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GLOBAL STABILITY FOR THE MULTI-CHANNEL
GEL’FAND-CALDERON INVERSE PROBLEM IN TWO
DIMENSIONS

MATTEO SANTACESARIA

ABsTRACT. We prove a global logarithmic stability estimate for the
multi-channel Gel’fand-Calderén inverse problem on a two-dimensional
bounded domain, i.e., the inverse boundary value problem for the equa-
tion —AvY + v = 0 on D, where v is a smooth matrix-valued potential

defined on a bounded planar domain D.

1. INTRODUCTION

The Schrodinger equation at zero energy,
(1.1) ~AY +v(x)p =0 on D C R?,

arises in quantum mechanics, acoustics and electrodynamics. The recon-
struction of the complex-valued potential v in equation (1.1) through the
Dirichlet-to-Neumann operator is one of the most studied inverse problems
(see [11], [10], [4], [12], [13], [14] and references therein).

In this article we consider the multi-channel two-dimensional Schrédinger
equation, i.e., equation (1.1) with matrix-valued potentials and solutions;
this case was already studied in [15, 14]. One of the motivations for studying
the multi-channel equation is that it comes up as a 2D-approximation for
the 3D equation (see [14, Sec. 2]).

The main purpose of this paper is to give a global stability estimate for
this inverse problem in the multi-channel case.

Let D be an open bounded domain in R? with C? boundary and v €
CY(D, M,(C)), where M, (C) is the set of the n x n complex-valued ma-
trices. The Dirichlet-to-Neumann map associated with v is the operator
®: CY(0D, M,(C)) — LP(0D, M,(C)), p < 0o, defined by

_ %
_a’/aD’

(1.2) o(f)
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where f € CY(0D,M,(C)), v is the outer normal of D and % is the
HY(D, M, (C))-solution of the Dirichlet problem

(1.3) ~ A+ o)y =0 on D, Plap = f;
here we assume that
(1.4) 0 is not a Dirichlet eigenvalue of the operator — A + v in D.

This construction gives rise to the following inverse boundary value problem:
given @, find v.

This problem can be considered as the Gel’fand inverse boundary value
problem for the multi-channel Schrodinger equation at zero energy (see [§],
[11]) and can also be seen as a generalization of the Calderon problem for
the electrical impedance tomography (see [5], [11]). Note also that we can
think of this problem as a model for monochromatic ocean tomography (e.g.,

see [2] for similar problems arising in this type of tomography).

In the case of complex-valued potentials the global injectivity of the map
v — & was first proved for D ¢ R? with d > 3 in [11] and for d = 2 with
v € LP in [4]: in particular, these results were obtained by the use of global
reconstructions developed in the same papers. The first global uniqueness
result (along with an exact reconstruction method) for matrix-valued poten-
tials was given in [14], which deals with C'! matrix-valued potentials defined
on a domain in R?. A global stability estimate for the Gel’fand-Calderén
problem with d > 3 was first found by Alessandrini in [1]; this result was re-
cently improved in [12]. In the two-dimensional case the first global stability
estimate was given in [13].

In this paper we extend the results of [13] to the matrix-valued case. We
do not discuss global results for special real-valued potentials arising from
conductivities: for this case the reader is referred to the references given in
[1], 4], [10], [11], [12], [13].

Our main result is the following:

Theorem 1.1. Let D C R? be an open bounded domain with a C? bound-
ary, vi,vy € C*(D, M, (C)) two matriz-valued potentials which satisfy (1.4),
with HUjH02(D) < N for j =1,2, and ®1, Py the corresponding Dirichlet-to-
Neumann operators. For simplicily we also assume that vi|op = valop and
8%U1|3D = 8%”2’317' Then there exists a constant C = C(D, N,n) such that
(1.5)

[va—v1| oo (py < C (log(3 + || — @1”—1))—% (log(3log(3 + || @2 — @1 71)))?,
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where || - || is the induced operator norm on L>(9D, M, (C)) and [|v||r~(p) =
maxi<; j<n ||Vij|| Lo (p) (likewise for |[v|[c2(py) for a matriz-valued potential

.

This is the first global stability result for the multi-channel (n > 2)
Gel’fand-Calderén inverse problem in two dimensions. In addition, Theo-
rem 1.1 is new also for the scalar case, as the estimate obtained in [13] is
weaker. We remark, in particular, that this result is true in the special case
when v1 = v9 = A € M,(C) in a neighborhood of 0D (situation which
appears in the approximation of the 3D equation, see [14, Remark 3 and
Section 2]).

Instability estimates complementing the stability estimates of [1], [12], [13]
and of the present work are given in [10], [9].

The proof of Theorem 1.1 is based on results obtained in [13], [14], which
take inspiration mostly from [|4] and [1]. In particular, for zp € D we use the
existence and uniqueness of a family of solutions 1,,(z, A) of equation (1.1)
where in particular ¢,, — e’\(Z*ZO)QI, for A — oo (where I is the identity
matrix). Then, using an appropriate matrix-valued version of Alessandrini’s
identity along with stationary phase techniques, we obtain the result. Note
that this matrix-valued identity is one of the new results of this paper.

A generalizations of Theorem 1.1 in the case where we do not assume that

vilop = v2lop and 8%”1‘313 = 8%1)2|3D, is given in section 5.

This work was fulfilled in the framework of research under the direction
of R. G. Novikov.

2. PRELIMINARIES

In this section we introduce and give details on the above-mentioned family
of solutions of equation (1.1), which will be used throughout the paper.

We identify R? with C and use the coordinates z = 1 + iz, Z = &1 — iz
wheire (w1, 22) € R2. Let us define the function spaces C1(D) = {u : u, % €
C(D. M (©)} with the nom [lulloap) = max([ulogp)- | 3 lo(p)). where
lulle(py = sup.ep |ul and |u| = maxi<; j<n |uij|; we also define CH(D) =
{u: u, % € C(D, M, (C))} with an analogous norm. Following [13], [14], we

consider the functions:

(21) GZO (Z, <, )\) — eA(Z—Zo)QgZO (Z, C, )\)G—A(C—Zop’

AMC=20)2=A(C~20)* o=A(n—20)>+A(7—Z0)*
/ ——dRen dlmn,
47T2 D

(22)  gu(: ) = T
(2'3) wzo (Zv )‘) = e)\(Z_ZO)QUZo (z7 )‘>7
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(24) :uZo (Z, A) = I + /D gZ() (Za C7 )\)U(C)MZO (Ca )‘)dReC dIva
(2.5) hay(N) = / e)‘(z_zo)2_5‘(2_20)2v(z)uzo(z, A)dRez dlmz,
D

where 2,20, € D, A € C and [ is the identity matrix. In addition, equa-
tion (2.4) at fixed zp and A, is considered as a linear integral equation for
oo (-5 A) € CL(D). The functions G, (2, ¢, A)s Gag (2, (o A), Vg (2, ), iz (25 A)
defined above, satisfy the following equations (see [13], [14]):

82
(26) 10 G200 = (),
62
.7) oGl 6.0) =8¢ - 2),
(2.8) 4<§z +2)\(z—zo)> %gZO(Z,C,)\) =d(z — (),
(2.9) 4a< <aC —2X(¢ — zo))gz() (2,0, A) =0(¢ — 2),
2
(2.10) —Ag g5V (2 A) + 0(2)1s(2,A) = 0
(2.11) —4 <88z +2X\(z — zo)> C{?Z’MZO(Z’ A) +v(2) (2, A) =0,

where z,z9,( € D, A € C, § is the Dirac delta. (In addition, we assume that
(2.4) is uniquely solvable for u,(-,\) € C1(D) at fixed zo and \.)

We say that the functions G, g, V2, Kz, Pz, are the Bukhgeim-type
analogues of the Faddeev functions (see [14]). We recall that the history of
these functions goes back to |7] and [3].

Now we state some fundamental lemmata. Let
212 goaule) = [ gu(2 6 \u(OdReC dlnnG, 2 € D, 2o A€ C,
D
where g,,(z,(,\) is defined by (2.2) and w is a test function.

Lemma 2.1 ([13]). Let g;, zu be defined by (2.12). Then, for zg, A € C, the
following estimates hold:

(2.13) gzortt € CH(D), foru e C(D),
(2.14) 192000l c1(py < (D, M|ullepy,  foru e C(D),
D _
215)  gsrullern) < ( 2D oy, forue CHD), N 21,

Given a potential v € C’Zl(D) we define the operator g, \v simply as
(gzoa0)u(2) = gzprw(2), w = vu, for a test function u. If u € CH(D), by
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Lemma 2.1 we have that g, \v: C1(D) — C1(D),
(2.16) 1920201235y < 2001920 ANl 51 ) 01l 2 ()

where || - ”((),%(D) denotes the operator norm in C1(D), 29, A € C. In addition,
Hme,\Hoé(D) is estimated in Lemma 2.1. Inequality (2.16) and Lemma 2.1
imply the existence and uniqueness of ., (z, A) (and thus also of ¥, (2, \))
for [A| > p(D, K, n), where [[v]|c1p) < K.

Let

k
:uzO Z gzg,AU
=0

hg’g)(/\) = /D MEm20)? =M (z—20)? v(z ),ug’g)(z, A)dRez dlmz,
where z,29 € D, A € C, k € NU {0}.

Lemma 2.2 ([13]). Forv € C(D) such that v|sp = 0 the following formula
holds:

2 . 0
(2.17) v(z0) = = lim IANRD(N), 20 € D.

In addition, if v € C*(D), v|sgp = 0 and %bD =0 then

log(3|A])

(2.18) uw—\wwkﬁs@wm>,Mwmmn

forzge D, N € C, |\ > 1.

Let
Wy (\) = / AG—20)’ M=% (2)dRe zdTm 2,
D

where zg € D, A € C and w is some M,,(C)-valued function on D. (One can
see that W, = h,(zg) for w =v.)
Lemma 2.3 ([13]). For w € CL(D) the following estimate holds:

log (3|A])
R

Lemma 2.4 ([14]). For v € C(D) and for ngO’AUHOC%(D) <4 < 1 we have
that )

(2.19) [W.y(N)] < ea(D) lwllespy, 20 € D, A > 1.

k 5k+1
220) )~ N oy <
log(3|A]) oF+1
220 )~ O] < () ERET ey

where zo € D, A€ C, |\| > 1, ke NU{0}.
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The proofs of Lemmata 2.1-2.4 can be found in the references given.
We will also need the following two new lemmata.

Lemma 2.5. Let g, \u be defined by (2.12), where u € CL(D), 2z, A € C.
Then the following estimate holds:

log(3[A])

(2.22) 920 3tllc(py < Cﬁ(D)T

lulloxpy, 1Al = 1.

Lemma 2.6. The expression

(2.23) W(u,v)(\) = / e)‘(z_zo)2_;\(2_2°)2u(z)(gzO’Av)(z)dRez dImz,
D

defined for u,v € CL(D) with lullerpy: Ivllcrpy < N1, A € C, 2 € D,

satisfies the estimate

(log(3]A1)*

(2.24) (W (u, v)(M)] < e7(D, Ny,m) N3/

A > 1.

The proofs of Lemmata 2.5, 2.6 are given in section 4.

3. PrRoOF OF THEOREM 1.1

We begin with a technical lemma, which will prove useful when general-
ising Alessandrini’s identity.

Lemma 3.1. Let v € CY(D, M,(C)) be a matriz-valued potential which
satisfies condition (1.4) (i.e., 0 is not a Dirichlet eigeinvalue for the operator
—A+wv in D). Then v, the transpose of v, also satisfies condition (1.4).

The proof of Lemma 3.1 is given in section 4.
We can now state and prove a matrix-valued version of Alessandrini’s

identity (see [1] for the scalar case).

Lemma 3.2. Let vi,v2 € CY(D, M,(C)) be two matriz-valued potentials
which satisfy (1.4), ®1, ®o their associated Dirichlet-to-Neumann operators,

respectively, and uy,us € C?(D,M,(C)) two matriz-valued functions such
that

(~A+v))u; =0, (—=A+")uz =0 on D,

where A stand for the transpose of A. Then we have the identity
(3.1)

/ Fug(2) (@ — By )y (2)|d2| = / tu(2)(va(2) — v1(2))us (2)dRez dlmz.
oD D
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Proof. If v € CY(D, M,,(C)) is any matrix-valued potential (which satisfies
(1.4)) and fi1, f2 € CY(OD, M,,(C)) then we have

(3.2) /athQCI)fﬂdz\ = /aDt(tflqﬁfQ) |dz|,

where ® and ®* are the Dirichlet-to-Neumann operators associated with
v and ‘v, respectively (these operators are well-defined thanks to Lemma
3.1). Indeed, it is sufficient to extend f1 and fo in D as the solutions of the
Dirichlet problems (=A +v)f; =0, (=A +tv)fo =0 on D and fi|ap = f;,
for j = 1,2, so that one obtains

| Cron =t ne )l
(2o
_ /D (‘o Afi—*(AR) fi) dRex dlma
:/D (tFovfi ("0 fo) i) dRezdims =,

where for the second equality we used the following matrix-valued version of

the classical scalar Green’s formula:

(3.3) /aD <t<g‘£>g— 89) \dz ]—/D(t(Af)g—thg) dRez dImz,

for any f,g € C*(D, M, (C)) N CY(D, M, (C)).
Identities (3.2) and (3.3) imply

/ fug (2)(P2 — ®1)us(z)|dz|

/ (t (ur (2)B5ua (=) — un(2) Byuas (2)) [d]

oD
:/M( (3“2 >u1(z) ~tuy() 2L )> dz
:/ ("(Aua(2)) u1(2) — fuz(z) Aug (2)) dRez dImz
D
_ /D 2(2)) w1 (2) — tua(2) v (2) wi (2)) dRez dIme
= /D u2(2)(v2(2) — v1(2))u1(z)dRez dlmz. 0

Now let fi,, denote the complex conjugate of p, (the solution of (2.4)) for
a M, (R)-valued potential v and, more generally, the solution of (2.4) with
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9z (2, ¢, A) replaced by g.,(z,(, A) for a M, (C)-valued potential v. In order
to make use of (3.1) we define

ur(2) = Y1z (2, A) = AE7207 1 (2, 0),
- s

UQ(Z) = zﬁQ,zo (27 _)‘) = 6_5\(2_20) ,U2(Z> _)‘)7

for zo € D, A € C, |A\| > p (p is mentioned in section 2), where we set
H1 = M1z, M2 = M2,z for simplicity’s sake and pi1 .., p2,2, are the solutions
of (2.4) with v replaced by vy, ‘vs, respectively.

Equation (3.1), with the above-defined w1, uo, now reads

(3.4) / / e AE) U (2 N (@ — By) (2, )M 1y (¢, )] dC]|dz]
oD JOoD
= / exz(2) "l (z, =) (v2 — v1)(2) 1 (2, \)dRez dImz.
D

with ey ., (2) = M2’ =A(E=20)" and (D4 — @) (2, () is the Schwartz kernel
of the operator &9 — ®4.
The right side I(\) of (3.4) can be written as the sum of four integrals,

namely

Li(\) = /D ez (2)(v2 — v1)(2)dRez dlmz,
B = [ exa ()2 = Doz = 1)(2) g = TRz dlm,
Is(\) = /D ex.z(2) (12 — I)(v2 — v1)(2) dRez dImz,

Ii(\) = /D €xz0(2) (V2 —v1)(2) (1 — I)dRez dImz,

for zg € D.
Since (va—wv1)|op = %(UQ—Ul)’aD = 0, the first term, I, can be estimated
using Lemma 2.2 as

2 log(3|A
33 |2 (o) = wnCao)| < (D) EE M o — vl

for |A| > 1. The other terms, Io, I3, I, satisfy, by Lemmata 2.1 and 2.4,

38 181 <| [ ernl) (Tt - )@ g a0 dRe i
D

log(3|])
+O< N

)t o)

(3.7) |I3] < ’/ exz0(2) (Togniv2)(va — v1)(2)dRez dlmz
D

log(3]A])
O< RE

)0
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(3.8) |14 < ’/D ez (2) (v2 — v1)(2) (g2, 2v1)dRez dImz
+0 (W) Clo(D, N, n),

where N is the constant in the statement of Theorem 1.1 and || is sufficiently
large, for example for X such that
c2(D)

(3.9) 2n <
A2

, A > 1.

N |

Lemmata 2.5, 2.6, applied to (3.6)-(3.8), give us

(310) ’-[2| < Cll(D,an) |)\|2 ’
log(3|A 2
(3.11) 13| < 612(D’N’n)(|)\|<1-|"3/“)1)7
log(3|A 2
(3.12) |1s] < c13(D, N, ”)(|/\‘<1J’r3/|?4)'

The left side J(A) of (3.4) can be estimated as follows:
(3.13) AT < e1a(D, )P0 5 — By,

for A which satisfies (3.9), and L = max.cgp, »oep |2 — 20]-
Putting together estimates (3.5)-(3.13) we obtain

(3.14)

(log(3|A1)* | 2

[v2(20) — v1(20)| < c15(D, N, n) B }614(D7”)e(2L2H)wH¢’2 — &

for any z9 € D. We call € = ||®3 — ®1]| and impose |\ = ylog(3 + & 1),
where 0 < v < (2L% + 1)~ so that (3.14) reads

(3.15)
[va(20) — v1(20)] < e15(D, N, n)(vlog(3 + 1)~ 1 (log(37log(3 + 1))
2
+ —c14(D,n)(3 + 5_1)(2L2+1)75,
™
for every zg € D, with

(3.16) 0<e<e(D,N,v,n),

where 1 is sufficiently small or, more precisely, where (3.16) implies that
IA| = ylog(3 + e71) satisfies (3.9).
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As (3 + 6_1>(2L2+1)75 — 0 for ¢ — 0 more rapidly then the other term,

we obtain that

(log(3log(3 + || @2 — <I>1H*1)))2

(3.17)  |lva = vi|lpeo(py < c16(D, N, 7, 7) 3
(log(3 + [[ @2 — @4[| 1)) *

for any € = ||®g — @1]| < e1(D, N,7v,n).

Estimate (3.17) for general € (with modified ¢;¢) follows from (3.17) for
e < e1(D, N,v,n) and the assumption that ||vj||pepy < N, j = 1,2. This
completes the proof of Theorem 1.1. O

4. PROOFS OF LEMMATA 2.5, 2.6, 3.1.

Proof of Lemma 2.5. We decompose the operator g, x, defined in (2.12), as
the product iTZO’ ,\sz A, Where

i1 T 1 (¢—20)%4+A(C—20) IRec
(@) T =~ [ (@ dReC .
i 1 (C—20)2~A(C—20)?
(12) D)= [ S @ dRec i,
™ JD zZ—C

for zp, A € C. From the proof of [13, Lemma 3.1] we have the estimate

m(D) log(3|A1) '

43) I Taulon) < il +m(D) =25 | 52

C(D)
for u € CH(D), 20 € D, |\| > 1. As the kernels of T}, , and T}, are
conjugates of each other we deduce immediately that

m(D) log(3[A])

(44) [[Tonullopy < 2 lulle(py +m2(D)—537— A ‘ A =1,

C(D)

0z

for u € C1(D). Combining the two estimates we obtain

l9xz0ulloy = ZHT207)\T207)\U||C(D)

1 Tl log(3|\
( (D [V HC(D)JFW(D) og(3|A|)

< - Tz AU
4 A1/ Al Haz ’ C(D))

log(3|A
+ 2B ’)\uu(;w))

AT TIER o

log(3|A])
R

ulem log(3IA)) |0
§773(D)<H lo) , loa3) D‘“ o
C(D

< n4(D)

lullerpy,  [AI=1,

where we use the fact that ||%TZO7)\U”C(D) = |lulle(p)- O
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Proof of Lemma 2.6. For 0 <e <1, zo € D,let B,,. ={2 € C: |z — 2| <
e}. We write W (u,v)(A) = WL(A) + W2(\), where

Wi = / e)‘(Z_ZO)Q_;‘(Z_EO)Qu(z)gzO,Av(z)dRez dlmz,
DNB., ..

W?2(\) = / e/\(z_zo)z_j‘(z_zo)zu(z)gzO,)\v(z)dRez dlmz.
D\B.y .-

The first term, W, can be estimated as follows:

22 log(3A\])

45) W] < ou(Dyn)llulleepylvllespy BT

Al =1,

where we use estimates (2.16) and (2.22).
For the second term, W?2, we proceed using integration by parts, in order
to obtain

/ )\(z 20)2—X\(Z—%0)? U(Z)gZO’)\U(Z) dz
42)\ 8(D\Bz.c) Z— 2

oA(z—20)? ~X(z-2)2 0 MZ)QZOW(Z)) dRez dImz.
2)\ D\B-, - 0z zZ— 20

This implies that

[w(2)gz020(2) [l ()
46) W2\ < / i dz
(4.6) [W=(N)| N ooz, 17— 7l |dz|

L b / A—m0)2-Az-20)? O <“(Z)90“’(Z)> dRez dImz| ,
2(Al|/p\B., - 0z S

for A # 0. Again by estimates (2.16) and (2.22) we obtain

10g(3€*1) log(3|A[)
A2

@7 W) < o2 (D,n)llullcapylvller o

. _
+ o / u(z)zo’i()dRez dlmz|, Al > 1,
8|A| D\Bzos Z— 20
where we used the fact that Zg. \v(z) = %e*/\(Z*ZO)QJr;‘(E*EO)QTZO’AU(Z),

with T, » defined in (4.2).
The last term in (4.7) can be estimated independently of € by

log(3|A
(4.8) o3(D,n)|lullopyllvlorn MéJg/L)

This is a consequence of (4.3) and of the estimate

log(3|A) (1 + |z = 20[)71(D)
Allz = 20/

(4.9) | T au(2)] < lullormys 1A =1,
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for u € CL(D), 2,20 € D (a proof of (4.9) can be found in the proof of [13,
Lemma 3.1]).
Indeed, for 0 < 6 < % we have

T,
/ u(z)wdRez dlmz
D Z =20

T, T,
< / |u(z)|MdRez dlmz + \u(z)\MdRez dImz
B

2.6ND |z — 2ol D\B..s |2 — 20

To(D,n) dRez dlmz
SHUHC(D)HUHC;(D)W 5 p 12—z
20,

log(3|A]) dRez dImz
+ ||UHC(D)HUHC§(D)7’)\| 73(D,n) /D\B I
20,0
5 log(3|A|)
< 27THUHC(D)HU”c;(D)W(Dan)@ + HUHC(D)HUH(J;(D)M(Dvn) N

for |A\| > 1. Putting 6 = %])\|_1/4 in the last inequality gives (4.8).
Finally, defining ¢ = [A\|~'/2 in (4.7), (4.5) and using (4.8), we obtain the
main estimate (2.24), which thus finishes the proof of Lemma 2.6. O

Proof of Lemma 3.1. Take u € H*(D, M,(C)) such that (—A +v)u = 0 on
D and u|sgp = 0. We want to prove that w =0 on D.

By our hypothesis, for any f € CY(0D, M,(C)) there exists a unique
f € HY(D, M,(C)) such that (—A +v)f =0 on D and f|op = f. Thus we

have, using Green’s formula (3.3),

/a t<gz> fldz| = / (t(Au) f_ tUAf) dRez dImz
D D
B / (t(tvu) f- tuvf) dRez dlmz = 0,
D

which yields g%]ap = 0. Now consider the following straightforward gener-

alization of Green’s formula (3.3),

(4.10)
/8D (t(gi) 9= tfgi> |dz| = /Dt((A =! )f) g—"f (A —v)g)dRezdlmz,

which holds (weakly) for any f,g € H'(D,M,(C)). If we put f = u we
obtain

(4.11) / fu (—A 4+ v)g dRez dlmz = 0,
D

for any g € H'(D, M, (C)). By Fredholm alternative (see [6, Sec. 6.2]), for
each h € L*(D, M,(C)) there exists a unique g € H}(D, M,(C)) = {g €
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HY (D, M,(C)) : glap = 0} such that (—A + v)g = h. This yields u = 0 on
D and thus Lemma 3.1 is proved. |

5. AN EXTENSIONS OF THEOREM 1.1

As an extension of Theorem 1.1 to the case where we do not assume that

vilap = v2lop and %Ul‘a[) = a%vgb[), we give the following proposition:

Proposition 5.1. Let D C R? be an open bounded domain with a C? bound-
ary, vi,vy € C*(D, M,(C)) two matriz-valued potentials which satisfy (1.4),
with ||Uj||CQ(D) < N for j = 1,2, and ®1, Py the corresponding Dirichlet-

to-Neumann operators. Then, for any 0 < a < %, there exists a constant

C =C(D,N,n,«) such that
(5.1) lvz — w1l (py < C (log(3 + | @2 — ®1171) 7,

where, for an operator A which acts on L>(0D, M,,(C)) with kernel A(x,y),
IAll1 s the norm defined as | Ally = sup, yeap [A(z, y)|(log(3+ [z —y| 1))~
and |A(z, y)| = maxi<ij<n [Aij(z, )|

The only properties of || - |1 we will use are the following:

i) [|1All oo (9D)— L= (op) < const(D,n)|| Al|;
i) In a similar way as in formula (4.9) of [11] one can deduce

[0][ Lo (9p) < const(n)[|®, — o1,

for a matrix-valued potential v, ®, its associated Dirichlet-to-Neu-
mann operator and ®g the Dirichlet-to-Neumann operator of the 0

potential.

We recall a lemma from [13], which generalizes Lemma 2.2 to the case of
potentials without boundary conditions. We then define (9D)s = {z € C:
dist(z,0D) < 0}.

Lemma 5.2. For v € C?(D) we have that

2 _41log(3|A
52 fotao) = 2RO < (0,5 EE o

+ w2(D, ) log(3 + 07 |[vllc(op)
forzoe D\ (0D)s, 0<d <1, AeC, |A| > 1.

The proof of Lemma 5.2 for the scalar case can be found in [13] and its

generalization to the matrix-valued case is straightforward.
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Proof of Proposition 5.1. Fix 0 < a < é and 0 < § < 1. We then have the
following chain of inequalities

[ve — 1|l Lo ()
= max(|lva — vil| L (Dn(aD)s)s 12 = V1l (D\(0D)s))
log(3log(3 + [|P2 — @1 71))
641og(3 + [[@2 — @1 71)
(log(310g(3 + || — ¢>1||—1>>>2>
(log(3 + [|2 — @1 71))

< Ci max <2N5—|- |2 — Py|1,

1
+log(3 + g)H% — ®qf[y +

1 _1\\ =B
< (C9ymax <2N5 + ||(I)2 — (I)lHl; g (log(3 —+ H(I)Q — (131”1 1)) >

— 2
1 log(3log(3 + ||®2 — ®1]|7*
log(3+ L)y a4+ LG22 =00l ) )

_ 3
(log(3 + [|[ @2 — ®1]I71))

where we followed the outline of the proof of Theorem 1.1 with the following
modifications: we made use of Lemma 5.2 instead of Lemma 2.2 and we also
used i)-ii); note that C; = C1(D, N,n) and Co = Cy(D, N, n,a).

Putting § = (log(3 + || ®2 — <I>1H1_1))_a we obtain the desired inequality

(5.3) v — vi]| oo (py < C3 (log(3 + [|@2 — @1 [;1)) ",

with C3 = C3(D, N,n,a), [|[P2 — @1|1 = ¢ < e1(D, N,n,a) with e; suffi-

ciently small or, more precisely when &; = (log(3 + 61_1))70[ satisfies:

1
0 <1, g1 < 2N, log(3 + 5*)81 < d.
1

Estimate (5.3) for general € (with modified C3) follows from (5.3) for
e < e1(D,N,n,a) and the assumption that [|vjl|pepy < N for j = 1,2.
This completes the proof of Proposition 5.1. (]
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