb{C}} \exp \left(\frac{1}{2}\left(\lambda^{\prime} \bar{z}+z / \lambda^{\prime}\right)\right) \psi(z, \lambda) v(z) d z_{R} z_{I}, \tag{2.16}
\end{equation*}
$$

and $\lambda \in \mathbb{C} \backslash(0 \cup \mathcal{E}), \lambda^{\prime} \in \mathbb{C} \backslash 0$. (Note that, under assumptions (2.2), the integral in (2.16) is well-defined if $\lambda^{\prime}=\lambda$ of if $\lambda^{\prime}=1 / \bar{\lambda}$ but is not welldefined in general.)

Let

$$
\begin{equation*}
T=\{\lambda \in \mathbb{C}:|\lambda|=1\} . \tag{2.17}
\end{equation*}
$$

From (2.15), in particular, the following statement follows:
Statement 2.1. Let (2.2) hold and $\Delta \neq 0$ on T. Then

$$
\begin{equation*}
a(\lambda)=b(\lambda), \quad \lambda \in T . \tag{2.18}
\end{equation*}
$$

The following properties of functions $\Delta(\lambda), a(\lambda), b(\lambda)$ will play a substantial role in the proof of Theorem 1.1.

Statement 2.2. Let (2.2) hold. Then:

1. $\Delta(\lambda) \in C(\mathbb{C})$;
2. $\Delta(\lambda) \rightarrow 1$ as $\lambda \rightarrow 0$ or $\lambda \rightarrow \infty$;
3. $\Delta(\lambda) \equiv$ const for $\lambda \in T$;
4. Δ is real-valued: $\Delta=\bar{\Delta}$.
5. $\Delta(\lambda)=\Delta(1 / \bar{\lambda}), \lambda \in \mathbb{C} \backslash 0$.

Statement 2.3. Let conditions (2.2)-(2.3) be fulfilled. Then:

- $\Delta(\lambda)$ is a real-analytic function on D_{+}, D_{-}, where

$$
\begin{equation*}
D_{+}=\{\lambda \in \mathbb{C}: 0<|\lambda| \leqslant 1\}, \quad D_{-}=\{\lambda \in \mathbb{C}:|\lambda| \geqslant 1\} . \tag{2.19}
\end{equation*}
$$

- $a(\lambda)=\frac{\mathcal{A}(\lambda)}{\Delta(\lambda)}, b(\lambda)=\frac{\mathcal{B}(\lambda)}{\Delta(\lambda)}$, where $\mathcal{A}(\lambda), \mathcal{B}(\lambda)$ are real-analytic functions on D_{+}, D_{-}.

Items 1-4 of Statement 2.2 are either known or follow from results mentioned in [HN], [N2] (see page 129 of [HN] and pages 420, 423, 429 of [N2]). In particular, item 1 of Statement 2.2 is a consequence of continuous dependency of $g(z, \lambda)$ on $\lambda \in \mathbb{C} \backslash 0$; item 3 of Statement 2.2 is a consequence of (2.11) and of the formula (see pages 420, 423 of [N2]) $G(z, \lambda)=(-i / 4) H_{0}^{1}(i|z|), z \in \mathbb{C}$, $\lambda \in T$, where G is defined by (2.9), H_{0}^{1} is the Hankel function of the first type. In addition, item 5 of Statement 2.2 follows from item 4 of this statement and from symmetry $\overline{G(z, \lambda)}=G(z, 1 / \bar{\lambda}), z \in \mathbb{C}, \lambda \in \mathbb{C} \backslash 0$.

Statement 2.3 is similar to Proposition 4.2 of [N2] and follow from: (i) formulas (2.13), (2.14), (ii) Cramer type formulas for solving the integral equation (2.10), (iii) the analog of Proposition 3.2 of [N2] for g of (2.7).

Under assumptions (2.2), the function $\mu(z, \lambda)$, defined by (2.6), satisfies the following properties:

$$
\begin{equation*}
\mu(z, \lambda) \text { is a continuous function of } \lambda \text { on } \mathbb{C} \backslash(0 \cup \mathcal{E}) ; \tag{2.20}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \mu(z, \lambda)}{\partial \bar{\lambda}}=r(z, \lambda) \overline{\mu(z, \lambda)} \tag{2.21a}\\
& r(z, \lambda)=r(\lambda) \exp \left(\frac{1}{2}\left(\left(\lambda-\frac{1}{\bar{\lambda}}\right) \bar{z}-\left(\bar{\lambda}-\frac{1}{\lambda}\right) z\right)\right), \tag{2.21b}\\
& r(\lambda)=\frac{\pi \operatorname{sgn}(1-\lambda \bar{\lambda})}{\bar{\lambda}} b(\lambda) \tag{2.21c}
\end{align*}
$$

for $\lambda \in \mathbb{C} \backslash(0 \cup \mathcal{E})$;

$$
\begin{equation*}
\mu \rightarrow 1, \text { as } \lambda \rightarrow \infty, \lambda \rightarrow 0 \tag{2.22}
\end{equation*}
$$

The function b possesses the following properties (see [GN2], [N2]):

$$
\begin{gather*}
b \in C(\mathbb{C} \backslash \mathcal{E}), \tag{2.23}\\
b\left(-\frac{1}{\bar{\lambda}}\right)=b(\lambda), \quad b\left(\frac{1}{\bar{\lambda}}\right)=\overline{b(\lambda)}, \quad \lambda \in \mathbb{C} \backslash 0, \tag{2.24}\\
\left.\lambda^{-1} b(\lambda) \in L_{p}\left(D_{+}\right) \text {(as a function of } \lambda\right) \text { if } \mathcal{E}=\varnothing, \quad 2<p<4 . \tag{2.25}
\end{gather*}
$$

In addition, the following theorem is valid:
Theorem 2.1 ([GN2], [N2]). Let v satisfy (2.2) and $\mathcal{E}=\varnothing$ for this potential. Then v is uniquely determined by its scattering data b (by means of (2.20), (2.21) and equation (1.1) for $E=-1$ and ψ of (2.5)).

Finally, if $(v(z, t), w(z, t))$ is a solution of equation (1.1) with $E=-1$, where $(v(z, t), w(z, t))$ satisfy the following conditions:
$v, w \in C\left(\mathbb{R}^{2} \times \mathbb{R}\right)$ and for each $t \in \mathbb{R}$ the following properties are fulfilled:
$v(\cdot, t) \in C^{3}\left(\mathbb{R}^{2}\right), \quad \partial_{x}^{j} v(x, t)=O\left(|x|^{-2-\varepsilon}\right)$ for $|x| \rightarrow \infty,|j| \leq 3$ and some $\varepsilon>0$,
$w(x, t) \rightarrow 0$ for $|x| \rightarrow \infty$,
then the dynamics of the scattering data is described by the following equations

$$
\begin{align*}
& a(\lambda, t)=a(\lambda, 0) \tag{2.27}\\
& b(\lambda, t)=\exp \left\{\left(\lambda^{3}+\frac{1}{\lambda^{3}}-\bar{\lambda}^{3}-\frac{1}{\bar{\lambda}^{3}}\right) t\right\} b(\lambda, 0), \tag{2.28}
\end{align*}
$$

where $\lambda \in \mathbb{C} \backslash 0, t \in \mathbb{R}$.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on Proposition 3.1 and Proposition 3.2 given below.

Lemma 3.1. Let $v(z)$ satisfy (2.2) and $a(\lambda), b(\lambda)$ be the scattering data corresponding to $v(z)$. Then the scattering data $a_{\zeta}(\lambda), b_{\zeta}(\lambda)$ for the potential $v_{\zeta}(z)=v(z-\zeta)$ are related to $a(\lambda), b(\lambda)$ by the formulas

$$
\begin{align*}
& a_{\zeta}(\lambda)=a(\lambda), \tag{3.1}\\
& b_{\zeta}(\lambda)=\exp \left(-\frac{1}{2}\left(\left(\lambda-\frac{1}{\bar{\lambda}}\right) \bar{\zeta}-\left(\bar{\lambda}-\frac{1}{\lambda}\right) \zeta\right)\right) b(\lambda), \tag{3.2}
\end{align*}
$$

where $z, \zeta \in \mathbb{C}, \lambda \in \mathbb{C} \backslash 0$.
Proof. We first note that $\psi(z-\zeta, \lambda)$ satisfies equation (2.1) with the operator $L=-\Delta+v_{\zeta}(z)$. Then the function $\psi_{\zeta}(z, \lambda)$ corresponding to $v_{\zeta}(z)$ and possessing the asymptotics (2.5) is $\psi_{\zeta}(z, \lambda)=e^{-\frac{1}{2}(\lambda \bar{\zeta}+\zeta / \lambda)} \psi(z-\zeta, \lambda)$. In terms of function μ this relation is written $\mu_{\zeta}(z, \lambda)=\mu(z-\zeta, \lambda)$ Thus we have

$$
a_{\zeta}(\lambda)=\left(\frac{1}{2 \pi}\right)^{2} \iint_{z \in \mathbb{C}} v(z-\zeta) \mu(z-\zeta, \lambda) d z_{R} d z_{I}=a(\lambda),
$$

and, similarly,

$$
\begin{aligned}
& b_{\zeta}(\lambda)=\left(\frac{1}{2 \pi}\right)^{2} \iint_{z \in \mathbb{C}} \exp \left(-\frac{1}{2}\left(\left(\lambda-\frac{1}{\bar{\lambda}}\right) \bar{z}-\left(\bar{\lambda}-\frac{1}{\lambda}\right) z\right)\right) \times \\
& \times v(z-\zeta) \mu(z-\zeta, \lambda) d z_{R} d z_{I}= \\
& =\exp \left(-\frac{1}{2}\left(\left(\lambda-\frac{1}{\bar{\lambda}}\right) \bar{\zeta}-\left(\bar{\lambda}-\frac{1}{\lambda}\right) \zeta\right)\right) b(\lambda) .
\end{aligned}
$$

Proposition 3.1. Let $(v(z, t), w(z, t))$ be an exponentially localized soliton of (1.1) in the sense (1.7). Let $b(\lambda, t)$ be the scattering data for $v(z, t)$ for some $E=E_{\text {fixed }}<0$. Then $b(\lambda, t) \equiv 0$ in the domain where it is well-defined, i.e. in $\mathbb{C} \backslash \mathcal{E}$, where \mathcal{E} is defined by (2.4).

Proof. In virtue of (2.28) and Statement 2.3 it is sufficient to prove that $b(\lambda, 0) \equiv 0$ in some neighborhoods of 0 and ∞.

Let U_{0}, U_{∞} be the neighborhoods of 0 and ∞, respectively, such that $\Delta \neq 0$ in U_{0}, U_{∞} (such neighborhoods exist in virtue of item 2 of Statement 2.2). For $\lambda \in U_{0} \cup U_{\infty}$ the function $b(\lambda, 0)$ is well-defined and continuous. As $(v(z, t), w(z, t))$ is a soliton, the dynamics of the function $b(\lambda, t)$ can be written as

$$
\begin{equation*}
b(\lambda, t)=\exp \left(-\frac{1}{2}\left(\left(\lambda-\frac{1}{\bar{\lambda}}\right) \bar{c}-\left(\bar{\lambda}-\frac{1}{\lambda}\right) c\right) t\right) b(\lambda, 0) \tag{3.3}
\end{equation*}
$$

(see Lemma 3.1).
Combining this with formula (2.28), we obtain

$$
\begin{aligned}
& \exp \left\{-\frac{1}{2}\left(\left(\lambda-\frac{1}{\bar{\lambda}}\right) \bar{c}-\left(\bar{\lambda}-\frac{1}{\lambda}\right) c\right) t\right\} b(\lambda, 0)= \\
& =\exp \left\{\left(\lambda^{3}+\frac{1}{\lambda^{3}}-\bar{\lambda}^{3}-\frac{1}{\bar{\lambda}^{3}}\right) t\right\} b(\lambda, 0)
\end{aligned}
$$

As functions $\lambda, \bar{\lambda}, \frac{1}{\lambda}, \frac{1}{\bar{\lambda}}, \lambda^{3}, \bar{\lambda}^{3}, \frac{1}{\lambda^{3}}, \frac{1}{\bar{\lambda}^{3}}, 1$ are linearly independent in any neighborhood of 0 and ∞, we obtain that $b(\lambda, 0) \equiv 0$ in $U_{0} \cup U_{\infty}$.
Proposition 3.2. Let $v(z)$ satisfy (2.2)-(2.3) and $b(\lambda)$ be its scattering data for some $E=E_{\text {fixed }}<0$. If $b(\lambda) \equiv 0$ in the domain where it is well-defined, i.e. in $\mathbb{C} \backslash \mathcal{E}$, where \mathcal{E} is defined by (2.4), then $v \equiv 0$.

Note that Proposition 3.2 can be considered as an analog of Corollary 3 of [GN1].

Proof of Proposition 3.2. 1. First we will prove that from the assumptions of this proposition it follows that $a(\lambda) \equiv 0$ in $U_{0} \cup U_{\infty}$, where U_{0} and U_{∞} are such neighborhoods of 0 and ∞, respectively, that $\Delta(\lambda) \neq 0$ for $\lambda \in U_{0} \cup U_{\infty}$. We note that from (2.13), (2.14), (2.21a), (2.22) it follows that

$$
\begin{gather*}
\frac{\partial a(\lambda)}{\partial \bar{\lambda}}=\frac{\pi \operatorname{sgn}(1-\lambda \bar{\lambda})}{\bar{\lambda}} b(\lambda) \overline{b(\lambda)}, \quad \lambda \in \mathbb{C} \backslash(\mathcal{E} \cup 0), \tag{3.4}\\
a(\lambda) \rightarrow \hat{v}(0) \text { as } \lambda \rightarrow \infty \text { or } \lambda \rightarrow 0, \text { where } \tag{3.5}\\
\hat{v}(p)=\left(\frac{1}{2 \pi}\right)^{2} \iint_{z \in \mathbb{C}} e^{\frac{i}{2}(\bar{p} z+p \bar{z})} v(z) d z_{R} d z_{I}, \quad p \in \mathbb{C} . \tag{3.6}
\end{gather*}
$$

It means that

$$
\begin{equation*}
a(\lambda) \text { is holomorphic in } \mathbb{C} \backslash(\mathcal{E}) . \tag{3.7}
\end{equation*}
$$

According to item 3 of Statement 2.2, $\Delta(\lambda) \equiv$ const for $\lambda \in T$. We will consider separately two cases: $\Delta \equiv C \neq 0$ on T and $\Delta \equiv 0$ on T.
(a) $\Delta(\lambda) \equiv C \neq 0$ on T :

From item 1 of Statement 2.2 it follows that there exists U_{T}, a neighborhood of T, such that $\Delta(\lambda) \neq 0$ in U_{T}. Thus $a(\lambda)$ is holomorphic in U_{T}. From Statement 2.1 we obtain that $a(\lambda)=$ $b(\lambda)=0$ on T. It follows then that $a(\lambda) \equiv 0$ in U_{T}. Using statement 2.3, we obtain that $a(\lambda) \equiv 0$ in $U_{0} \cup U_{\infty}$.
(b) $\Delta(\lambda) \equiv 0$ on T :

In [HN] the $\bar{\partial}$-equation for Δ was derived. In variables $\lambda, \bar{\lambda}$ it is written as

$$
\begin{equation*}
\frac{\partial \ln \Delta(\lambda)}{\partial \bar{\lambda}}=-\frac{\pi \operatorname{sgn}(\lambda \bar{\lambda}-1)}{\bar{\lambda}}\left(a\left(\frac{1}{\bar{\lambda}}\right)-\hat{v}(0)\right) . \tag{3.8}
\end{equation*}
$$

Equation (3.8) and properties (3.5), (3.7) imply that $\frac{\partial \ln \Delta}{\partial \lambda}$ is an antiholomorphic function in $U_{0} \cup U_{\infty}$, where Δ is close to 1 and, thus, $\ln \Delta$ is a well-defined one-valued function. As Δ is a realvalued real analytic function, it follows that

$$
\begin{equation*}
\ln \Delta=f(\lambda)+\overline{f(\lambda)} \tag{3.9}
\end{equation*}
$$

for some holomorphic function $f(\lambda)$, or

$$
\begin{equation*}
\Delta=F(\lambda) \overline{F(\lambda)} \tag{3.10}
\end{equation*}
$$

for some holomorphic function $F(\lambda)$ on $U_{0} \cup U_{\infty}$. Now we will use the following lemma (the proof of this lemma is given in Section 4):

Lemma 3.2. Let $\Delta(\lambda)$ be real-analytic in $D_{+}=\{\lambda \in \mathbb{C}: 0<|\lambda| \leq 1\}$. Suppose that $\Delta(\lambda)$ can be represented as

$$
\begin{equation*}
\Delta(\lambda)=F(\lambda) \overline{F(\lambda)}, \quad \lambda \in U_{0} \tag{3.11}
\end{equation*}
$$

for some function $F(\lambda)$ holomorphic on U_{0}, a neighborhood of zero. Then the representation (3.11) holds on D_{+}, i.e. $F(\lambda)$ can be extended analytically to D_{+}.

Thus, the representation (3.10) is valid separately on D_{+}and on D_{-}, where we used also item 5 of Statement 2.2. As $\Delta(\lambda) \equiv 0$ on T, it follows that $F(\lambda) \equiv 0$ on T and, further, $F(\lambda) \equiv 0$ on \mathbb{C}. This contradicts with item 2 of Statement 2.2 . Thus we have shown that under the assumptions of Proposition 3.2 the case $\Delta(\lambda) \equiv 0$ on T cannot hold.
2. Our next step is to prove that $\Delta(\lambda) \equiv 1$ for $\lambda \in \mathbb{C}$.

Formula (3.5) states that $a(0)=a(\infty)=\hat{v}(0)$. Thus from equation (3.8) it follows that $\frac{\partial \ln \Delta}{\partial \bar{\lambda}}=0$, and $\ln \Delta$ is holomorphic in some neighborhood of 0 and ∞. As $\Delta(\lambda)$ is a real-valued function and item 2 of Statement 2.2 holds, we conclude that $\Delta \equiv 1$ in some neighborhood of 0 and ∞. Now using Statement 2.3, we obtain that $\Delta \equiv 1$ in \mathbb{C} and, as a corollary, $\mathcal{E}=\varnothing$.
3. From the previous item it follows that equation (2.21a) holds for $\forall \lambda$: $\lambda \in \mathbb{C} \backslash 0$. Due to the assumptions of Proposition 3.2 and the property that $\mathcal{E}=\varnothing$, we have that $b \equiv 0$ on \mathbb{C} which means that $\mu(z, \lambda)$ is holomorphic on D_{+}, D_{-}. As it is also continuous on \mathbb{C} and property (2.22) holds, we conclude that $\mu(z, \lambda) \equiv 1$ and $v(z) \equiv 0$.

Proof of Theorem 1.1 for $E=E_{\text {fixed }}<0$. The result follows immediately from Propositions 3.1, 3.2.

4 Proof of Lemma 3.2

As $F(\lambda)$ is analytic in U_{0}, it can be represented in this domain by a Taylor series. Let us consider the radius of convergence R of this Taylor series. Suppose that the statement of Lemma 3.2 is not true and $R<1$.

Let us take a point λ_{0}, such that $\left|\lambda_{0}\right|=R$. In this point $\Delta(\lambda)$ can be represented by the following series

$$
\begin{equation*}
\Delta(\lambda)=\sum_{k, j=0}^{\infty} b_{k, j}\left(\lambda-\lambda_{0}\right)^{k}\left(\bar{\lambda}-\bar{\lambda}_{0}\right)^{j} \tag{4.1}
\end{equation*}
$$

uniformly convergent in $U_{\lambda_{0}}$, some neighborhood of λ_{0}. We will prove that the coefficients $b_{j, k}$ satisfy the following properties:

$$
\begin{align*}
& b_{k, k} \in \mathbb{R}, \quad b_{k, k} \geq 0 ; \tag{a}\\
& b_{k, j}=\overline{b_{j, k}} ; \tag{b}\\
& b_{k, j} b_{m, l}=b_{k, l} b_{m, j} . \tag{c}
\end{align*}
$$

Indeed,
$(a): b_{k, k}=\left.\frac{1}{(k!)^{2}} \partial_{\lambda}^{k} \partial_{\lambda}^{k} \Delta(\lambda)\right|_{\lambda=\lambda_{0}}=\lim _{\lambda \rightarrow \lambda_{0}} \frac{1}{(k!)^{2}} \partial_{\lambda}^{k} \partial_{\bar{\lambda}}^{k} \Delta(\lambda)=\lim _{\lambda \rightarrow \lambda_{0}} \frac{1}{(k!)^{2}}\left|\partial_{\lambda}^{k} F(\lambda)\right|^{2} \in \mathbb{R}, \geq 0$.
$(b): b_{k, j}=\lim _{\lambda \rightarrow \lambda_{0}} \frac{1}{k!j!} \partial_{\lambda}^{k} F(\lambda) \overline{\partial_{\lambda}^{j} F(\lambda)}=\lim _{\lambda \rightarrow \lambda_{0}} \overline{\frac{1}{k!j!} \overline{\partial_{\lambda}^{k} F(\lambda)} \partial_{\lambda}^{j} F(\lambda)}=\overline{b_{j, k}}$.
$(c): b_{k, j} b_{m, l}=\lim _{\lambda \rightarrow \lambda_{0}} \frac{1}{k!j!m!l!} \partial_{\lambda}^{k} F(\lambda) \overline{\partial_{\lambda}^{j} F(\lambda)} \partial_{\lambda}^{m} F(\lambda) \overline{\partial_{\lambda}^{l} F(\lambda)}=b_{k, l} b_{m, j}$.
From properties (a)-(c) it follows that there exist such $a_{k} \in \mathbb{C}, k=$ $0,1, \ldots$, that

$$
\begin{equation*}
b_{k, j}=a_{k} \bar{a}_{j} . \tag{4.2}
\end{equation*}
$$

We will prove this statement by considering two different cases:

1. $b_{k, k}=0 \forall k \in \mathbb{N} \cup 0$

In this case from properties (b), (c) it follows that $b_{k, j}=0 \forall k, j \in \mathbb{N} \cup 0$, and we can take $a_{k}=0 \forall k \in \mathbb{N} \cup 0$.
2. $b_{k, k} \neq 0$ for some $k \in \mathbb{N} \cup 0$.

In this case we take l to be the minimal number such that $b_{l, l} \neq 0$. Then we set $a_{0}=a_{1}=\ldots=a_{l-1}=0$ and we take an arbitrary
complex number a_{l} satisfying $\left|a_{l}\right|^{2}=b_{l, l}$. For the rest of the coefficients we set

$$
\begin{equation*}
a_{n}=\frac{b_{n, l}}{\bar{a}_{l}} \tag{4.3}
\end{equation*}
$$

where $n=l+1, l+2, \ldots$.
Now let us prove property (4.2). Let us suppose that $k<l$. Then $a_{k}=0, b_{k, k}=0$ and from properties (b), (c) it follows that $b_{k, j}=0$ $\forall j \in \mathbb{N} \cup 0$. Thus property (4.2) holds when $k<l$. A similar reasoning can be carried out when $j<l$. Now let us suppose that $k \geq l, j \geq l$. Then

$$
\begin{equation*}
a_{k} \bar{a}_{j}=\frac{b_{k, l} \bar{b}_{j, l}}{\bar{a}_{l} a_{l}}=\frac{b_{k, l} b_{l, j}}{b_{l, l}}=b_{k, j} . \tag{4.4}
\end{equation*}
$$

Representation (4.2) is proved.
From convergence of series (4.1) it follows that the following series

$$
\begin{equation*}
F_{1}(\lambda)=\sum_{k=0}^{\infty} a_{k}\left(\lambda-\lambda_{0}\right)^{k} \tag{4.5}
\end{equation*}
$$

converges uniformly in $U_{\lambda_{0}}$ (indeed, the case when $b_{k, k}=0 \forall k \in \mathbb{N} \cup 0$ is trivial, and in the case when $\exists l: b_{l, l} \neq 0$ we take the sum of the members of series (4.1) with coefficients $b_{k, l}, k=0,1, \ldots$, and obtain series (4.5) multiplied by $\left.\bar{a}_{l}\left(\bar{\lambda}-\bar{\lambda}_{0}\right)^{l}\right)$. Thus there exists the function $F_{1}(\lambda)$ analytic in U_{0} such that $\Delta(\lambda)=F_{1}(\lambda) \overline{F_{1}(\lambda)}$. Consequently, we have two functions $F(\lambda)$ and $F_{1}(\lambda)$ analytic in a common domain lying in $\{\lambda \in \mathbb{C}:|\lambda| \leq R\} \cap U_{\lambda_{0}}$ and such that $|F(\lambda)|=\left|F_{1}(\lambda)\right|$. It means that $F(\lambda)$ and $F_{1}(\lambda)$ are equal up to a constant factor: $F(\lambda)=\mu F_{1}(\lambda),|\mu|=1$. It follows then that $\mu F_{1}(\lambda)$ is an analytic continuation of $F(\lambda)$ to $U_{\lambda_{0}}$.

The same reasoning can be applied to any point λ_{0} on the boundary of the ball $B_{R}=\{\lambda \in \mathbb{C}:|\lambda| \leq R\}$, i.e. $F(\lambda)$ can be continued analytically to some larger domain. Hence we obtain a contradiction to the assumption that $R<1$ is the radius of convergence of the Taylor series for $F(\lambda)$. Thus $R=1$ and $F(\lambda)$ can be extended analytically to D_{+}.

References

[BLMP] Boiti M., Leon J.J.-P., Martina L., Pempinelli F.: Scattering of localized solitons in the plane. Physics Letters A. 132(8,9), 432-439 (1988)
[FA] Fokas A.S., Ablowitz M.J.: On the inverse scattering of the time-dependent Schrödinger equation and the associated KadomtsevPetviashvili (I) equation. Studies in Appl. Math. 69, 211-228 (1983)
[FS] Fokas A.S., Santini P.M.: Coherent structures in multidimensions. Phys. Rev. Lett. 63, 1329-1333 (1983)
[GK] Gohberg I.C., Krein M.G.: Introduction to the theory of linear nonselfadjoint operators. Moscow: Nauka. (1965)
[G] Grinevich P.G.: Scattering transformation at fixed non-zero energy for the two-dimensional Schrodinger operator with potential decaying at infinity. Russ. Math. Surv. 55(6), 1015-1083 (2000)
[GN1] Grinevich P.G., Novikov R.G.: Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials. Commun. Math. Phys. 174, 409-446 (1995)
[GN2] Grinevich P.G., Novikov S.P.: Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. I. Energies below the ground state. Funct. Anal. Appl. 22(1), 19-27 (1988)
[HN] Henkin G.M., Novikov R.G.: The $\bar{\partial}$-equation in the multidimensional inverse scattering problem. Uspekhi Math. Nauk. 42(3), 93-152 (1987)
[KN] Kazeykina A.V., Novikov R.G.: Large time asymptotics for the Grinevich-Zakharov potentials. Bulletin des Sciences Mathématiques, to appear; arXiv:1011.4038
[M] Manakov S.V.: The inverse scattering method and two-dimensional evolution equations. Uspekhi Mat. Nauk. 31(5), 245-246 (1976) (in Russian)
[N1] Novikov R.G.: Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy. Physics Letters A. 375, 1233-1235 (2011)
[N2] Novikov, R.G.: The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator. Journal of Funct. Anal. 103, 409-463 (1992)
[NV1] Novikov S.P., Veselov A.P.: Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations. Dokl. Akad. Nauk SSSR. 279, 20-24 (1984), translation in Sov. Math. Dokl. 30, 588-591 (1984)
[NV2] Novikov S.P., Veselov A.P.: Finite-zone, two-dimensional Schrödinger operators. Potential operators. Dokl. Akad. Nauk SSSR. 279, 784-788 (1984), translation in Sov. Math. Dokl. 30, 705-708 (1984)
[ZS] Zakharov V.E., Shulman E.I.: Integrability of nonlinear systems and perturbation theory // What is integrability? Berlin: Springer-Verlag. 185-250 (1991)

[^0]: ${ }^{1}$ Centre des Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, 91128, France; email: kazeykina@cmap.polytechnique.fr
 ${ }^{2}$ CNRS (UMR 7641), Centre des Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, 91128, France; email: novikov@cmap.polytechnique.fr

