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Homogenization and onentration for a di�usionequation with large onvetion in a bounded domainG. Allaire ∗ I. Pankratova † A. Piatnitski ‡May 24, 2011AbstratWe onsider the homogenization of a non-stationary onvetion-di�usion equa-tion posed in a bounded domain with periodially osillating oe�ients and ho-mogeneous Dirihlet boundary onditions. Assuming that the onvetion termis large, we give the asymptoti pro�le of the solution and determine its rateof deay. In partiular, it allows us to haraterize the �hot spot�, i.e., the pre-ise asymptoti loation of the solution maximum whih lies lose to the domainboundary and is also the point of onentration. Due to the ompetition betweenonvetion and di�usion the position of the �hot spot� is not always intuitive asexempli�ed in some numerial tests.Keywords: Homogenization, onvetion-di�usion, loalization.1 IntrodutionThe goal of the paper is to study the homogenization of a onvetion-di�usionequation with rapidly periodially osillating oe�ients de�ned in a boundeddomain. Namely, we onsider the following initial boundary problem:




∂tu
ε(t, x) + Aε uε(t, x) = 0, in (0, T ) × Ω,

uε(t, x) = 0, on (0, T ) × ∂Ω,

uε(0, x) = u0(x), x ∈ Ω,

(1.1)
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where Ω ⊂ R
d is a bounded domain with a Lipshitz boundary ∂Ω, u0 belongsto L2(Ω) and Aε is an operator de�ned by

Aεuε = − ∂

∂xi

(
aij

(x

ε

) ∂uε

∂xj

)
+

1

ε
bj

(x

ε

) ∂uε

∂xj
,where we employ the onvention of summation over repeated Latin indies. Asusual ε, whih denotes the period of the oe�ients, is a small positive param-eter intended to tend to zero. Note the large saling in front of the onvetiveterm whih orresponds to the onvetive and di�usive terms having both thesame order of magnitude at the small sale ε (this is a lassial assumption inhomogenization [5℄, [12℄, [13℄, [21℄). We make the following assumptions on theoe�ients of the operator Aε.(H1) The oe�ients aij(y), bj(y) are measurable bounded funtions de�ned onthe unit ell Y = (0, 1]d, that is aij , bj ∈ L∞(Y ). Moreover, aij(y), bj(y) are

Y -periodi.(H2) The d × d matrix a(y) is uniformly ellipti, that is there exists Λ > 0 suhthat, for all ξ ∈ R
d and for almost all y ∈ Ω,

aij(y)ξiξj ≥ Λ|ξ|2.For the large onvetion term we do not suppose that the e�etive drift (theweighted average of b de�ned below by (2.4)) is zero, nor that the vetor �eld b(y)is divergene-free. Some additional assumptions on the smoothness and ompatsupport of the initial data u0 will be made in Setion 2 after introduing auxiliaryspetral ell problems. In view of (H1) and (H2), for any ε > 0, problem (1.1)has a unique weak solution uε ∈ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] (see [6℄).Our main goal is to desribe the asymptoti behavior of the solution uε(t, x) ofproblem (1.1) as ε goes to zero. There are of ourse many motivations to studysuh a problem (one of them being the transport of solutes in porous media[17℄). However, if (1.1) is interpreted as the heat equation in a �uid domain(the �uid veloity being given by ε−1b(x/ε)), we an paraphrase the famous �hotspot� onjeture of J. Rauh [23℄, [7℄, [10℄, and ask a simple question in plainwords. If the initial temperature u0 has its maximum inside the domain Ω, whereshall this maximum or �hot spot� go as time evolves ? More preisely, we wantto answer this question asymptotially as ε goes to zero. Theorem 2.1 (andthe disussion following it) gives a omplete answer to this question. The �hotspot� is a onentration point xc, loated asymptotially lose to the boundary
∂Ω (see Figure 1), whih maximizes the linear funtion Θ · x on Ω where thevetor parameter Θ is determined as an optimal parameter in an auxiliary ellproblem (see Lemma 2.1). Surprisingly Θ is not some average of the veloity �eldbut is the result of an intriate interation between onvetion and di�usion inthe periodiity ell (even in the ase of onstant oe�ients ; see the numerialexamples of Setion 7). Furthermore, Theorem 2.1 gives the asymptoti pro�le2



of the solution, whih is loalized in the viinity of the �hot spot� xc, in terms ofa homogenized equation with an initial ondition that depends on the geometryof the support of the initial data u0.Before we explain our results in greater details, we brie�y review previous re-sults in the literature. In the ase when the vetor-�eld b(y) is solenoidal and haszero mean-value, problem (1.1) has been studied by the lassial homogenizationmethods (see, e.g, [8℄, [25℄). In partiular, the sequene of solutions is boundedin L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] and onverges, as ε → 0, to the solution ofan e�etive or homogenized problem in whih there is no onvetive term. Forgeneral vetor-�elds b(y), and if the domain Ω is the whole spae R
d, the on-vetion might dominate the di�usion and we annot expet a usual onvergeneof the sequene of solutions uε(t, x) in the �xed spatial referene frame. Rather,introduing a frame of moving oordinates (t, x− b̄t/ε), where the onstant vetor

b̄ is the so-alled e�etive drift (or e�etive onvetion) whih is de�ned by (2.4)as a weighted average of b, it is known that the translated sequene uε(t, x− b̄t/ε)onverges to the solution of an homogenized paraboli equation [5℄, [13℄. Notethat the notion of e�etive drift was �rst introdued in [21℄. Of ourse, the on-vergene in moving oordinates annot work in a bounded domain. The purposeof the present work is to study the asymptoti behavior of (1.1) in the ase of abounded domain Ω.Bearing these previous results in mind, intuitively, it is lear that in a boundeddomain the initial pro�le should move rapidly in the diretion of the e�etivedrift b̄ until it reahes the boundary, and then dissipate due to the homogeneousDirihlet boundary ondition, as t grows. Sine the onvetion term is large, thedissipation inreases, as ε → 0, so that the solution asymptotially onverges tozero at �nite time. Indeed, introduing a resaled (short) time τ = ε−1 t, werewrite problem (1.1) in the form




∂τu
ε − εdiv

(
aε ∇uε

)
+ bε · ∇uε = 0, in (0, ε−1 T ) × Ω,

uε(τ, x) = 0, on (0, ε−1 T ) × ∂Ω,

uε(0, x) = u0(x), x ∈ Ω.

(1.2)Applying the lassial two-sale asymptoti expansion method [8℄, one an showthat, for any τ ≥ 0

∫

Ω

|uε(τ, x) − u0(τ, x)|2 dx → 0, ε → 0,where the leading term of the asymptotis u0 satis�es the following �rst-orderequation 



∂τu
0(τ, x) + b̄ · ∇u0(τ, x) = 0, in (0,+∞) × Ω,

u0(τ, x) = 0, on (0,+∞) × ∂Ωb̄,

u0(0, x) = u0(x), x ∈ Ω,

(1.3)3



with b̄ being the vetor of e�etive onvetion de�ned by (2.4). Here ∂Ωb̄ is thesubset of ∂Ω suh that b̄ · n < 0 where n stands for the exterior unit normal on
∂Ω. One an onstrut higher order terms in the asymptoti expansion for uε.This expansion will ontain a boundary layer orretor in the viinity of ∂Ω\∂Ωb̄.A similar problem in a more general setting has been studied in [9℄.The solution of problem (1.3) an be found expliitly,

u0(τ, x) =





u0(x − b̄τ), for (τ, x) suh that x, (x − b̄τ) ∈ Ω,

0, otherwise,whih shows that u0 vanishes after a �nite time τ0 = O(1). In the originaloordinates (t, x) we have
∫

Ω

|uε(t, x) − u0(x − ε−1 b̄ t)|2 dx → 0, ε → 0.Thus, for t = O(ε) the initial pro�le of uε moves with the veloity ε−1 b̄ until itreahes the boundary of Ω and then dissipates. Furthermore, any �nite number ofterms in the two-sale asymptoti expansion of uε(τ, x) vanish for τ ≥ τ0 = O(1)and thus for t ≥ t0 with an arbitrary small t0 > 0. On the other hand, if u0is positive, then by the maximum priniple, uε > 0 for all t. Thus, the methodof two-sale asymptoti expansion in this short-time saling is unable to apturethe limit behaviour of uε(t, x) for positive time. The goal of the present paperis therefore to perform a more deliate analysis and to determine the rate ofvanishing of uε, as ε → 0.The homogenization of the spetral problem orresponding to (1.1) in a boundeddomain for a general veloity b(y) was performed in [11℄, [12℄. Interestinglyenough the e�etive drift does not play any role in suh a ase but rather the keyparameter is another onstant vetor Θ ∈ R
d whih is de�ned as an optimal ex-ponential parameter in a spetral ell problem (see Lemma 2.1). More preisely,it is proved in [11℄, [12℄ that the �rst eigenfuntion onentrates as a boundarylayer on ∂Ω in the diretion of Θ. We shall prove that the same vetor parameter

Θ is also ruial in the asymptoti analysis of (1.1).Notie that for large time and after a proper resaling the solution of (1.1)should behave like the �rst eigenfuntion of the orresponding ellipti operator,and thus onentrates in a small neighbourhood of ∂Ω in the diretion of Θ. Weprove that this guess is orret, not only for large time but also for any time
t = O(1), namely that uε(t, x) onentrates in the neighbourhood of the �hotspot� or onentration point xc ∈ ∂Ω whih depends on Θ. The value of Θ anbe determined in terms of some optimality property of the �rst eigenvalue of anauxiliary periodi spetral problem (see Setion 2). It should be stressed that,in general, Θ does not oinide with b̄. As a onsequene, it may happen thatthe onentration point xc does not even belong to the subset of ∂Ω onsisting ofpoints whih are attained by translation of the initial data support along b̄. Thisphenomenon is illustrated by numerial examples in Setion 7.4



The paper is organized as follows. In Setion 2 we introdue auxiliary spetralproblems in the unit ell Y and impose additional onditions on the geometry ofthe ompat support of u0. We then state our main result (see Theorem 2.1) andgive its geometri interpretation. In Setion 3, in order to simplify the originalproblem (1.1), we use a fatorization priniple, as in [24℄, [18℄, [26℄, [11℄, basedon the �rst eigenfuntions of the auxiliary spetral problems. As a result, weobtain a redued problem, where the new onvetion is divergene-free and haszero mean-value. Studying the asymptoti behaviour of the Green funtion ofthe redued problem, performed in Setion 4, is an important part of the proof.It is based on the result obtained in [1℄ for a fundamental solution of a parabolioperator with lower order terms. Asymptotis of uε is derived in Setion 5. InSetion 6 we study the ase when the boundary of the support of u0 has a �atpart. To illustrate the main result of the paper, in Setion 7 we present diretomputations of uε using the software FreeFEM++ [15℄. A number of basi fatsfrom the theory of almost periodi funtions is given in Setion 8.2 Auxiliary spetral problems and main resultWe de�ne an operator A and its adjoint A∗ by
Au = −div(a∇u) + b · ∇u, A∗v = −div(aT∇v) − div(b v),where aT is the transposed matrix of a. Following [8℄, for θ ∈ R

d, we introdue twoparameterized families of spetral problems (diret and adjoint) in the periodiityell Y = [0, 1)d. 



e−θ·y Aeθ·y pθ(y) = λ(θ) pθ(y), Y,

y → pθ(y) Y-periodi. (2.1)




eθ·y A∗ e−θ·y p∗θ(y) = λ(θ) p∗θ(y), Y,

y → p∗θ(y) Y-periodi. (2.2)The next result, based on the Krein-Rutman theorem, was proved in [11℄, [12℄.Lemma 2.1. For eah θ ∈ R
d, the �rst eigenvalue λ1(θ) of problem (2.1) isreal, simple, and the orresponding eigenfuntions pθ and p∗θ an be hosen pos-itive. Moreover, θ → λ1(θ) is twie di�erentiable, stritly onave and admits amaximum whih is obtained for a unique θ = Θ.The eigenfuntions pθ and p∗θ de�ned by Lemma 2.1, an be normalized by

∫

Y

|pθ(y)|2dy = 1 and ∫

Y

pθ(y) p∗θ(y) dy = 1.Di�erentiating equation (2.1) with respet to θi, integrating against p∗θ and writ-ing down the ompatibility ondition for the obtained equation yield
∂λ1

∂θi
=

∫

Y

(
bi pθ p∗θ + aij(pθ ∂yj

p∗θ − p∗θ ∂yj
pθ) − 2 θj aij pθ p∗θ

)
dy. (2.3)5



Obviously, pθ=0 = 1, and, thus,
∂λ1

∂θi
(θ = 0) =

∫

Y

(
bi p

∗
θ=0 + aij ∂yj

p∗θ=0

)
dy := b̄i, (2.4)whih de�nes the omponents b̄i of the so-alled e�etive drift. In the presentpaper we assume that b̄ 6= 0 (or, equivalently, Θ 6= 0). The ase b̄ = 0 an bestudied by lassial methods (see, for example, [25℄). The equivalene of b̄ = 0and Θ = 0 is obvious sine λ1(θ) is stritly onave with a unique maximum.We need to make some assumptions on the geometry of the support ω (alosed set as usual) of the initial data u0 with respet to the diretion of Θ. Onepossible set of onditions is the following.(H3) The initial data u0(x) is a ontinuous funtion in Ω, has a ompat support

ω ⋐ Ω and belongs to C2(ω). Moreover, ω is a C2-lass domain.(H4) The �soure� point x̄ ∈ ∂ω, at whih the minimum in minx∈ω Θ·x is ahieved,is unique (see Figure 1(a)). In other words
Θ · (x − x̄) > 0, x ∈ ω \ {x̄}. (2.5)(H5) The point x̄ is ellipti and ∂ω is loally onvex at x̄, that is the prinipalurvatures at x̄ have the same sign. More preisely, in loal oordinates theboundary of ω in some neighborhood Uδ(x̄) of the point x̄ an be de�nedby

zd = (Sz′, z′) + o(|z′|2)for some positive de�nite (d− 1)× (d− 1) matrix S. Here z′ = (z1, · · · zd−1)are the orthonormal oordinates in the tangential hyperplane at x̄, and zdis the oordinate in the normal diretion.(H6) ∇u0(x̄) · Θ 6= 0.Remark 2.1. In assumption (H3) it is essential that the support ω is a stritsubset of Ω, i.e., does not touh the boundary ∂Ω (see Remark 5.3 for further om-ments on this issue). However, the ontinuity assumption on the initial funtion
u0 is not neessary. It will be relaxed in Theorem 5.2 where u0(x) still belongsto C2(ω) but is disontinuous through ∂ω. Of ourse, assuming ontinuity or notwill hange the order of onvergene and the multipliative onstant in front ofthe asymptoti solution.Note that assumption (H4) implies that Θ 6= 0 is a normal vetor to ∂ω at x̄.Eventually, assumption (H6) is required beause, u0 being ontinuous in Ω,we have u0(x̄) = 0.To avoid exessive tehnialities for the moment, we state our main result ina loose way (see Theorem 5.1 for a preise statement).
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(b)Figure 1: De�nition of the soure point x̄ and of the onentration point xc.Theorem 2.1. Suppose onditions (H1) − (H6) are satis�ed and Θ 6= 0. If uεis a solution of problem (1.1), then, for any t0 > 0 and t ≥ t0

uε(t, x) ≈ ε2 ε
d−1
2 e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ

(x

ε

)
u(t, x), ε → 0,where (λ1(Θ), pΘ) is the �rst eigenpair de�ned by Lemma 2.1 and u(t, x) solvesthe homogenized problem





∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) = ∇u0(x̄) · Θ

|Θ| δ(x − x̄), x ∈ Ω.

(2.6)Here aeff is a positive de�nite matrix, de�ned by (4.7), Mε is a onstant, de�nedin Theorem 5.1, depending on pΘ, on the geometry of ∂ω at x̄ and on the relativeposition of x̄ in εY (see Remark 5.1 and Figure 2), and δ(x − x̄) is the Diradelta-funtion at the point x̄.The interpretation of Theorem 2.1 in terms of onentration or �nding the �hotspot� is the following. Up to a multipliative onstant ε2 ε
d−1
2 Mε, the solution uεis asymptotially equal to the produt of two exponential terms, a periodiallyosillating funtion pΘ

(
x
ε

) (whih is uniformly positive and bounded) and thehomogenized funtion u(t, x) (whih is independent of ε). The �rst exponentialterm e−
λ1(Θ)t

ε2 indiates a fast deay in time, uniform in spae. The seond ex-ponential term e
Θ·(x−x̄)

ε is the root of a loalization phenomenon. Indeed, it ismaximum at those points on the boundary, xc ∈ ∂Ω, whih have a maximal oor-dinate Θ ·x, independently of the position of x̄ (see Figure 1(b)). These (possiblymultiple) points xc are the �hot spots�. Everywhere else in Ω the solution is ex-ponentially smaller, for any positive time. This behaviour an learly be hekedon the numerial examples of Setion 7. It is of ourse similar to the behavior ofthe orresponding �rst eigenfuntion as studied in [12℄.7



The proof of Theorem 2.1 onsists of several steps. First, using a fatorizationpriniple (see, for example, [24℄, [18℄, [26℄, [11℄) in Setion 3 we make a hangeof unknown funtion in suh a way that the resulting equation is amenable tohomogenization. After that, the new unknown funtion vε(t, x) is represented interms of the orresponding Green funtion Kε(t, x, ξ). Studying the asymptotibehaviour of Kε is performed in Setion 4. Finally, we turn bak to the originalproblem and write down the asymptotis for uε in Setion 5 whih �nishes theproof of Theorem 2.1.Remark 2.2. Theorem 2.1 holds true even if we add a singular zero-order termof the type ε−2c(x
ε )uε in the equation (1.1). This zero-order term will be removedby the fatorization priniple and the rest of the proof is idential. With someadditional work Theorem 2.1 an be generalized to the ase of so-alled ooperativesystems for whih a maximum priniple holds. Suh systems of di�usion equa-tions arise in nulear reator physis and their homogenization (for the spetralproblem) was studied in [12℄.3 FatorizationWe represent a solution uε of the original problem (1.1) in the form

uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε pΘ

(x

ε

)
vε(t, x), (3.1)where Θ and pΘ are de�ned in Lemma 2.1. Notie that the hange of unknownsis well-de�ned sine pΘ is positive and ontinuous. Substituting (3.1) into (1.1),multiplying the resulting equation by p∗Θ

(
x
ε

) and using (2.2), one obtains thefollowing problem for vε:




̺Θ

(x

ε

)
∂tv

ε + Aε
Θ vε = 0, (t, x) ∈ (0, T ) × Ω,

vε(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

vε(0, x) =
u0(x)

pΘ

(
x
ε

) e−
Θ·(x−x̄)

ε , x ∈ Ω,

(3.2)where ̺Θ(y) = pΘ(y) p∗Θ(y) and
Aε

Θv = − ∂

∂xi

(
aΘ

ij

(x

ε

) ∂v

∂xj

)
+

1

ε
bΘ
i

(x

ε

) ∂v

∂xi
,and the oe�ients of the operator Aε

Θ are given by
aΘ

ij(y) = ̺Θ(y) aij(y);

bΘ
i (y) = ̺Θ(y) bj(y) − 2 ̺Θ(y) aij(y)Θj

+aij(y)
[
pΘ(y) ∂yj

p∗Θ(y) − p∗Θ(y) ∂yj
pΘ(y)

]
.

(3.3)
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Obviously, the matrix aΘ is positive de�nite sine both pΘ and p∗Θ are positivefuntions. Moreover, it has been shown in [11℄ that, for any θ ∈ R
d, the vetor-�eld bθ is divergene-free and that, for θ = Θ, it has zero mean-value

∫

Y

bΘ(y) dy = 0; div bθ = 0, ∀ θ. (3.4)Remark 3.1. This omputation leading to the simple problem (3.2) for vε doesnot work if the oe�ients are merely loally periodi, namely of the type a(x, x/ε),
b(x, x/ε). Indeed there would be additional terms in (3.2) due to the partial deriva-tives with respet to the slow variable x beause λ1(Θ) and pΘ would depend on
x. Although problem (3.2) is not self-adjoint, the lassial approah of homog-enization (based on energy estimates in Sobolev spaes) would apply, thanks to(3.4), if the initial ondition were not singular (the limit of e−

Θ·(x−x̄)
ε is 0 or +∞almost everywhere). This singular behavior of the initial data (whih formally hasa limit merely in the sense of distributions) requires a di�erent methodology forhomogenizing (3.2). In order to overome this di�ulty, we use the representationof vε in terms of the orresponding Green funtion

vε(t, x) =

∫

Ω

Kε(t, x, ξ)
u0(ξ)

pΘ

( ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ, (3.5)where, for any given ξ, Kε, as a funtion of (t, x), solves the problem




̺Θ

(x

ε

)
∂tKε(t, x, ξ) + Aε

Θ Kε(t, x, ξ) = 0, (t, x) ∈ (0, T ) × Ω,

Kε(t, x, ξ) = 0, (t, x) ∈ (0, T ) × ∂Ω,

Kε(0, x, ξ) = δ(x − ξ), x ∈ Ω,

(3.6)The strategy is now to replae the Green funtion Kε by an ansatz in (3.5) andto study the limit, as ε → 0, of the resulting singular integral. The next setionis devoted to the study of the asymptoti behavior of Kε.4 Asymptotis of the Green funtion KεThe main goal of this setion is to prove the following statement.Lemma 4.1. Assume that onditions (H1) − (H2) are satis�ed. Let Kε be theGreen funtion of problem (3.2). Then, for any t0 > 0 and any ompat subset
B ⋐ Ω, there exists a onstant C suh that, for all t ≥ t0 > 0, ξ ∈ B,

∫

Ω

|Kε(t, x, ξ) − K0(t, x, ξ)|2 dx ≤ C ε2,

|Kε(t, x, ξ) − K0(t, x, ξ)| ≤ C εγ , x ∈ Ω,9



where the onstant C depends on t0,dist(B, ∂Ω),Ω,Λ, d and is independent of ε,
γ = γ(Ω,Λ, d) > 0, and K0 is the Green funtion of the homogenized problem(2.6), i.e., as a funtion of (t, x), it solves





∂tK0(t, x, ξ) = div(aeff∇K0(t, x, ξ)), (t, x) ∈ (0, T ) × Ω,

K0(t, x, ξ) = 0, (t, x) ∈ (0, T ) × ∂Ω,

K0(0, x, ξ) = δ(x − ξ), x ∈ Ω,

(4.1)with the onstant positive de�nite matrix aeff de�ned by (4.7).Proof. The main di�ulty in studying the asymptotis of the Green funtion Kε,de�ned as a solution of (3.6), is the presene of the delta funtion in the initialondition. To overome this di�ulty, we onsider the di�erene
Vε(t, x, ξ) = Φε(t, x, ξ) − Kε(t, x, ξ),where Φε is the Green funtion of the same paraboli equation in the whole spae,that is, for ξ ∈ R

d, Φε, as a funtion of (t, x), is a solution of the problem




̺Θ

(x

ε

)
∂tΦε(t, x, ξ) + Aε

ΘΦε(t, x, ξ) = 0, (t, x) ∈ (0, T ) × R
d,

Φε(0, x, ξ) = δ(x − ξ), x ∈ R
d.

(4.2)In this way, for all ξ ∈ Ω, Vε, as a funtion of (t, x), solves the problem




̺Θ

(x

ε

)
∂tVε(t, x, ξ) + Aε

Θ Vε(t, x, ξ) = 0, (t, x) ∈ (0, T ) × Ω,

Vε(t, x, ξ) = Φε(t, x, ξ), (t, x) ∈ (0, T ) × ∂Ω,

Vε(0, x, ξ) = 0, x ∈ Ω.

(4.3)We emphasize that Vε, in ontrast with Kε, is Hölder ontinuous for all t ≥ 0provided that ξ /∈ ∂Ω.Notie that, by a proper resaling in time and spae, Φε an be identi�ed withthe fundamental solution of an operator whih is independent of ε. Indeed,
Φε(t, x, ξ) = ε−d Φ

( t

ε2
,
x

ε
,
ξ

ε

)
, (4.4)where Φ(τ, y, η) is de�ned, for η ∈ R

d, as the solution in (τ, y) of




̺Θ(y) ∂τΦ(τ, y, η) + AΘΦ(τ, y, η) = 0, τ > 0, y ∈ R
d,

Φ(0, y, η) = δ(y − η), y ∈ R
d.

(4.5)Here, for brevity, we denote by AΘ the resaled version of Aε
Θ

AΘΦ(τ, y, η) = −divy(a
Θ(y)∇yΦ(τ, y, η)) + bΘ(y) · ∇yΦ(τ, y, η).We also introdue the fundamental solution Φ0(t, x, ξ) for the e�etive operator





∂tΦ0 = divx(aeff∇xΦ0), (t, x) ∈ (0, T ) × R
d,

Φ0(0, x, ξ) = δ(x − ξ), x ∈ R
d.

(4.6)10



The homogenized matrix aeff is lassially [8℄, [25℄ given by
aeff

ij =

∫

Y

(
aΘ

ij(y) + aΘ
ik(y)∂yk

Nj(y) − bΘ
i (y)Nj(y)

)
dy

=

∫

Y

(
aΘ

ji(η) + aΘ
ki(η)∂yk

N∗
j (η) + bΘ

i (η)N∗
j (η)

)
dη,

(4.7)where the vetor-valued funtions N = (Ni)1≤i≤d and N∗ = (N∗
i )1≤i≤d solve thediret and adjoint ell problems, respetively,





−div(aΘ∇Ni) + bΘ · ∇Ni = ∂yj
aΘ

ij(y) − bΘ
i (y), Y,

y 7→ Ni Y − periodi; (4.8)




−div((aΘ)T∇N∗
i ) − bΘ · ∇N∗

i = ∂yj
aΘ

ji(y) + bΘ
i (y), Y,

y 7→ N∗
i Y − periodi. (4.9)The matrix aeff is positive de�nite (see, for example, [8℄, [20℄, [25℄) and is exatlythe same homogenized matrix as in the homogenization of the spetral problem[11℄. Note that N and N∗ are Hölder ontinuous funtions (see [16℄). The solutionof problem (4.6) an be written expliitly:

Φ0(t, x, ξ) =
1

(4πt)d/2

1

det aeff
exp

{
− (x − ξ)T (aeff)−1(x − ξ)

4t

}
.The �rst-order approximation for the Green funtion Φ, solution of (4.5), is de-�ned as follows

Φ1(τ, y, η) = Φ0(τ, y, η) + N(y) · ∇xΦ0(τ, y, η) + N∗(η) · ∇ξΦ0(τ, y, η). (4.10)By means of Bloh wave analysis it has been shown in [1℄ that, under assumption(3.4), there exists a onstant C suh that, for any τ ≥ 1 and y, η ∈ R
d,

|Φ(τ, y, η) − Φ0(τ, y, η)| ≤ C

τ (d+1)/2
,

|Φ(τ, y, η) − Φ1(τ, y, η)| ≤ C

τ (d+2)/2
.

(4.11)Thus, in view of the resaling (4.4), there exists a onstant C > 0, whih doesnot depend on ε, suh that, for any t ≥ ε2, x, ξ ∈ R
d,

|Φε(t, x, ξ) − Φ0(t, x, ξ)| ≤ C ε

t(d+1)/2
;

|Φε(t, x, ξ) − Φε
1(t, x, ξ)| ≤ C ε2

t(d+2)/2
.

(4.12)Here Φε
1(t, x, ξ) = ε−d Φ1

(
t
ε2 , x

ε , ξ
ε

), namely
Φε

1(t, x, ξ) = Φ0(t, x, ξ)+ εN
(x

ε

)
·∇xΦ0(t, x, ξ)+ εN∗

(ξ

ε

)
·∇ξΦ0(t, x, ξ). (4.13)11



Next, we study the asymptoti behavior of Vε, solution of (4.3). The (formal)two-sale asymptoti expansion method suggests to approximate Vε by a �rst-order ansatz de�ned by
V ε

1 (t, x, ξ) = V0(t, x, ξ) + εN
(x

ε

)
· ∇xV0(t, x, ξ) + εN∗

(ξ

ε

)
· ∇ξV0(t, x, ξ), (4.14)where N and N∗ are the solutions of ell problems (4.8) and (4.9), respetively,and, for �xed ξ, V0, as a funtion of (t, x), is the solution of the e�etive problem





∂tV0(t, x, ξ) = divx(aeff∇xV0(t, x, ξ)), (t, x) ∈ (0, T ) × Ω,

V0(t, x, ξ) = Φ0(t, x, ξ), (t, x) ∈ (0, T ) × ∂Ω,

V0(0, x, ξ) = 0, x ∈ Ω.

(4.15)Due to the maximum priniple and to the expliit formula for Φ0, there exists aonstant C, whih depends only on Λ and d, suh that, for any ompat subset
B ⋐ Ω, ξ ∈ B, (t, x) ∈ [0, T ] × Ω,

0 ≤ V0(t, x, ξ) ≤ max
(t,x)∈[0,T )×∂Ω

Φ0(t, x, ξ) ≤ C

dist(B, ∂Ω)d
. (4.16)Moreover, ombining (4.16) with the loal estimates of the derivatives of V0 gives

∣∣∣∂k
t ∂l

xj
∂m

ξj
V0(t, x, ξ)

∣∣∣ ≤ C

dist(B, ∂Ω)d+2k+l+m
, (t, x, ξ) ∈ [0, T ] × Ω × B.(4.17)To �nish the proof of Lemma 4.1 we need the following intermediate result.Lemma 4.2. Let Vε and V0 be solutions of problems (4.3) and (4.15), respetively.Then, for any ompat subset B ⋐ Ω, there exists a positive onstant C, onlydepending on dist(B, ∂Ω),Ω, d,Λ, suh that, for any (t, ξ) ∈ [0, T ] × B,

∫

Ω

|Vε(t, x, ξ) − V0(t, x, ξ)|2 dx ≤ C ε2.Proof. Let V ε
1 be the �rst-order approximation of Vε de�ned by (4.14). Evaluatingthe remainder after substituting the di�erene Ṽ ε = V ε

1 − Vε into problem (4.3),we get 



̺Θ

(x

ε

)
∂tṼ

ε + Aε
ΘṼ ε = F

(
t, x, ξ;

x

ε
,
ξ

ε

)

+ε f
(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T ) × Ω,

Ṽ ε = Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T ) × ∂Ω,

Ṽ ε(0, x, ξ) = 0, x ∈ Ω,

(4.18)
12



with F, f and G de�ned by
F (t, x, ξ; y, η) = ̺Θ(y) ∂tV0 − divy(a

Θ(y)∇x(N(y)∇xV0(t, x, ξ)))

−divy(a
Θ(y)∇x(N∗(η)∇ξV0(t, x, ξ))) − divx(aΘ(y)∇xV0(t, x, ξ))

−divx(aΘ(y)∇y(N(y)∇xV0(t, x, ξ))) + bΘ(y) · ∇x(N(y)∇xV0(t, x, ξ)))

+bΘ(y) · ∇x(N∗(η)∇ξV0(t, x, ξ));

f(t, x, ξ; y, η) = N(y) · ∂t∇xV0(t, x, ξ) + N∗(η) · ∂t∇ξV0(t, x, ξ)

−divx(aΘ(y)∇x(N(y) · ∇xV0(t, x, ξ)))

−divx(aΘ(y)∇x(N∗(y) · ∇ξV0(t, x, ξ)));

Gε(t, x, ξ; y, η) = Φ0(t, x, ξ) − Φε(t, x, ξ)

+εN(y) · ∇xV0(t, x, ξ) + εN∗(η) · ∇ξV0(t, x, ξ).By linearity, we represent Ṽ ε as a sum Ṽ ε = Ṽ ε
1 + Ṽ ε

2 , where Ṽ ε
1 and Ṽ ε

2 aresolutions of the follwoing problems




̺Θ

(x

ε

)
∂tṼ

ε
1 + Aε

ΘṼ ε
1 = F

(
t, x, ξ;

x

ε
,
ξ

ε

)

+ε f
(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T ) × Ω,

Ṽ ε
1 = 0, (t, x) ∈ (0, T ) × ∂Ω,

Ṽ ε
1 (0, x, ξ) = 0, x ∈ Ω;

(4.19)




̺Θ

(x

ε

)
∂tṼ

ε
2 + Aε

ΘṼ ε
2 = 0, (t, x) ∈ (0, T ) × Ω,

Ṽ ε
2 = Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T ) × ∂Ω,

Ṽ ε
2 (0, x, ξ) = 0, x ∈ Ω.

(4.20)The trik is to estimate Ṽ ε
1 by standard energy estimates and Ṽ ε

2 by the maximumpriniple. First, we estimate Ṽ ε
1 . Taking into aount (4.17) and the boundednessof N,N∗, after integration by parts one has, for ξ ∈ B ⋐ Ω,

∣∣∣∣∣∣

∫

Y

F (t, x, ξ; y, η)w(y) dy

∣∣∣∣∣∣
≤ C‖w‖H1

#(Y ), ∀w ∈ H1
#(Y ),where H1

#(Y ) stands for the losure of Y -periodi smooth funtions with respetto the H1(Y ) norm. Thus, as a funtion of y, F belongs to the dual spae
H−1

# (Y ) uniformly in (t, x, ξ, η). As is usual in the method of two-sale asymptotiexpansion, equating the Y -average of F to zero yields the homogenized equation(4.15). Therefore, it is no surprise that, in view of (3.4), (4.15) and the periodiityof aΘ
ij , N,N∗, we ompute

∫

Y

F (t, x, ξ; y, η) dy = 0.13



Thus, for any t, x, ξ there exists a Y -periodi with respet to y vetor funtion
χ = χ(t, x, ξ; y, η), whih belongs to L2

#(Y ; Rd), suh that
F (t, x, ξ; y, η) = divyχ(t, x, ξ; y, η)
∫

Y

|χ(t, x, ξ; y, η)|2 dy ≤ C, ξ ∈ B ⋐ Ω.
(4.21)By resaling we obtain

F (t, x, ξ; y, ξ/ε) = εdivx

(
χ(t, x, ξ;x/ε, η)

)
− ε

(
divxχ

)
(t, x, ξ;x/ε, η). (4.22)Sine bΘ is divergene-free, the a priori estimates are then obtained in the lassialway. Multiplying the equation in (4.19) by Ṽ ε

1 , integrating by parts and using(4.21), (4.22) yield
∫

Ω

|Ṽ ε
1 (t, x, ξ)|2 dx ≤ C ε2, (t, x) ∈ [0, T ] × Ω, ξ ∈ B ⋐ Ω. (4.23)Seond, we estimate Ṽ ε

2 , solution of (4.20), by using the maximum priniple. Ournext goal is to prove that
|Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
| ≤ C ε, (t, x) ∈ [0, T ] × ∂Ω, ξ ∈ B ⋐ Ω. (4.24)By (4.12), for any β ≤ 2 and t ≥ εβ,

|Φε(t, x, ξ) − Φε
1(t, x, ξ)| ≤ C ε2−(d+2)β/2. (4.25)In (4.25) we �nd 2− (d+2)β/2 ≥ 1 if and only if β ≤ (1+d/2)−1 whih is alwayssmaller than 2. For x ∈ ∂Ω, ξ ∈ B ⋐ Ω, uniformly with respet to t ≥ 0, we have

|∇xΦ0(t, x, ξ)| ≤ C |x − ξ|
t1+d/2

e−
C0|x−ξ|2

t ≤ Cand a similar bound for ∇ξΦ0. Thus, from (4.13) we dedue
|Φε

1(t, x, ξ) − Φ0(t, x, ξ)| ≤ C ε, t ≥ 0, x ∈ ∂Ω, ξ ∈ B ⋐ Ω. (4.26)Combining (4.25) and (4.26) yields, for any 0 < β ≤ (1 + d/2)−1,
|Φε(t, x, ξ) − Φ0(t, x, ξ)| ≤ C ε, t ≥ εβ , x ∈ ∂Ω, ξ ∈ B ⋐ Ω. (4.27)To estimate Φε − Φ0 for small t ∈ [0, εβ) we make use of the Aronson estimates[6℄. Taking into aount (3.4) and (4.4), we see that Φε admits the followingbound

0 ≤ Φε(t, x, ξ) = ε−d Φ
( t

ε2
,
x

ε
,
ξ

ε

)
≤ C

td/2
exp

{
− C0|x − ξ|2

t

}with the onstants C0, C independent of ε. Thus, for su�iently small ε, weobtain
|Φε(t, x, ξ) − Φ0(t, x, ξ)| ≤ |Φε(t, x, ξ)| + |Φ0(t, x, ξ)|

≤ C

td/2
exp

{
− C0|x − ξ|2

t

}
≤ C

εdβ/2
exp

{
− C0|x − ξ|2

εβ

}
.

(4.28)14



Thus, for t ∈ [0, εβ), x ∈ ∂Ω and ξ ∈ B ⋐ Ω, the di�erene |Φε(t, x, ξ)−Φ0(t, x, ξ)|is exponentially small if β > 0. Combining (4.27) and (4.28) yields
|Φε(t, x, ξ) − Φ0(t, x, ξ)| ≤ C ε, (t, x) ∈ [0, T ] × ∂Ω, ξ ∈ B ⋐ Ω, (4.29)with the onstant C depending on dist(B,Ω),Λ, d. The boundedness of N,N∗,estimates (4.17) and (4.29) imply (4.24).Then, we use the maximum priniple in (4.20) to dedue from (4.24) that

|Ṽ ε
2 (t, x, ξ)| ≤ C ε, (t, x, ξ) ∈ [0, T ) × Ω × B. (4.30)In view of (4.23) and (4.30), we onlude

∫

Ω

|Vε(t, x, ξ) − V ε
1 (t, x, ξ)|2 dx ≤ C ε2, t ∈ [0, T ], ξ ∈ B ⋐ Ω.Realling the de�nition of V ε

1 and using estimate (4.17) omplete the proof ofLemma 4.2.Turning bak to the proof of Lemma 4.1, the Green funtion K0(t, x, ξ), whihis de�ned as the solution of (4.1), satis�es K0 = V0−Φ0. Similarly, by de�nition,
Kε = Vε − Φε. Taking into aount (4.12), Lemma 4.2 implies

∫

Ω

|Kε(t, x, ξ) − K0(t, x, ξ)|2 dx ≤ C ε2, t ≥ t0 > 0, ξ ∈ B ⋐ Ω.We would like to emphasize that the onstant C in the last estimate only dependson t0, dist(B, ∂Ω), Λ, d,Ω. Due to the Nash-De Giorgi estimates for the paraboliequations (see, for example, [19℄), Kε is Hölder ontinuous (of ourse K0 is), and,thus, one an dedue a uniform estimate
|Kε(t, x, ξ) − K0(t, x, ξ)| ≤ C εγ , t ≥ t0 > 0, x ∈ Ω, ξ ∈ B ⋐ Ω (4.31)for some γ > 0 depending on Ω,Λ and d. We emphasize that the onstants C, γ donot depend on ε. Indeed, due to ondition (3.4), problem (3.2) an be rewrittenin divergene form, without any onvetive term and without any ε-fator in frontof the oe�ients. The proof of Lemma 4.1 is omplete.Remark 4.1. Estimate (4.31) is enough for our purpose, but we emphasize that itan be improved. Namely, onstruting su�iently many terms in the asymptotiexpansion for Vε, one an show that

|Kε(t, x, ξ) − K0(t, x, ξ)| ≤ C ε, t ≥ t0 > 0, x ∈ Ω, ξ ∈ B ⋐ Ω.5 Asymptotis of uε or vεThe goal of this setion is to prove our main result Theorem 2.1 and atually togive a more preise statement of it in Theorem 5.1. By the fatorization priniple15



(3.1) it is equivalent to �nd a preise asymptoti expansion of vε. Reall that vε,as a solution of (3.2), an be represented in terms of the orresponding Greenfuntion Kε by using formula (3.5). Bearing in mind Lemma 4.1, we rearrange(3.5) as follows
vε(t, x) = Iε

1 + Iε
2 (5.1)with

Iε
1 =

∫

Ω

K0(t, x, ξ)
u0(ξ)

pΘ

( ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ,

Iε
2 =

∫

Ω

(
Kε(t, x, ξ) − K0(t, x, ξ)

) u0(ξ)

pΘ

( ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ.Of ourse, beause of (4.31), the seond integral in (5.1) is going to be, at least,
εγ times smaller that the �rst one. Reall that, by assumption (H3), u0 has aompat support ω ⋐ Ω so we are able to use the previous estimates of Lemma 4.1.Let us ompute approximately the �rst integral Iε

1 . Sine Θ · (x − x̄) > 0 for
x ∈ ω \ {x̄}, it is lear that the main ontribution is given by integrating overa neighborhood of the point x̄. We onsider the ase of general position, whenondition (H5) is ful�lled, that is, in loal oordinates in a neighborhood Uδ(x̄)of the point x̄, ∂ω an be de�ned by

zd = (Sz′, z′) + o(|z′|2)for some positive de�nite (d − 1) × (d − 1) matrix S. Here (z1, · · · , zd) is anorthonormal basis suh that the oordinates z′ = (z1, · · · , zd−1) are tangential to
∂ω and the axis zd is the interior normal at x̄. Note that, by assumption (H4),
Θ is direted along zd. The neighborhood of x̄ is de�ned by

Uδ(x̄) = {z ∈ ω : |z′| ≤ δ, 0 ≤ zd ≤ δ2‖S‖},where ‖S‖ = max|x′|=1 |Sx′|. Choosing δ = ε1/4 guaranties that the integral overthe omplement to Uδ(x̄) is negligible. Indeed,
∣∣∣

∫

ω\Uδ(x̄)

K0(t, x, ξ)
u0(ξ)

pΘ

( ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ
∣∣∣ = O(e

− 1√
ε ).Let us now ompute the integral over Uδ(x̄), δ = ε1/4. Expanding K0 and u0(whih is of lass C2 in ω) into Taylor series about x̄ and taking into aountassumption (H6), for t ≥ t0 > 0, we obtain

Iε
1 = K0(t, x, x̄)

∂u0

∂Θ
(x̄)

∫

Uδ(x̄)

Θ

|Θ| · (ξ − x̄)
(
pΘ

(ξ

ε

))−1
e−

Θ·(ξ−x̄)
ε dξ + O(ε3 ε

d−1
2 )

= K0(t, x, x̄)
∂u0

∂Θ
(x̄)

∫

Uδ(0)

Θ

|Θ| · ξ
(
pΘ

(ξ

ε
+

x̄

ε

))−1
e−

Θ·ξ
ε dξ + O(ε3 ε

d−1
2 ).where ∂u0/∂Θ := ∇u0 · Θ/|Θ| is the diretional derivative of u0 along Θ (thetangential derivative of u0 vanishes at x̄ beause u0 is ontinuous and equal to16



0 outside ω). Note that we have antiipated the preise order of the remainderterm whih will be lear one we ompute the leading integral. Let us introduethe rotation matrix R whih de�nes the loal oordinate system (z1, z2, · · · , zd) =

(z′, zd) previously de�ned. By de�nition it satis�es ξ = R
−1 z and Θ · ξ = |Θ| zd.Applying this hange of variables we get

pΘ

(ξ

ε
+

{ x̄

ε

})
= pΘ

(
R

−1
(z

ε
+ R

{ x̄

ε

}))
≡ PΘ

(z

ε
+ z̄ε

)
, (5.2)where {x̄/ε} is the frational part of x̄/ε and z̄ε = R {x̄/ε}. In the ase when

Θ1,Θ2, · · · ,Θd are rationally dependent in pairs, PΘ remains periodi with an-other period. Otherwise PΘ is merely almost periodi. It happens, for example,when all Θk, k = 1, ..., d are rationally independent in pairs.We turn to the omputation of the integral over Uδ(0). By the above hangeof variables we get
Iε
1 = K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
∫

|z′|≤δ

dz′
δ2‖S‖∫

(Sz′,z′)

zd P−1
Θ

(z

ε
+ z̄ε

)
e−

|Θ|zd
ε dzd + o(ε2 ε

d−1
2 ).

(5.3)To blow-up the integral in (5.3) we make a (paraboli) resaling of the spaevariables
ζ ′ =

z′√
ε
, ζd =

zd

ε
,and realling that δ = ε1/4, we arrive at the following integral

Iε
1 = ε2 ε

(d−1)
2 K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd P−1
Θ

( ζ ′√
ε

+ (z̄ε)′, ζd + z̄ε
d

)
e−|Θ|ζd dζd + o(ε2 ε

d−1
2 ),where the reaminder term takes into aount the fat that the domain of integra-tion is now in�nite. Changing the order of integration we have

Iε
1 = ε2 ε

(d−1)
2 K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
+∞∫

0

ζd e−|Θ|ζd dζd

∫

(Sζ′,ζ′)≤ζd

P−1
Θ

( ζ ′√
ε

+ (z̄ε)′, ζd + z̄ε
d

)
dζ ′ + o(ε2 ε

d−1
2 ).The funtion P−1

Θ

(
η′, τd

) is uniformly ontinuous; moreover, it is almost periodiwith respet to the �rst variable. Thus, for any bounded Borel set B ⊂ R
d−1,the following limit exists

M{P−1
Θ

(
·, τd

)
} = lim

t→∞

1

|tB|

∫

tB

P−1
Θ

(
η′ + τ ′, τd

)
dη′. (5.4)17



We emphasize that the onvergene is uniform with respet to τ ′ and τd, and thelimit does not depend on τ ′. Therefore, by Lemma 8.2, as ε → 0, we eventuallydedue
Iε
1 = ε2 ε

d−1
2 K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄ε

d

)
} dζd + o(ε2 ε

d−1
2 ),

(5.5)where the remainder term is asymptotially smaller than the leading order term(uniformly in t ≥ 0, x ∈ Ω) but we annot say how muh sine there is no preisespeed of onvergene for averages of almost periodi funtions in Lemma 8.2.The ase of the seond integral Iε
2 is then very similar. Taking into aountthe positiveness of pΘ, and Lemma 4.1, for t ≥ t0 > 0, we obtain

|Iε
2 | ≤ C εγ

∫

ω

|u0(x)| e−
Θ·(ξ−x̄)

ε dξ,where C does not depend on ε. The same omputation as above (but withoutthe neessity of onsidering almost periodi funtions) yields
|Iε

2 | ≤ C εγ

∣∣∣∣
∂u0

∂Θ
(x̄)

∣∣∣∣
∫

ω

∣∣∣∣
Θ

|Θ| · (ξ − x̄)

∣∣∣∣ e−
Θ·(ξ−x̄)

ε dξ

≤ C εγ

∣∣∣∣
∂u0

∂Θ
(x̄)

∣∣∣∣
∫

Rd−1

dz′
+∞∫

S0|z′|2

zd e−
|Θ|zd

ε dzd

≤ C ε2+γ

∣∣∣∣
∂u0

∂Θ
(x̄)

∣∣∣∣
∫

Rd−1

(1 + S0 |z′|2 ε−1) e−
|Θ|S0|z′|2

ε dz′

≤ C ε2+γ ε
d−1
2 ,for some onstant S0 > 0 and C = C(S0,Θ). Finally, we have derived thefollowing asymptotis of vε, as ε → 0,

vε(t, x) = ε2 ε
d−1
2

(
1 + rε(t, x)

)
K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄ε

d

)
} dζd,where rε(t, x) onverges to zero uniformly with respet to (t, x) ∈ [t0, T ]×Ω withany t0 > 0.We summarize the result, just obtained, by formulating a more preise versionof Theorem 2.1, desribing the asymptotis of uε(t, x).Theorem 5.1. Suppose onditions (H1) − (H6) are satis�ed and Θ 6= 0. Let uεbe the solution of problem (1.1). Then, for t ≥ t0 > 0,

uε(t, x) = ε2 ε
d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ

(x

ε

)
u(t, x),18



where (λ1(Θ), pΘ) is the �rst eigenpair de�ned by Lemma 2.1 and rε(t, x) → 0, as
ε → 0, uniformly with respet to (t, x) ∈ [t0, T ] × Ω. The funtion u(t, x) solvesthe homogenized problem





∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) = ∇u0(x̄) · Θ

|Θ| δ(x − x̄), x ∈ Ω,

(5.6)with aeff being a positive de�nite matrix given by (4.7), δ(x − x̄) is the Diradelta-funtion at the point x̄. The onstant Mε is de�ned by
Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄ε

d

)
} dζd, (5.7)where M{P−1

Θ

(
·, τd

)
} is the mean-value of the almost periodi funtion η′ →

P−1
Θ (η′, τd) (see (5.4)), PΘ is given by (5.2) and z̄ε

d = R{x̄/ε} · Θ
|Θ| .

ω

Ω

x̄
b

b b

b

b

(a)
x̄

b

b b

b

b

(b)
x̄

b

b b

b

b()Figure 2: Position of x̄ in εY for di�erent values of εRemark 5.1. The onstant Mε de�ned by (5.7) depends on z̄ε
d = R{x̄/ε} · Θ

|Θ| ,that is on the omponent, parallel to Θ, of the frational part of x̄/ε, or, in otherwords, on the relative position of x̄ inside the ell εY (see Figure 2). Notie that
Mε is bounded, thus, up to a subsequene, it onverges to some M∗, as ε → 0. Thehoie of the onverging subsequene is only a matter of the geometri de�nitionof the periodi medium. For example, if x̄ is known, we may deide to make itthe origin and to de�ne the periodi mirostruture relative to this origin. Then
x̄ = 0, z̄ε = 0 is �xed in the periodiity ell, and Mε = M is independent of ε.It might happen that the vetor Θ is suh that its omponents Θd and Θkare rationally independent for all k 6= d. In suh a ase, it turns out that theonstant Mε does not depend on ε and, moreover, an be expliitly omputed.This is the topi of the following result.19



Corollary 5.1. Let onditions of Theorem 5.1 be satis�ed. And assume thatthe vetor Θ is suh that Θd and Θk, for any k = 1, · · · , (d − 1), are rationallyindependent. Then Mε is independent of ε and is given by
Mε =

(d − 1)

|Θ|2
( π

|Θ|
) d−1

2
(det S)1/2

∫

Y

p−1
Θ (y) dy.In other words, for t ≥ t0 > 0,

uε(t, x) =
( ε

|Θ|
)2+ d−1

2
K e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε pΘ

(x

ε

)
u(t, x)

(
1 + rε(t, x)

)
,where rε(t, x) → 0, as ε → 0, uniformly with respet to (t, x) ∈ [t0, T ]×Ω; u(t, x)solves the homogenized problem (5.6). The onstant K is given by

K = (d − 1)π
d−1
2 (detS)1/2

∫

Y

p−1
Θ (y) dy.Proof. It is su�ient to notie that in the ase when Θd and Θk, k = 1, 2, · · · (d−

1), are rationally independent, the mean value of the almost periodi funtion
P−1

Θ (ζ ′, τd) with respet to the �rst variable ζ ′, for any τd, oinides with itsvolume average
M{P−1

Θ (·, τd)} =

∫

Y

p−1
Θ (y) dy.Thus, the onstant Mε given by (5.7) does not depend on ε and has the followingform

Mε =
(∫

Y

p−1
Θ (y) dy

) ∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e−|Θ|ζd dζd.Evaluating the last integral we obtain
Mε =

(d − 1)

|Θ|2
( π

|Θ|
) d−1

2
(detS)1/2

∫

Y

p−1
Θ (y) dythat implies the desired result.Remark 5.2. Theorem 5.1 does not provide any rate of onvergene due to severalreasons. First of all, without speifying the remainder in hypothesis (H5), oneannot expet any estimate in (5.3). One possible option would be to assume thatin loal oordinates, in the neighbourhood of the point x̄, ∂ω is de�ned by

zd = (Sz′, z′) + O(|z|3).Then in (5.3) one would obtain the error O(ε3 ε(d−1)/2).The seond reason for the lak of estimates is onealed in Lemma 8.2. Inontrast with the lassial mean value theorem for periodi funtions, Lemma 8.2does not provide any rate of onvergene. However, if all the omponents of thevetor Θ are rationally dependent, then PΘ remains periodi (maybe with another20



period), and one an apply the mean value theorem for smooth periodi funtionsthat gives an error O(ε), and, onsequently, O(ε3 ε(d−1)/2) in (5.5).Finally, estimate (4.31) guaranties that the seond integral in (5.1) is εγsmaller than the �rst one, where 0 < γ ≤ 1 depends on Λ,Ω, d.Remark 5.3. We stress that if ondition (H3) is violated and the support of
u0 touhes the boundary of Ω, then the two integrals in (5.1) are of the sameorder, and we annot neglet the seond integral any more. In this ase it isneessary to onstrut not only the leading term of the asymptotis for Kε, butalso a orretor term together with a boundary layer orretor. It is possible insome partiular ases, for example, when x̄ belongs to a �at part of the boundaryof Ω, or when the oe�ients of the equation are onstant. But it is well knownthat boundary layers in homogenization are very di�ult to build in the ase ofa non �at boundary. Simple ases (�at boundaries, ylindrial domains) will beonsidered in our forthoming paper [3℄.Another typial situation arises when we do not assume anymore that theinitial data u0 is ontinuous on Ω but merely that it has ompat support and is
C2 inside its support. In partiular, in this new situation we may have u0(x̄) 6= 0.The next theorem, haraterizing the asymptoti behaviour of uε in this ase, anbe proved in exatly the same way as Theorem 5.1.Theorem 5.2. Suppose onditions (H1), (H2), (H4), (H5) are satis�ed and Θ 6=
0. Assume that u0 has ompat support ω ⋐ Ω, u0 ∈ C2(ω) and u0(x̄) 6= 0. If uεis a solution of problem (1.1), then, for t ≥ t0 > 0

uε(t, x) = ε ε
d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ

(x

ε

)
u(t, x),where rε(t, x) → 0, as ε → 0, uniformly with respet to (t, x) ∈ [t0, T ]×Ω. Here,

u(t, x) solves the e�etive problem




∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) = u0(x̄) δ(x − x̄), x ∈ Ω.The onstant Mε is now given by
Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄ε

d

)
} dζd,with the same de�nitions of the mean-value M, of the almost periodi funtion

PΘ and of z̄ε
d as in Theorem 5.1.Remark 5.4. Yet another possible situation is that u0 = ∂u0/∂Θ = 0 in theneighborhood of x̄. If we assume that u0 ∈ C3(ω) and replae ondition (H6) by

∂2u0

∂Θ2
(x̄) =

∂

∂Θ

(∂u0

∂Θ

)
(x̄) 6= 0,21



where ∂u0/∂Θ is the diretional derivative of u0 in the diretion of Θ, then wean prove in this ase that, for t ≥ t0 > 0,
uε(t, x) = ε3 ε

d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e−
Θ·(x−x̄)

ε Mε pΘ

(x

ε

)
u(t, x),where rε(t, x) → 0, as ε → 0, uniformly with respet to (t, x) ∈ [t0, T ] × Ω and

u(t, x) is a solution of




∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) =
1

2

∂2u0

∂Θ2
(x̄) δ(x − x̄), x ∈ Ω.The onstant Mε is now given by

Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζ2
d e−|Θ|ζd M{P−1

Θ

(
·, ζd + z̄ε

d

)
} dζd.The ase when u0 vanishes on the boundary of ω together with its derivatives upto order k, an be treated similarly.It should be notied that a statement similar to that of Corollary 5.1 remainsvalid for Theorem 5.2 and Remark 5.4.6 The ase of a �at boundary of ωIn the previous setions we analyzed the ase when the quadrati form of thesurfae ∂ω is non-degenerate at the point x̄. The asymptotis of the solution ofproblem (1.1) an also be onstruted when x̄ belongs to a �at part Σ of ∂ω andthe vetor Θ is orthogonal to Σ.More preisely, we replae the previous assumptions (H4), (H5), (H6) withthe following ones.(H4') The set of points x̄ whih provide the minimum in minx∈ω Θ · x is a subset

Σ of ∂ω whih is inluded in an hyperplane of R
d and Σ has a positive

(d − 1)-measure.(H5') u0(y) = 0 for all y ∈ Σ. There exists x̄ ∈ Σ suh that ∂u0

∂Θ
(x̄) 6= 0.Remark 6.1. Assumption (H4') implies that

Θ · (x − x̄) > 0 for all x ∈ ω \ Σ, x̄ ∈ Σ,and Θ is orthogonal to Σ and direted inside ω (see Figure 3). Furthermore,
x̄Θ = x̄ · Θ

|Θ| is the same for all x̄ ∈ Σ.In this ase we prove the following result.22
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Θ

Figure 3: The ase of a �at part of the boundary ∂ωTheorem 6.1. Assume that onditions (H1)-(H3) and (H4')-(H5') are ful-�lled, and Θ 6= 0. Then, for t ≥ t0 > 0, the asymptoti behaviour of the solution
uε of problem (1.1) is desribed by

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε (1 + rε(t, x))Mε pΘ

(x

ε

)
u(t, x),where rε(t, x) → 0, as ε → 0, uniformly with respet to (t, x) ∈ [t0, T ] × Ω,

(λ1(Θ), pΘ) is the �rst eigenpair de�ned by Lemma 2.1, x̄ is an arbitrary pointon Σ and u(t, x) solves the homogenized problem




∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) =
∂u0

∂Θ
(x) δΣ, x ∈ Ω.

(6.1)Here aeff is still de�ned by (4.7), δΣ is the Dira delta-funtion on Σ and theonstant Mε is given by
Mε =

+∞∫

0

ζd e−|Θ| ζd M{P−1
Θ

(
·, ζd +

x̄Θ

ε

)
}dζdwithM{P−1

Θ (·, τd)} being the mean value of the almost periodi funtion P−1
Θ (·, τd)(see (5.4)), PΘ(z) being the rotation of pΘ in the loal oordinates of Σ: PΘ(ζ) =

pΘ(R−1ζ), where R is the rotation matrix.Proof. The proof starts, like that of Theorem 5.1, by using the representationformula (3.5) for the solution vε of (3.2) in terms of the Green funtion Kε.Writing Kε = K0 + (Kε − K0) we arrive at (5.1), namely
vε(t, x) = Iε

1 + Iε
2 .By Lemma 4.1, we an estimate Iε

2 , passing to loal oordinates, as in the proof
23



of Theorem 5.1,
|Iε

2 | ≤ C εγ

∫

ω

|u0(ξ)| e−
Θ·(ξ−x̄)

ε dξ

≤ C εγ

∫

Σ

∣∣∂u0

∂Θ
(z′, x̄Θ)

∣∣dz′
+∞∫

0

zd e−
|Θ|zd

ε dzdfor some γ = γ(Λ,Ω, d) > 0 de�ned in (4.31). Making the hange of variables
ζd = zd/ε, we see that

|Iε
2 | ≤ C ε2+γ

∫

Σ

∣∣∂u0

∂Θ
(z′, x̄Θ)

∣∣dz′
+∞∫

0

ζd e−|Θ|ζd dζd ≤ C ε2+γ .In order to ompute approximately Iε
1 , we again pass to the loal oordinates.Namely, we rotate oordinates z = R ξ in suh a way that Θ is direted along zd.It is obvious that only the neighborhood of Σ ontributes in Iε

1 . Expanding K0and u0 into a Taylor series with respet to zd and making the hange of variables
ζd = zd/ε leads to
Iε
1 = ε2

+∞∫

0

ζd e−|Θ| ζd dζd

∫

Σ

K0(t, x, z′, x̄Θ)
∂u0

∂Θ
(z′, x̄Θ)P−1

Θ

(z′

ε
, ζd+

x̄Θ

ε

)
dz′+o(ε2).where PΘ(ζ) ≡ pΘ(R−1ζ) with R being the rotation matrix.Sine P−1

Θ (ζ ′, τd) is uniformly ontinuous, and, moreover, almost periodi withrespet to ζ ′, by Lemma 8.1, we have
Iε
1 = ε2 Mε

∫

Σ

K0(t, x, z′, x̄Θ)
∂u0

∂Θ
(z′, x̄Θ) dz′ + o(ε2),where

Mε =

+∞∫

0

ζd e−|Θ| ζd M{P−1
Θ

(
·, ζd +

x̄Θ

ε

)
}dζd.Here M{P−1

Θ (·, τd)} is the mean value of the almost periodi funtion P−1
Θ (·, τd)(see (5.4)).Consequently, as ε → 0,

vε(t, x) = ε2 Mε

∫

Σ

K0(t, x, z′, x̄Θ)
∂u0

∂Θ
(z′, x̄Θ) dz′ + o(ε2).Realling that K0 is the Green funtion of the e�etive problem (4.1) ompletesthe proof.Corollary 6.1. Let onditions of Theorem 6.1 be ful�lled. Assume that the vetor

Θ is suh that Θd and Θk, for any k = 1, · · · , (d−1), are rationally independent.Then, for t ≥ t0 > 0,
uε(t, x) =

( ε

|Θ|
)2

e−
λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε (1 + rε(t, x)) pΘ

(x

ε

) (∫

Y
p−1
Θ dy

)
u(t, x),24



where rε(t, x) → 0, as ε → 0, uniformly with respet to (t, x) ∈ [t0, T ] × Ω and
u(t, x) solves the homogenized problem (6.1).Corollary 6.1 is proved in the same way as Corollary 5.1.7 Numerial examplesIn this setion we illustrate the results obtained in the previous setions by diretomputations performed with the free software FreeFEM++ ([15℄).When studying onvetion-di�usion equation, the so-alled e�etive onve-tion (e�etive drift) de�ned by (2.4) plays an important role. As was alreadynotied, ondition b̄i 6= 0 yields Θi 6= 0. The question arises, if b̄ oinide with Θor not. The answer is negative, and the orresponding example is given below.Example 1. Let Ω ⊂ R

2 be a bounded domain. Consider the followingboundary value problem with onstant oe�ients:




∂tu
ε − ∂2uε

∂x2
1

− 2
∂2uε

∂x1 ∂x2
− 2

∂2uε

∂x2
2

+
1

ε
b

∂uε

∂x2
= 0, in (0, T ) × Ω,

uε(t, x) = 0, on (0, T ) × ∂Ω,

uε(0, x) = u0(x), x ∈ Ω.

(7.1)Here b > 0 is a real parameter and it is obvious that the e�etive drift is b̄ = {0, b}.To �nd Θ, one should onsider the spetral problem (2.1) on the periodiity ell.Sine the oe�ients of the equation are onstant, λ1(θ) an be found easily:
λ1(θ) = −θ2

1 − 2 θ1 θ2 − 2 θ2
2 + b θ2.The maximum of λ1 is attained at Θ = {−b/2, b/2} 6= b̄.For the numerial omputations, we hoose Ω to be the unit irle Ω = {x :

|x1−1|2 + |x2−1|2 ≤ 1}, u0 being the harateristi funtion of the smaller irle
{x : |x1−1|2+ |x2−1|2 ≤ 0.5} (see Figure 4(a)), b = 1 and ε = 0.03. Theorem 2.1predits that the �hot spot� or onentration point of the solution uε will be atthe point xc = (1 −

√
2/2, 1 +

√
2/2) where Θ is orthogonal to ∂Ω.The presene of the large parameter in front of the onvetion in (1.1) suggeststo use Charateristis-Galerkin Method (see [14℄, [22℄). As a �nite element spae,a spae of pieewise linear ontinuous funtions has been hosen. The number oftriangles is 21192. The result of the diret omputations at di�erent times arepresented on Figure 4.Splitting eah triangle of the mesh in 9, we have ompared two solutions, u1de�ned on the original mesh and u2 on the re�ned one, and omputed the relative

L2-error for small t

sup
t

‖u1 − u2‖L2(Ω)

‖u1‖L2(Ω)
≈ 0.002.It is small enough so we an onlude that onvergene under mesh re�nement isattained. It an be seen from Figure 4 that the solution pro�le, vanishing with25



(a) t=0 (b) t=0.01 () t=0.02
(d) t=0.03 (e) t=0.04 (f) t=0.05Figure 4: Isolines of uε for small values of ttime, moves �rst in the vertial diretion (along the e�etive drift) and then tothe left. Beause of the very fast deay, it is not possible to plot the solution itselfat large time. Thus, instead of uε we onsider ũε = uε/maxΩ uε. On Figure 5the isolines of ũε are presented. One an see that indeed the onentration oursat the point (1−

√
2/2, 1 +

√
2/2), not the point (1, 2) where b̄ is normal to ∂Ω.We perform another numerial test in a nononvex domain for the same valuesof the parameters in (7.1). The isolines of the resaled solution ũε are ploted onFigure 6. It is interesting to see how the initial pro�le �rst moves in the diretionof the e�etive drift, then vanishes and reappear afterwards to onentrate at the�hot spot� where Θ · x attains its maximum, as predited by Theorem 2.1. Suhan example is learly non-intuitive (at least to the authors).8 Some results from the theory of almost pe-riodi funtions.Denote by Trig(Rd) the set of all trigonometri polynomials

Trig(Rd) =
{
P(x)

∣∣ P(x) =
∑

ξ∈Rd

cξ eix·ξ
}
,where in the sum only �nite number of cξ 6= 0. We designate by CAP(Rd)(set of almost periodi funtions) a losure of Trig(Rd) with respet to the norm

sup
Rd

|P(x)|. For any almost periodi funtion g ∈ CAP(Rd), there exists a meanvalue
M{g} = lim

t→∞

1

|tB|

∫

tB

g(x) dx, (8.1)26



(a) t=0 (b) t=0.1 () t=0.2
(d) t=0.3 (e) t=0.4 (f) t=0.5Figure 5: Isolines of resaled uε for di�erent values of twhere B ⊂ R

d is a Borel set, |B| - its volume. The mean-value theorem takesplae for almost periodi funtions ([18℄).Lemma 8.1. Given g ∈ CAP(Rd) and v ∈ L2(Q), Q ⊂ R
d, the following equalityholds true:

lim
ε→0

∫

Q

g
(x

ε

)
v(x) dx = M{g}

∫

Q

v(x) dx,where M{g} is given by formula (8.1).Lemma 8.1 an be formulated also in more general form.Lemma 8.2. Given a funtion g(x, y) ∈ C[Q; CAP(Rd)], Q ⊂ R
d, the followingequality holds:

lim
ε→0

∫

Q

g
(
x,

x

ε

)
dx =

∫

Q

M{g(x, ·)} dx,where
M{g(x, ·)} = lim

t→∞

1

|tB|

∫

tB

g(x, y) dy.The last statement an be proved ombining the approximation of g(x, y) by�nite sums of the type ∑
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(d) t=0.3 (e) t=0.4 (f) t=0.44
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(m) t=1.0 (n) t=1.2 (o) t=1.3Figure 6: Isolines of resaled uε for di�erent values of t in a non-onvex domain
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