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t. We study, for times of order 1/ε, solutions of wave equations whi
hare O(ε2) modulations of an ε periodi
 wave equation. The solutions are of slowlyvarying amplitude type built on Blo
h plane waves with wavelength of order ε. We
onstru
t a

urate approximate solutions of three s
ale WKB type. The leadingpro�le is both transported at the group velo
ity and dispersed by a S
hrödingerequation given by the quadrati
 approximation of the Blo
h dispersion relationat the plane wave. A ray average hypothesis of small divisor type guaranteesstability. We introdu
e te
hniques related to those developed in nonlinear geo-metri
 opti
s whi
h lead to new results even on times s
ales t = O(1). A pairof asymptoti
 solutions yield a

urate approximate solutions of os
illatory initialvalue problems. The leading term yields H1 asymptoti
s when the envelopes areonly H1.Key words: Geometri
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h.edu 1. Introdu
tionThis paper studies the propagation of waves through a slightly perturbed periodi
medium. The period ε is assumed to be small 
ompared to the size of the wave pa
ketthat we take as O(1), ε << 1. The equations are hyperboli
 and the Cau
hy problemis solvable for arbitrary initial data. The wavelength of solutions is determined by theinitial data. We study the deli
ate 
ase where the wavelength ℓ and period are small and of
omparable size. As dis
ussed below, this s
aling is parti
ularly important in te
hnology.The resonant 
ase ℓ ∼ ε 
ontrasts with the 
ase of waves with wavelength large 
om-pared to the period of the medium, ℓ >> ε. For su
h long waves, the medium 
an, withsmall error, be repla
ed by a medium whi
h does not vary on the small s
ale (see e.g.1



2 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCH[8℄, [10℄). The homogenized limit is a wave equation with e�e
tive 
oe�
ients that are
omputed as in the stati
 
ase. The pertinent dispersion relation and group velo
ities arethose of the homogenized equations. For a se
ond order s
alar equation, the dispersionrelation is quadrati
 in frequen
y and wave number as is the dispersion relation of theoriginal problem.If ℓ << ε, then from the point of view of the wave, the medium is slowly varying andthe approximations of standard geometri
 opti
s are appropriate. The group velo
ities arethose de�ned by the 
hara
teristi
 variety of the equation with nearly periodi
 
oe�
ients.For se
ond order s
alar equations the dispersion relation is quadrati
 with 
oe�
ientswhi
h vary on the short s
ale ε.In this paper we dis
uss the resonant 
ase when ℓ ∼ ε. A prin
ipal interest of thiss
aling is that the dispersion relation (1.6) is given in terms of Blo
h eigenvalues, denotedbelow by λn. It 
an be very di�erent from the relations in the pre
eding regimes. Forexample, for s
alar se
ond order equations the group velo
ity has stri
tly positive norm,while in the resonant 
ase there 
an be zero speeds. Periodi
 stru
tures are the fo
usof intensive work on designer photoni
 materials. Sin
e for ℓ ∼ ε the dispersion relation
an have form entirely di�erent from the original equations, this leaves open the door formaterials with radi
ally di�erent properties than the periodi
 
onstituents. Among goalsa
hieved by su
h e�orts is to slow light ([21℄, [5℄, [37℄, [20℄, [4℄), and to a
hieve preassignedband gap stru
tures. The use of the latter materials in optimized �bers is now 
ommonpra
ti
e (see [31℄). It is dreamed that the slow light te
hnologies are a �rst step towardan all opti
al 
omputer.In the 
ase when ℓ ∼ ε and for times t ∼ 1, there is a geometri
 opti
s approximationwith propagation speeds given by group velo
ities de�ned from the Blo
h spe
tral theory(see [11℄, [8℄, �2 and �3 below, and [18℄, [19℄ for a Wigner measure approa
h). Ourmain results 
on
ern the propagation of su
h Blo
h wave pa
kets on the long time s
ales
t ∼ ε−1 asso
iated with di�ra
tive geometri
 opti
s. For these long times, the supports ofsolutions extend beyond the tube of rays with feet in the support of the initial data. Thebehavior is des
ribed by S
hrödinger equations whose dispersion is 
omputed from Blo
hspe
tral data and whose lower order (potential) term is obtained by an averaging of thesmall perturbations of the periodi
 medium. We give an in�nitely a

urate analysis at thes
ale of geometri
 opti
s, and a mathemati
ally solid foundation at the s
ale of di�ra
tivegeometri
 opti
s.We 
onsider the following wave equation des
ribing an O(ε2) perturbation of a ε-periodi
 medium(1.1) P ε(t, x, ∂t,x) u

ε := ρε ∂
2uε

∂t2
− div (Aε graduε) = 0 in [0,∞[×R

N
x .



3The 
oe�
ients Aε and ρε are of the form(1.2) Aε(x) = A0

(x
ε

)
+ ε2A1

(
t, x,

x

ε

)
, ρε(x) = ρ0

(x
ε

)
+ ε2ρ1

(
t, x,

x

ε

)
.The unperturbed 
oe�
ients A0(x/ε) and ρ0(x/ε) are periodi
 with period ε. We supposethat ρ0(y) and ρ1(t, x, y) are smooth real valued fun
tions on TN

y := RN/ZN (the �atunit torus) and R1+N × TN
y respe
tively. The fun
tions A0(y) and A1(t, x, y) are smoothsymmetri
 matrix valued fun
tions on TN

y and R1+N ×TN
y respe
tively. For ea
h α, j, weassume(1.3) {

∂α
t,x,yρj , ∂

α
t,x,yAj

}
∈ L∞(R1+N

t,x × T
N
y ) .There is a 
onstant δ > 0 so that for all y,(1.4) ρ0(y) ≥ δ > 0 , A0(y) ≥ δ I > 0 .The s
aling in (1.2) is su
h that the O(ε2) perturbations a�e
t the leading term of theapproximate solutions for t = O(1/ε). Smaller perturbations, that is with a higher powerof ε, would not a�e
t the leading order approximation for times of order 1/ε.Remark 1.1. The time derivative in (1.1) is not taken in the divergen
e form ∂t(ρ∂t). Thetwo forms are equivalent for time independent 
oe�
ients. When there are modulationsin time the proofs of a

ura
y are a little easier in the divergen
e form 
ase. Our earlierarti
le [3℄ gives the formulas for the divergen
e form 
ase. The ∂2

t (ρu) form is of di�
ultyequal to the present 
ase requiring no ideas not already present. We 
hose to do one ofthe hard 
ases so as to make su
h a statement.In the purely periodi
 
ase, with ρ1 and A1 identi
ally equal to zero, solutions are linear
ombinations of Blo
h plane wave solutions (see �2.1),(1.5) e2πi(ω(θ)t+θ.x)/ε ψn(x/ε , θ) , θ ∈ [0, 1[N ,with ω satisfying the dispersion relation,(1.6) 4 π2ω2(θ) = λn(θ) .The Blo
h eigenfun
tion, ψn(y, θ), is 1-periodi
 in y and satis�es the eigenvalue equation,(1.7) −(divy + 2iπθ)
(
A0(y)(grady + 2iπθ)ψn

)
= λn(θ)ρ0(y)ψn in T

N
y ,
orresponding to the n-th eigenvalue or energy level λn(θ). Equation (1.7) together with(1.6) is equivalent to the wave equation (1.1) for the plane wave solution (1.5). TheHilbert spa
e L2(TN

y ) is normed by
∥∥ψ

∥∥2

L2(TN )
:=

∫

TN

|ψ(y)|2 dy .



4 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe operator on the left in (1.7) is hermitian symmetri
 in the asso
iated s
alar produ
t.The eigenfun
tions 
orresponding to distin
t eigenvalues are orthogonal with respe
t tothe s
alar produ
t of the equivalent norm,
( ∫

ρ0(y) |ψ(y)|2 dy

)1/2

.De�nition 1.2. Fix θ0 and a simple eigenvalue λn(θ0) 6= 0 and ω one of the rootsof (1.6). Denote by K ⊂ L2(TN
y ) the one dimensional eigenspa
e, and by ψn(y, θ0) aneigenfun
tion normalized with respe
t to the L2(TN

y , ρ0(y)dy) s
alar produ
t,(1.8) ∫
ρ0(y) |ψn(y, θ0)|

2 dy = 1 .Denote by Π the L2(TN
y , dy) orthogonal proje
tion onto K.In a neighborhood of θ0, λn(θ) is thus a well de�ned simple eigenvalue and λn, ω areanalyti
 fun
tions of θ. The group velo
ity is de�ned as,(1.9) V := −∇θω(θ0) .We 
onstru
t approximate solutions of (1.1) whi
h have a linear phase,(1.10) S(t, x) := ω(θ0)t+ θ0.x .Our main results show that the O(ε2) perturbations a�e
t the leading asymptoti
s fortimes t of order 1/ε while perturbations O(ε) a�e
t the leading behavior at times t oforder 1. The rule of thumb is that the time of in�uen
e of the perturbations is of order εdivided by the amplitude of the perturbations.We �rst des
ribe the geometri
 opti
s approximation for times t = O(1). In su
h a
ase, it is possible to 
onsider larger perturbations of order O(ε), namely to repla
e (1.2)by

Aε(x) = A0

(x
ε

)
+ εA1

(
t, x,

x

ε

)
, ρε(x) = ρ0

(x
ε

)
+ ερ1

(
t, x,

x

ε

)
.In Se
tion 3 we 
onstru
t in�nitely a

urate approximate solutions vε for problem (1.1)whi
h are of Blo
h wave type with slowly varying amplitude,(1.11) vε(t, x) := e2πiS/ε W (ε, t, x, x/ε) , W (ε, t, x, y) ∼ w0(t, x, y)+ε w1(t, x, y)+. . . ,where S is the linear phase (1.10). The ∼ is in the sense of Taylor expansion in ε,

wj =
1

j!

∂jW (0, t, x, y)

∂εj
.It is an asymptoti
 expansion as ε→ 0, not a 
onvergent in�nite series. For any m,

W (ε, t, x, y) −
m∑

j=0

εj wj(t, x, y) = O(εm+1), as ε→ 0 .



5The expansion (1.11) is inserted in P εvε and terms grouped by powers of ε. To make thelargest term vanish, the leading pro�le w0(t, x, ·) must be a K valued fun
tion of (t, x).Equivalently, the leading order term in the approximate solution (1.11) is of the form
e2πiS/ε a(t, x) ψn(x/ε, θ0) , a ∈ C∞ .It is a Blo
h plane wave with slowly varying amplitude a(t, x). Equation (1.7) is writtenas Lw0 = 0. The equation at ea
h order in ε in the expansion of P εvε is proje
ted in turnonto the kernel and the range of the operator L whi
h is neither inje
tive nor surje
tive.This yields equations whi
h determine the pro�les wj. For example, the pro�le w0 = aψnis determined from its initial data by the transport equation (see �3 or [8℄, [18℄),

(
∂t + V.∂x

)
w0 = 0 , equivalently

(
∂t + V.∂x

)
a = 0.Therefore the fun
tion w0 is 
onstant on the rays t 7→ (t, x+ Vt) so,

w0(t, x, y) = w̃0(x− Vt, y) , w̃0(x, y) = w0(0, x, y) .These lines moving at the group velo
ity are also 
alled group lines.The rays are parallel whi
h leads for times t = O(1) to approximate solutions sup-ported in the tube of rays with feet in the support of the initial data. As in the 
ase ofhomogeneous equations in nonperiodi
 media, for times t = O(1/ε) and linear phases, weprove that the support of the leading approximation extends beyond the tube of parallelrays. The spread of waves beyond this tube is des
ribed by a S
hrödinger equation. Thisis 
alled di�ra
tive geometri
 opti
s (see [14℄, [7℄, [23℄, [17℄, [2℄).We next des
ribe the di�ra
tive geometri
 opti
s approximation for times t = O(1/ε).In Se
tion 4 we use an ansatz, similar to (1.11), but involving also a slow time, to des
ribeBlo
h wave pa
kets exhibiting di�ra
tive e�e
ts. Formal dis
ussion of su
h e�e
ts 
an befound in the physi
al literature, for example in [33℄, [34℄. In order to have in�nite orderexpansions analogous to those for t = O(1) it is su�
ient (and not far from ne
essary)that the O(ε2) modulations of the 
oe�
ients satisfy the 
onstraint,(1.12) (
∂t + V.∂x

){
A1(t, x, y) , ρ1(t, x, y)

}
= 0 .This very strong 
onstraint is equivalent to the invarian
e of the modulations on the rays

(t, x+ Vt). De�ne(1.13) γ(t, x) :=

∫

TN
y

ψn(y)
(
ρ1(t, x, y)(2πiω)2 − divy A1 (t, x, y) grady

)
ψn(y) dy .When (1.12) is satis�ed, γ(t, x) is 
onstant on rays so,

γ(t, x) = γ̃(x− Vt) , γ̃(x) := γ(0, x) .The leading term in the approximate solution is of the form(1.14) e2πiS/ε ã(εt, x− Vt)ψn(x/ε, θ0)



6 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHwhere ã(T , x) satis�es the S
hrödinger equation
(

4πi∂T − ∇2
θω(∂x, ∂x) +

γ̃(x)

ω

)
ã = 0 ,with the slow time variable T = εt whi
h is of order 1 when t = O(1/ε). In our earlierpaper [3℄ the approximation (1.14) is justi�ed by weak 
onvergen
e methods when (1.12)is satis�ed. In the present paper we give sharp error estimates and in�nitely a

urateasymptoti
 expansions.In addition, we prove that the same leading order term yields an approximation withrelative error O(ε1−β) under mu
h milder 
onditions than (1.12). The 
onditions involvethe average of γ(t, x) along rays. It is reasonable that an observer moving on group lineswill, over long times, be a�e
ted by the average of γ(t, x) on the line. To start with, wesuppose that the ray averages

γ̃(x) := lim
T→+∞

1

T

∫ T

0

γ(t, x+ Vt) dtexist. This is equivalent to the fa
t that the solution of the transport equation
(
∂t + V.∂x)g = γ(t, x) − γ̃(x− Vt),is sublinear in time. We make the ray average hypothesis from De�nition 5.2 whi
h ismu
h weaker than (1.12). There is a 0 ≤ β < 1 so that for all α, the solution gα(t, x) of

(
∂t + V.∂x

)
gα = ∂α

t,x

(
γ(t, x) − γ̃(x− Vt)

)
, gα

∣∣
t=0

= 0,satis�es (1 + t)−β gα ∈ L∞([0,∞[×RN). This hypothesis is satis�ed with β = 0 if γ is
(t, x)-periodi
 with any period, and also for almost all quasiperiodi
 γ and group velo
ities
V. It is proved with possibly positive β for quite general smooth almost periodi
 γ in�5.1.2.So far we have dis
ussed the 
onstru
tion of approximate solutions. We next give apre
ise result for the initial value problem for the wave equation (1.1). Consider theos
illatory initial 
onditions(1.15) uε(0, x) = b(x) e2πix.θ0/ε ψn(x/ε, θ0) , ∂tu

ε(0, x) =
c(x)

ε
e2πix.θ0/ε ψn(x/ε, θ0) ,with b, c ∈ ∩s≥0H

s(RN) . Denote by ω± the two roots of (1.6), by S± = ω±t + θ0xthe 
orresponding phases, and by V± the two group velo
ities. De�ne w̃±
0 (T , x, y) :=

a±(T , x)ψn(y, θ0) with the s
alar valued a± determined by the S
hrödinger equations
(

4πi∂T ∓ ∇2
θω

±(∂x, ∂x) +
γ̃±(x)

ω±

)
a± = 0with initial data,

a+|T =0 =
b(x)

2
+

c(x)

4πiω+
, a−|T =0 =

b(x)

2
−

c(x)

4πiω−
,



7
hosen so that the Cau
hy data of vε mat
h those of uε as well as possible (see �5.3). Thefollowing result follows from Theorem 5.13.Theorem 1.3. Assume that γ̃ satis�es the ray average hypothesis with parameter 0 ≤

β < 1 for both group velo
ities ±V, and that w̃±
0 (T , x, y) are de�ned as above. De�ne

vε(t, x) :=
∑

±

e2πiS±(t,x)/ε w̃±
0 (εt, x∓ Vt, x/ε) ,then vε is an approximate solution with relative error O(ε1−β). Pre
isely, for any T > 0the error and its �rst order derivatives satisfy,

sup
0≤t≤T/ε

sup
|α|≤1

∥∥(ε ∂t,x)
α
(
uε(t) − vε(t)

)∥∥
L2(RN )

≤ C ε1−β ,while the norms of (ε∂t,x)
αuε and (ε∂t,x)

αvε are O(1).Remark 1.4. i. In the above theorem, as throughout this paper, C denotes a 
onstant thatdoes not depend on ε. ii. The 
onstru
tion of the �rst 
orre
tor in the proof of Theorem1.3 fails when the ray average hypothesis is not satis�ed.This result is surprising sin
e one might expe
t that traversing O(1/ε2) periods of theba
kground medium might destroy the wave pa
ket stru
ture. There are three 
ounter-vailing in�uen
es;i. The Blo
h plane waves are solutions of the unperturbed equation for all time.ii. The perturbations ε2ρ1, ε
2A1 are s
aled with ε so that their e�e
t is felt at timesof order 1/ε.iii. The term γ(t, x) from the perturbations has well de�ned averages along rays, and,its integral along long segments of group lines di�er little from the values predi
ted bythe average.The S
hrödinger approximation of di�ra
tive geometri
 opti
s 
omes from a se
ondorder approximation of the dispersion relation. The di�ra
tive e�e
t 
omes from thenonlinear 
hara
ter of the e�e
tive dispersion relation of periodi
 materials (see [13℄, [32℄for other instan
es of this e�e
t). The same is also true of the paraboli
 or paraxialapproximation for waves propagating in a privileged dire
tion (see [6℄, [29℄, [35℄).When the periodi
ity is on the atomi
 or even nano s
ale, it is impossible to performnumeri
al simulations of the di�erential equation to study propagations over ma
ros
opi
distan
es. The only hope is to repla
e the equations by others whose 
oe�
ients do notvary on the mi
ros
opi
 s
ale. The approximations of geometri
 opti
s and di�ra
tivegeometri
 opti
s produ
e su
h equations.When the group velo
ity V is zero (whi
h happens, at least, at the bottom and top ofea
h Blo
h band), the geometri
 opti
s s
aling shows that Blo
h wave pa
kets (1.11) are



8 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHessentially stationary for times t ∼ 1. The di�ra
tive s
aling shows that this trappingpersists for t ∼ 1/ε when the modulations areO(ε2) and satisfy the ray average hypothesis.Experimental exploitation of this phenomenon to slow light are 
ited above.Furthermore, there exists no solution of the type (1.11) with temporal frequen
y ωwhen 4π2ω2 is in a gap of the Blo
h spe
trum, i.e., when for all n ≥ 0 and θ ∈ [0, 1[N ,
4π2ω2 6= λn(θ). Arbitrary initial data are resolved into waves whose temporal frequen
iesnever lie in these forbidden zones. An asymptoti
 analysis like that of �3, shows thatwhen waves with forbidden frequen
ies arrive at the periodi
 medium from a mediumwhi
h supports su
h frequen
ies, the waves are totally re�e
ted. These properties arefundamental features of photoni
 
rystals (see [26℄).The analysis of this paper is for s
alar wave equations. The 
ase of �rst order systemswith ellipti
 spatial part is sus
eptible to an analogous analysis. There are 
ompli
ationsfrom the ve
tor nature and simpli�
ations be
ause the subtle L2 estimates of �5.2 arenot required. The 
ase of Maxwell's equations poses additional di�
ulties as the spatialpart is not ellipti
. The 
ompa
tness of resolvents holds on fun
tions satisfying the ε-dependent and rapidly os
illatory divergen
e free 
ondition div(ǫε(x)E)

= 0 where ǫε isa sequen
e of diele
tri
 permittivities. This is the subje
t of a future proje
t.This paper is organized as follows. Se
tion 2 re
alls some fa
ts about the Blo
h spe
tralde
omposition. In the 
ase of purely periodi
 problems, with ρ1 = 0 and A1 = 0, the so-lutions have an exa
t representation using this de
omposition. In�nite order asymptoti
s
an be derived by performing an asymptoti
 analysis of the resulting integrals. These
omputations yield our prin
ipal results in a very spe
ial 
ase. And, they motivate theansatz for the geometri
 opti
s and di�ra
tive geometri
 opti
s s
ales. They do not givea hint 
on
erning the impa
t of the perturbations, ρ1, A1.Se
tion 3 presents the analysis at the s
ale t ∼ 1 of geometri
 opti
s and for largermodulations ερ1, εA1 instead of ε2ρ1, ε
2A1. The 
onstru
tion of the approximations (1.11)introdu
es into the Blo
h wave 
ontext proje
tion te
hniques developed in nonlinear geo-metri
 opti
s, and, the fundamental identities of perturbation theory. The approximationsolves the di�erential equation (1.1) with in�nitely small residual. The standard energyestimate for P ε implies that the energy of the error is in�nitely small. However, theoperators (P ε)−1 are usually not uniformly bounded on higher Sobolev spa
es. A nontriv-ial stability result in Se
tion 3.4 shows that (P ε)−1 ampli�es higher derivatives at mostpolynomially in 1/ε. Sin
e the expansions have residuals that are O(ε∞), this su�
es toshow that high derivatives of the error are also O(ε∞). Though our main interest is indi�ra
tion, these results on the s
ale t = O(1) are new. For these times s
ales the analysis
ould have been performed for nonlinear phases and their 
urved wave fronts. For thedi�ra
tive time s
ale, it is important that the phases are linear.



9Se
tion 4 presents the analysis at the s
ale t ∼ 1/ε of di�ra
tive geometri
 opti
s whenthe modulations are 
onstant on rays moving at the group velo
ity, that is satisfy (1.12).The hard new work is devoted to 
omputing the pro�le equations whi
h determine w0and the 
orre
tors wj in (1.11). Otherwise it follows the pattern of rigorous asymptoti
analysis established in Se
tion 3;i. Constru
t pro�les.ii. Use Borel's theorem to 
onstru
t the approximate solutions and estimate the resid-ual.iii. Use the stability estimate to prove a

ura
y.Se
tion 5 is devoted to produ
ing leading order approximations when (1.12) is notsatis�ed but the ray average hypothesis is. In this 
ase one does not a
hieve in�nite ordera

ura
y. We 
onstru
t a three term expansion with residual O(ε2−β). We use all of thepreparatory work in the pre
eding se
tions. The gradient of the error is easily estimatedby the standard energy estimate. A subtle stability argument is required to obtain L2estimates for the error. The os
illatory initial value problem is solved in Se
tion 5.3 usingtwo phases and 
orrespondingly two approximate solutions. In Se
tion 5.4 we show thatthe analysis for smooth envelopes is su�
ient to yield strong 
onvergen
e for the leadingterm asymptoti
s in di�ra
tive geometri
 opti
s for envelopes whi
h are only H1(RN ).A
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t at INRIASa
lay Ile de Fran
e and by the Chair �Mathemati
al modelling and numeri
al simulation,F-EADS - E
ole Polyte
hnique - INRIA�. The resear
h of J. Rau
h is partially supportedby the U.S. National S
ien
e Foundation under grant NSF-DMS-0104096. M. Palombaroand J. Rau
h thank the CMAP at the É
ole Polyte
hnique and its members for theirhospitality. 2. The purely periodi
 
aseIn this se
tion we make the assumption that
A1 ≡ 0 and ρ1 ≡ 0,so the 
oe�
ients of (1.1) are periodi
.2.1. Blo
h spe
tral de
omposition. We brie�y re
all the Blo
h de
omposition. See[9, 8, 12, 25, 30, 38℄ for more details. Write ea
h ξ ∈ Rn as n + θ with n ∈ ZN and
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θ ∈ [0, 1[N . Expressing u(y) in terms of its Fourier transform, û(ξ), yields(2.1) u(y) =

∫

[0,1[N
e2πiθ.y

( ∑

n∈ZN

e2πin.yû(θ + n)
)
dθ .The fun
tion in parentheses is periodi
 with respe
t to y. The integrand is a fun
tion gwhi
h is θ-periodi
 in the sense that y → e−2πiθ.y g(y) is periodi
 with period 1 in ea
h yj.This de
omposes L2(RN) as the dire
t integral over θ of the Hilbert spa
e of θ-periodi
fun
tions. The parameter θ is 
alled the Blo
h frequen
y.The partial derivatives of θ-periodi
 fun
tions are θ-periodi
 and the produ
t of a

θ-periodi
 fun
tion with a periodi
 fun
tion is θ-periodi
. Therefore, the di�erential op-erators divy A0(y) grady and P ε (upon the 
hange of variable x = εy) map θ-periodi
fun
tions to themselves. Therefore, the Blo
h de
omposition redu
es these operators.Thus, arbitrary solutions of (1.1) are integrals over θ of θ-periodi
 solutions.To analyse the θ-periodi
 solutions reason as follows. The unitary mapping v 7→

e2 π i θ.y v on L2(TN ) intertwines divy A0 grady with domain equal to the θ-periodi
 ele-ments of H2 with the selfadjoint ellipti
 operator
A(θ)ψ := −(divy + 2iπθ)

(
A0(y)(grady + 2iπθ)ψ

)with domain equal to periodi
 H2.Standard ellipti
 theory implies that for all θ, the eigenvalue problem (1.7) has a 
ount-able nonde
reasing sequen
e of real eigenvalues {λn(θ)}n≥1 repeated a

ording to theirmultipli
ity and L2(TN , ρ0(y) dy) orthonormal eigenfun
tions {ψn(y, θ)}n≥1, periodi
 in yand depending measurably on θ. The θ-periodi
 fun
tions are linear 
ombinations in n ofthe eigenfun
tions
e2πiθ.y ψn(y, θ).The following lemma makes this pre
ise.Lemma 2.1. Let u(y), v(y) ∈ L2(RN). De�ne their Blo
h 
oe�
ients for n ≥ 1 and

θ ∈ TN

αn(θ) :=

∫

RN

ρ0(y)u(y)ψn(y, θ)e−2iπθ·y dy , βn(θ) :=

∫

RN

ρ0(y)v(y)ψn(y, θ)e−2iπθ·y dy .Then, αn, βn belong to L2([0, 1[N) and
u(y) =

∑

n≥1

∫

[0,1[N
αn(θ)ψn(y, θ)e2iπθ·ydθ , v(y) =

∑

n≥1

∫

[0,1[N
βn(θ)ψn(y, θ)e2iπθ·ydθ ,and they satisfy the Parseval equality

∫

RN

ρ0(y)u(y)v(y) dy =
∑

n≥1

∫

[0,1[N
αn(θ)βn(θ) dθ.



11The Blo
h transform u → {αn(θ)}n≥1 is an isometry from L2(RN) into ℓ2(L2([0, 1[N))that diagonalizes the ellipti
 operator in (1.1), in the sense that, for u, v in H1(RN),∫

RN

A0(y)∇u(y) · ∇v(y) dy =
∑

n≥1

∫

[0,1[N
λn(θ)αn(θ)βn(θ) dθ .Arbitrary solutions of the wave equation (1.1), are linear 
ombinations over θ and nof the Blo
h plane waves (1.5), (1.6). In this se
tion we show that there exist spe
trallylo
alized solutions whi
h have an asymptoti
 expansion whose leading term has the formof a Blo
h wave with slowly varying amplitude, that is

a(t, x) e2πi(ωt+θ.x)/ε ψn(x/ε, θ) .2.2. Expli
it solutions. Throughout this paper we make the following assumption: fora �xed θ0 ∈ [0, 1[N and integer n ≥ 1,(2.2) λn(θ0) > 0 is a simple eigenvalue.Remark 2.2. Re
all (see [8℄, [12℄, [25℄, [30℄) that the minimum of λ1(θ) is zero and isuniquely attained at θ = 0. This is a 
onsequen
e of the maximum prin
iple. The Hessianmatrix at θ = 0, ∇θ∇θλ1(0) is equal to the usual homogenized matrix for equation (1.1).Therefore ∃C > 0 su
h that λ1(θ) ≥ C|θ|2. On the other hand, for n ≥ 2, there exists apositive 
onstant C > 0 so that minθ λn(θ) ≥ C > 0.Remark 2.2 implies that λn(θ0) > 0 ex
ept if n = 1 and θ0 ≡ 0 mod ZN . Theimportant part of assumption (2.2) is the simpli
ity of the eigenvalue. If the eigenvaluehad multipli
ity independent of θ on a neighborhood of θ0 an analogous analysis 
ouldbe performed. We do not know any s
alar examples of this kind. For systems su
h ageneralization would be natural. In our s
alar setting, simpli
ity is generi
 [1℄. Sin
e
A(θ) has 
ompa
t resolvent and depends analyti
ally on θ, simpli
ity implies that the ntheigen
ouple of (1.7) is analyti
 in a neighborhood of θ0 (see e.g. [24℄). Choose ω(θ) ananalyti
 solution of the dispersion relation (1.6) de�ned near θ0.Under these 
onditions, if a ∈ C∞

0 (RN), then for ε small the expressions
uε(t, x) := ε−N

∫

[0,1[N
ψn

(x
ε
, θ

)
e2πiω(θ)t/ε e2πix.θ/ε a

(θ − θ0
ε

)
dθare superpositions of Blo
h plane waves spe
trally lo
alized near θ0 so are exa
t solution of(1.1). (To treat the ex
eptional 
ases where one of the 
oordinates of θ0 vanishes, swit
hto a fundamental domain [−c, 1 − c[N with 0 < c < 1 su
h that θ0 lies in its interior.)Change variable letting ζ := (θ − θ0)/ε to �nd(2.3) uε = e2πix.θ0/ε

∫
ψn

(x
ε
, θ0 + εζ

)
e2πitω(θ0+εζ)/ε e2πix.ζ a(ζ) dζ ,an expression prepared for Taylor expansion.
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 opti
s time s
ale t ∼ 1. Re
alling de�nition (1.9) of the groupvelo
ity V, Taylor expansion in ε of in�nite and �nite orders respe
tively yield,(2.4) ψn(y, θ0 + εζ) ∼ ψn(y, θ0) +
∑

j≥1

εj gj(y, ζ) ,

ω(θ0 + εζ) = ω(θ0) − V.εζ + ε2k(ε, ζ) .Then,(2.5) e2πitω(θ0+εζ)/ε = e2πitω(θ0)/ε e−2πitV .ζ e2πi(εt)k(ε,ζ)

= e2πitω(θ0)/ε e−2πitV .ζ
(
1 +

∑

j≥1

(εt)jkj(ε, ζ)
)
,where the last line uses a Taylor expansion of s 7→ e2πisk(ε,ζ) about s = 0. De�ne

v(x) :=

∫
e2πix.ζ a(ζ) dζ .Inje
ting (2.4) and (2.5) into (2.3) yields the expansion(2.6) uε ∼ e2πiS/ε

(
w0(t, x, x/ε) + εw1(t, x, x/ε) + · · ·

)
, S := ω(θ0)t+ x.θ0 ,with leading term,

w0(t, x, y) = v(x− Vt)ψn(y, θ0) .From this 
al
ulation we learn three things. First, rigidly translating waves at thegroup velo
ity is a reasonable approximation. Se
ond, an in�nite order expansion (2.6) isa reasonable ansatz to try in more 
ompli
ated problems. Finally, in (2.5), the expansionparameter is εt so when εt is not small, the approximation is not appropriate. For thedi�ra
tive s
ale εt ∼ 1, one needs to modify the method.2.4. The di�ra
tive time s
ale t ∼ 1/ε. The modi�
ation is to take the next term inthe Taylor expansion in the exponent. Denote by q the symmetri
 quadrati
 expression(2.7) q(ζ, ζ) :=

N∑

i,j=1

∂2ω(θ0)

∂θi∂θj
ζi ζj .Then,

ω(θ0 + εζ) = ω(θ0) − εV.ζ + ε2q(ζ, ζ)/2 + ε3
∑

j≥0

εjℓj(ζ) ,and,
e2πiω(θ0+εζ)t/ε = e2πiω(θ0)t/ε e−2πitV .ζ e2πiεtq(ζ,ζ)/2 e2πiε(εt)

P

j≥0 εjℓj(ζ) .If (εt) is bounded, expansion in ε is justi�ed in the last term. The exa
t solution has theform
e2πiS/ε W̃ (ε, εt, x− Vt, x/ε) , S = ω(θ0)t+ θ0.x ,

W̃ (ε, T , x, y) :=

∫
ψn(y, θ0 + εζ) e2πiT q(ζ,ζ)/2 e2πiεT

P

j≥0
εjℓj(ζ) e2πix.ζ a(ζ) dζ .



13Taylor expansion in ε yields(2.8) e2πiεT
P

j≥0
εjℓj(ζ) =

(
1 +

∑

j≥1

εj hj(T , ζ)
)
.Inje
ting (2.4) and (2.8) in the de�nition of W̃ shows that(2.9) W̃ (ε, T , x, y) ∼

∑

j≥0

εj w̃j(T , x, y) ,with(2.10) w̃0(T , x, y) = ψn(y, θ0)

∫
e2πiT q(ζ,ζ)/2 e2πix.ζ a(ζ) dζ .This shows that the solution has an asymptoti
 expansion of the form

e2πiS/ε W̃ (ε, εt, x− Vt, x/ε) ,with W̃ satisfying (2.9).In our treatment of di�ra
tive geometri
 opti
s in modulated media, we take a slightlymore permissive ansatz
e2πi(ωt+θ.x)/ε

(
w0(T , t, x, y) + ε w1(T , t, x, y) + · · ·

)
.with the idea that the added �exibility might be needed. Interestingly, it will follow thatthe expansion has the more restri
ted form found above.The operator q(∂x, ∂x) applied to w̃0 from (2.10) inserts a fa
tor q(2πiζ, 2πiζ) =

−4π2q(ζ, ζ) inside the integrand. The operator ∂T applied to w̃0 inserts a fa
tor πiq(ζ, ζ).Therefore w̃0 satis�es the S
hrödinger equation,(2.11) (
4 π i ∂T − q(∂x, ∂x)

)
w̃0 = 0 .We will derive this equation in an entirely di�erent manner in Se
tion 4.In the 
ase of the 
onstant 
oe�
ient wave equation, ω is homogeneous of degree 1in θ and q has rank N − 1. For the present problem q may have rank N . When qhas rank N , the S
hrödinger equation has more rapid dispersion of waves. For example,in dimension N = 1 the 
onstant 
oe�
ient wave equation is nondispersive, while aperiodi
 one dimensional medium will typi
ally be dispersive for waves whose wave lengthis 
omparable to the period.3. Blo
h wave pa
kets on a modulated ba
kground and t = O(1)3.1. The two s
ale 
onstru
tion. This se
tion 
onsiders solutions of the wave equation(3.1) P ε(t, x, ∂t,x) u

ε := ρε∂
2uε

∂t2
− divx (Aεgradx u

ε) = 0 .for times t = O(1). This time s
ale of ordinary geometri
 opti
s is an essential �rst stepin treating the di�ra
tive 
ase.
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oe�
ients are assumed to be of the form(3.2) ρε = ρ0(x/ε) + ε ρ1(t, x, x/ε) , Aε = A0(x/ε) + εA1(t, x, x/ε) ,where the ρj , Aj satisfy (1.3), and, (1.4), from �1. For the geometri
 time s
ale, themodulations are taken to be O(ε) in pla
e of O(ε2) for the di�ra
tive s
ale. After thenext paragraph a 
rude estimate suggests why su
h perturbations are expe
ted to in�uen
ethe leading term asymptoti
s for times t of order 1.Motivated by the 
ase of smoothly varying media, and the spe
ial 
ase of purely periodi
media in the Se
tion 2.3, the ansatz expe
ted to be valid for times t = O(1) is of two s
aleWKB type,
uε(t, x) ∼ e2iπS(t,x)/ε

(
w0

(
t, x,

x

ε

)
+ εw1

(
t, x,

x

ε

)
+ · · ·

)where the wj(t, x, y) are periodi
 fun
tions of y with period one. Equivalently, the wj arefun
tions on the unit torus TN
y := RN/ZN .The 
ase when S is a linear fun
tion of (t, x) is our prin
ipal interest sin
e it is in that
ase that the rays are parallel and one �nds S
hrödinger type equations at the di�ra
tives
ale t = O(1/ε). Write

S(t, x) = ω t+ θ.x , (ω, θ) ∈ R
1+N \ 0 .It su�
es to 
onsider θ ∈ [0, 1[N . Other values 
an be 
onverted to these by in
orporatinga periodi
 exponential, e2πin.x, in the pro�les wj. Given wj, Borel's Theorem allows us to
hoose smooth W (ε, t, x, y), periodi
 in y with Taylor series in ε,

W (ε, t, x, y) ∼ w0 (t, x, y) + εw1 (t, x, y) + · · · .Approximate solutions are de�ned by,(3.3) vε(t, x) := e2 π i S(t,x)/ε W
(
ε, t, x,

x

ε

)
.Distin
t 
hoi
es of W yield approximate solutions whose di�eren
e is in�nitely small inthe limit ε→ 0. We 
hoose wj and then W so that P ε vε ∼ 0 in the sense of Taylor seriesin ε at ε = 0. Toward that end, use the identities

∂t

(
e2πiS/εW (ε, t, x, y)

)
= e2πiS/ε

(2πiω

ε
+ ∂t

)
W,

∂x

(
e2πiS/ε W (ε, t, x, y)

)
= e2πiS/ε

(2πiθ

ε
+ ∂x

)
W,

(
∂y

ε

)(
e2πiS/ε W (ε, t, x, y)

)
= e2πiS/ε

(∂y

ε

)
W,to show that

e−2πiS/ε P ε
(
e2πiS/εW (ε, t, x, x/ε)

)
= R(ε, t, x, x/ε) ,



15with
(3.4) R(ε, t, x, y) = e−2πiS/ε

[
ρε∂2

t

−

(divx +
divy

ε

)
Aε

(gradx +
grady

ε

) ](
e2πiS/ε W (ε, t, x, y)

)

=

[(
ρ0 + ερ1)

(2πiω

ε
+ ∂t

)2

−
(divy + 2πiθ

ε
+ divx

)(
A0 + εA1

)(grady + 2πiθ

ε
+ gradx

)]
W.Equation (3.4) implies that R(ε, t, x, y) admits a Taylor series in ε at ε = 0 with uniquelydetermined y-periodi
 fun
tions rj su
h that

R(ε, t, x, y) ∼
∞∑

j=−2

εj rj(t, x, y) .Sin
e one substitutes y = x/ε, it would su�
e to satisfy rj = 0 on the subspa
e of (x, y)with x parallel to y. We a
hieve the more ambitious goal of 
hoosing the wj so that rj = 0everywhere.3.2. The leading order term. Next analyse the 
as
ade of equations,
rj = 0, j = −2,−1, 0, 1, · · · .The operator in bra
kets on the right hand side of (3.4) is 
olle
ted a

ording to thepowers εj , j = −2,−1, 0, 1. The leading two orders are

ε−2
L(ω, θ, y, ∂y) + ε−1

M(ω, θ, y, ∂t, ∂x, ∂y) ,where(3.5) L(ω, θ, y, ∂y) := − 4 π2 ω2 ρ0 −
(divy + 2iπθ

)
A0(y)

(grady + 2iπθ
)
,and(3.6)

M(ω, θ, x, y, ∂t, ∂x, ∂y) := ρ04πiω∂t −
(
(2πiθ + divy)A0gradx + divxA0 (2πiθ + grady)

)

+
(
ρ1 (2πiω)2 − (2πiθ + divy)A1(2πiθ + grady)

)
.The highest order term in the residual is(3.7) r−2 = L(ω, θ, y, ∂y)w0 .It 
omes from the terms of order ε−2 in the operator and the term of order ε0 in W . Inorder that r−2 = 0 have nontrivial solutions, it is ne
essary and su�
ient that(3.8) ker L(ω, θ, y, ∂y) 6= {0} .



16 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHA

ording to Blo
h wave theory, as des
ribed in se
tion 2.1, L(ω, θ, y, ∂y) has a nontrivialkernel on periodi
 fun
tions if and only ω and θ satisfy, for some integer n, the dispersionrelation (1.6). Equation (1.6) is equivalent to the eikonal equation(3.9) 4π2 (∂tS)2 = λn(∂xS).When λn(θ) 6= 0, (1.6) has two roots ω = ±
√
λn(θ)/2π and there are two distin
t eikonalequations

2π∂tS = ±
√
λn(∂xS) ,
orresponding to the two roots ω. Re
all assumption (2.2) that λn(θ0) 6= 0 is a simpleeigenvalue. From now on we make this 
hoi
e of n and θ0 and ω is a solution of(3.10) 4 π2ω2 = λn(θ0) .De�nition 3.1. Denote by L, the self adjoint operator L(ω, θ0, y, ∂y) on L2(TN ; dy) withdomain equal to the periodi
 fun
tions in H2(TN
y ). Denote by Π the proje
tion operatoronto K := ker L(ω, θ0, y, ∂y) along the image of L. Π is orthogonal with respe
t to the s
alarprodu
t of L2(TN ; dy) and not with respe
t to the s
alar produ
t of L2(TN ; ρ0(y) dy).Denote by Q ∈ Hom

(
H−1(TN

y );H1(TN
y )

) the partial inverse of L de�ned by
QΠ = ΠQ = 0 , QL = LQ = I − Π .Choose ψn(y) := ψn(y, θ0) an eigenfun
tion spanning ker L(ω, θ0, y, ∂y) and normalizedby (1.8).The equation r−2 = 0 is equivalent to w0 ∈ K = ker L, that is(3.11) Πw0 = w0 .Summary. Equations (3.10) and (3.11) are equivalent to r−2 = 0.Equation (3.11) is equivalent to the fa
t that for ea
h (t, x), w0 is a multiple of ψn,(3.12) w0(t, x, y) = v(t, x)ψn(y) , vε(t, x) = v(t, x)ψn(x/ε) e2πi(ωt+θ.x)/ε + · · · .Comparing with Blo
h plane waves (1.5), (1.6), one sees that vε is a Blo
h wave pa
ket.Our preferred perspe
tive on (3.11) is to view K = ker L as a one dimensional ve
torspa
e. Then (t, x) 7→ w0(t, x, ·) is a mapping from R1+N with values in K.Using the de�nitions of L and M, the term r−1 is given by,(3.13) r−1 = Lw1 + Mw0,so r−1 = 0 if and only if,(3.14) Lw1 + Mw0 = 0 .Equation (3.14) involves both w0 and w1. This is typi
al of multis
ale expansions. Equa-tions at a single order in ε involve pro�les from more than one order.



17The operator L is not surje
tive. The information about w0 in (3.14) is that Mw0 ∈ Rg L(Rg denotes the range). That information does not involve w1. To extra
t this type ofinformation, ea
h equation rj = 0 with j ≥ −1, is split into its part in ker L and its partin Rg L. In other words, it is written as the equivalent pair
Π rj = 0, Q rj = 0 .The systemati
 use of these proje
tions and partial inverses, inspired by the work ofJoly-Métivier-Rau
h [22℄, [23℄ is an innovation of this arti
le.Using (3.13) and the relation Π L = 0, Π r−1 = 0 yields an equation for w0 alone,(3.15) Π Mw0 = 0 .Taking into a

ount (3.11), this is equivalent to(3.16) Π M Πw0 = 0 .De�ne γ ∈ C∞(RN

x ) by(3.17)
γ(t, x) :=

∫

TN
y

ψn(y)
(
ρ1(t, x, y) (2πiω)2− (2πiθ+divy)A1(t, x, y) (2πiθ+grady)

)
ψn(y) dy.Proposition 3.2. For any w(t, x, y) ∈ C∞,(3.18) Π M Πw =

(
4 π i ω ∂t −

N∑

j=1

4 π i ω
∂ω

∂θj
(θ0)

∂

∂xj
+ γ(t, x)

)
Πw .Proof. From the de�nition of Π and M one automati
ally has for arbitrary w,(3.19) Π M Πw =

(
i a0 ∂t +

N∑

j=1

i aj
∂

∂xj

+ c(t, x)
)
Πw ,with 
onstants aµ and a zero order term c(t, x). It su�
es to 
ompute the values of the
oe�
ients. This is done by 
omputing the di�erential operator on the test fun
tions ψn,

t ψn, and xjψn to �nd,
c ψn(y) = Π M Πψn(y), i a0 ψn = Π

(
4πi ω ρ0(y)ψn

)
, i aj ψn =

(
Π M(xjψn)

)
xj=0

.The �rst relation shows that c = γ using the formula for M and the de�nition of γ. Thenormalization (1.8) of ψn together with the formula for ia0ψn yields(3.20) a0 = 4π ω .Inje
ting the de�nition of M yields(3.21) i aj ψn = −Π
(
(2πiθ + divy)

(
A0(y) ejψn

)
+ ejA0(y)(2πiθ + grady)ψn

)
.
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ation of aj requires �rst order perturbation theory as in (3.22) of the nextproposition. Se
ond order perturbation theory as in (3.23) is needed for di�ra
tive geo-metri
 opti
s.Proposition 3.3. Suppose that θ0, λn(θ0), and ω are as above. Suppose that the 
o-e�
ients ρ, A and θ depend smoothly on a parameter α with their unperturbed valuesattained at α0 Then, there is a uniquely determined smooth simple eigenvalue λn(α), root
ω(α) and orthogonal proje
tion Π(α) with their unperturbed values at α0. With ′ denotingdi�erentiation with respe
t to α, the following perturbation formulas hold,(3.22) Π L

′ Π = 0 ,and(3.23) Π L
′′ Π − 2 Π L

′QL
′ Π = 0 .Proof. The equations de�ning Π(α) are,(3.24) Π = Π∗ , Π2 = Π , L Π = 0 .Sin
e L is selfadjoint,(3.25) Π L = 0 .Di�erentiate the last equation in (3.24) to �nd(3.26) L Π′ + L

′ Π = 0 .Multiply by Π on the left and use (3.25) to prove (3.22). Multiply (3.26) by Q to �nd,(3.27) (
I − Π

)
Π′ = −QL

′ Π .Di�erentiate (3.26) to �nd
L Π′′ + 2 L

′ Π′ + L
′′ Π = 0 .Multiply by Π on the left, and use Π′ = Π Π′ + (I − Π)Π′, to �nd

2 Π L
′
(
Π Π′ + (I − Π)Π′

)
+ Π L

′′ Π = 0 .Use (3.22) and (3.27) to �nd (3.23), 
ompleting the proof of Proposition 3.3. �Returning to the formula for aj , use (3.22) with α equal to the jth 
omponent of θ.Then, prime denotes ∂/∂θj , so,
L
′ = −8 π2 ρ0 ω

∂ω

∂θj

− 2πiej A0 (grady + 2πiθ) − (divy + 2πiθ)A0 2πiej ,



19where {
ej

}N

j=1
is the standard basis for RN

θ . Dividing this equation by 2π and 
ombiningwith (3.22), it follows that
Π

[
− 4 π ρ0 ω

∂ω

∂θj

− iej A0 (grady + 2πiθ) − (divy + 2πiθ)A0 iej

]
Π = 0 .Apply this identity to ψn and use (3.11) and (3.21) to �nd

aj ψn = −Π
(
4 π ρ0 ω

∂ω

∂θj

ψn

)
= −4 π ω

∂ω

∂θj

Π
(
ρ0 ψn

)
.The normalization (1.8) of ψn 
ompletes the proof of the Proposition 3.2. �Summary. If θ0, ω are 
hosen to satisfy the dispersion relation (3.10) at a simple eigen-value λn(θ0), V := −∇θω(θ0), and w0 is determined from its initial data whi
h is anarbitrary smooth fun
tion with values in K as the solution of the transport equation(3.28) (

∂t + V.∂x

)
w0 +

γ(t, x)

4 π i
w0 = 0 ,then (and only then) r−2 = 0 and Π r−1 = 0.3.3. Determination of the 
orre
tors. Indu
tively suppose that J ≥ 0 and the smoothpro�les wj, 0 ≤ j ≤ J , have been determined so that r−2, r−1, . . . rJ−2 and Π rJ−1 vanish.We show that the equations QrJ−1 = 0 and Π rJ = 0 yield a unique determination of

wJ+1 from arbitrary initial data ΠwJ+1

∣∣
t=0

. One has
rJ−1 = LwJ+1 + MwJ + FJ−1(w0, w1, . . . wJ−1) ,and
rJ = LwJ+2 + MwJ+1 + FJ(w0, w1, . . . wJ) ,where the last terms are smooth linear fun
tionals of the pro�les indi
ated.The de�nition of Q shows that the equation QrJ−1 = 0 is equivalent to(3.29) (I − Π)wJ+1 = −Q

(
MwJ + FJ−1(w0, w1, . . . wJ−1)

)
.This determines the left hand side in terms of already known pro�les.The equation Π rJ = 0 is equivalent to(3.30) Π

(
MwJ+1 + FJ(w0, w1, . . . wJ)

)
= 0 .Using (3.29) write,

wJ+1 = ΠwJ+1 − Q
(

MwJ + FJ−1(w0, w1, . . . wJ−1)
)
.Plug this into (3.30) to �nd

Π M Π (ΠwJ+1) + ΠGJ+1(w0, . . . , wJ) = 0 .



20 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThanks to Proposition 3.2, this is a simple transport equation whi
h determines ΠwJ+1from its arbitrary smooth initial data at t = 0 and the previous pro�les (w0, w1, . . . wJ).The transport is at the group velo
ity V = −∇θω(θ0).These 
omputations prove the following theorem.Theorem 3.4. Suppose that θ0 and ω satisfy the dispersion relation (3.10) at a sim-ple eigenvalue λn(θ0) 6= 0. Given smooth K valued fun
tions gj(x), there are uniquelydetermined smooth pro�les wj(t, x, y) periodi
 in y so that
w0|t=0 = g0 , Πwj|t=0 = gj , and ∀j, t, x, y , rj(t, x, y) = 0 .The value of wJ at (t, x) is in�uen
ed only by the data g0, . . . gJ at x − Vt. The leadingterm w0 is K valued and is determined from (3.28).The next result shows that on
e the pro�les are 
onstru
ted as above they serve to
onstru
t an in�nitely a

urate approximate solution in the sense that the residual andall of its derivatives are in�nitely small as ε→ 0.Theorem 3.5. Suppose that the gj have supports in a �xed 
ompa
t set and the wj are asin the pre
eding theorem. Suppose that W (ε, t, x, y) ∈ C∞([0, 1[×[0,∞[×RN × TN ) withsupport over the tube of rays with feet in the support of the gj has Taylor expansion in ε,

W (ε, t, x, y) ∼

∞∑

j=0

εj wj(t, x, y) .De�ne
vε(t, x) := e2πiS/ε W (ε, t, x, x/ε) .Then P ε vε = O(ε∞) in the sense that for any T > 0, α ∈ N1+N , and n ∈ N, there is a Cso that ∥∥∂α

t,xP
ε vε

∥∥
L∞([0,T ]×RN )

≤ C εn .Remark 3.6. In Theorem 3.5 the assumption of 
ompa
t support for the initial data gj
an be repla
ed by a suitable uniform 
ontrol of the derivatives at in�nity.Proof. The residual R(ε, t, x, y), de�ned by (3.4), admits a Taylor expansion with terms
rj whi
h, by 
onstru
tion are identi
ally equal to zero. The approximate solution, vεsatis�es

P ε vε = e2πiS/εR(ε, t, x, x/ε) .By 
onstru
tion, R ∈ C∞
(
[0, 1[ε×[0,∞[t×RN

x ×TN
y

) with 
ompa
t support in x and ea
hof its partial derivatives is in�nitely �at at ε = 0 uniformly on 
ompa
t subsets of (t, x, y).The result follows from Taylor's theorem. �



213.4. Stability. The stability estimate of this se
tion implies that exa
t solutions arein�nitely 
lose to the approximate solution. If uε is the exa
t solution with the sameCau
hy data as vε then P ε(uε − vε) = O(ε∞) so the error is given by
uε − vε = (P ε)−1(O(ε∞)) .One needs estimates for (P ε)−1 whi
h grow at worst polynomially in 1/ε as ε → 0.As a map from L1([0, T ] ; L2(RN)) to C([0, T ] ; H1(RN )) ∩ C1([0, T ] ; L2(RN)) su
h anestimate is immediate from the energy identity. We prove that the L2(RN) norm ofpartial derivatives of order s > 1 has growth no faster than 1/εk(s) on time intervals oflength of order 1/ε.The proof is subtle sin
e one 
annot simply di�erentiate the equation. Taking a partialderivative ∂ of P εu = 0 yields

P ε
(
∂u

)
=

[
P ε, ∂

]
u .The 
ommutator is a family, indexed by ε, of partial di�erential operators of degree 2. Theleading terms in the 
ommutator 
ome from the 
ommutator of ∂ with the unperturbedoperator. The unperturbed operator has 
oe�
ients whi
h vary rapidly with x but the
oe�
ients do not vary rapidly in time. One �nds that in shorthand P ε∂xu = O(1/ε) ∂2uwhile P ε∂tu = O(1)∂2u. Inje
ting the �rst in a Gronwall argument yields growth in timelike ect/ε. Di�erentiating the equation with respe
t to x yields estimates whi
h grow toofast.The strategy is to di�erentiate with respe
t to t only. The missing x derivatives arere
overed by an ellipti
ity argument. Control of ∂α

t,xP
εu and ∂j

tu in L2 su�
es to 
ontrolall derivatives. The proof uses estimates asso
iated to the uniformly ellipti
 family ofoperators Gε(t) := divAε grad, 0 < ε ≤ ε0, t ∈ R.Lemma 3.7. For all 1 ≤ s ∈ N, there are 
onstants C = C(s) and m = m(s) ≥ 0 so thatfor all t ∈ R, ε ∈]0, ε0], φ ∈ Hs(Rn),(3.31) ‖φ‖Hs(RN ) ≤ C
(
‖Gε(t)φ‖Hs−2(RN ) +

1

εm
‖φ‖Hs−1(RN )

)
.Proof. The proof is by indu
tion on s. The 
ase s = 1 is true with m = 0. This is animmediate 
onsequen
e of the uniform ellipti
 estimate,

‖∂xφ‖
2
L2(RN ) ≤ C

∫

RN

〈
Gεφ , φ

〉
dx ≤ C ‖φ‖H1(RN ) ‖G

εφ‖H−1(RN )

≤
1

2

(
‖∂xφ‖

2
L2(RN ) + ‖φ‖2

L2(RN )

)
+ C ‖Gεφ‖2

H−1(RN ) .It follows that for all ε, t,
‖φ‖H1(RN ) ≤ C

(
‖Gεφ‖H−1(RN ) + ‖φ‖L2(RN )

)
.



22 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHSuppose that (3.31) is proved for s ≥ 1. We derive the 
ase s + 1. It su�
es to estimatethe L2 norm of ∂α
xφ when |α| = s+ 1. Choose multiindi
es α′ and β with α = α′ + β and

|α′| = s. Then(3.32) ‖∂α
xφ‖L2(RN ) ≤ ‖∂β

xφ‖Hs(RN ) ≤ C
(
‖Gε∂β

xφ‖Hs−2(RN ) +
1

εm(s)
‖∂β

xφ‖Hs−1(RN )

)
,using (3.31). Write

Gε∂β
xφ = ∂β

xG
εφ + [∂β

x , G
ε]φ .Sin
e |β| ≤ 1, the 
ommutator is a di�erential operator of order 2. The 
oe�
ients andtheir partial derivatives grow at most as 1/ε2. Therefore,

‖Gε∂β
xφ‖Hs−2(RN ) ≤ ‖Gεφ‖Hs−1(RN ) +

C

ε2
‖φ‖Hs(RN ) .Together with (3.32), this 
ompletes the indu
tion. �The next important stability proposition is stated only in the 
ase of in�nitely smallsour
e terms. It is equivalent to an estimate for (P ε)−1 whi
h grows polynomially in 1/ε.The result proves stability on time intervals of length O(1/ε). The long intervals areneeded for the di�ra
tive 
ase.Proposition 3.8. Suppose that T > 0, and vε ∈ C∞([0, T/ε] × R

N) satis�es P εvε =

O(ε∞) with Cau
hy data O(ε∞) in the sense that, for all α, β, k, there is a 
onstant
C = C(k, α, β) so that(3.33) ∥∥∂β

x{v
ε, ∂tv

ε}|t=0

∥∥
L2(RN )

+ sup
0≤t≤T/ε

∥∥∂α
t,xP

εvε(t)
∥∥

L2(RN )
≤ C εk .Then, vε is in�nitely small in the sense that for any α, k there is another 
onstant C =

C(α, k, T ) so that(3.34) sup
0≤t≤T/ε

∥∥∂α
t,xv

ε(t)
∥∥

L2(RN )
≤ C εk .Proof. The �rst step is to show that ‖∂j

t ∂
β
x v

ε(0)‖L2(RN ) = O(ε∞). For j ≤ 2 this is impliedby (3.33). The proof is by indu
tion on j. Suppose the assertion is proved for indi
es ≤ j.We prove the 
ase j + 1. Use the relation
P ε∂j−1

t ∂β
xv

ε = ∂j−1
t ∂β

x P
εvε +

[
P ε, ∂j−1

t ∂β
x

]
vε = O(ε∞) +

[
P ε, ∂j−1

t ∂β
x

]
vε .Dividing by ρ, this expresses the derivative ∂j+1

t ∂β
xv

ε at time t = 0 as a sum of termswhi
h are O(ε∞) by the indu
tive hypothesis.Estimate (3.34) is proved for |α| ≤ n by indu
tion on n. The 
ase n = 1 uses thestandard energy method. Considering the real and imaginary parts of vε, it su�
es to



23
onsider real solutions. Suppress the ε dependen
e of v. Multiply P εv by ∂tv and integratein spa
e to �nd,
∂t

(1

2

∫

RN

(
ρε (∂tv)

2 +
〈
Aε grad v , grad v〉) dx) =

∫

RN

∂tv(t) P
εv(t) dx +

ε

2

∫

RN

(
∂tρ1 (∂tv)

2 +
〈
∂tA1 grad v, grad v〉) dx .For the quantity

E(t) :=
(1

2

∫

RN

(
ρε (∂tv)

2 +
〈
Aε grad v , grad v〉) dx)1/2equivalent to the norm ‖∂t,xv(t)‖L2(RN ) this shows that

d

dt
E2(t) ≤ C E(t) ‖P εv(t)‖L2(RN ) + C εE2(t) .Gronwall's method implies that there is a 
onstant independent of v, ε, t so that(3.35) ∥∥∂t,xv(t)

∥∥
L2(RN )

≤ C eCεt
∥∥∂t,xv(0)

∥∥
L2(RN )

+ C

∫ t

0

eCε(t−s)
∥∥P εv(s)

∥∥
L2(RN )

ds .Using assumption (3.33) and the fa
t that εt is bounded, this implies the 
ase |α| = 1 of(3.34). Estimate L2(RN) norms as
‖v(t)‖L2(RN ) =

∥∥∥v(0) +

∫ t

0

∂tv(s) ds
∥∥∥

L2(RN )
≤ O(ε∞) +

∫ t

0

∥∥∂tv(s)
∥∥

L2(RN )
ds

≤ O(ε∞) + tO(ε∞) .The last estimate uses the 
ase |α| = 1. Sin
e t = O(1/ε) it follows that ‖v(t)‖L2 = O(ε∞)proving the 
ase |α| = 0. This proves the n = 1 
ase of the indu
tion.Suppose next that the result is known for |α| ≤ n. We prove the 
ase n + 1. The ideais to use (3.35) for the fun
tion ∂n
t v. Toward that end 
ompute(3.36) P ε∂n

t v = ∂n
t P

εv + [P ε, ∂n
t ]v = [P ε, ∂n

t ]v + O(ε∞) .The 
ommutator is a di�erential operator of degree n+ 1. The derivatives that appearare at most of order 2 in x. The 
oe�
ients are time derivatives of the 
oe�
ients of P εso are O(ε). By indu
tion the terms on the right of (3.36) involving derivatives of order
≤ n are O(ε∞). Therefore,

∥∥[P ε, ∂n
t ]v

∥∥
L2(RN )

≤ Cε
∑

j+|β|=n+1

|β|≤2

∥∥∂β
x∂

j
t v

∥∥
L2(RN )

+ O(ε∞) .Applying (3.35) to ∂n
t v yields, for εt ≤ T ,(3.37) ∥∥∂t,x∂

n
t v(t)

∥∥
L2

≤ O(ε∞) +

∫ t

0

Cε
∑

j+|β|=n+1

|β|≤2

∥∥∂β
x∂

j
t v(s)

∥∥
L2
ds .



24 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHRemark that in order to get (3.37) we used the fa
t that ∂t,x∂
n
t v is in�nitely small at timezero, whi
h follows from (3.33).The expression (3.37) is not ready for an appli
ation of Gronwall's inequality, sin
e theintegrand involves derivatives of order 2 in x whi
h are not present in the left hand side.Lemma 3.9. Suppose that P εvε = O(ε∞) and the Cau
hy data of vε are O(ε∞) as inProposition 3.8. Assume in addition that, for all k, there is a 
onstant C = C(k) so that(3.38) sup

0≤t≤T/ε
|α|≤n

∥∥∂α
t,xv

ε(t)
∥∥

L2(RN )
≤ C εk .Then there is a 
onstant C independent of ε, vε so that, for any 0 ≤ t ≤ T/ε, thederivatives of order n + 1 satisfy

sup
|α|≤n+1

∥∥∂α
t,xv

ε(t)
∥∥

L2(RN )
≤ O(ε∞) + C

∑

j+|β|=n+1

|β|≤1

∥∥∂β
x∂

j
t v

ε(t)
∥∥

L2(RN )
.Proof. For n+ 1 ≥ |γ| ≥ 2 we must estimate ∂γ

x∂
n+1−|γ|
t vε. Write γ = γ′ + ζ with |ζ | = 2.The 
oer
ivity estimate (3.31) for s = 2 and φ = ∂γ′

x ∂
n+1−|γ|
t vε shows that(3.39) ∥∥∂γ

x∂
n+1−|γ|
t vε

∥∥
L2(RN )

≤ C
(∥∥Gε∂γ′

x ∂
n+1−|γ|
t vε

∥∥
L2(RN )

+
1

εm

∥∥∂γ′

x ∂
n+1−|γ|
t vε

∥∥
H1(RN )

)
.The se
ond term in the right-hand side of (3.39) involves derivatives of order at most nso, by hypothesis (3.38), is O(ε∞). Commutation yields

∥∥Gε∂γ′

x ∂
n+1−|γ|
t vε

∥∥
L2(RN )

≤
∥∥∂γ′

x ∂
n+1−|γ|
t Gεvε

∥∥
L2(RN )

+
∥∥[Gε, ∂γ′

x ∂
n+1−|γ|
t ]vε

∥∥
L2(RN )

.The 
ommutator is a di�erential operator of degree n with 
oe�
ients no larger than
O(ε−|γ′|). By the indu
tive hypothesis the norm of the 
ommutator is O(ε∞).Write Gε = −P ε + ρε∂2

t so
∂γ′

x ∂
n+1−|γ|
t Gεvε = − ∂γ′

x ∂
n+1−|γ|
t P εvε + ∂γ′

x ∂
n+1−|γ|
t ρε∂2

t v
ε .The �rst term on the right is O(ε∞) by hypothesis. Expanding the se
ond term there isone term with a derivative of order 1 + n and the others involve derivatives of ρε timesderivatives of vε of order ≤ n. Sin
e the derivatives of ρε grow at most polynomially in

1/ε these lower order derivative terms are O(ε∞) by the indu
tive hypothesis. Therefore
∥∥Gε∂γ′

x ∂
n+1−|γ|
t vε

∥∥
L2(RN )

≤ C
∥∥∂γ′

x ∂
n+1−|γ|
t ∂2

t v
ε
∥∥

L2(RN )
+ O(ε∞) .Inje
ting this in (3.39) yields

∥∥∂γ
x∂

n+1−|γ|
t vε

∥∥
L2(RN )

≤ C
∥∥∂γ′

x ∂
n+1−|γ|
t vε

∥∥
L2(RN )

+ O(ε∞) .The order of the x derivative on the right is lower by 2. A �nite number of appli
ationsof this redu
tion, proves the Lemma. �



25Lemma 3.9 shows that the left hand side of (3.37) dominates all derivatives of order
n+ 1 so one has

∑

|α|≤n+1

∥∥∂α
t,xv(s)

∥∥
L2 ≤ O(ε∞) +

∫ t

0

Cε
∑

j+|β|=n+1

|β|≤2

∥∥∂β
x∂

j
t v(s)

∥∥
L2 ds .The sum in the integrand is smaller than the sum on the left hand side. Gronwall'sLemma 
ompletes the proof of the indu
tive step. �Theorem 3.10. Let vε(t, x) be the approximate solution de�ned in Theorem 3.5 and

uε(t, x) be the unique solution of the initial value problem
P ε(t, x, ∂t,x)u

ε = 0 , ∂k
t u

ε|t=0 = ∂k
t v

ε|t=0 , for k = 0, 1 .Then for any T > 0, α ∈ N1+N , and n ∈ N, there is a 
onstant C > 0 so that(3.40) sup
|t|≤T

∥∥∥∂α
t,x

(
uε − vε

)∥∥∥
L2(RN )

≤ C εn .Proof. This estimate follows from Proposition 3.8 sin
e the error
Eε := uε(t, x) − e2πiS/ε W (ε, t, x, x/ε)satis�es

∀n, ∀s,
∥∥P ε(t, x, ∂t,x)E

ε
∥∥

Hs([0,T ]×RN )
= O(εn),and, the Cau
hy data of Eε vanish identi
ally. �Remark 3.11. If one is interested in an O(εn) error estimate in (3.40) for a �xed integer

n, it su�
es to trun
ate the approximate solution vε, de�ned in (3.3), at order n+ |α|.4. Diffra
tive geometri
 opti
s for Blo
h wave pa
kets4.1. The long time ansatz. This se
tion is devoted to long times t of order 1/ε. Asin the 
ase of equations with 
onstant 
oe�
ients and linear phases [14℄, this time s
aleleads to envelope equations of S
hrödinger type. The support of the leading term in theasymptoti
 solution extends beyond the tube of rays with feet in the initial data. Forthat reason it is 
alled di�ra
tive.In order for the modulations to a�e
t the leading order asymptoti
s at times of order
1/ε and not before 
onsider perturbations smaller than in the pre
eding se
tion.Hypotheses. The 
oe�
ients are given by(4.1) ρε = ρ0(x/ε) + ε2 ρ1(t, x, x/ε) , Aε = A0(x/ε) + ε2A1(t, x, x/ε) ,with ρ1, A1 satisfying (1.3), (1.4). In addition the important invarian
e hypothesis (1.12)is satis�ed, as well as assumption (2.2) that λn(θ0) 6= 0 is a simple eigenvalue.



26 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThese modulations are weaker by one power of ε than in the pre
eding se
tion. If theseweaker perturbations were 
onsidered for times t = O(1), they would not in�uen
e theleading order term in the asymptoti
 expansion. We 
onsider again a solution uε of (1.1).Motivated by the 
onstant 
oe�
ient 
ase and the 
ase of purely periodi
 media in Se
tion2.4, 
onsider linear phases,
S(t, x) = ω t+ θ.x ,and a three s
ale ansatz of WKB type,(4.2) uε(t, x) ∼ e2πiS(t,x)/ε

(
w0

(
εt, t, x,

x

ε

)
+ εw1

(
εt, t, x,

x

ε

)
+ · · ·

)
,where the wj(T , t, x, y) are periodi
 fun
tions of y with period one. The key feature isthe slow time s
ale T = εt whi
h be
omes relevant for t of order 1/ε. The problemaddressed here is to take modulations as in (4.1) and ask how the solutions 
onstru
tedin the pre
eding se
tion behave on the longer time s
ale. At those times modulationssatisfying (4.1) 
an a�e
t the leading term in the expansions.For t ∼ 1/ε one expe
ts solutions to rea
h x ∼ 1/ε. The ordering of the terms in (4.2)is measured by their rate of de
ay as ε→ 0. In order for that ordering to be respe
ted fortimes t ∼ 1/ε we require that the wj grow sublinearly in (t, x). For example, if w1 grewlinearly in t, x, then for times t ∼ 1/ε the term εw1 would be O(1) so might not have sizesmaller than the leading term. To avoid this we suppose that for all j, T ,(4.3) lim

|t,x|→∞
sup

0≤T ≤T, y∈TN

|wj(T , t, x, y)|

|t, x|
= 0 .The pro�les that we 
onstru
t will satisfy the stronger 
ondition that the wj are bounded.This phenomenon is already present in the 
onstant 
oe�
ient 
ase [14℄.Given wj , Borel's Theorem allows us to 
hoose smooth W (ε, T , t, x, y), periodi
 in ywith Taylor expansion in ε,(4.4) W (ε, T , t, x, y) ∼ w0 (T , t, x, y) + ε w1 (T , t, x, y) + · · · .Approximate solutions are de�ned by

vε(t, x) := e2 π i S/ε W (ε, ε t , t , x , x/ε) .Then
e−2πiS/ε P ε vε = e−2πiS/ε P ε

(
e2πiS/εW (ε, εt, t, x, x/ε)

)
= R(ε, εt, t, x, x/ε) ,



27with
(4.5) R(ε, T , t, x, y) = e−2πiS/ε

[
ρε

(
∂t + ε∂T

)2

−

(divx +
divy

ε

)
Aε

(gradx +
grady

ε

) ](
e2πiS/ε W (ε, T , t, x, y)

)

=

[(
ρ0 + ε2ρ1)

(2πiω

ε
+ ∂t + ε∂T

)2

−
(divy + 2πiθ

ε
+ divx

)(
A0 + ε2A1

)(grady + 2πiθ

ε
+ gradx

)]
W.Equation (4.5) implies that there are uniquely determined rj so that

R(ε, T , t, x, y) ∼

∞∑

j=−2

εjrj(T , t, x, y) .Compared to the pre
eding se
tion there are two di�eren
es. The perturbation of the
oe�
ients is O(ε2) rather than O(ε), and there is the ε∂T term.4.2. The leading pro�le. We expand the operator on the right in (4.5) in powers of ε,and keep the leading three orders
ε−2

L + ε−1
M + ε0

N .The term L is as in (3.5),(4.6) M(y, ∂t, ∂x, ∂y) := 4 π i ρ0 ω ∂t − (2πiθ + divy)A0 gradx − divxA0 (2πiθ + grady) ,and,(4.7) N(t, x, y, ∂T , ∂t, ∂x, ∂y) := 4 π i ρ0 ω ∂T +
(
ρ0

∂2

∂t2
− divxA0 gradx

)
+

(
ρ1 (2πiω)2 − (divy + 2πiθ)A1(grady + 2πiθ)

)
.The operator M is simpler than in the pre
eding se
tion. Here it involves only ρ0 and A0.The modulations ρ1, A1 appear in N. At the symbol level one has,(4.8) M(y, ∂t, h, ∂y) := 4 π i ρ0(y)ω ∂t − (divy + 2πiθ)A0(y) h− hA0(y) (grady + 2πiθ),where h repla
es ∂x. The leading terms in the residual are,(4.9) r−2 = Lw0 , r−1 = Lw1 + Mw0, , r0 = Lw2 + Mw1 + Nw0 .The relation r−2 = 0 leads to (3.8), the dispersion relation (3.10), the De�nition 3.1 of K,

Π, Q, and (3.11), as in the pre
eding se
tion. Fix ω, θ0,V as before.Sin
e r−2 is in the image of L, one automati
ally has Π r−2 = 0. The equation r−2 = 0is equivalent to Qr−2 = 0. For j ≥ −1, ea
h equation rj = 0 is split into two equations,
Π rj = 0 and Qrj = 0.



28 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe equation r−1 = 0 is,
Lw1 + Mw0 = 0 .Sin
e w0 = Πw0 and Π L = 0, the equation Π r−1 = 0 is equivalent to

Π M Πw0 = 0 .With the simpler form of M in (4.6) (without the perturbations ρ1, A1), Proposition 3.2shows that,(4.10) Π M Πw = 4 π i
(
∂t + V.∂x

)
Πw , V := −∇θω(θ0) ,so(4.11) (

∂t + V.∂x

)
w0 = 0 .Thus there is a redu
ed K valued pro�le w̃0(T , x) so that(4.12) w0(T , t, x) = w̃0(T , x− Vt) .It remains to determine the K valued fun
tion w̃0(T , x) of 1 +N variables. One needs adynami
 equation in T . The reader is reminded that w̃0 is K valued and K 
onsists offun
tions of y, so w̃0 is a
tually a fun
tion of (t, x, y).The equation Qr−1 = 0 yields(4.13) (

I − Π
)
w1 = −QMw0 .Equation (4.11) together with the fa
t that the 
oe�
ients of M depend only on y implythat the right hand side is a fun
tion of (T , x− Vt, y). The same is therefore true of theleft hand side, so(4.14) (∂t + V.∂x)
(
(I − Π)w1

)
= 0 .This exhausts the information from r−2, r−1. The equations (4.13) and (4.14) are impor-tant steps toward determining the �rst 
orre
tor w1, and are also needed to derive theequations determining the leading pro�le w0.The equation Π r0 = 0 yields the S
hrödinger equation determining the dynami
s of

w̃0. The fa
t that the leading pro�le w0 is determined from three orders in the residual isa re�e
tion of the three s
ale stru
ture of the asymptoti
s.Multiply r0 by Π and de
ompose w0, w1 along K ⊕ K⊥ using (3.11) and (4.13) to �nd(4.15) Π M (Πw1 −QMw0) + Π N Πw0 = 0 .This yields two equations. Multiply by ∂t + V.∂x and use (4.10), (4.11), and most impor-tantly the invarian
e of the 
oe�
ients, (1.12), to eliminate the w0 terms leaving,
(
∂t + V.∂x

)2(
Πw1

)
= 0 .



29This shows that the restri
tion of Πw1 to ea
h ray, t 7→ (t, x+ Vt), is a linear fun
tion of
t. Sin
e by assumption (4.3) ea
h pro�le is required to have sublinear growth, the linearfun
tion must be 
onstant, so,(4.16) (

∂t + V.∂x

)(
Πw1

)
= 0 .Thus, the single equation (4.15) implies two equations, (4.16), and(4.17) Π N Πw0 − Π MQM Πw0 = 0 .Combining (4.16) and (4.14) yields(4.18) (

∂t + V.∂x

)
w1 = 0 .Thus, there is a redu
ed pro�le w̃1(T , x, y) so that w1(T , t, x, y) = w̃1(T , x−Vt, y). This
orre
tor is not in general K valued. (I − Π)w̃1 is determined in (4.13). The remainingpart Πw̃1 will be determined after we �nd w̃0.Proposition 4.1. On smooth fun
tions w(T , t, x, y) whi
h satisfy (∂t + V.∂x)w = 0,(4.19) (

Π N Π − Π MQM Π
)
w =

(
4πi ω ∂T − ω∇2

θω(∂x , ∂x) + γ(t, x)
)
Πw ,where γ is de�ned in (3.17).Proof. The de�nitions of Π in Subse
tion 3.2, of N in (4.7), and the normalization (1.8)imply that the ∂T term on the left in (4.19) is equal to

Π 4πiωρ0∂T Πw = 4πiω ∂T (Πw) ..Similarly the zero order term (with respe
t to t and x) from ΠNΠw is equal to γ(t, x)w.Use ∂tw = −V.∂xw to 
on
lude that(4.20) (
Π N Π − Π MQM Π

)
w =

(
4πiω ∂T + Π

(
ρ0

(
V.∂x

)2
− divxA0 gradx − MQM

)
Π + γ(t, x)

)
Πw .The se
ond order terms in x 
ome from the (V.∂x)

2, the two fa
tors of M, ea
h of whi
his �rst order in ∂t,x, and, the divxA0 gradx term. They simplify thanks to the identitiesof Proposition 3.3 as we now explain.With h = (h1, h2, . . . , hN) ∈ R
N �xed, apply (3.22) for θ := hα, α ∈ R. Then thederivative with respe
t to α is ′ = h.∂θ =

∑
hj∂/∂θj , and,(4.21) L

′ = −4 π2 ρ0 (h.∂θ)(ω
2) − 2πihA0 (grady + 2πiθ) − (divy + 2πiθ)A0 2πih .From (4.8) one has

−2πihA0 (grady + 2πiθ)− (divy + 2πiθ)A0 2πih = 2πiM(y, ∂t, h, ∂y) + 2πi
(
− 4πiωρ0∂t

)
.Use this in (4.21) to �nd(4.22) L

′ = −4 π2 ρ0 (h.∂θ)(ω
2) + 2 π iM(y, ∂t, h, ∂y) + 8 π2 ω ρ0 ∂t .



30 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHDi�erentiate (4.21) to �nd,(4.23) L
′′ = −4 π2ρ0 (h.∂θ)

2(ω2) − 8 πihA0 πih = −4 π2ρ0 ∇
2
θ(ω

2)(h, h) + 8 π2hA0 h ,where,
∇2

θ(ω
2)(h, k) :=

N∑

i=1

N∑

j=1

∂2(ω2)

∂θi∂θj
hi kj .Plug (4.22) into (3.23). Sin
e ΠQ = QΠ = 0, ea
h of the terms involving

−4 π2 ρ0 (h.∂θ)(ω
2) + 8 π2 ω ρ0 ∂tvanishes. Therefore,

Π L
′QL

′ Π = −4π2 Π M(y, ∂t, h, ∂y)QM(y, ∂t, h, ∂y) Π .Using this and (4.23) in (3.23) yields,
Π

(
8 π2 hA0 h−4 π2 ρ0 ∇

2
θ(ω

2)(h, h)
)

Π + 8 π2 Π M(y, ∂t, h, ∂y)Q M(y, ∂t, h, ∂y) Π = 0 .Polarization implies equality of the asso
iated symmetri
 bilinear forms,
Π

(
8 π2 hA0 k−4 π2 ρ0 ∇

2
θ(ω

2)(h, k)
)

Π + 8 π2 Π M(y, ∂t, h, ∂y)Q M(y, ∂t, k, ∂y) Π = 0 .Dividing by 8π2 and repla
ing h and k by ∂x yields
Π M(y, ∂t, ∂x, ∂y)Q M(y, ∂t, ∂x, ∂y) Π = Π

(ρ0

2
∇2

θ(ω
2)(∂x , ∂x) − divxA0(y) gradx

)
Π .Use this in (4.20) to �nd that (

ΠNΠ − ΠMQMΠ
)
w is equal to

(
4πiω∂T + Π

(
ρ0

(
V.∂x

)2
−

ρ0

2
∇2

θ(ω
2)(∂x , ∂x)

)
Π + γ(t, x)

)
Πw .Taking a

ount of the K valued 
hara
ter of Πw, the de�nition of Π and the normalization(1.8), this is equal to

(
4πiω∂T +

(
V.∂x

)2
−

1

2
∇2

θ(ω
2)(∂x , ∂x) + γ(t, x)

)
Πw .Using,

∇2
θ(ω

2)(∂x , ∂x) = 2ω∇2
θω(∂x , ∂x) + 2

(
∇θω.∂x

)2
= 2ω∇2

θω(∂x , ∂x) + 2
(
V.∂x

)2
,yields, (

4πiω ∂T − ω∇2
θω(∂x , ∂x) + γ(t, x)

)
Πw .This proves Proposition 4.1. �



31The leading pro�le must satisfy (4.11) and 
ombining (4.11), (4.17), and (4.19) yieldsthe S
hrödinger equation(4.24) (
4πiω ∂T − ω∇2

θω(∂x , ∂x) + γ(t, x)

)
w0 = 0.Applying the operator ∂t + V.∂x to (4.24) and using (4.11) yields (

(∂t + V.∂x)γ
)
w0 = 0so that solvability requires that (∂t + V.∂x)γ = 0 on the support of w0.Conversely, when γ satis�es (1.12), introdu
ing γ̃ su
h that γ(t, x) = γ̃(x−Vt), equation(4.24) is equivalent to(4.25) Πw0 = w0 = w̃0(T , x− Vt) ,

(
4πiω ∂T − ω∇2

θω(∂x , ∂x) + γ̃(x)

)
w̃0 = 0.The leading pro�le w̃0(T , x) is uniquely determined from its initial data as a temperedsolution of (4.25)Example 4.2. In the 
ase of purely periodi
 
oe�
ients one re
overs the S
hrödingerequation,(4.26) 4πi ∂T w̃0 − ∇2

θω(∂x , ∂x)w̃0 = 0 ,whi
h agrees with (2.11).Example 4.3. Even more spe
ial is the 
ase of the speed one 
onstant 
oe�
ient waveequation on RN where (4.26) is the standard S
hrödinger approximation with ∇2
θω equalto ± the partial lapla
ian orthogonal to the dire
tion θ0.The results of this se
tion are summarized by the following proposition.Proposition 4.4. The leading pro�le is a K valued fun
tion w̃0(T , x − Vt) where w̃0 isdetermined from its initial data at T = 0 as the unique tempered solution of (4.25). The�rst 
orre
tor w1 satis�es (4.18) and its proje
tion w1 orthogonal to K is given by (4.13).These pres
riptions are equivalent to the equations r−2 = r−1 = Π r0 = 0.4.3. Determination of the 
orre
tors. The hard work for problems satisfying (1.12) isover. We show how the 
omputation 
ontinues by determining the �rst 
orre
tor w1. Theproje
tion (I−Π)w1 is already determined. We show that Πw1 and Qw2 are determinedfrom the pair of equations Qr0 = 0 and Π r1 = 0. Indu
tively, ΠwJ and QwJ+1 aredetermined in the same way from the pair of equations QrJ−1 = 0 and Π rJ = 0 and thevalues of the w0, . . . , wJ−1, (I − Π)wJ .Using (4.9), the equation Qr0 = 0 holds if and only if(4.27) (

I − Π
)
w2 = −QMw1 −QNw0 ,In parti
ular using (1.12) and the invarian
e of w0, w1 along rays yields(4.28) (∂t + V.∂x)

(
(I − Π)w2

)
= 0 .



32 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe residual r1 is given by
r1 = Lw3 + Mw2 + Nw1 + F1(w0) ,where the term F1 is determined entirely from w0 and its partial derivatives. Multiply by

Π and de
ompose w1, w2 along K ⊕ K⊥ to �nd, using (4.13) and Qr0 = 0,(4.29) ΠM
(
Πw2 −QM(Πw1 −QMw0) −QNw0

)
+ ΠN

(
Πw1 −QMw0

)
= −ΠF1(w0) .Multiply by ∂t + V.∂x to �nd using the hypothesis (1.12),

(∂t + V.∂x)
2Πw2 = 0 .By assumption (4.3) (sublinearity along rays) it follows that

(∂t + V.∂x)Πw2 = 0 .Combined with (4.28) this implies that (∂t + V.∂x)w2 = 0 . Thus, in view of (4.10), the
ΠMΠw2 term vanishes and there is a redu
ed pro�le, w̃2(T , x, y), so that

w2(T , t, x, y) = w̃2(T , x− Vt, y) .Then, (4.29) be
omes(4.30) (
ΠNΠ − ΠMQMΠ

)
w1 = −ΠF2(w0) ,with F2 determined from w0 and its derivatives. When γ satis�es (1.12), Proposition 4.1shows that (4.30) holds if and only if(4.31) (

4πiω ∂T − ω∇2
θω(∂x , ∂x) + γ̃(x)

)(
Π w̃1

)
= −ΠF2(w̃0) .This equation along with (4.13) 
ompletely determines w1 from the initial values w̃1

∣∣
T =0

.In addition, (4.27) determines (I−Π)w2. These determinations together with the earlierones are equivalent to the equations r−2 = r−1 = r0 = Πr1 = 0. The new equations are
Qr0 = Πr1 = 0. This 
ompletes the se
ond step of the indu
tive determination of thepro�les wj from the initial values of Πw̃j . When they are all so determined, all theresiduals rj vanish.Remark 4.5. In homogenization problems one often uses (I −Π)w1 as part of test fun
-tions. The 
ommon expressions are 
ompli
ated involving θ derivatives of ψn(x, θ) (seefor example [3℄). If one writes out our formula in detail one re
overs those formulas. Thepresent formulation is well adapted to a systemati
 indu
tive argument.These 
omputations yield the �rst of the following Theorems. We use the S
hwartz
lass S(RN

x × TN
y ) de�ned by

∀α, β sup
RN

x ×TN
y

∣∣∣xβ ∂α
x,y w(x, y)

∣∣∣ < ∞ .



33This 
lass is 
hosen as it gives the most stru
tured of solutions. A result with the milder
lass ∩sH
s(RN × TN) is stated in the introdu
tion.Theorem 4.6. Suppose that θ0 and ω satisfy the dispersion relation (3.10) at a sim-ple eigenvalue λn(θ0) 6= 0. Given S
hwartz 
lass K valued fun
tions gj(x, y), there areuniquely determined wj(T , t, x, y) = w̃j(T , x−Vt, y) with w̃j ∈ C∞

(
[0,∞[T ;S(RN

x ×TN
y )

)so that
w̃0|t=0 = g0 , ∀ j ≥ 1 Π w̃j|t=0 = gj , and ∀j, t, x, y , rj(t, x, y) = 0 .The leading term w̃0 is K valued and is determined from the S
hrödinger equation (4.25).Theorem 4.7. Suppose that gj(x, y) are S
hwartz 
lass K valued fun
tions. Let wj be thepro�les 
onstru
ted in the pre
eding theorem. Choose W̃ (ε, T , x, y) ∈ C∞([0, 1[×[0,∞[×RN×

TN) with Taylor series in ε,̃
W (ε, T , x, y) ∼

∞∑

j=0

εj w̃j(T , x, y) ,su
h that, for any α ∈ N1+N , β ∈ NN , m ∈ N, T > 0, there exists a 
onstant C > 0satisfying, ∀ε > 0,(4.32) sup
{0≤T ≤T}×RN×TN

∣∣∣xβ ∂α
T ,x

(
W̃ −

m∑

j=0

εj w̃j

)∣∣∣ ≤ C εm+1 .De�ne
vε(t, x) := e2πiS/ε W̃ (ε, εt, x− Vt, x/ε) .Then P εvε = O(ε∞) in the sense that, for all α ∈ N1+N , β ∈ NN , m ∈ N, T > 0, thereexists a 
onstant C > 0 satisfying, ∀ε > 0,

sup
{0≤t≤T/ε}×RN×TN

∣∣∣xβ ∂α
t,x

(
P ε vε

)∣∣∣ ≤ C εn .Proof. The proof is like that of Theorem 3.5. �Theorem 4.8. With notation and hypotheses of the pre
eding theorem, let uε(t, x) be theunique solution of the initial value problem
P ε(t, x, ∂t,x)u

ε = 0 , ∂k
t u

ε|t=0 = ∂k
t v

ε|t=0 , for k = 0, 1 .Then for any T > 0, α ∈ N1+N , and, n ∈ N, there is a 
onstant C > 0 so that
sup

|t|≤T/ε

∥∥∥∂α
t,x

(
uε − vε

)∥∥∥
L2(RN

x )
≤ C εn .



34 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHProof. As in the proof of Proposition 3.8, one �rst establishes that
∥∥∥∂α

t,x

(
uε − vε

)∣∣
t=0

∥∥∥
L2(RN

x )
≤ C εn .Then the Theorem is an immediate 
onsequen
e of the residual estimate in the pre
edingTheorem and the stability estimate (3.34). The latter estimate was proved for strongerperturbations and is true without modi�
ation in the present 
ontext. �5. Modulations that are not 
onstant on group linesThis se
tion treats modulations ρ1(t, x, y), A1(t, x, y) that are not 
onstant on grouplines. The 
oe�
ients are given by(5.1) ρε = ρ0(x/ε) + ε2 ρ1(t, x, x/ε) , Aε = A0(x/ε) + ε2A1(t, x, x/ε) ,with ρ1, A1 satisfying (1.3), (1.4), but not the invarian
e hypothesis (1.12).For (1.12) to hold for several distin
t group velo
ities is a very strong 
ondition. Forexample, if Vµ is a family of su
h velo
ities so that ∂t + Vµ.∂x span R

1+N , then the only
ρ1, A1 whi
h satisfy (1.12) for all these velo
ities are periodi
 fun
tions of y whi
h do notdepend on (t, x). The 
onditions imposed in this se
tion do not have this sort of defe
t.5.1. Ray averages. Wave pa
kets move with the group velo
ity V. An observer movingat this speed sees the 
oe�
ients along the rays (t, x+Vt). On su
h a ray, γ = γ(t, x+Vt).In this se
tion the hypothesis that γ is 
onstant on rays is repla
ed by a weaker hypothesis
on
erning the average of γ on rays.Begin by assuming that the averages on rays,(5.2) lim

T→+∞

1

T

∫ T

0

γ(t, x+ Vt) dt := γ̃(x) , exists uniformly in x.The quantity on the left is a trivial 
ase of the average proje
tors in geometri
 opti
s (seepage 124 of [27℄). We need more than (5.2). The fun
tion γ̃(x) is the average on the rayinterse
ting t = 0 at x. The ray passing through the point (t, x) interse
ts t = 0 at x−Vt.The fun
tion whi
h assigns to (t, x) the average value of γ on the ray through (t, x) isequal to γ̃(x − Vt). The fun
tion whi
h subtra
ts from γ(t, x) its average on the groupline through (t, x) is equal to γ(t, x) − γ̃(x− Vt).Consider the solution g of the s
alar transport equation(5.3) (
∂t + V.∂x

)
g = γ(t, x) − γ̃(x− Vt) , g

∣∣
t=0

= 0 .Then
g(t, x) =

∫ t

0

(
γ(s, x− Vt+ Vs) − γ̃(x− Vt)

)
ds .



35Thus,
g(t, x)

t
=

1

t

∫ t

0

γ(s, x̃+ Vs) ds − γ̃(x̃), x̃ := x− Vt .Assumption (5.2) is equivalent to the fa
t that this is o(1) as t→ +∞,(5.4) lim
t→+∞

sup
x∈RN

|g(t, x)|

t
= 0 .Equivalently, g = o(t) as t→ +∞.Lemma 5.1. If γ satis�es hypotheses (1.3) and (5.2) then,i. ea
h partial derivative ∂j

t ∂
β
xγ also satis�es the hypotheses,ii. γ̃ ∈ C∞(RN), and,iii. for all (j, β) ∈ N × NN(5.5) lim

T→+∞

∥∥∥ 1

T

∫ T

0

∂j
t ∂

β
xγ(t, x+ Vt) dt − (−V.∂x)

j∂β
x γ̃(x)

∥∥∥
L∞(RN )

= 0 .Proof. First treat the 
ase of x derivatives. De�ne
Gn(x) :=

1

n

∫ n

0

γ(t, x+ Vt) dt .Di�erentiating under the integral yields
∂β

xGn(x) =
1

n

∫ n

0

∂β
xγ(t, x+ Vt) dt .Hypothesis (1.3) implies that for ea
h β, the family {∂β

xGn} is bounded in L∞(RN).Hypothesis (5.2) implies that Gn 
onverges uniformly to γ̃ on RN . It follows that ∂β
x γ̃ ∈

L∞(RN) and
lim

n→∞

∥∥∂β
x

(
Gn − γ̃

)∥∥
L∞(RN )

= 0 .For T > 1 
hoose n to be the integer part of T . Then,
∥∥∥
( 1

T

∫ T

0

∂β
xγ(t, x+ Vt) dt − ∂β

xGn

)∥∥∥
L∞(RN )

= O(1/T ) .Formula (5.5) for j = 0 follows.It remains to prove iii for j > 0. This follows by indu
tion from the 
ase j = 1. Toprove the 
ase j = 1 use ∂tγ =
(
∂t + V.∂x

)
γ − V.∂xγ to �nd

(
∂tγ

)
(t, x+ Vt) =

( d
dt

)
γ(t, x+ Vt) −

(
V.∂xγ

)
(t, x+ Vt) .Integrating this equation on rays and using the 
ase j = 0 for the last term proves the
ase j = 1. �We impose the following strengthening of (5.2) repla
ing the o(t) by O(tβ) for some

0 ≤ β < 1.



36 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHDe�nition 5.2. The fun
tion γ satis�es the ray average hypothesis when (5.2) holdsand there is a 0 ≤ β < 1 so that for all α ∈ N × NN the solution gα(t, x) of
(
∂t + V.∂x

)
gα = ∂α

t,x

(
γ(t, x) − γ̃(x− Vt)

)
, gα(0, x) = 0satis�es 〈t〉−βgα ∈ L∞([0,∞[×RN) where 〈t〉 := (1 + t2)1/2.Remark 5.3. i. For α = 0, we re
over g0 = g, the solution of the transport equation(5.3). ii. The proof of Lemma 5.1 shows that if γ satis�es the ray average hypothesis thenso do its derivatives with the same value of β. iii. The proof of Lemma 5.1 shows thatit su�
es to treat the 
ase α = 0. iv. The hypothesis is quite general. It takes a littleingenuity to 
onstru
t examples that do not satisfy the hypothesis. For su
h an examplethe ideas of �5.1.2 are helpful. v. For random perturbations of periodi
 media one wouldexpe
t analogous ray average hypotheses to hold with β > 0.5.1.1. Examples of the ray average hypothesis with β = 0.Proposition 5.4. i. The set of γ satisfying the ray average hypothesis is a real ve
torspa
e. It 
ontains the fun
tions satisfying (1.12).ii. If γ(t, x) = f(ℓ(t, x)) where f(θ) is a smooth periodi
 fun
tion of arbitrary periodand ℓ is a linear fun
tional then the ray average hypothesis is satis�ed.iii. If M : R

1+N → R
M is linear and satis�es the small divisor hypothesis

∃C > 0, m ∈ N, ∀n ∈ N
M , n.M(1,V) 6= 0 ⇒ |(n.M(1,V)| ≥ C |n|−m ,then, for h(θ1, . . . , θM ) ∈ C∞(TM) the quasiperiodi
 fun
tion γ(t, x) = h(M(t, x)) satis�esthe hypothesis.Proof. i. Self evident.ii. Write the linear fun
tional as α.(t, x) with α ∈ R1+N . Let γ = f ◦ ℓ. Then,

γ(t, x+ Vt) = f(α.(t, x+ Vt)) = f(α.(0, x) + tα.(1,V)) .There is a di
hotomy. When α.(1,V) = 0, γ is 
onstant on group lines so γ = γ̃ and g = 0so the hypothesis is satis�ed.When α.(1,V) 6= 0, the restri
tion of γ to group lines is periodi
 with period p/|α.(1,V)|where p is the period of f . Then γ − γ̃ is periodi
 on group lines with the same periodand has mean equal to zero. For any t > 0 there is an m ∈ N so that
m

p

|α.(1,V)|
< t ≤ (m+ 1)

p

|α.(1,V)|
.



37The interval [0, mp/|α.(1,V)|] is exa
tly equal to m periods. Sin
e the mean over oneperiod is equal to zero, the integral over this interval ofm periods vanishes too. Therefore,
∣∣∣∣
∫ t

0

γ(s, x̃+ Vs) − γ̃(x̃) ds

∣∣∣∣ =

∣∣∣∣
∫ t

mp/|α.(1,V)|

γ(s, x̃+ Vs) − γ̃(x̃) ds

∣∣∣∣

≤
∥∥γ − γ̃

∥∥
L∞

p

|α.(1,V)|
≤ 2

∥∥f
∥∥

L∞

p

|α.(1,V)|
.(5.6)This proves the boundedness of g. To prove the boundedness of derivatives, apply theabove argument to the di�erentiated equation.iii. For θ = (θ1, . . . , θM) ∈ TM , express

h =
∑

n∈NM

hn e
in.θ , γ = h ◦M

(
t, x

)
=

∑

n∈NM

hn e
in.M(t,x) :=

∑

n∈NM

γn(t, x) .Along the ray (t, x+ Vt), γn is given by
γn(t, x+ Vt) = hn e

in.M(0,x) ein.M(1,V)t .As in part i, there is a di
hotomy. If n.M(1,V) = 0, then γn is 
onstant on rays so
γn − γ̃n = 0. Thus,

∫ t

0

γ(s, x̃+ Vs) − γ̃(x̃) ds =
∑

n.M(1,V)6=0

∫ t

0

γn(s, x̃+ Vs) − γ̃n(x̃) ds .As in (5.6), (γn − γ̃n) with n.M(1,V) 6= 0 is periodi
 with mean zero so,
∫ t

0

γn(s, x̃+ Vs) − γ̃n(x̃) ds ≤ ‖γn − γ̃n‖L∞

2π

|n.M(1,V)|

≤ 2 |hn|
2π

|n.M(1,V)|

≤ CK |n|−K |n|m ,the last using rapid de
rease and the small divisor hypothesis. Summing over n.M(1,V) 6=

0 yields ∣∣∣∣
∫ t

0

γ(s, x̃+ Vs) − γ̃(x̃) ds

∣∣∣∣ ≤
∑

n 6=0

CK |n|−K |n|m .Choosing K > N + 1 −m yields the L∞(R1+N) bound for g. The bound for derivativesfollows by applying the above argument to the di�erentiated equation using Lemma 5.1.
�Proposition 5.5. i. If the 
omponents of M(1,V) have rational ratio, then the smalldivisor hypothesis is satis�ed.ii. If the dimension is M = 1 + N and M = I, then the small divisor hypothesis issatis�ed for Lebesgue almost all V.



38 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHiii. If V and the dimension M are �xed, then the small divisor hypothesis is satis�edfor Lebesgue almost all M.iv. If the dimensionM is �xed, then the small divisor hypothesis is satis�ed for Lebesguealmost all M,V.Proof. i. The rational ratio is equivalent to the existen
e of an r ∈]0,∞[ so that
rM(1,V) = (q0, q1, . . . , qM) ∈ Z

1+M .Then,
(n0, n1, . . . , nM).M(1,V) = (n0, n1, . . . , nM).

1

r
(q0, q1, . . . , qM) ∈

1

r
Z.When it is nonzero, it is equal to an integer divided by r so is bounded below in absolutevalue by 1/r. This veri�es the small divisor hypothesis with C = 1/r and m = 0.ii. A ve
tor W satis�es the small divisor hypothesis if and only if

∃m ∈ N, ∀n ∈ N
N+1, n.W 6= 0 ⇒ |n.W | ≥

1

m |n|m
.The set of ve
tors orthogonal to one of the n is a null set. So it su�
es to show that the
omplement of the set de�ned by

∃m ≥ 0 ∀n 6= 0, |n.W | ≥
1

m |n|m
.is a null set. A ve
tor W belongs to the 
omplement if and only if

∀m ≥ 0, ∃n 6= 0, |n.W | <
|n|−m

m
.This is the set ⋂

m≥0

⋃

n 6=0

{
W : |n.W | <

|n|−m

m

}
.We show that the Lebesgue measure of this set is equal to zero, by showing that itsinterse
tion with {|W | ≤ R} is a null set. Toward that end, for ea
h n, we rotate
oordinates so that in the new 
oordinates, n = (|n|, 0, 0, . . . , 0). Then

{
W : |n.W | <

|n|−m

m

}
=

{
|n .W |

|n|
<

1

m |n|m+1

}
⊂

{
|n .W |

|n|
<

1

m

}The interse
tion of this set with the ball of radius R has Lebesgue measure ≤ C(R)/m.Sin
e our set is the interse
tion on m of su
h sets, it is a null set.iii. Denote by E ∈ RN the set of full Lebesgue measure so that the small divisorhypothesis is satis�ed when M = I and V ∈ E. Then, for V �xed, the pair M,V satis�esthe small divisor hypothesis whenever
M(1,V) ∈ E .This is satis�ed for almost all M.



39iv. Follows from iii and Fubini's Theorem. �5.1.2. Examples of the ray average hypothesis with 0 < β < 1. The pre
eding se
tionshowed that quasiperiodi
 γ satisfy the ray average hypothesis with β = 0 under a smalldivisor hypothesis. In this se
tion we show that mu
h more general almost periodi
 γsatisfy the hypothesis with β > 0 under a weaker divisor hypothesis. The smooth almostperiodi
 γ are assumed to be of the form(5.7) γ(t, x) =
∑

η∈R1+N

aη e
iη.(t,x) ,where aη vanish for all but a 
ountable family of η and satisfy(5.8) ∀n ∈ N,

∑

η

〈η〉n
∣∣aη

∣∣ < ∞ 〈η〉 := (1 + |η|2)1/2 .Then
(∂t + V∂x)γ =

∑

η∈R1+N

η.(1,V) aη e
iη.(t,x) , γ̃ =

∑

η.(1,V)=0

aη e
iη.(t,x) .Then

γ(t, x) − γ̃(x− Vt) =
∑

η.(1,V)6=0

aη e
iη.(t,x) .The ray average of this di�eren
e vanishes but the 
onvergen
e is slow for terms with

η.(1,V) small. Lebesgue's theorem implies that
∑

0<|η.(1,V)|<δ

aη e
iη.(t,x) = o(1) as δ → 0 .Our hypothesis strengthens this to O(δα) for some 0 < α.Proposition 5.6. Suppose that γ is as in (5.7), (5.8) and there is an α > 0 so that forall n(5.9) ∑

0<|η.(1,V)|<δ

〈η〉n
∣∣aη

∣∣ = O(δα), δ → 0 .Then the ray average hypothesis of De�nition 5.2 holds with β = α/(α + 1).Proof. Consider the solution of (∂t+V ∂x)g = γ(t, x)−γ̃(x−Vt) with vanishing initial data.Part iii of Remark 5.3 shows that it su�
es to 
onsider only g and not its derivatives.Write
γ(t, x) − γ̃(x− Vt) =

∑

|η.(1,V)|<δ

aη e
iη.(t,x) +

∑

|η.(1,V)|>δ

aηe
iη.(t,x)with 
orresponding solutions g1 and g2 with vanishing initial data. Estimate (5.9) showsthat(5.10) ‖g1‖C0(RN ) ≤ C δα .



40 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThe solution g2 is given by
g2 =

∑

|η.(1,V)|>δ

1

iη.(1, V )t

(
aη e

iη.(t,x) − aη e
iη.(0,x−Vt)

)
.The ray average hypothesis 
on
erns only t ≥ 1 and one has,(5.11) ‖g2(t)‖C0(RN ) ≤

C

t δ
.Choose δ so that δα = 1/(t δ), that is δ = t−1/(1+α) to �nd that

‖g1(t)‖C0(RN ) + ‖g2‖C0(RN ) ≤
C

tα/(α+1)
.

�5.2. The approximate solution. When the ray average hypothesis holds we 
onstru
ta three term approximate solution(5.12) vε := e2πiS/ε W ε(εt, t, x, x/ε) ,(5.13) W ε(T , t, x, y) := w0(T , t, x, y) + ε w1(T , t, x, y) + ε2w2(T , t, x, y) ,with pro�les wj smooth and y-periodi
. The 
orre
tors w1 and w2 in this 
onstru
tionwill not in general be bounded in t. The 
orre
ted solution does not have the formof in�nitely a

urate expansions 
onstru
ted when (1.12) holds. The derivation of theleading approximation and the 
orre
tors follows the lines established in Se
tion 4. Theinformation gleaned from the leading residuals r−2, r−1 up to equation (4.14) is un
hanged.Equation (4.15) is treated di�erently. In the 
ase of 
oe�
ients satisfying the invarian
e(1.12), the equation was multiplied by ∂t + V.∂x to eliminate w0 and then to arrive at
(∂t + V.∂x)Πw1 = 0. In the present 
ase, we isolate the w1 terms as

(
Π N Π − Π MQM Π

)
w0 = −Π M Πw1 .Propositions 4.1 and 3.2 (the latter modi�ed for the di�ra
tive 
ase so that there is no γterm) show that this is equivalent to,(5.14) (

4πiω ∂T − ω∇2
θω(∂x , ∂x) + γ(t, x)

)
w0 = − (∂t + V.∂x)Πw1 .Split

γ(t, x) = γ̃(x− Vt) + (γ(t, x) − γ̃(x− Vt))to write (5.14) as,
(
4πiω ∂T − ω∇2

θω(∂x , ∂x)+γ̃(x− Vt)
)
w0 =

−
(
∂t + V.∂x

)
Πw1 −

(
γ(t, x) − γ̃(x− Vt)

)
w0 .(5.15)



41The equation (5.15) is satis�ed by �rst 
hoosing w0(T , t, x) = w̃0(T , x−Vt) where w̃0(T , x)is a K-valued fun
tion satisfying the S
hrödinger equation(5.16) (
4πiω ∂T − ω∇2

θω(∂x , ∂x) + γ̃(x)
)
w̃0 = 0 ,whi
h implies that the left-hand side of (5.15) vanishes. The initial value, w̃0(0, x) ∈

S(RN ; K) is arbitrary. On
e 
hosen, the unique solution satis�es for all α,(5.17) (x, ∂T ,t,x)
αw0 ∈ L∞([0, T ]T × [0,∞[t×R

N
x ) .The K valued fun
tion Πw1(t, x) is 
hosen as a solution of(5.18) (

∂t + V.∂x

)
Πw1 = −

(
γ(t, x) − γ̃(x− Vt)

)
w0 ,so the right-hand side of (5.15) vanishes too. Sin
e w0(T , t, x) = w̃0(T , x−Vt) is 
onstanton group lines, the solution of the transport equation (5.18) 
an be 
hosen as,

Πw1(T , t, x) = g(t, x)w0(T , t, x) ,where the s
alar valued fun
tion g is the solution of (5.3). The ray average hypothesiswith parameter 0 ≤ β < 1 yields estimates for the derivatives of g and therefore those of
Πw1,

〈t〉−β (x, ∂t,x)
α(Πw1) ∈ L∞([0, T ] × [0, t] × R

N ; K) .The 
omponent (I − Π)w1 is given by (4.13) in terms of w0 so (5.17) implies,
(x, ∂T,t,x,y)

α(I − Π)w1 ∈ L∞([0, T ] × [0, t] × R
N
x × R

N
y ) ,with w1 is periodi
 in y. This 
ompletes the determination of w0 and w1. At this stageone has r−2 = r−1 = Πr0 = 0.We 
hoose w2 to that (I − Π)r0 = 0. As earlier, the equation (I − Π)r0 = 0 holds ifand only if (4.27) is satis�ed. This determines (I − Π)w2. On the other hand, Πw2 doesnot a�e
t the pro�les r2, r1, r0. It is 
hosen equal to zero,(5.19) Πw2 = 0 .The estimates for w0, w1 imply that the y-periodi
 w2 satis�es estimates analogous tothose of w1 so,(5.20) 〈t〉−β (x, ∂T,t,x,y)

αwj ∈ L∞([0, T ] × [0, t] × R
N
x × R

N
y ), j = 1, 2 .This 
ompletes the determination of the pro�les so that r−2 = r−1 = r0 = 0.Theorem 5.7. Suppose that the ray average hypothesis of De�nition 5.2 is satis�ed with

0 ≤ β < 1 and that w̃0(0, x) = Πw̃0(0, x) ∈ S(RN ; K) is 
hosen. The leading pro�le
w0(T , t, x) = w̃0(T , x−Vt) satisfying (5.17) is determined from the S
hrödinger equation



42 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCH(5.16). Furthermore w1, w2 are determined from (5.18), (4.13), (4.27), (5.19), and satisfy(5.20). Then the approximate solution (5.12), (5.13) satis�es(5.21) P ε(t, x, ∂t,x) v
ε = ε e2πiS/ε Rε(εt, t, x, x/ε) ,where Rε(T, t, x, y) is periodi
 in y and for all α ∈ N

3N+2, T ∈]0,∞],(5.22) ∥∥〈t〉−β (x, ∂T,t,x,y)
αRε(T , t, x, y)

∥∥
L∞([0,T ]×[0,∞[×RN

x ×RN
y )

≤ C(α) ,independent of ε.The energy of the initial data of vε is O(1/ε) sin
e the partial derivatives of �rst orderare O(1/ε). Denote by uε the exa
t solution of the Cau
hy problem (1.1) with the sameinitial data as vε,(5.23) P ε(t, x, ∂t,x) u
ε = 0 , uε

∣∣
t=0

= vε
∣∣
t=0

, ∂tu
ε
∣∣
t=0

= ∂tv
ε
∣∣
t=0

.Theorem 5.8. The fun
tions vε from Theorem 5.7 approximate the exa
t solutions uε in(5.23) with relative error O(ε1−β) in the sense that(5.24) ∃C > 0, sup
0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)
α
(
uε − vε

)∥∥
L2(RN )

≤ C ε1−β , ε → 0 .Remark 5.9. The error in derivatives of higher order is not estimated. The previous
ases had residual O(ε∞). Here the residual is O(ε1−β) and no better. The possibleunboundedness of the family (P ε)−1 as maps in higher Sobolev spa
es (see �3.4) presentsa serious obstru
tion.Proof. Denote wε := uε − vε. The error wε is the solution of the Cau
hy problem(5.25) P εwε = −ε e2πiS/ε Rε(εt, t, x, x/ε) , wε
∣∣
t=0

= ∂tw
ε
∣∣
t=0

= 0 .The error estimate (5.24) with |α| = 1 is an immediate 
onsequen
e of the 
lassi
al energyestimate: ∀T > 0, ∃C > 0, ∀0 < ε < 1, ∀0 ≤ t ≤ T/ε,

∀ w ∈ C
(
[0, T/ε] ; H1(RN)

)
∩ C1

(
[0, T/ε] ; L2(RN )

)
,with P εw ∈ L1

(
[0, T/ε] ; L2(RN)

),
∑

|α|=1

∥∥∂α
t,xw(t)

∥∥
L2(RN )

≤ C

( ∑

|α|=1

∥∥∂α
t,xw(0)

∥∥
L2(RN )

+

∫ t

0

∥∥P εw(s)
∥∥

L2(RN )
ds

)
.Using (5.21), (5.22) the last term on the right is bounded by O(〈t〉−βε) = O(ε1−β). Thisis the desired estimate for |α| = 1.The error estimate (5.24) for α = 0 is subtle and o

upies the remainder of this sub-se
tion. In 
ontrast with the 
ase |α| = 1, it uses in an essential way the os
illations in

t of the right hand side of (5.25). In the 
ase of �3.4 estimates for uε are re
overed fromestimates for uε
t by integrating in time. In the present 
ontext the integration is over an



43interval of length ∼ 1/ε and os
illations in time are used to show that the integral is notlarge.The proof of Lemma 5.12 below uses an important symmetry. Suppress the ε in theoperator P ε(t, x, ∂t, ∂x). The transposed operator P † is given by,
P †(∂t, ∂x)w := ∂2

t (ρw) − divx

(
A gradxw

)
.Introdu
e the linear map P−1 : C∞

0 (R1+N) → C∞(R1+N ) by u = P−1(f) is the uniquesolution of Pu = f su
h that if f vanishes for t < t then so does u. The fun
tion u isthe solution of the forward wave problem with sour
e f . Similarly, for g ∈ C∞
0 (R1+N),

w = (P †)−1g is the unique solution of P †w = g so that if g vanishes for t > t, then sodoes w. The fun
tion w solves the ba
kward radiation problem for P † with sour
e g.Denote by K(t, x, s, y) and K†(t, x, s, y) the S
hwartz kernels of the operators P−1 and
(P †)−1 respe
tively so that with the usual abuse of notation,
(
P−1f

)
(t, x) =

∫

R1+N

K(t, x, s, y) f(s, y) ds dy, (P †)−1g(t, x) =

∫

R1+N

K†(t, x, s, y) g(s, y) ds dy.The pre
ise version is that for all f, g ∈ C∞
0 (R1+N)

∫
g(s, y) (P−1f)(s, y) dt dx ds dy =

〈
K , f(t, x)g(s, y)

〉
,with an analogous expression for (P †)−1 and K†. Here 〈 , 〉 denotes the pairing be-tween 
ompa
tly supported test fun
tions and the distributions on R

1+N
t,x × R1+N

s,y . Thedistribution K and K† are for N > 2 not lo
ally integrable fun
tions.The kernel K is determined by the following re
ipe. For s, y �xed
P (t, x, ∂t, ∂x)K(t, x, s, y) = δs,y , K = 0 when t < s .Similarly, the kernel K† is determined as follows. For t, x �xed
P †(s, y, ∂s, ∂y)K

†(t, x, s, y) = δt,x , K† = 0 when s < t .The next re
ipro
ity lemma is analogous to the fa
t that for a matrix, the inverse of thetranspose is equal to the transpose of the inverse. The proof of the lemma is modelled onthe matrix 
ase.Lemma 5.10. The kernels K(t, x, s, y) and K†(t, x, s, y) satisfy the re
ipro
ity relation,(5.26) K(t, x, s, y) = K†(s, y, t, x) .Proof. The assertion is equivalent to the identity, ∀f, g ∈ C∞
0 (R1+N ),(5.27) 〈

K , g(t, x) f(s, y)
〉

R1+N×R1+N =
〈
K† , g(s, y) f(t, x)

〉
R1+N×R1+N .The left hand side of (5.27) is equal to

l.h.s. = 〈P−1f , g〉R1+N = 〈P−1f , P †w〉R1+N .
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l.h.s. = 〈P P−1f , w〉R1+N = 〈f , w〉R1+N = 〈f , (P †)−1g〉R1+N .The last expression is equal to the right hand side of (5.27). �Duhamel's formula gives the following expression for K(t, x, s, y). De�ne G(t, x, s, y)to be the unique solution of

P (t, x, ∂t, ∂x)G = 0, G
∣∣
t=s

= 0, (∂tG)
∣∣
t=s

=
1

ρ
δy .Then

K(t, x, s, y) =

{
G when t ≥ s
0 when t ≤ s.At the transition points where {t = s}, G = 0. Therefore,

∂sK(t, x, s, y) =

{
∂sG when t ≥ s
0 when t ≤ s.We need an estimate for ‖ ∫

∂sK(t, x, s, y)φ(y) dy‖L2(RN ). The estimate uses a prelim-inary lemma asserting that the evolution de�ned by the transposed operator is boundedon time intervals of length O(1/ε).Lemma 5.11. For any T > 0, there is a 
onstant C > 0 so that for all t, s, ε satisfying
|t− s| < T/ε and

w ∈ C
(
[min(t, s),max(t, s)] ; H1(RN)

)
∩ C1

(
[min(t, s),max(t, s)] ; L2(RN)

)with
P †w ∈ L1

(
[min(t, s),max(t, s)] ; L2(RN)

)
,one has(5.28) ∥∥∂t,xw(t)

∥∥
L2(RN )

+ ε
∥∥w(t)

∥∥
L2(RN )

≤

C
(
‖∂t,xw(s)

∥∥
L2(RN )

+ ε
∥∥w(s)

∥∥
L2(RN )

+
∣∣
∫ t

s

∥∥P †w(σ)
∥∥

L2(RN )
dσ

∣∣
)
.Proof. Repla
ing w by a 
uto� and smoothed wε then passing to the limit ε → 0 showsthat it su�
es to 
onsider real solutions whi
h are smooth and rapidly de
reasing as

x→ ∞. For su
h solutions 
ompute,
∫

RN

∂tw P †w dx =

∫

RN

∂tw∂
2
t (ρw) +

〈
∂x∂tw,A∂xw

〉
dx ,

∫

RN

〈
∂x∂tw , A∂xw

〉
dx =

1

2

d

dt

∫

RN

〈
∂xw , A∂xw

〉
dx −

1

2

∫

RN

〈
∂xw , ∂tA∂xw

〉
dx,

∂t

(ρ(∂tw)2

2

)
=

1

2
∂tρ(∂tw)2 + ρ ∂tw ∂

2
tw,



45where ∂x denotes the operator grad, and,
∂tw ∂

2
t (ρw) = ∂tw

(
w∂2

t ρ+ 2∂tρ ∂tw + ρ ∂2
tw

)

= ∂t

(ρ(∂tw)2

2

)
+

3

2
∂tρ(∂tw)2 + w∂2

t ρ∂tw .Sin
e the unperturbed periodi
 medium is time independent, the 
oe�
ients ∂tA, ∂tρ, ∂
2
t ρinvolve only the O(ε2) perturbations so are O(ε2).Introdu
e the energy

E2(t) :=
1

2

∫

RN

(
ρ(∂tw)2(t) +

〈
∂xw(t) , A ∂xw(t)

〉)
dx .The pre
eding 
omputations show that

∣∣∣∂tE
2 −

∫

RN

∂twP
†w dx

∣∣∣ ≤ C
(
ε2E2 + ε2E ‖w‖L2(RN )

)
.Estimating the integral by the Cau
hy-S
hwarz inequality yields,

∣∣∣∂tE
2
∣∣∣ ≤ C

(
E ‖P †w‖L2(RN ) + ε2E2 + ε2E ‖w‖L2(RN )

)
.Sin
e ∂tE

2 = 2E ∂tE this yields
∣∣∣∂tE

∣∣∣ ≤ C
(
‖P †w‖L2(RN ) + ε2E + ε2‖w‖L2(RN )

)
.Complementing this estimate is

∣∣∣∂t

(
‖w(t)‖2

L2(RN )

)∣∣∣ =
∣∣2

∫

RN

∂tww dx
∣∣ ≤ 2 ‖∂tw(t)‖L2(RN ) ‖w(t)‖L2(RN ) ≤ C E ‖w(t)‖L2(RN ) .Sin
e ∂t

(
‖w(t)‖2

L2(RN )

)
= 2 ‖w(t)‖L2(RN ) ∂t‖w(t)‖L2(RN ), this implies,

∣∣∂t‖w(t)‖L2(RN )

∣∣ ≤ C E .Adding yields
∣∣∂t

(
E + ε ‖w(t)‖L2(RN )

)∣∣ ≤ C
(
‖P †w‖L2(RN ) + ε

(
E + ε ‖w(t)‖L2(RN )

))
.Integrating this yields

E(t)+ε ‖w(t)‖L2(RN ) ≤ CeCε|t−s|
(
E(s)+ε‖w(s)‖L2(RN )) + CeCε|t−s|

∣∣∣
∫ t

s

‖P †w(σ)‖L2(RN ) dσ
∣∣∣.Sin
e E(t) + ε ‖w(t)‖L2(RN ) is a family of norms uniformly equivalent to the norms

‖∂t,xw‖L2(RN ) + ε ‖w(t)‖L2(RN ), this 
ompletes the proof of (5.28) and therefore of Lemma5.11. �



46 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHFor t ≥ s introdu
e the operator K(t, s) whose kernel is K(t, x, s, y). With the usualabusive use of an integral sign for the operator with a given distribution kernel, for
φ ∈ C∞

0 (RN),
(
K(t, s)φ

)
(x) :=

∫

RN

K(t, x, s, y) φ(y) dy ,as well as its derivative with respe
t to s
(
∂sK(t, s)φ

)
(x) :=

∫

RN

∂sK(t, x, s, y) φ(y) dy .The pre
ise version is that for ψ, φ ∈ C∞
0 (R1+N ),

∫
ψ(x)(K(t, s)φ)(x) dx =

〈
K(t, x, s, y) , ψ(x)φ(y)

〉
RN

x ×Rn
y

.Lemma 5.12. For all T and s ≤ t with t − s ≤ T/ε there is a 
onstant C so that thefollowing operator estimates hold,(5.29) ∥∥∥K(t, s)φ
∥∥∥

L2(RN )
≤ C (t− s)

∥∥φ
∥∥

L2(RN )
,(5.30) ∥∥∥∂sK(t, s)φ

∥∥∥
L2(RN )

≤ C
∥∥φ

∥∥
L2(RN )

.Proof. With s �xed, the fun
tion z(t, x) =
∫

RN K(t, x, s, y)φ(y) dy is uniquely determinedfor t ≥ s by
P (t, x, ∂t, ∂x) z = 0, z

∣∣
t=s

= 0, ∂tz
∣∣
t=s

= φ/ρ .The energy estimate shows that
‖∂tz‖L2(RN ) ≤ C ‖φ‖L2(RN ) provided t− s < T/ε .Writing z(t) =

∫ t

s
∂tz(σ) dσ yields

‖z(t)‖L2(RN ) ≤ C(t− s) ‖φ‖L2(RN ) .This is exa
tly (5.29).To prove (5.30) reason by duality. Inequality (5.30) is equivalent to(5.31) ∣∣∣
〈
∂sK(t, x, s, y) φ(y) ψ(x)

〉
RN

x ×RN
y

∣∣∣ ≤ C
∥∥φ

∥∥
L2(RN )

∥∥ψ
∥∥

L2(RN )
.With t �xed, de�ne by the formal expression ζ(s, y) :=

∫
K(t, x, s, y)ψ(x) dx. Pre
isely

〈
ζ(t, y) , φ(x)

〉
:=

〈
K(t, x, s, y) , φ(x)ψ(y)

〉
.Lemma 5.10 implies that for s ≤ t the fun
tion ζ is the solution of,

P †(s, y, ∂s, ∂y)ζ = 0, ζ
∣∣
s=t

= 0, ∂sζ
∣∣
s=t

=
ψ(y)

ρ(s, y)
.



47Sin
e t− s ≤ T/ε, the energy estimate for P † proved in Lemma 5.11 yields the followingestimate for ∂sζ(s),(5.32) ∥∥∂sζ(s)
∥∥

L2(RN )
≤ C

∥∥ψ
∥∥

L2(RN )
.The Cau
hy-S
hwartz inequality implies

∣∣〈∂sK(t, x, s, y) , φ(x)ψ(y)
〉∣∣ =

∣∣〈∂sζ, φ
〉∣∣ ≤

∥∥∂sζ(s)
∥∥

L2(RN )

∥∥φ
∥∥

L2(RN )
≤ C

∥∥ψ
∥∥

L2(RN )

∥∥φ
∥∥

L2(RN )
.This proves (5.31) and therefore the equivalent (5.30). �Lemma 5.12 is now used to prove the L2 estimate 
orresponding to the 
ase α = 0 in(5.24) and therefore 
omplete the proof of Theorem 5.8. The solution of (5.25) is

wε(t, x) = −ε

∫ t

0

K(t, s) e2πi(ωs+θ0.x)/ε Rε(εs, s, x, x/ε) ds .For ease of reading introdu
e
rε(T , t, x, y) := e2πiθ0.y Rε(T , t, x, y) .whi
h is θ0-periodi
 in y. It inherits from Rε the bounds (5.22)

∥∥〈t〉−β (x, ∂T ,t,x,y)
αrε(T , t, x, y)

∥∥
L∞([0,T ]×[0,∞[×RN

x ×RN
y )

≤ C ,independent of ε. Preparing for an integration by parts write,
wε =

−ε2

2πiω

∫ t

0

K(t, s) rε(εs, s, x, x/ε) ∂se
2πiωs/ε ds .Integration by parts yields,

wε =
ε2

2πiω

∫ t

0

(
∂sK(t, s)rε(εs, s, x, x/ε) +K(t, s)

(
ε∂T r

ε + ∂tr
ε
)
(εs, s, x, x/ε)

)
e2πiωs/ε ds

−
ε2

2πiω
K(t, s)rε(εs, s, x, x/ε)e2πωis/ε

∣∣∣
s=t

s=0
.We must show that ‖wε(t)‖L2(RN ) ≤ Cε1−β independent of 0 < t < T/ε and ε. There aretwo summands in the integral and two boundary terms.Begin with the boundary terms. Sin
e K(t, t) = 0, one of the terms vanishes. Be
auseof (5.29), the L2 norm of the other is bounded by C ε2−β |t| . Sin
e |t| ≤ T/ε this yieldsthe desired O(ε1−β) bound.For the ∂sK summand, (5.30) su�
es to give the O(ε1−β) estimate.There remains only one term to estimate,

ε2

2πiω

∫ t

0

K(t, s)
(
ε∂T r

ε + ∂tr
ε
)
(εs, s, x, x/ε) e2πiωs/ε ds.



48 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHThis term is dangerous be
ause K(t, s) 
an be of size ∼ T/ε on an interval of size ∼ T/εwhi
h might 
ompensate the prefa
tor of ε2. To get a better estimate, integrate by partson
e more to �nd,
ε2

2πiω

∫ t

0

K(t, s)
(
ε∂T + ∂t

)
rε(εs, s, x, x/ε)

ε

2πiω

d

ds
e2πiωs/ε ds

=
−ε3

(2πiω)2

∫ t

0

d

ds

(
K(t, s)

(
ε∂T + ∂t

)
rε(εs, s, x, x/ε)

)
e2πiωs/ε ds

+
ε3

(2πiω)2
K(t, s)

(
ε∂T + ∂t

)
rε(εs, s, x, x/ε) e2πiωs/ε

∣∣∣
s=t

s=0
.The integrand of the �rst term on the right is equal to

∂sK(t, s)
(
ε∂T + ∂t

)
rε e2πiωs/ε +K(t, s)

(
ε∂T + ∂t

)2
rε e2πiωs/ε.Using (5.22), the �rst term has L2 normO(tβ) while the se
ond term has L2 norm boundedby O(tβ |t − s|). So the L2 norm of the sum, when integrated with respe
t to s over aninterval no longer than T/ε, is bounded by CT 2/ε2+β. The prefa
tor ε3 yields the desired

O(ε1−β) bound. The boundary term at s = t vanishes and that at s = 0 has L2 norm lessthan C ε2−β sin
e ‖K(t, 0)‖ ≤ C T/ε from (5.29). This 
ompletes the proof of Theorem5.8. �5.3. The os
illatory initial value problem. Using two approximate solutions fromSe
tion 5.2, we �nd an approximate solution of the os
illatory initial value problem,(5.33) P ε uε = 0 ,

uε(0, x) = b(x) e2πix.θ0/ε ψn(x/ε) ,

∂tu
ε(0, x) =

c(x)

ε
e2πix.θ0/ε ψn(x/ε) ,with b, c ∈ S(RN ) . There are two linear phases S± with S±(0, x) = θ0.x at t = 0,

S+(t, x) = θ0 · x+ ω t and S−(t, x) = θ0 · x− ω t,with asso
iated group velo
ities ±V. Similarly we denote by γ̃± the two averaged zero-order (potential) terms in the limit S
hrödinger equation (5.16) 
orresponding to the twovelo
ities ±V.Theorem 5.13. Assume that the ray average hypothesis in De�nition 5.2 with parameter
0 ≤ β < 1 is satis�ed for both group velo
ities ±V. The solution uε(t, x) of the initialvalue problem (5.33) admits the following approximation

∑

±

vε,± :=
∑

±

e2πiS±/ε W̃ ε,±(εt, x∓ Vt, x/ε) ,



49with(5.34) W̃ ε,±(T , x, y) =

2∑

j=0

εj w̃±
j (T , x, y) w̃±

0 (T , x, y) = ã±0 (T , x)ψn(y).The initial data w̃±
0 (0, x) are determined by

ã+
0 (0, x) + ã−0 (0, x) = b(x), ã+

0 (0, x) − ã−0 (0, x) =
c(x)

2πiω
,so that the initial data of the exa
t and approximate solutions di�er by O(ε) in the sensethat (5.35) holds for T = 0. The pro�les w̃±

j (T , x, y) are determined from the equationsof se
tion 5.2 (with the 
orresponding zero-order term γ̃±). Then for any T > 0, there isa 
onstant C > 0 so that(5.35) sup
0≤t≤T/ε

sup
|α|≤1

∥∥∥(ε∂t,x)
α
(
uε −

(
vε,+ + vε,−

))∥∥∥
L2(RN )

≤ Cε1−β .Proof. The proof is like that of Theorem 5.8. �Remark 5.14. In both Theorems 5.8 and 5.13 one 
an repla
e the three term approximatesolutions vε,± by their leading term e2πiS/εw̃0(εt, x−Vt, x/ε) or e2πiS±/εw̃±
0 (εt, x∓Vt, x/ε).Indeed, the two other terms involving w1 and w2 are smaller by a fa
tor of ε1−β in thenorms of (5.35). This simpli�
ation is made in the statement of Theorem 1.3. The
orre
tor terms are 
ru
ial in the proof, as is usual in asymptoti
 analysis.5.4. Di�ra
tive geometri
 opti
s with H1 amplitudes. The leading term of theapproximate solutions of di�ra
tive geometri
 opti
s is given by(5.36) vε

approx = e2πiS/ε ψn(x/ε, θ0) a(εt, x− Vt)with a(T , x) satisfying the S
hrödinger equation(5.37) (
4πiω ∂T − ω∇2

θω(∂x , ∂x) + γ̃(x)
)
a = 0.The Cau
hy data of vε

approx are equal to
vε
approx(0, x) = e2πiθ0.x/εψn(x/ε, θ0) a(0, x) ,

∂tv
ε
approx(0, x) =

2πiω

ε
e2πiθ0.x/ε ψn(x/ε, θ0) a(0, x) + O(1) .In this se
tion we explain how the analysis when a(0, ·) ∈ S(RN) su�
es to justify theapproximation of di�ra
tive geometri
 opti
s when a(0, ·) ∈ H1(RN).The main result, Theorem 5.16, shows that the relative error in energy of the di�ra
tivegeometri
 opti
s approximation tends to zero as ε → 0 for amplitudes a ∈ H1. The proofrequires stability in energy for P ε expressed in the proof of Theorem 5.8 and a simpleestimate for the S
hrödinger equation. Its proof is left to the reader.



50 GRÉGOIRE ALLAIRE, MARIAPIA PALOMBARO, AND JEFFREY RAUCHProposition 5.15. There is a 
onstant C > 0 so that the approximate solutions (5.36)with a ∈ C
(
[0,∞[ ; H1(RN)

), a solution of (5.37), satisfy
sup

0≤t<∞
sup
|α|≤1

∥∥(ε∂t,x)
αvε

approx(t)
∥∥

L2(RN )
≤ C sup

|α|≤1

∥∥(ε∂t,x)
αvε

approx(0)
∥∥

L2(RN )
.The operators ε∂t,x in the main result en
ode the length s
ale of the os
illations.Theorem 5.16. Assume the ray average hypothesis in De�nition 5.2 is satis�ed. For

a0 ∈ H1(RN), with a0 6= 0, de�ne uε to be the solution of P εuε = 0 with initial data
uε(0, x) = e2πiθ0.x/ε a0(x)ψn(x/ε, θ0) , ∂tu

ε(0, x) =
2πiω

ε
e2πiθ0.x/ε ψn(x/ε, θ0) a0(x) .Then, for any T > 0, there exists C > 0 su
h that, for any 0 < ε ≤ 1, the exa
t solutionsatis�es

0 < C < sup
0≤t≤T/ε

∥∥ε∂t,xu
ε(t)

∥∥
L2(RN )

≤ 1/C .Suppose a satis�es (5.37) with a(0, ·) = a0, and vε
approx is de�ned by (5.36). Then

lim
ε→0

sup
0≤t≤T/ε

sup
|α|≤1

∥∥∥(ε∂t,x)
α
(
uε(t) − vε

approx(t)
)∥∥∥

L2(RN )
= 0 .Proof. For any 
hallenge number δ > 0, 
hoose aδ

0 ∈ C∞
0 (RN) so that

‖a0 − aδ
0‖H1(RN ) < δ .For the asso
iated exa
t and approximate solutions uε

δ and vε
δ,approx we have proved that

sup
0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)
α
(
uε

δ(t) − vε
δ,approx(t)

)∥∥
L2(RN )

≤ C(δ) ε1−β .Applying (3.35) to uε − uε
δ shows that

sup
0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)
α
(
uε(t) − uε

δ(t)
)∥∥

L2(RN )
≤ C δ .Similarly, Proposition 5.15 shows that

sup
0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)
α
(
vε
approx(t) − vε

δ,approx(t)
)∥∥

L2(RN )
≤ C δ .The three last estimates together with the triangle inequality imply that

sup
0≤t≤T/ε

sup
|α|≤1

∥∥(ε∂t,x)
α
(
uε(t) − vε

approx(t)
)∥∥

L2(RN )
≤ C(δ) ε1−β + C2 δ ,with C2 independent of ε, δ. Letting ε→ 0 yields

lim
ε→0

sup
0≤t≤T/ε

∥∥ε∂t,x

(
uε(t) − vε

approx(t)
)∥∥

L2(RN )
≤ C2 δ .Sin
e δ > 0 is arbitrary, this 
ompletes the proof. �



51Example 5.17. Using Theorem 5.16, one �nds approximate solutions to the os
illatoryinitial value problem (5.33) with rough amplitudes
b, c ∈ H1(RN) ,and error o(1) in energy as ε → 0. It su�
es to take as approximate solution

∑

±

e2πiS±/ε ψn(x/ε, θ0) a
±(εt, x∓ Vt) ,where a± are the unique solutions of the S
hrödinger equation

(
± 4πiω ∂T ∓ ω∇2

θω(∂x , ∂x) + γ̃±(x)
)
a± = 0,with initial values a±(0, ·) ∈ H1(RN) determined from,

a+(0, ·) + a−(0, ·) = b, a+(0, ·) − a−(0, ·) =
c

2πiω
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