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Abstract

We consider the homogenization of a non-stationary convection-diffusion equa-
tion posed in a bounded domain with periodically oscillating coefficients and ho-
mogeneous Dirichlet boundary conditions. Assuming that the convection term
is large, we give the asymptotic profile of the solution and determine its rate
of decay. In particular, it allows us to characterize the “hot spot”, i.e., the pre-
cise asymptotic location of the solution maximum which lies close to the domain
boundary and is also the point of concentration. Due to the competition between
convection and diffusion the position of the “hot spot” is not always intuitive as

exemplified in some numerical tests.
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1 Introduction

The goal of the paper is to study the homogenization of a convection-diffusion
equation with rapidly periodically oscillating coefficients defined in a bounded

domain. Namely, we consider the following initial boundary problem:
Ot (t,x) + A*u(t,z) =0, in (0,7) x Q,
u(t,z) =0, on (0,T) x 09, (1.1)

u€(07.%') - ’LLO((L'), HARS Qa
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where ©Q C R? is a bounded domain with a Lipschitz boundary 99, ug belongs
to L2(Q) and A® is an operator defined by

att = (D) ) 20 () gy

where we employ the convention of summation over repeated Latin indices. As

usual e, which denotes the period of the coefficients, is a small positive param-
eter intended to tend to zero. Note the large scaling in front of the convective
term which corresponds to the convective and diffusive terms having both the
same order of magnitude at the small scale £ (this is a classical assumption in
homogenization [5], [12], [13], [21]). We make the following assumptions on the

coefficients of the operator A°.

(H1) The coefficients a;;(y), b;(y) are measurable bounded functions defined on
the unit cell Y = (0, 1]¢, that is a;;,b; € L>®(Y). Moreover, a;;(y), b;(y) are
Y -periodic.

(H2) The d x d matrix a(y) is uniformly elliptic, that is there exists A > 0 such
that, for all £ € R% and for almost all y € Q,

ai(y)&i&; > AJ¢.

For the large convection term we do not suppose that the effective drift (the
weighted average of b defined below by (2.4)) is zero, nor that the vector field b(y)
is divergence-free. Some additional assumptions on the smoothness and compact
support of the initial data ug will be made in Section 2 after introducing auxiliary
spectral cell problems. In view of (H1) and (H2), for any € > 0, problem (1.1)
has a unique weak solution u® € L*>[0,T; L?(2)] N L2[0,T; H(Q)] (see [6]).

Our main goal is to describe the asymptotic behavior of the solution u®(t, x) of
problem (1.1) as € goes to zero. There are of course many motivations to study
such a problem (one of them being the transport of solutes in porous media
[17]). However, if (1.1) is interpreted as the heat equation in a fluid domain
(the fluid velocity being given by e~!b(x/¢)), we can paraphrase the famous “hot
spot” conjecture of J. Rauch [23], [7], [10], and ask a simple question in plain
words. If the initial temperature ug has its maximum inside the domain €2, where
shall this maximum or “hot spot” go as time evolves 7 More precisely, we want
to answer this question asymptotically as € goes to zero. Theorem 2.1 (and
the discussion following it) gives a complete answer to this question. The “hot
spot” is a concentration point x., located asymptotically close to the boundary
08 (see Figure 1), which maximizes the linear function © - z on €2 where the
vector parameter O is determined as an optimal parameter in an auxiliary cell
problem (see Lemma 2.1). Surprisingly © is not some average of the velocity field
but is the result of an intricate interaction between convection and diffusion in
the periodicity cell (even in the case of constant coefficients ; see the numerical

examples of Section 7). Furthermore, Theorem 2.1 gives the asymptotic profile



of the solution, which is localized in the vicinity of the “hot spot” z., in terms of
a homogenized equation with an initial condition that depends on the geometry
of the support of the initial data wy.

Before we explain our results in greater details, we briefly review previous re-
sults in the literature. In the case when the vector-field b(y) is solenoidal and has
zero mean-value, problem (1.1) has been studied by the classical homogenization
methods (see, e.g, [8], [25]). In particular, the sequence of solutions is bounded
in L>[0,T; L*(2)] N L?[0,T; H*(Q2)] and converges, as € — 0, to the solution of
an effective or homogenized problem in which there is no convective term. For
general vector-fields b(y), and if the domain © is the whole space R?, the con-
vection might dominate the diffusion and we cannot expect a usual convergence
of the sequence of solutions u®(t,z) in the fixed spatial reference frame. Rather,
introducing a frame of moving coordinates (t, 2z —bt/c), where the constant vector
b is the so-called effective drift (or effective convection) which is defined by (2.4)
as a weighted average of b, it is known that the translated sequence u(t,x —bt/e)
converges to the solution of an homogenized parabolic equation [5], [13]. Note
that the notion of effective drift was first introduced in [21]. Of course, the con-
vergence in moving coordinates cannot work in a bounded domain. The purpose
of the present work is to study the asymptotic behavior of (1.1) in the case of a
bounded domain €.

Bearing these previous results in mind, intuitively, it is clear that in a bounded
domain the initial profile should move rapidly in the direction of the effective
drift b until it reaches the boundary, and then dissipate due to the homogeneous
Dirichlet boundary condition, as t grows. Since the convection term is large, the
dissipation increases, as € — 0, so that the solution asymptotically converges to
zero at finite time. Indeed, introducing a rescaled (short) time 7 = e~'t, we

rewrite problem (1.1) in the form
oru® — Ediv(ae Vu":) +b°-Vu® =0, in (0,e17T)xQ,
us(r,z) =0, on (0,671 T) x 99, (1.2)
uf(0,x) = up(x), x €.

Applying the classical two-scale asymptotic expansion method [8], one can show

that, for any 7 > 0

/ |u® (1, z) — uO(T,x)|2 dr — 0, &—0,
Q

where the leading term of the asymptotics u” satisfies the following first-order

equation
o.u’(1,2) +b-Vul(r,z) =0, in (0,400) x Q,

u®(7,2) =0, on (0, +00) x 0, (1.3)

UO(O,{E) - ’U,O(.%'), T € Q7



with b being the vector of effective convection defined by (2.4). Here 9€); is the
subset of 9§ such that b-n < 0 where n stands for the exterior unit normal on
0. One can construct higher order terms in the asymptotic expansion for uc.
This expansion will contain a boundary layer corrector in the vicinity of 9\ 9.
A similar problem in a more general setting has been studied in [9].
The solution of problem (1.3) can be found explicitly,
ug(x — br), for (r,x) such that z, (z —br) € Q,
ud(r,x) =

0, otherwise,

which shows that u’ vanishes after a finite time 79 = O(1). In the original

coordinates (t,z) we have

/ lus(t,z) — up(x — e Lbt)|>dz — 0, &— 0.
Q

Thus, for t = O(g) the initial profile of u* moves with the velocity e~!b until it
reaches the boundary of €2 and then dissipates. Furthermore, any finite number of
terms in the two-scale asymptotic expansion of u®(7,z) vanish for 7 > 79 = O(1)
and thus for ¢ > ¢y with an arbitrary small £5 > 0. On the other hand, if ug
is positive, then by the maximum principle, u¢ > 0 for all ¢. Thus, the method
of two-scale asymptotic expansion in this short-time scaling is unable to capture
the limit behaviour of u®(t,x) for positive time. The goal of the present paper
is therefore to perform a more delicate analysis and to determine the rate of
vanishing of u®, as ¢ — 0.

The homogenization of the spectral problem corresponding to (1.1) in a bounded
domain for a general velocity b(y) was performed in [11], [12]. Interestingly
enough the effective drift does not play any role in such a case but rather the key
parameter is another constant vector © € R? which is defined as an optimal ex-
ponential parameter in a spectral cell problem (see Lemma 2.1). More precisely,
it is proved in [11], [12]| that the first eigenfunction concentrates as a boundary
layer on 92 in the direction of ©. We shall prove that the same vector parameter
© is also crucial in the asymptotic analysis of (1.1).

Notice that for large time and after a proper rescaling the solution of (1.1)
should behave like the first eigenfunction of the corresponding elliptic operator,
and thus concentrates in a small neighbourhood of 0f2 in the direction of ©. We
prove that this guess is correct, not only for large time but also for any time
t = O(1), namely that u®(¢,z) concentrates in the neighbourhood of the “hot
spot” or concentration point z. € 92 which depends on ©. The value of © can
be determined in terms of some optimality property of the first eigenvalue of an
auxiliary periodic spectral problem (see Section 2). It should be stressed that,
in general, © does not coincide with b. As a consequence, it may happen that
the concentration point z. does not even belong to the subset of 02 consisting of
points which are attained by translation of the initial data support along b. This

phenomenon is illustrated by numerical examples in Section 7.
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The paper is organized as follows. In Section 2 we introduce auxiliary spectral
problems in the unit cell Y and impose additional conditions on the geometry of
the compact support of ug. We then state our main result (see Theorem 2.1) and
give its geometric interpretation. In Section 3, in order to simplify the original
problem (1.1), we use a factorization principle, as in [24], [18], [26], [11], based
on the first eigenfunctions of the auxiliary spectral problems. As a result, we
obtain a reduced problem, where the new convection is divergence-free and has
zero mean-value. Studying the asymptotic behaviour of the Green function of
the reduced problem, performed in Section 4, is an important part of the proof.
It is based on the result obtained in [1] for a fundamental solution of a parabolic
operator with lower order terms. Asymptotics of u® is derived in Section 5. In
Section 6 we study the case when the boundary of the support of ug has a flat
part. To illustrate the main result of the paper, in Section 7 we present direct
computations of u® using the software FreeFEM++ [15]. A number of basic facts

from the theory of almost periodic functions is given in Section 8.

2 Auxiliary spectral problems and main result

We define an operator A and its adjoint A* by
Au = —div(aVu) +b-Vu, A*v = —div(a? Vo) — div(bv),

where a” is the transposed matrix of a. Following [8], for # € R?, we introduce two
parameterized families of spectral problems (direct and adjoint) in the periodicity
cell Y = [0,1)%.

e PV ALY pa(y) = AO) po(y), Y,

y — po(y) Y-periodic.

eV A eV pi(y) = AO0) pj(y), Y,

y — pp(y) Y-periodic.

(2.1)

(2.2)

The next result, based on the Krein-Rutman theorem, was proved in [11], [12].

Lemma 2.1. For each 0 € R?, the first eigenvalue \i(0) of problem (2.1) is
real, simple, and the corresponding eigenfunctions pg and py can be chosen pos-
itive. Moreover, 0 — \1(0) is twice differentiable, strictly concave and admits a

mazximum which is obtained for o unique 6 = ©.

The eigenfunctions pg and pj defined by Lemma 2.1, can be normalized by

[wPay =1 and [ty sit)dy = 1.
Y Y

Differentiating equation (2.1) with respect to 6;, integrating against pj and writ-
ing down the compatibility condition for the obtained equation yield

O\
00;

= / (bi po Py + aij(pg Oy, 5 — Ph Oy;p0) — 20; asj pe ) dy. (2.3)
v
5)



Obviously, pg—g = 1, and, thus,

oA . . -
69% (0=0)= / (bi Pj—o + aij Oy, ph—o) dy = bs, (2.4)
¥

which defines the components b; of the so-called effective drift. In the present
paper we assume that b # 0 (or, equivalently, © # 0). The case b = 0 can be
studied by classical methods (see, for example, [25]). The equivalence of b = 0
and © = 0 is obvious since A1(#) is strictly concave with a unique maximum.
We need to make some assumptions on the geometry of the support w (a
closed set as usual) of the initial data ug with respect to the direction of ©. One

possible set of conditions is the following.

(H3) The initial data ug(x) is a continuous function in 2, has a compact support

w € Q and belongs to C?(w). Moreover, w is a C%-class domain.

(H4) The “source” point T € dw, at which the minimum in min,¢,, ©-x is achieved,

is unique (see Figure 1(a)). In other words
© - (r—2)>0, zew)\{z} (2.5)

(H5) The point  is elliptic and dw is locally convex at Z, that is the principal
curvatures at T have the same sign. More precisely, in local coordinates the
boundary of w in some neighborhood Us(z) of the point  can be defined
by

zq = (S7,2) + o(|Z %)

for some positive definite (d —1) X (d — 1) matrix S. Here 2’ = (21, - 24-1)
are the orthonormal coordinates in the tangential hyperplane at z, and z4

is the coordinate in the normal direction.

(H6) Vuo(z)- O 0.

Remark 2.1. In assumption (H3) it is essential that the support w is a strict
subset of Q, i.e., does not touch the boundary 02 (see Remark 5.3 for further com-
ments on this issue). However, the continuity assumption on the initial function
ug s not necessary. It will be relazed in Theorem 5.2 where ug(x) still belongs
to C%(@) but is discontinuous through Ow. Of course, assuming continuity or not
will change the order of convergence and the multiplicative constant in front of
the asymptotic solution.

Note that assumption (H4) implies that © # 0 is a normal vector to Ow at .

Eventually, assumption (H6) is required because, ug being continuous in €2,

we have up(z) = 0.

To avoid excessive technicalities for the moment, we state our main result in

a loose way (see Theorem 5.1 for a precise statement).



(a) (b)

Figure 1: Definition of the source point z and of the concentration point z..

Theorem 2.1. Suppose conditions (H1) — (H6) are satisfied and © # 0. If u®
is a solution of problem (1.1), then, for any ty > 0 and t > t
_ A (©)t (x—7)
ut(t,x) ~ 2t e e Mep@(z) u(t,z), e€—0,
€
where (A1(©),pe) is the first eigenpair defined by Lemma 2.1 and u(t,z) solves

the homogenized problem

Ou = div(a® Vu), (t,z) € (0,T) x Q,

u(t,a:) = 0, (t,ﬂ?) € (O,T) X OQ, (26)
., © _
u(0,x) = Vup(z) - 0] iz —x), zeq.

Here % is a positive definite matriz, defined by (4.7), M. is a constant, defined
i Theorem 5.1, depending on pg, on the geometry of Ow at T and on the relative
position of T in €Y (see Remark 5.1 and Figure 2), and §(x — &) is the Dirac

delta-function at the point T.

The interpretation of Theorem 2.1 in terms of concentration or finding the “hot
spot” is the following. Up to a multiplicative constant £ 6%M€, the solution u®
is asymptotically equal to the product of two exponential terms, a periodically
oscillating function pe (%) (which is uniformly positive and bounded) and the
homogenized function u(t,z) (which is independent of €). The first exponential
term 6_% indicates a fast decay in time, uniform in space. The second ex-
ponential term em is the root of a localization phenomenon. Indeed, it is
maximum at those points on the boundary, x. € 0€), which have a maximal coor-
dinate © -z, independently of the position of Z (see Figure 1(b)). These (possibly
multiple) points z. are the “hot spots”. Everywhere else in € the solution is ex-
ponentially smaller, for any positive time. This behaviour can clearly be checked
on the numerical examples of Section 7. It is of course similar to the behavior of

the corresponding first eigenfunction as studied in [12].
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The proof of Theorem 2.1 consists of several steps. First, using a factorization
principle (see, for example, [24], [18], [26], [11]) in Section 3 we make a change
of unknown function in such a way that the resulting equation is amenable to
homogenization. After that, the new unknown function v°(t,x) is represented in
terms of the corresponding Green function K¢(¢,z,¢). Studying the asymptotic
behaviour of K¢ is performed in Section 4. Finally, we turn back to the original
problem and write down the asymptotics for u® in Section 5 which finishes the

proof of Theorem 2.1.

Remark 2.2. Theorem 2.1 holds true even if we add a singular zero-order term
of the type e 2c(2)uf in the equation (1.1). This zero-order term will be removed
by the factorization principle and the rest of the proof is identical. With some
additional work Theorem 2.1 can be generalized to the case of so-called cooperative
systems for which a maximum principle holds. Such systems of diffusion equa-
tions arise in nuclear reactor physics and their homogenization (for the spectral
problem) was studied in [12].

3 Factorization

We represent a solution u® of the original problem (1.1) in the form

_ MOt e(z—7) T

u(t,z) =e 2 e = p@(g) ve(t, x), (3.1)

where © and pg are defined in Lemma 2.1. Notice that the change of unknowns

is well-defined since pg is positive and continuous. Substituting (3.1) into (1.1),

z
€

multiplying the resulting equation by pg( ) and using (2.2), one obtains the

following problem for v®:
00(2) " + A5 =0, (tx) € (0,7) x O
'UE(t, x) — 0, (t, x) 6 (O,T) X aQ, (32)

to(z) -t=2 ren
I )

where 9g(y) = p@(y)p*@(y) and

9 0Ty vy Liom v
8xi(a’j(5)3m]~)+5 i(a)ami’

du=-
and the coefficients of the operator Ag are given by

a5 (y) = oo (y) ai; (y);
b (y) = 00 (y) bj(y) — 2 00 (y) ai; (y) ©; (3.3)

+aij(y) [pe(y) 9y, p5(y) — P& (y) 9y, pe(y)].



Obviously, the matrix a®

is positive definite since both pg and pg are positive
functions. Moreover, it has been shown in [11] that, for any 6 € R%, the vector-

field oY is divergence-free and that, for § = ©, it has zero mean-value

/b@(y) dy=0; divt! =0, V6. (3.4)
Y

Remark 3.1. This computation leading to the simple problem (3.2) for v¢ does
not work if the coefficients are merely locally periodic, namely of the type a(x, xz /<),
b(xz,x/e). Indeed there would be additional terms in (3.2) due to the partial deriva-
tives with respect to the slow variable x because \1(0©) and pg would depend on

x.

Although problem (3.2) is not self-adjoint, the classical approach of homog-
enization (based on energy estimates in Sobolev spaces) would apply, thanks to
(3.4), if the initial condition were not singular (the limit of e s 0 or +00
almost everywhere). This singular behavior of the initial data (which formally has
a limit merely in the sense of distributions) requires a different methodology for
homogenizing (3.2). In order to overcome this difficulty, we use the representation

of v* in terms of the corresponding Green function

M |y

pe(3)

where, for any given &, K., as a function of (¢,z), solves the problem

v (t,x) = / K.(t,z,€) M08) =m0 (3.5)
Q

00 (2) AWKt 0,€) + Ap Ke(t,2,€) =0, (t2) € (0,7) x
K (t,z,§) =0, (t,x) € (0,T) x 092, (3.6)
K (0,z,8) = d(x — &), x € Q,

The strategy is now to replace the Green function K. by an ansatz in (3.5) and

to study the limit, as € — 0, of the resulting singular integral. The next section

is devoted to the study of the asymptotic behavior of K.

4 Asymptotics of the Green function K.

The main goal of this section is to prove the following statement.

Lemma 4.1. Assume that conditions (H1) — (H2) are satisfied. Let K. be the
Green function of problem (3.2). Then, for any ty > 0 and any compact subset
B €, there exists a constant C such that, for allt >ty >0, £ € B,

[1Kett..0) - Kot )P < C 22
Q
|K€(t,$,£) - Ko(t,$,£)| < Cefy’ HS Qa



where the constant C depends on to,dist(B,09Q),Q, A, d and is independent of ¢,
v =v(Q,A,d) > 0, and Ky is the Green function of the homogenized problem

(2.6), i.e., as a function of (t,x), it solves
O Ko(t,z,&) = div(a®*VEKy(t,x,£)), (t,x) € (0,T) x Q,
Ko(t,z,§) =0, (t,z) € (0,T) x 09, (4.1)
Ko(0,2,&) = 0(z — &), x €,

with the constant positive definite matriz a®™ defined by (4.7).

Proof. The main difficulty in studying the asymptotics of the Green function K,
defined as a solution of (3.6), is the presence of the delta function in the initial

condition. To overcome this difficulty, we consider the difference

V;(t,x,f) = (1)8(t7x7§) - KE(t7x7§)a

where @, is the Green function of the same parabolic equation in the whole space,

that is, for £ € R?, ®,, as a function of (¢, ), is a solution of the problem

Q@(g) o®(t,z,8) -{—A€@<I>€(t,x,£) =0, (t,x)€(0,T)x Rd’

(4.2)
®.(0,2,¢) = d(z — €), z € R%
In this way, for all £ € Q, V, as a function of (¢, x), solves the problem
00 (2) Vet 2, ) + A Velt,2,©) =0, (t2) € (0.7) x 2,
Ve(t,z,8) = c(t, x,8), (t,x) € (0,T) x 9%, (4.3)

Va(0,2,€) =0, req.

We emphasize that V;, in contrast with K., is Holder continuous for all ¢ > 0
provided that & ¢ 0.
Notice that, by a proper rescaling in time and space, ®. can be identified with

the fundamental solution of an operator which is independent of €. Indeed,

o.(t,,6) = 0( 5,55, (4.4

where ®(7,y,n) is defined, for n € R%, as the solution in (7,y) of
0e(y) 0:®(r,y,n) + Ae®(r,y,n) =0, 7>0, y R,
(I)(07y777) = 5(y - 77)7 Yy € Rd'

Here, for brevity, we denote by Ag the rescaled version of Ag

(4.5)

Ae®(7,y,m) = —divy(a®(y)Vy@(1,y,1)) + b (y) - V@ (7, y,7).
We also introduce the fundamental solution ®¢(¢,x, &) for the effective operator

9@y = div, (a*™V,Dg), (t,z) € (0,T) x RY,
(4.6)
@0(071’75) :(5(.%'—5), x eRd'

10



The homogenized matrix a®® is classically [8], [25] given by

0 = / (a8(y) + a8 (1)0y.N; () — b9 (4) N; (1)) dy
Y (4.7)
= [ (@00 + B0, N ) + 60 0) N5 )
Y

where the vector-valued functions N = (N;)1<i<q and N* = (N;")1<i<q solve the

direct and adjoint cell problems, respectively,

~div(a®VN;) + % - VN; = 8,,a0(y) — b9 (y), Y,
(4.8)
y — N; Y — periodic;

—div((a®)"VN;) = b° - VN = 0,,a5(y) + b (y), Y,

J

(4.9)
y+— N Y — periodic.
The matrix a°® is positive definite (see, for example, [8], [20], [25]) and is exactly
the same homogenized matrix as in the homogenization of the spectral problem
[11]. Note that N and N* are Holder continuous functions (see [16]). The solution
of problem (4.6) can be written explicitly:

T — Ta/effflx_
1 1 p{_( §)” (a™)” ( 5)}.

Bo(t, z,€) =
ot:2,8) = Tt detan At

The first-order approximation for the Green function ®, solution of (4.5), is de-

fined as follows

Q1(1,y,m) = Po(7,y,m) + N(y) - VaPo(7,y,m) + N*(n) - Ve@o(1,9,m). (4.10)

By means of Bloch wave analysis it has been shown in [1] that, under assumption

(3.4), there exists a constant C such that, for any 7 > 1 and y,n € RY,

C
[2(7,9,1) = Do(7,y, M| < 75

C
[2(7,y,m) = @1(7 4| < Gy

(4.11)

Thus, in view of the rescaling (4.4), there exists a constant C' > 0, which does

not depend on ¢, such that, for any t > €2, z,& € RY,

Ce
[@=(t,2,€) = Ro(t, 2, )| < Sgyyss
022 (4.12)
e
[2:(t,2,€) = 25(t,2,6)| < Sy

Here ®5(t,2,&) = ¢ <I>1(€i2, Z, g), namely

e

11



Next, we study the asymptotic behavior of V, solution of (4.3). The (formal)
two-scale asymptotic expansion method suggests to approximate V. by a first-

order ansatz defined by

Vle(t?xag) = ‘/b(t,xag) + 6N(§) : vx‘/(](t’xag) + 6N*(§) : Vf‘/(](t,xag)a (414)
where N and N* are the solutions of cell problems (4.8) and (4.9), respectively,

and, for fixed £, Vj, as a function of (¢, ), is the solution of the effective problem

OHVo(t, z, &) = dive(a™' V. Vo(t, z,€)), (t,z) € (0,T) x €,
Volt, 2,€) = Bo(t, z,£), (to) € (0,T)x 00,  (415)
‘/O(O,{E,f) = 07 x € .

Due to the maximum principle and to the explicit formula for @, there exists a
constant C, which depends only on A and d, such that, for any compact subset
BeQO, (e B, (t,z) €[0,T] x Q,

0< Vb(t,.%',f) < max (bo(t, ’5) 2

< - 4.16
T (t,2)€[0,T)x 09 Bs) = dist(B, 90Q)¢ ( )

Moreover, combining (4.16) with the local estimates of the derivatives of Vj gives

C
<
— diSt(B, aQ)d+2k+l+m’

Ora, O Vo(t, x, ) (t,z,8) € [0,T] x 2 x B.

(4.17)

To finish the proof of Lemma 4.1 we need the following intermediate result.

Lemma 4.2. Let V. and Vy be solutions of problems (4.3) and (4.15), respectively.
Then, for any compact subset B € §Q, there exists a positive constant C, only
depending on dist(B,00Q),Q,d, A, such that, for any (t,€) € [0,T] x B,

[ Weltsr.©) = Vott. )P do < €2
Q

Proof. Let VF be the first-order approximation of V. defined by (4.14). Evaluating
the remainder after substituting the difference V¢ = V¢ — V. into problem (4.3),

we get

( Z 1€ RV £ 5
Q@(g) atV +A®V :F(t,xagagag)
ref(bn& %), (Lo e x9

(4.18)

V= Ge(tn &L 0), (ha) € (0,7) x 00,

175(0,36,5) =0, x € Q,
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with F, f and G defined by
F(t,z,&y,m) = 0o (y) Vo — divy(a®(y) V(N (y) Ve Vo(t, 7, €)))
—divy(a® () Va(N*(n) VeVo(t, 2,6))) — diva(a®(y) VaVo(t, ,€))
—div (a®(y)Vy (N (1) VaVo(t, 2,€))) +0%(y) - V(N (y) Vi Vo(t, 2, €)))

+09(y) - Vo (N*(n) VeVol(t, ., £));

f(ta Z, 5; Y, 77) = N(y) ' atvx%(t7 €, 5) + N*(n) ’ 8tv§‘/0(t’ Z, 5)
—diVx(G,@ (y)vx(N(y) : va:‘/()(ta €T, 5)))
—div,(a®(y) Vo (N*(y) - VeVo(t, 2,€)));

Ge(t,x,ﬁ;y,n) = q>0(t,xa§) - (I)E(t’x’g)

By linearity, we represent Ve as a sum V¢ = Y7f + 1725, where Y7f and Y72€ are
solutions of the follwoing problems

(

Q@(g) atvls + A&éf}i’? = F(t,fL’,f, 27 g)

te ft, 2, & gg) (t,z) € (0,T) x Q,

(4.19)
Ve =0, (t,z) € (0,T) x 0%,
‘715(079575) =0, x €,
g@(g) OVE+ ASVE =0, (t,2) € (0,T) x Q,
Vs = G.(t, 2,6 g g), (t,z) € (0,T) x 9%, (4.20)
‘726(073”75) =0, x € Q.

The trick is to estimate TN/f by standard energy estimates and 1725 by the maximum
principle. First, we estimate 1715. Taking into account (4.17) and the boundedness
of N, N*, after integration by parts one has, for £ € B € €2,

[ Fltagvmu)dy) < Clul o, Yo € HYY)
Y

where H#(Y) stands for the closure of Y-periodic smooth functions with respect
to the H'(Y) norm. Thus, as a function of y, F belongs to the dual space
H;l (Y) uniformly in (¢, z,&,n). Asis usual in the method of two-scale asymptotic
expansion, equating the Y-average of F' to zero yields the homogenized equation

(4.15). Therefore, it is no surprise that, in view of (3.4), (4.15) and the periodicity

of ag,N, N*, we compute
/F(t,x,ﬁ;ym)dy = 0.

Y
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Thus, for any t,z,{ there exists a Y-periodic with respect to y vector function
x = x(t,z,&; y,n), which belongs to Li(Y;Rd), such that

F(t,z,&y,n) = divyx(t,z,&y,m)

4.21
/Ix(t,w,§;y,n)l2dy§0, (e Be. (421)
Y

By rescaling we obtain

Since b® is divergence-free, the a priori estimates are then obtained in the classical
way. Multiplying the equation in (4.19) by Y7f , integrating by parts and using
(4.21), (4.22) yield

/HN/f(t,x,@\? dr <Ce* (tz)€[0,T] xQ, £€ BeQ. (4.23)
Q

Second, we estimate 1725, solution of (4.20), by using the maximum principle. Our

next goal is to prove that

Ge(t, 2, & g §)| <Ce (t,2)€[0,T]|x 09, £€Be. (4.24)

By (4.12), for any § < 2 and t > &5,
®,(t, 2, &) — B (t,2,8)| < C 2~ [@+28/2, (4.25)

In (4.25) we find 2 — (d+2)3/2 > 1 if and only if 8 < (1+d/2)~! which is always
smaller than 2. For x € 09,£ € B € (), uniformly with respect to t > 0, we have

—_ Cplz—¢|2
C|$ §|€7 o\tE\ <C

’v$(b0(t7x7§)‘ S t1+d/2 =

and a similar bound for V¢®q. Thus, from (4.13) we deduce

|5 (¢, x,&) — Po(t,z,8)| < Ce, t>0, x€0Q, {£€BENN. (4.26)
Combining (4.25) and (4.26) yields, for any 0 < 8 < (1+d/2)7!,

|D(t,2,8) — Do(t,2,8)| < Ce, t>eP xecd écBeq. (4.27)

To estimate ®. — ®( for small ¢t € [0, B ) we make use of the Aronson estimates
[6]. Taking into account (3.4) and (4.4), we see that ®. admits the following
bound

0< D (t,z,8) = a_dcb(giz,g, g) < Qexp{

Cola — |2
= 4d/2 N }

t

with the constants Cp,C independent of €. Thus, for sufficiently small €, we

obtain
|(I)€(7f,$,§) - (I)()(t,$,£)| < |q)€(t,$,£)| + |‘1)0(t,$,§)|

C Colz — &2 C Colz — &[?
SWQXP{_ ¢ }sfiwexp{— B }

(4.28)




Thus, for t € [0,7), 2 € 0Q and £ € B € 1, the difference |®.(t, x, &) — Do (t, z, )|
is exponentially small if 5 > 0. Combining (4.27) and (4.28) yields

|D.(t,2,8) — Po(t,x,8)| < Ce, (t,x)e€[0,T]x0Q, {€BEL, (4.29)

with the constant C' depending on dist(B, ), A,d. The boundedness of N, N*,
estimates (4.17) and (4.29) imply (4.24).
Then, we use the maximum principle in (4.20) to deduce from (4.24) that

Vs(t,2,8)] <Ce, (t,2,€) €[0,T) x Qx B. (4.30)
In view of (4.23) and (4.30), we conclude

/m(t,x,g) —VEt,z,6)*de < Ce* te0,T), £€ B el
Q

Recalling the definition of V¥ and using estimate (4.17) complete the proof of
Lemma 4.2. O

Turning back to the proof of Lemma 4.1, the Green function Ky(t, z,§), which
is defined as the solution of (4.1), satisfies Ky = Vj — ®¢. Similarly, by definition,
K. =V, — ®.. Taking into account (4.12), Lemma 4.2 implies

/\Ka(t,x,g)—Ko(t,x,g)\Qdmg052, t>t>0, £E€ Be.
Q

We would like to emphasize that the constant C' in the last estimate only depends
on tg, dist(B,09), A, d, . Due to the Nash-De Giorgi estimates for the parabolic
equations (see, for example, [19]), K. is Holder continuous (of course Ky is), and,

thus, one can deduce a uniform estimate
|K(t,z,€) — Ko(t,z,8)| < Ce”, t>tr)>0, x€Q, £€ BEN (4.31)

for some v > 0 depending on €2, A and d. We emphasize that the constants C,y do
not depend on €. Indeed, due to condition (3.4), problem (3.2) can be rewritten
in divergence form, without any convective term and without any e-factor in front

of the coefficients. The proof of Lemma 4.1 is complete. O

Remark 4.1. Estimate (4.31) is enough for our purpose, but we emphasize that it
can be improved. Namely, constructing sufficiently many terms in the asymptotic

expansion for V., one can show that

|Ko(t,2,8) — Ko(t,z,8)| < Ce, t>t)>0, z€Q, £€ BEN.

5 Asymptotics of u° or v°

The goal of this section is to prove our main result Theorem 2.1 and actually to

give a more precise statement of it in Theorem 5.1. By the factorization principle
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(3.1) it is equivalent to find a precise asymptotic expansion of v°. Recall that v®,
as a solution of (3.2), can be represented in terms of the corresponding Green
function K. by using formula (3.5). Bearing in mind Lemma 4.1, we rearrange
(3.5) as follows

v (t,x) =17 + 15 (5.1)

with

re (%)

up(§) _e-a
5= | (K.(t,2,6) — Ko(t,z,6)) —~-e
Q/ pe(%)

Of course, because of (4.31), the second integral in (5.1) is going to be, at least,

= [ Rt ML g
Q

e7 times smaller that the first one. Recall that, by assumption (H3), ug has a
compact support w € €2 so we are able to use the previous estimates of Lemma 4.1.
Let us compute approximately the first integral I{. Since © - (x — ) > 0 for
x € w\ {z}, it is clear that the main contribution is given by integrating over
a neighborhood of the point . We consider the case of general position, when
condition (H5) is fulfilled, that is, in local coordinates in a neighborhood Us(Z)
of the point Z, dw can be defined by

zq = (87,2) + o(|Z']*)

for some positive definite (d — 1) x (d — 1) matrix S. Here (z1,---,24) is an
orthonormal basis such that the coordinates 2z’ = (21, -+, zq_1) are tangential to
Ow and the axis zg is the interior normal at . Note that, by assumption (H4),

O is directed along z4. The neighborhood of 7 is defined by

Us(@)={z€cw: [Z]<d, 0< 2 < 52||S||},

where ||S|| = max|,—; [Sz’|. Choosing ¢ = e!/* guaranties that the integral over

the complement to Us(Z) is negligible. Indeed,

(E—Z _ 1
[ Keleno) “OE?) e g = o).
N
w\Us(Z) bole
Let us now compute the integral over Us(Z), 6 = /4. Expanding Ky and ug

(which is of class C? in w) into Taylor series about Z and taking into account
assumption (H6), for ¢t > tg > 0, we obtain

I = Kotz 7) 9 (7) / % (-2 (po(3) e TE de 4 0P T

00 €
Us ()
L Oug C) T\—1 _©:¢ d—1
= Kolt,2,7) =22 () / = (p@(§+g)) Lo g4 0B .
Us(0)

where Jup/00 = Vug - ©/|0] is the directional derivative of ug along © (the

tangential derivative of ug vanishes at Z because ug is continuous and equal to
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0 outside w). Note that we have anticipated the precise order of the remainder
term which will be clear once we compute the leading integral. Let us introduce
the rotation matrix 98 which defines the local coordinate system (z1, 22, -+ , 2q) =
(¢, zq) previously defined. By definition it satisfies ¢ = R~z and © - & = |O] z,.
Applying this change of variables we get

et +{(IN =pe C+n{IN) =R (C+7), 62

where {Z/e} is the fractional part of z/e and z° = R {z/c}. In the case when
01,09, ,0, are rationally dependent in pairs, Pg remains periodic with an-
other period. Otherwise Pg is merely almost periodic. It happens, for example,
when all O, k =1, ...,d are rationally independent in pairs.

We turn to the computation of the integral over Us(0). By the above change

of variables we get

Oug , _

20 (@)

2|8l o (5.3)
Olz —
X / dz' / 24 P(gl(E +2) e et dzg+o(e2eT).
€
|2|<8 (S#,z")

Ii: = KO(t’xaj)

To blow-up the integral in (5.3) we make a (parabolic) rescaling of the space

variables
z zZ

d
Cd:_a
£

and recalling that § = /4, we arrive at the following integral

(d—1)
I

K _ _
+oo

!/
% / dCI / Cd P@l(% + (Za)/, Cd + 23) 6_|®‘Cd dCd + 0(62 €dT)?
Rd—1 (5¢",¢")

where the reaminder term takes into account the fact that the domain of integra-

tion is now infinite. Changing the order of integration we have

=2 Kot o, 7) %(z)
o ) 1 ¢ / / 2 d-1
X /Cde I dq¢, / P ($+(2€),Cd+2§) d¢' +o(e?c 2 ).
0 (S¢' ¢ <Ca

The function Pg 1 (n’ , Td) is uniformly continuous; moreover, it is almost periodic
with respect to the first variable. Thus, for any bounded Borel set B ¢ R4 1,

the following limit exists

_ . 1 _
M{Pg" (-, 7a)} = lim ] /P@l(n’ ' 1) iy (5.4)
tB
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We emphasize that the convergence is uniform with respect to 7/ and 74, and the
limit does not depend on 7/. Therefore, by Lemma 8.2, as ¢ — 0, we eventually
deduce

(9u0

I3 — 2.5 Ko(t x,T) 8@( z)
e (5.5)
< [ [ e MRS (G 7))y da+ ofe?< ),

Rd=1 (5¢',¢")

where the remainder term is asymptotically smaller than the leading order term

(uniformly in ¢t > 0,z € Q) but we cannot say how much since there is no precise

speed of convergence for averages of almost periodic functions in Lemma 8.2.
The case of the second integral I5 is then very similar. Taking into account

the positiveness of pg, and Lemma 4.1, for ¢ > tg > 0, we obtain
_©(6-3)
5 < 0o [un) e ag,

w

where C' does not depend on . The same computation as above (but without

the necessity of considering almost periodic functions) yields

8u0 _©:(6-3)
Is] < C¢&” — <
|II5] < Ce |@| z)| e

ou

<Ce Oa’c /dz / zg€ e dzg
—1 SO‘Z/|2
0 SIEEdE
=een 55.3< 9| [+ sileete = g

Rd-1
d—1
<Ce?tez |

for some constant Sy > 0 and C = C(Sp,0). Finally, we have derived the

following asymptotics of v¢, as € — 0,

V() =25 (1)) Kot 2, 7) 2 (2)
+o0

8 / dc’ / Cae 1O M{PG (-, Ca + 23) } dCa,

Rd-1 (S¢’¢")

where r.(t, z) converges to zero uniformly with respect to (t,z) € [to, T] x Q with
any tog > 0.
We summarize the result, just obtained, by formulating a more precise version

of Theorem 2.1, describing the asymptotics of u®(t, z).

Theorem 5.1. Suppose conditions (H1) — (H6) are satisfied and © # 0. Let u®
be the solution of problem (1.1). Then, fort >ty > 0,
_ MOt e(z—a)

ue(t,m)—esQE%(l—i—ra(t m)) T2 e . Map@(g)u(t,w),
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where (A1(©), po) is the first eigenpair defined by Lemma 2.1 and r.(t,x) — 0, as
e — 0, uniformly with respect to (t,x) € [to,T] x Q. The function u(t,x) solves

the homogenized problem

Ou = div(a™® Vu), (t,z) € (0,T) x Q,

u(t,z) =0, (t,z) € (0,T) x 09, (5.6)
u(0,x) = Vup(z) - % iz —=x), ze€q,

with a®® being a positive definite matriz given by (4.7), é(x — Z) is the Dirac
delta-function at the point T. The constant M. is defined by
+o00
M= [ae [ e () 6)
Ra=1 (S¢'.¢")
where M{Pél(-,Td)} is the mean-value of the almost periodic function n' —
Pyl (n',ma) (see (5.4)), Po is given by (5.2) and 25 = R{z/e} - %

P
7

(a) (b) (c)

Figure 2: Position of z in €Y for different values of ¢

Remark 5.1. The constant M. defined by (5.7) depends on z5 = R{z/e} - %,
that is on the component, parallel to ©, of the fractional part of T/e, or, in other
words, on the relative position of T inside the cell €Y (see Figure 2). Notice that
M. s bounded, thus, up to a subsequence, it converges to some M*, ase — 0. The
choice of the converging subsequence is only a matter of the geometric definition
of the periodic medium. For example, if T is known, we may decide to make it
the origin and to define the periodic microstructure relative to this origin. Then

=0, z° =0 is fized in the periodicity cell, and M, = M 1is independent of .

It might happen that the vector © is such that its components ©4 and Oy
are rationally independent for all k # d. In such a case, it turns out that the
constant M. does not depend on ¢ and, moreover, can be explicitly computed.

This is the topic of the following result.
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Corollary 5.1. Let conditions of Theorem 5.1 be satisfied. And assume that
the vector © is such that ©4 and Oy, for any k = 1,--- ,(d — 1), are rationally
independent. Then M, is independent of € and is given by

1

M. = % <%)% (det $)"/? /pél(y) dy.
Y

In other words, fort >ty > 0,

MOt e-(z—=z)
2

£ 2+% xT
> Ke € e = p@(g) u(t,x) (1 + rg(t,x)),

u(t,x) = (—

©]

where r.(t,z) — 0, as € — 0, uniformly with respect to (t,z) € [to, T] x Q; u(t, )
solves the homogenized problem (5.6). The constant K is given by

K=(d-1)n'% @es)? [ 5! dy
Y
Proof. Tt is sufficient to notice that in the case when O4 and O, k =1,2,--- (d—
1), are rationally independent, the mean value of the almost periodic function
Py L(¢', 74) with respect to the first variable ¢’, for any 7,4, coincides with its
volume average
MUPS )y = [ 6t
Y
Thus, the constant M. given by (5.7) does not depend on ¢ and has the following

form
+o0o
= ([reway) [ [ e,
Y Ra-1 (8¢'.¢")

Evaluating the last integral we obtain

M, = % <%>% (det )'/2 /pél(y) dy
Y

that implies the desired result. O

Remark 5.2. Theorem 5.1 does not provide any rate of convergence due to several
reasons. First of all, without specifying the remainder in hypothesis (HS5), one
cannot expect any estimate in (5.3). One possible option would be to assume that

in local coordinates, in the neighbourhood of the point T, Ow is defined by
2= (52, 2) + O(2P).

Then in (5.3) one would obtain the error O(g® e(4=1/2).

The second reason for the lack of estimates is concealed in Lemma 8.2. In
contrast with the classical mean value theorem for periodic functions, Lemma 8.2
does not provide any rate of convergence. However, if all the components of the

vector © are rationally dependent, then Pg remains periodic (maybe with another
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period), and one can apply the mean value theorem for smooth periodic functions
that gives an error O(c), and, consequently, O(g®e(@=1/2) in (5.5).

Finally, estimate (4.31) guaranties that the second integral in (5.1) is &7
smaller than the first one, where 0 <~ <1 depends on A, €, d.

Remark 5.3. We stress that if condition (H38) is violated and the support of
ug touches the boundary of , then the two integrals in (5.1) are of the same
order, and we cannot neglect the second integral any more. In this case it is
necessary to construct not only the leading term of the asymptotics for K., but
also a corrector term together with a boundary layer corrector. It is possible in
some particular cases, for example, when T belongs to a flat part of the boundary
of 2, or when the coefficients of the equation are constant. But it is well known
that boundary layers in homogenization are very difficult to build in the case of
a non flat boundary. Simple cases (flat boundaries, cylindrical domains) will be

considered in our forthcoming paper [3].

Another typical situation arises when we do not assume anymore that the
initial data wug is continuous on ) but merely that it has compact support and is
C? inside its support. In particular, in this new situation we may have ug(Z) # 0.
The next theorem, characterizing the asymptotic behaviour of u® in this case, can

be proved in exactly the same way as Theorem 5.1.

Theorem 5.2. Suppose conditions (H1),(H2), (H4), (H5) are satisfied and © #
0. Assume that ug has compact support w € Q, ug € C*(@) and up(z) # 0. If u®
is a solution of problem (1.1), then, fort >ty >0

d—1 _ MOt e-(z—7)
2

ua(t,x):€€_<1+r€(t,x))e 2 e - Map@(x

) u(t, ),

€
where r-(t,r) — 0, as € — 0, uniformly with respect to (t,z) € [to, T] x 2. Here,

u(t, x) solves the effective problem
Oyu = div(a™® Vu), (t,z) € (0,T) x Q,
u(t,z) =0, (t,z) € (0,T) x 09,
u(0,z) = up(z) 6(x — &), x € Q.

The constant M, is now given by

+oo
M, = / ¢’ / e 191 M{PGY (-, Ca + 25) } dCa,
Rd-1 (S¢’¢")

with the same definitions of the mean-value M, of the almost periodic function

Pg and of Z5 as in Theorem 5.1.

Remark 5.4. Yet another possible situation is that ug = Oug/0© = 0 in the
neighborhood of T. If we assume that ug € C3(w) and replace condition (H6) by

9%y 0 < Oug

w(@ =30 %)(9@) # 0,
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where Qug/0O is the directional derivative of ug in the direction of O, then we

can prove in this case that, for t > tg > 0,

MO o (x—7)

uf(t,x) = & es <1 + re(t,x)) e <2 e = Mep@(f) u(t, x),
€

where 7-(t,x) — 0, as ¢ — 0, uniformly with respect to (t,x) € [to,T] x Q and

u(t,x) is a solution of

Ou = div(a™ Vu), (t,z) € (0,T) x Q,

u(t,z) =0, (t,x) € (0,T) x 0,
1 3211,0 _ _
u(0, x) 5 w(w) dzx—1z), =x€.

The constant M, 1s now given by

+o0o
M. = / dc’ / ¢ e*\@lCdM{Pg—l(.’Cd_}_52)}(1@.
Ra=1 (5¢',¢")

The case when ug vanishes on the boundary of w together with its derivatives up

to order k, can be treated similarly.

It should be noticed that a statement similar to that of Corollary 5.1 remains
valid for Theorem 5.2 and Remark 5.4.

6 The case of a flat boundary of w

In the previous sections we analyzed the case when the quadratic form of the
surface Ow is non-degenerate at the point Z. The asymptotics of the solution of
problem (1.1) can also be constructed when Z belongs to a flat part ¥ of dw and
the vector © is orthogonal to 3.

More precisely, we replace the previous assumptions (H4), (H5), (H6) with

the following ones.

(H4’) The set of points Z which provide the minimum in min,¢,, O - x is a subset
¥ of Ow which is included in an hyperplane of R? and ¥ has a positive
(d — 1)-measure.

(H5’) up(y) =0 for all y € ¥. There exists & € ¥ such that %(i) # 0.

Remark 6.1. Assumption (H4’) implies that
O-(x—x)>0forallzew\X, zeX,

and © is orthogonal to ¥ and directed inside w (see Figure 3). Furthermore,

T- % 18 the same for all T € 3.

Zo

In this case we prove the following result.
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Figure 3: The case of a flat part of the boundary dw

Theorem 6.1. Assume that conditions (H1)-(H3) and (H4’)-(H5’) are ful-
filled, and © #£ 0. Then, fort > tg > 0, the asymptotic behaviour of the solution
u of problem (1.1) is described by

_MO)t ©-(z—=)
uf(t,z) = e%e T e (1+7r.(t,x)) M. p@(z) u(t, ),
€
where ro(t,x) — 0, as ¢ — 0, uniformly with respect to (t,x) € [to,T] x Q,
(A1(©),po) is the first eigenpair defined by Lemma 2.1, T is an arbitrary point

on ¥ and u(t,x) solves the homogenized problem

Oyu = div(a™® Vu), (t,z) € (0,T) x Q,

u(t,z) =0, (t,z) € (0,T) x 09, (6.1)
u(0,x) = %(w) oy, x € Q.

Here a°% is still defined by (4.7), dx, is the Dirac delta-function on ¥ and the

constant M. is given by
+oo B
_ —10[¢a -1 re
M= [ Cae M{PG (- ¢a+ ?)}dCd
0

with M{Pél(-, 74)} being the mean value of the almost periodic function P(gl(-, T4)
(see (5.4)), Po(z) being the rotation of pg in the local coordinates of ¥.: Pg({) =
pe(R™LC), where R is the rotation matriz.

Proof. The proof starts, like that of Theorem 5.1, by using the representation
formula (3.5) for the solution v* of (3.2) in terms of the Green function K.
Writing K. = Ko + (K. — K() we arrive at (5.1), namely

v (t,x) = IT + I5.

By Lemma 4.1, we can estimate I5, passing to local coordinates, as in the proof
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of Theorem 5.1,

©:-(6=2)

115\§Csv/!uo<s>re‘—e dt

<C¢e" /‘— 2. Te ‘dz / — 10k dzgq

for some v = (A, Q,d) > 0 defined in (4.31). Making the change of variables
Cq = zq/e, we see that

|I5] < Ce?™ /|6u0

+00
(z ,wb)!dz' / Cq e~ 101da d¢q < Ce*t,
0
In order to compute approximately I, we again pass to the local coordinates.
Namely, we rotate coordinates z = R in such a way that © is directed along z4.
It is obvious that only the neighborhood of ¥ contributes in I7. Expanding K
and ug into a Taylor series with respect to z4 and making the change of variables
Cq = zq/¢ leads to
+00
If=¢? / Cae 1916 ag, /Ko(t,x, Y, 7g) %(z’,f@) Pyt ( e ) dz'+o(?).
0
where Po(¢) = pe(R™1(¢) with R being the rotation matrix.
Since Py ! (¢, 74) is uniformly continuous, and, moreover, almost periodic with

respect to ¢/, by Lemma 8.1, we have

dug
If=¢* M. /Ko (t,z, 2 m@)a—(z’,f@) d? + o(e?),

where

+o0o
M. — /cde—9'<dM{P5 (Gt 22yt
0

Here M{Pél(-, 74)} is the mean value of the almost periodic function Pgl(-, T4)
(see (5.4)).

Consequently, as ¢ — 0,

0
v (t,z) = €2 M, /Ko(t,m, 2 Ze) %(z',fe) d? + o(e?).
Recalling that K is the Green function of the effective problem (4.1) completes

the proof. O

Corollary 6.1. Let conditions of Theorem 6.1 be fulfilled. Assume that the vector
© is such that ©4 and Oy, for any k =1,--- ,(d—1), are rationally independent.
Then, fort >ty > 0,

€ )2 MO e (z-3)
£2

w(t.o) = (g7 Sttt () ([ 96" dy)utt.o).
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where 7-(t,z) — 0, as ¢ — 0, uniformly with respect to (t,x) € [to,T] x Q and

u(t, x) solves the homogenized problem (6.1).

Corollary 6.1 is proved in the same way as Corollary 5.1.

7 Numerical examples

In this section we illustrate the results obtained in the previous sections by direct
computations performed with the free software FreeFEM-++ ([15]).

When studying convection-diffusion equation, the so-called effective convec-
tion (effective drift) defined by (2.4) plays an important role. As was already
noticed, condition b; # 0 yields ©; # 0. The question arises, if b coincide with ©
or not. The answer is negative, and the corresponding example is given below.

Example 1. Let Q C R? be a bounded domain. Consider the following

boundary value problem with constant coefficients:

0%uf 0%uf 0%uf 1 Ouf
Opu’ — -2 -2 -b— =0, in (0,T Q
e Ox? Ox1 0xo 03 + e Oxy » 0 (0,T) x &,
wE(t,x) =0, on (0,7) x 09, (7.1)
u(0,z) = up(x), x € Q.

Here b > 0 is a real parameter and it is obvious that the effective drift is b = {0, b}.
To find O, one should consider the spectral problem (2.1) on the periodicity cell.

Since the coefficients of the equation are constant, Aj(#) can be found easily:
M(0) = —62 —26,0, — 262 + by,

The maximum of \; is attained at © = {—b/2,b/2} # b.

For the numerical computations, we choose 2 to be the unit circle Q = {z :
|21 — 1|2+ |22 — 12 < 1}, ug being the characteristic function of the smaller circle
{2 :|x1—12+]z2—1]? < 0.5} (see Figure 4(a)), b = 1 and € = 0.03. Theorem 2.1
predicts that the “hot spot” or concentration point of the solution u. will be at
the point z. = (1 — v/2/2,1 + v/2/2) where O is orthogonal to 9.

The presence of the large parameter in front of the convection in (1.1) suggests
to use Characteristics-Galerkin Method (see [14], [22]). As a finite element space,
a space of piecewise linear continuous functions has been chosen. The number of
triangles is 21192. The result of the direct computations at different times are
presented on Figure 4.

Splitting each triangle of the mesh in 9, we have compared two solutions, u;
defined on the original mesh and wuy on the refined one, and computed the relative
L?-error for small ¢

sup e = wzllez@) o oo
v uillzz
It is small enough so we can conclude that convergence under mesh refinement is

attained. It can be seen from Figure 4 that the solution profile, vanishing with
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(d) t=0.03 (e) t=0.04 (f) t=0.05

Figure 4: Isolines of u® for small values of ¢

time, moves first in the vertical direction (along the effective drift) and then to
the left. Because of the very fast decay, it is not possible to plot the solution itself
at large time. Thus, instead of u® we consider 4 = u®/maxqu®. On Figure 5
the isolines of @€ are presented. One can see that indeed the concentration occurs
at the point (1 —+/2/2,1++/2/2), not the point (1,2) where b is normal to 9.
We perform another numerical test in a nonconvex domain for the same values
of the parameters in (7.1). The isolines of the rescaled solution @ are ploted on
Figure 6. It is interesting to see how the initial profile first moves in the direction
of the effective drift, then vanishes and reappear afterwards to concentrate at the
“hot spot” where © - x attains its maximum, as predicted by Theorem 2.1. Such

an example is clearly non-intuitive (at least to the authors).

8 Some results from the theory of almost pe-
riodic functions.

Denote by Trig(R%) the set of all trigonometric polynomials

Trig(R?) = {P(x)| P(z) = Z &3 em{}’

£cRe

where in the sum only finite number of ¢ # 0. We designate by CAP(R?)
(set of almost periodic functions) a closure of Trig(R?) with respect to the norm

sup |P(x)|. For any almost periodic function g € CAP(R?), there exists a mean
Rd

value

. 1
M) = Ji gy Z 9() da, (8.1)
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(d) t—0.3 (e) t—0.4 ) t-0.5

Figure 5: Isolines of rescaled u® for different values of ¢

where B C R? is a Borel set, |B| - its volume. The mean-value theorem takes

place for almost periodic functions ([18]).

Lemma 8.1. Given g € CAP(R?) andv € L*(Q), Q C RY, the following equality
holds true:
e—0
Q
where M{g} is given by formula (8.1).

lim g(g) v(z)dx = M{g}/v(x) dx,
Q

Lemma 8.1 can be formulated also in more general form.

Lemma 8.2. Given a function g(z,y) € C[Q; CAP(RY)], Q C RY, the following
equality holds:
. x
Q Q

where )
Mgl )} = Jin = [ o) do.
tB
The last statement can be proved combining the approximation of g(x,y) by

finite sums of the type Y fi(x) f2(y) and the result of Lemma 8.1.
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(b) t=0.1

(e) t=0.4

Figure 6: Isolines of rescaled u® for different values of ¢ in a non-convex domain
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