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Homogenization and 
on
entration for a di�usionequation with large 
onve
tion in a bounded domainG. Allaire ∗ I. Pankratova † A. Piatnitski ‡May 24, 2011Abstra
tWe 
onsider the homogenization of a non-stationary 
onve
tion-di�usion equa-tion posed in a bounded domain with periodi
ally os
illating 
oe�
ients and ho-mogeneous Diri
hlet boundary 
onditions. Assuming that the 
onve
tion termis large, we give the asymptoti
 pro�le of the solution and determine its rateof de
ay. In parti
ular, it allows us to 
hara
terize the �hot spot�, i.e., the pre-
ise asymptoti
 lo
ation of the solution maximum whi
h lies 
lose to the domainboundary and is also the point of 
on
entration. Due to the 
ompetition between
onve
tion and di�usion the position of the �hot spot� is not always intuitive asexempli�ed in some numeri
al tests.Keywords: Homogenization, 
onve
tion-di�usion, lo
alization.1 Introdu
tionThe goal of the paper is to study the homogenization of a 
onve
tion-di�usionequation with rapidly periodi
ally os
illating 
oe�
ients de�ned in a boundeddomain. Namely, we 
onsider the following initial boundary problem:




∂tu
ε(t, x) + Aε uε(t, x) = 0, in (0, T ) × Ω,

uε(t, x) = 0, on (0, T ) × ∂Ω,

uε(0, x) = u0(x), x ∈ Ω,

(1.1)
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where Ω ⊂ R
d is a bounded domain with a Lips
hitz boundary ∂Ω, u0 belongsto L2(Ω) and Aε is an operator de�ned by

Aεuε = − ∂

∂xi

(
aij

(x

ε

) ∂uε

∂xj

)
+

1

ε
bj

(x

ε

) ∂uε

∂xj
,where we employ the 
onvention of summation over repeated Latin indi
es. Asusual ε, whi
h denotes the period of the 
oe�
ients, is a small positive param-eter intended to tend to zero. Note the large s
aling in front of the 
onve
tiveterm whi
h 
orresponds to the 
onve
tive and di�usive terms having both thesame order of magnitude at the small s
ale ε (this is a 
lassi
al assumption inhomogenization [5℄, [12℄, [13℄, [21℄). We make the following assumptions on the
oe�
ients of the operator Aε.(H1) The 
oe�
ients aij(y), bj(y) are measurable bounded fun
tions de�ned onthe unit 
ell Y = (0, 1]d, that is aij , bj ∈ L∞(Y ). Moreover, aij(y), bj(y) are

Y -periodi
.(H2) The d × d matrix a(y) is uniformly ellipti
, that is there exists Λ > 0 su
hthat, for all ξ ∈ R
d and for almost all y ∈ Ω,

aij(y)ξiξj ≥ Λ|ξ|2.For the large 
onve
tion term we do not suppose that the e�e
tive drift (theweighted average of b de�ned below by (2.4)) is zero, nor that the ve
tor �eld b(y)is divergen
e-free. Some additional assumptions on the smoothness and 
ompa
tsupport of the initial data u0 will be made in Se
tion 2 after introdu
ing auxiliaryspe
tral 
ell problems. In view of (H1) and (H2), for any ε > 0, problem (1.1)has a unique weak solution uε ∈ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] (see [6℄).Our main goal is to des
ribe the asymptoti
 behavior of the solution uε(t, x) ofproblem (1.1) as ε goes to zero. There are of 
ourse many motivations to studysu
h a problem (one of them being the transport of solutes in porous media[17℄). However, if (1.1) is interpreted as the heat equation in a �uid domain(the �uid velo
ity being given by ε−1b(x/ε)), we 
an paraphrase the famous �hotspot� 
onje
ture of J. Rau
h [23℄, [7℄, [10℄, and ask a simple question in plainwords. If the initial temperature u0 has its maximum inside the domain Ω, whereshall this maximum or �hot spot� go as time evolves ? More pre
isely, we wantto answer this question asymptoti
ally as ε goes to zero. Theorem 2.1 (andthe dis
ussion following it) gives a 
omplete answer to this question. The �hotspot� is a 
on
entration point xc, lo
ated asymptoti
ally 
lose to the boundary
∂Ω (see Figure 1), whi
h maximizes the linear fun
tion Θ · x on Ω where theve
tor parameter Θ is determined as an optimal parameter in an auxiliary 
ellproblem (see Lemma 2.1). Surprisingly Θ is not some average of the velo
ity �eldbut is the result of an intri
ate intera
tion between 
onve
tion and di�usion inthe periodi
ity 
ell (even in the 
ase of 
onstant 
oe�
ients ; see the numeri
alexamples of Se
tion 7). Furthermore, Theorem 2.1 gives the asymptoti
 pro�le2



of the solution, whi
h is lo
alized in the vi
inity of the �hot spot� xc, in terms ofa homogenized equation with an initial 
ondition that depends on the geometryof the support of the initial data u0.Before we explain our results in greater details, we brie�y review previous re-sults in the literature. In the 
ase when the ve
tor-�eld b(y) is solenoidal and haszero mean-value, problem (1.1) has been studied by the 
lassi
al homogenizationmethods (see, e.g, [8℄, [25℄). In parti
ular, the sequen
e of solutions is boundedin L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] and 
onverges, as ε → 0, to the solution ofan e�e
tive or homogenized problem in whi
h there is no 
onve
tive term. Forgeneral ve
tor-�elds b(y), and if the domain Ω is the whole spa
e R
d, the 
on-ve
tion might dominate the di�usion and we 
annot expe
t a usual 
onvergen
eof the sequen
e of solutions uε(t, x) in the �xed spatial referen
e frame. Rather,introdu
ing a frame of moving 
oordinates (t, x− b̄t/ε), where the 
onstant ve
tor

b̄ is the so-
alled e�e
tive drift (or e�e
tive 
onve
tion) whi
h is de�ned by (2.4)as a weighted average of b, it is known that the translated sequen
e uε(t, x− b̄t/ε)
onverges to the solution of an homogenized paraboli
 equation [5℄, [13℄. Notethat the notion of e�e
tive drift was �rst introdu
ed in [21℄. Of 
ourse, the 
on-vergen
e in moving 
oordinates 
annot work in a bounded domain. The purposeof the present work is to study the asymptoti
 behavior of (1.1) in the 
ase of abounded domain Ω.Bearing these previous results in mind, intuitively, it is 
lear that in a boundeddomain the initial pro�le should move rapidly in the dire
tion of the e�e
tivedrift b̄ until it rea
hes the boundary, and then dissipate due to the homogeneousDiri
hlet boundary 
ondition, as t grows. Sin
e the 
onve
tion term is large, thedissipation in
reases, as ε → 0, so that the solution asymptoti
ally 
onverges tozero at �nite time. Indeed, introdu
ing a res
aled (short) time τ = ε−1 t, werewrite problem (1.1) in the form




∂τu
ε − εdiv

(
aε ∇uε

)
+ bε · ∇uε = 0, in (0, ε−1 T ) × Ω,

uε(τ, x) = 0, on (0, ε−1 T ) × ∂Ω,

uε(0, x) = u0(x), x ∈ Ω.

(1.2)Applying the 
lassi
al two-s
ale asymptoti
 expansion method [8℄, one 
an showthat, for any τ ≥ 0

∫

Ω

|uε(τ, x) − u0(τ, x)|2 dx → 0, ε → 0,where the leading term of the asymptoti
s u0 satis�es the following �rst-orderequation 



∂τu
0(τ, x) + b̄ · ∇u0(τ, x) = 0, in (0,+∞) × Ω,

u0(τ, x) = 0, on (0,+∞) × ∂Ωb̄,

u0(0, x) = u0(x), x ∈ Ω,

(1.3)3



with b̄ being the ve
tor of e�e
tive 
onve
tion de�ned by (2.4). Here ∂Ωb̄ is thesubset of ∂Ω su
h that b̄ · n < 0 where n stands for the exterior unit normal on
∂Ω. One 
an 
onstru
t higher order terms in the asymptoti
 expansion for uε.This expansion will 
ontain a boundary layer 
orre
tor in the vi
inity of ∂Ω\∂Ωb̄.A similar problem in a more general setting has been studied in [9℄.The solution of problem (1.3) 
an be found expli
itly,

u0(τ, x) =





u0(x − b̄τ), for (τ, x) su
h that x, (x − b̄τ) ∈ Ω,

0, otherwise,whi
h shows that u0 vanishes after a �nite time τ0 = O(1). In the original
oordinates (t, x) we have
∫

Ω

|uε(t, x) − u0(x − ε−1 b̄ t)|2 dx → 0, ε → 0.Thus, for t = O(ε) the initial pro�le of uε moves with the velo
ity ε−1 b̄ until itrea
hes the boundary of Ω and then dissipates. Furthermore, any �nite number ofterms in the two-s
ale asymptoti
 expansion of uε(τ, x) vanish for τ ≥ τ0 = O(1)and thus for t ≥ t0 with an arbitrary small t0 > 0. On the other hand, if u0is positive, then by the maximum prin
iple, uε > 0 for all t. Thus, the methodof two-s
ale asymptoti
 expansion in this short-time s
aling is unable to 
apturethe limit behaviour of uε(t, x) for positive time. The goal of the present paperis therefore to perform a more deli
ate analysis and to determine the rate ofvanishing of uε, as ε → 0.The homogenization of the spe
tral problem 
orresponding to (1.1) in a boundeddomain for a general velo
ity b(y) was performed in [11℄, [12℄. Interestinglyenough the e�e
tive drift does not play any role in su
h a 
ase but rather the keyparameter is another 
onstant ve
tor Θ ∈ R
d whi
h is de�ned as an optimal ex-ponential parameter in a spe
tral 
ell problem (see Lemma 2.1). More pre
isely,it is proved in [11℄, [12℄ that the �rst eigenfun
tion 
on
entrates as a boundarylayer on ∂Ω in the dire
tion of Θ. We shall prove that the same ve
tor parameter

Θ is also 
ru
ial in the asymptoti
 analysis of (1.1).Noti
e that for large time and after a proper res
aling the solution of (1.1)should behave like the �rst eigenfun
tion of the 
orresponding ellipti
 operator,and thus 
on
entrates in a small neighbourhood of ∂Ω in the dire
tion of Θ. Weprove that this guess is 
orre
t, not only for large time but also for any time
t = O(1), namely that uε(t, x) 
on
entrates in the neighbourhood of the �hotspot� or 
on
entration point xc ∈ ∂Ω whi
h depends on Θ. The value of Θ 
anbe determined in terms of some optimality property of the �rst eigenvalue of anauxiliary periodi
 spe
tral problem (see Se
tion 2). It should be stressed that,in general, Θ does not 
oin
ide with b̄. As a 
onsequen
e, it may happen thatthe 
on
entration point xc does not even belong to the subset of ∂Ω 
onsisting ofpoints whi
h are attained by translation of the initial data support along b̄. Thisphenomenon is illustrated by numeri
al examples in Se
tion 7.4



The paper is organized as follows. In Se
tion 2 we introdu
e auxiliary spe
tralproblems in the unit 
ell Y and impose additional 
onditions on the geometry ofthe 
ompa
t support of u0. We then state our main result (see Theorem 2.1) andgive its geometri
 interpretation. In Se
tion 3, in order to simplify the originalproblem (1.1), we use a fa
torization prin
iple, as in [24℄, [18℄, [26℄, [11℄, basedon the �rst eigenfun
tions of the auxiliary spe
tral problems. As a result, weobtain a redu
ed problem, where the new 
onve
tion is divergen
e-free and haszero mean-value. Studying the asymptoti
 behaviour of the Green fun
tion ofthe redu
ed problem, performed in Se
tion 4, is an important part of the proof.It is based on the result obtained in [1℄ for a fundamental solution of a paraboli
operator with lower order terms. Asymptoti
s of uε is derived in Se
tion 5. InSe
tion 6 we study the 
ase when the boundary of the support of u0 has a �atpart. To illustrate the main result of the paper, in Se
tion 7 we present dire
t
omputations of uε using the software FreeFEM++ [15℄. A number of basi
 fa
tsfrom the theory of almost periodi
 fun
tions is given in Se
tion 8.2 Auxiliary spe
tral problems and main resultWe de�ne an operator A and its adjoint A∗ by
Au = −div(a∇u) + b · ∇u, A∗v = −div(aT∇v) − div(b v),where aT is the transposed matrix of a. Following [8℄, for θ ∈ R

d, we introdu
e twoparameterized families of spe
tral problems (dire
t and adjoint) in the periodi
ity
ell Y = [0, 1)d. 



e−θ·y Aeθ·y pθ(y) = λ(θ) pθ(y), Y,

y → pθ(y) Y-periodi
. (2.1)




eθ·y A∗ e−θ·y p∗θ(y) = λ(θ) p∗θ(y), Y,

y → p∗θ(y) Y-periodi
. (2.2)The next result, based on the Krein-Rutman theorem, was proved in [11℄, [12℄.Lemma 2.1. For ea
h θ ∈ R
d, the �rst eigenvalue λ1(θ) of problem (2.1) isreal, simple, and the 
orresponding eigenfun
tions pθ and p∗θ 
an be 
hosen pos-itive. Moreover, θ → λ1(θ) is twi
e di�erentiable, stri
tly 
on
ave and admits amaximum whi
h is obtained for a unique θ = Θ.The eigenfun
tions pθ and p∗θ de�ned by Lemma 2.1, 
an be normalized by

∫

Y

|pθ(y)|2dy = 1 and ∫

Y

pθ(y) p∗θ(y) dy = 1.Di�erentiating equation (2.1) with respe
t to θi, integrating against p∗θ and writ-ing down the 
ompatibility 
ondition for the obtained equation yield
∂λ1

∂θi
=

∫

Y

(
bi pθ p∗θ + aij(pθ ∂yj

p∗θ − p∗θ ∂yj
pθ) − 2 θj aij pθ p∗θ

)
dy. (2.3)5



Obviously, pθ=0 = 1, and, thus,
∂λ1

∂θi
(θ = 0) =

∫

Y

(
bi p

∗
θ=0 + aij ∂yj

p∗θ=0

)
dy := b̄i, (2.4)whi
h de�nes the 
omponents b̄i of the so-
alled e�e
tive drift. In the presentpaper we assume that b̄ 6= 0 (or, equivalently, Θ 6= 0). The 
ase b̄ = 0 
an bestudied by 
lassi
al methods (see, for example, [25℄). The equivalen
e of b̄ = 0and Θ = 0 is obvious sin
e λ1(θ) is stri
tly 
on
ave with a unique maximum.We need to make some assumptions on the geometry of the support ω (a
losed set as usual) of the initial data u0 with respe
t to the dire
tion of Θ. Onepossible set of 
onditions is the following.(H3) The initial data u0(x) is a 
ontinuous fun
tion in Ω, has a 
ompa
t support

ω ⋐ Ω and belongs to C2(ω). Moreover, ω is a C2-
lass domain.(H4) The �sour
e� point x̄ ∈ ∂ω, at whi
h the minimum in minx∈ω Θ·x is a
hieved,is unique (see Figure 1(a)). In other words
Θ · (x − x̄) > 0, x ∈ ω \ {x̄}. (2.5)(H5) The point x̄ is ellipti
 and ∂ω is lo
ally 
onvex at x̄, that is the prin
ipal
urvatures at x̄ have the same sign. More pre
isely, in lo
al 
oordinates theboundary of ω in some neighborhood Uδ(x̄) of the point x̄ 
an be de�nedby

zd = (Sz′, z′) + o(|z′|2)for some positive de�nite (d− 1)× (d− 1) matrix S. Here z′ = (z1, · · · zd−1)are the orthonormal 
oordinates in the tangential hyperplane at x̄, and zdis the 
oordinate in the normal dire
tion.(H6) ∇u0(x̄) · Θ 6= 0.Remark 2.1. In assumption (H3) it is essential that the support ω is a stri
tsubset of Ω, i.e., does not tou
h the boundary ∂Ω (see Remark 5.3 for further 
om-ments on this issue). However, the 
ontinuity assumption on the initial fun
tion
u0 is not ne
essary. It will be relaxed in Theorem 5.2 where u0(x) still belongsto C2(ω) but is dis
ontinuous through ∂ω. Of 
ourse, assuming 
ontinuity or notwill 
hange the order of 
onvergen
e and the multipli
ative 
onstant in front ofthe asymptoti
 solution.Note that assumption (H4) implies that Θ 6= 0 is a normal ve
tor to ∂ω at x̄.Eventually, assumption (H6) is required be
ause, u0 being 
ontinuous in Ω,we have u0(x̄) = 0.To avoid ex
essive te
hni
alities for the moment, we state our main result ina loose way (see Theorem 5.1 for a pre
ise statement).

6
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b

x̄

b

xc

(b)Figure 1: De�nition of the sour
e point x̄ and of the 
on
entration point xc.Theorem 2.1. Suppose 
onditions (H1) − (H6) are satis�ed and Θ 6= 0. If uεis a solution of problem (1.1), then, for any t0 > 0 and t ≥ t0

uε(t, x) ≈ ε2 ε
d−1
2 e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ

(x

ε

)
u(t, x), ε → 0,where (λ1(Θ), pΘ) is the �rst eigenpair de�ned by Lemma 2.1 and u(t, x) solvesthe homogenized problem





∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) = ∇u0(x̄) · Θ

|Θ| δ(x − x̄), x ∈ Ω.

(2.6)Here aeff is a positive de�nite matrix, de�ned by (4.7), Mε is a 
onstant, de�nedin Theorem 5.1, depending on pΘ, on the geometry of ∂ω at x̄ and on the relativeposition of x̄ in εY (see Remark 5.1 and Figure 2), and δ(x − x̄) is the Dira
delta-fun
tion at the point x̄.The interpretation of Theorem 2.1 in terms of 
on
entration or �nding the �hotspot� is the following. Up to a multipli
ative 
onstant ε2 ε
d−1
2 Mε, the solution uεis asymptoti
ally equal to the produ
t of two exponential terms, a periodi
allyos
illating fun
tion pΘ

(
x
ε

) (whi
h is uniformly positive and bounded) and thehomogenized fun
tion u(t, x) (whi
h is independent of ε). The �rst exponentialterm e−
λ1(Θ)t

ε2 indi
ates a fast de
ay in time, uniform in spa
e. The se
ond ex-ponential term e
Θ·(x−x̄)

ε is the root of a lo
alization phenomenon. Indeed, it ismaximum at those points on the boundary, xc ∈ ∂Ω, whi
h have a maximal 
oor-dinate Θ ·x, independently of the position of x̄ (see Figure 1(b)). These (possiblymultiple) points xc are the �hot spots�. Everywhere else in Ω the solution is ex-ponentially smaller, for any positive time. This behaviour 
an 
learly be 
he
kedon the numeri
al examples of Se
tion 7. It is of 
ourse similar to the behavior ofthe 
orresponding �rst eigenfun
tion as studied in [12℄.7



The proof of Theorem 2.1 
onsists of several steps. First, using a fa
torizationprin
iple (see, for example, [24℄, [18℄, [26℄, [11℄) in Se
tion 3 we make a 
hangeof unknown fun
tion in su
h a way that the resulting equation is amenable tohomogenization. After that, the new unknown fun
tion vε(t, x) is represented interms of the 
orresponding Green fun
tion Kε(t, x, ξ). Studying the asymptoti
behaviour of Kε is performed in Se
tion 4. Finally, we turn ba
k to the originalproblem and write down the asymptoti
s for uε in Se
tion 5 whi
h �nishes theproof of Theorem 2.1.Remark 2.2. Theorem 2.1 holds true even if we add a singular zero-order termof the type ε−2c(x
ε )uε in the equation (1.1). This zero-order term will be removedby the fa
torization prin
iple and the rest of the proof is identi
al. With someadditional work Theorem 2.1 
an be generalized to the 
ase of so-
alled 
ooperativesystems for whi
h a maximum prin
iple holds. Su
h systems of di�usion equa-tions arise in nu
lear rea
tor physi
s and their homogenization (for the spe
tralproblem) was studied in [12℄.3 Fa
torizationWe represent a solution uε of the original problem (1.1) in the form

uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε pΘ

(x

ε

)
vε(t, x), (3.1)where Θ and pΘ are de�ned in Lemma 2.1. Noti
e that the 
hange of unknownsis well-de�ned sin
e pΘ is positive and 
ontinuous. Substituting (3.1) into (1.1),multiplying the resulting equation by p∗Θ

(
x
ε

) and using (2.2), one obtains thefollowing problem for vε:




̺Θ

(x

ε

)
∂tv

ε + Aε
Θ vε = 0, (t, x) ∈ (0, T ) × Ω,

vε(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

vε(0, x) =
u0(x)

pΘ

(
x
ε

) e−
Θ·(x−x̄)

ε , x ∈ Ω,

(3.2)where ̺Θ(y) = pΘ(y) p∗Θ(y) and
Aε

Θv = − ∂

∂xi

(
aΘ

ij

(x

ε

) ∂v

∂xj

)
+

1

ε
bΘ
i

(x

ε

) ∂v

∂xi
,and the 
oe�
ients of the operator Aε

Θ are given by
aΘ

ij(y) = ̺Θ(y) aij(y);

bΘ
i (y) = ̺Θ(y) bj(y) − 2 ̺Θ(y) aij(y)Θj

+aij(y)
[
pΘ(y) ∂yj

p∗Θ(y) − p∗Θ(y) ∂yj
pΘ(y)

]
.

(3.3)
8



Obviously, the matrix aΘ is positive de�nite sin
e both pΘ and p∗Θ are positivefun
tions. Moreover, it has been shown in [11℄ that, for any θ ∈ R
d, the ve
tor-�eld bθ is divergen
e-free and that, for θ = Θ, it has zero mean-value

∫

Y

bΘ(y) dy = 0; div bθ = 0, ∀ θ. (3.4)Remark 3.1. This 
omputation leading to the simple problem (3.2) for vε doesnot work if the 
oe�
ients are merely lo
ally periodi
, namely of the type a(x, x/ε),
b(x, x/ε). Indeed there would be additional terms in (3.2) due to the partial deriva-tives with respe
t to the slow variable x be
ause λ1(Θ) and pΘ would depend on
x. Although problem (3.2) is not self-adjoint, the 
lassi
al approa
h of homog-enization (based on energy estimates in Sobolev spa
es) would apply, thanks to(3.4), if the initial 
ondition were not singular (the limit of e−

Θ·(x−x̄)
ε is 0 or +∞almost everywhere). This singular behavior of the initial data (whi
h formally hasa limit merely in the sense of distributions) requires a di�erent methodology forhomogenizing (3.2). In order to over
ome this di�
ulty, we use the representationof vε in terms of the 
orresponding Green fun
tion

vε(t, x) =

∫

Ω

Kε(t, x, ξ)
u0(ξ)

pΘ

( ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ, (3.5)where, for any given ξ, Kε, as a fun
tion of (t, x), solves the problem




̺Θ

(x

ε

)
∂tKε(t, x, ξ) + Aε

Θ Kε(t, x, ξ) = 0, (t, x) ∈ (0, T ) × Ω,

Kε(t, x, ξ) = 0, (t, x) ∈ (0, T ) × ∂Ω,

Kε(0, x, ξ) = δ(x − ξ), x ∈ Ω,

(3.6)The strategy is now to repla
e the Green fun
tion Kε by an ansatz in (3.5) andto study the limit, as ε → 0, of the resulting singular integral. The next se
tionis devoted to the study of the asymptoti
 behavior of Kε.4 Asymptoti
s of the Green fun
tion KεThe main goal of this se
tion is to prove the following statement.Lemma 4.1. Assume that 
onditions (H1) − (H2) are satis�ed. Let Kε be theGreen fun
tion of problem (3.2). Then, for any t0 > 0 and any 
ompa
t subset
B ⋐ Ω, there exists a 
onstant C su
h that, for all t ≥ t0 > 0, ξ ∈ B,

∫

Ω

|Kε(t, x, ξ) − K0(t, x, ξ)|2 dx ≤ C ε2,

|Kε(t, x, ξ) − K0(t, x, ξ)| ≤ C εγ , x ∈ Ω,9



where the 
onstant C depends on t0,dist(B, ∂Ω),Ω,Λ, d and is independent of ε,
γ = γ(Ω,Λ, d) > 0, and K0 is the Green fun
tion of the homogenized problem(2.6), i.e., as a fun
tion of (t, x), it solves





∂tK0(t, x, ξ) = div(aeff∇K0(t, x, ξ)), (t, x) ∈ (0, T ) × Ω,

K0(t, x, ξ) = 0, (t, x) ∈ (0, T ) × ∂Ω,

K0(0, x, ξ) = δ(x − ξ), x ∈ Ω,

(4.1)with the 
onstant positive de�nite matrix aeff de�ned by (4.7).Proof. The main di�
ulty in studying the asymptoti
s of the Green fun
tion Kε,de�ned as a solution of (3.6), is the presen
e of the delta fun
tion in the initial
ondition. To over
ome this di�
ulty, we 
onsider the di�eren
e
Vε(t, x, ξ) = Φε(t, x, ξ) − Kε(t, x, ξ),where Φε is the Green fun
tion of the same paraboli
 equation in the whole spa
e,that is, for ξ ∈ R

d, Φε, as a fun
tion of (t, x), is a solution of the problem




̺Θ

(x

ε

)
∂tΦε(t, x, ξ) + Aε

ΘΦε(t, x, ξ) = 0, (t, x) ∈ (0, T ) × R
d,

Φε(0, x, ξ) = δ(x − ξ), x ∈ R
d.

(4.2)In this way, for all ξ ∈ Ω, Vε, as a fun
tion of (t, x), solves the problem




̺Θ

(x

ε

)
∂tVε(t, x, ξ) + Aε

Θ Vε(t, x, ξ) = 0, (t, x) ∈ (0, T ) × Ω,

Vε(t, x, ξ) = Φε(t, x, ξ), (t, x) ∈ (0, T ) × ∂Ω,

Vε(0, x, ξ) = 0, x ∈ Ω.

(4.3)We emphasize that Vε, in 
ontrast with Kε, is Hölder 
ontinuous for all t ≥ 0provided that ξ /∈ ∂Ω.Noti
e that, by a proper res
aling in time and spa
e, Φε 
an be identi�ed withthe fundamental solution of an operator whi
h is independent of ε. Indeed,
Φε(t, x, ξ) = ε−d Φ

( t

ε2
,
x

ε
,
ξ

ε

)
, (4.4)where Φ(τ, y, η) is de�ned, for η ∈ R

d, as the solution in (τ, y) of




̺Θ(y) ∂τΦ(τ, y, η) + AΘΦ(τ, y, η) = 0, τ > 0, y ∈ R
d,

Φ(0, y, η) = δ(y − η), y ∈ R
d.

(4.5)Here, for brevity, we denote by AΘ the res
aled version of Aε
Θ

AΘΦ(τ, y, η) = −divy(a
Θ(y)∇yΦ(τ, y, η)) + bΘ(y) · ∇yΦ(τ, y, η).We also introdu
e the fundamental solution Φ0(t, x, ξ) for the e�e
tive operator





∂tΦ0 = divx(aeff∇xΦ0), (t, x) ∈ (0, T ) × R
d,

Φ0(0, x, ξ) = δ(x − ξ), x ∈ R
d.

(4.6)10



The homogenized matrix aeff is 
lassi
ally [8℄, [25℄ given by
aeff

ij =

∫

Y

(
aΘ

ij(y) + aΘ
ik(y)∂yk

Nj(y) − bΘ
i (y)Nj(y)

)
dy

=

∫

Y

(
aΘ

ji(η) + aΘ
ki(η)∂yk

N∗
j (η) + bΘ

i (η)N∗
j (η)

)
dη,

(4.7)where the ve
tor-valued fun
tions N = (Ni)1≤i≤d and N∗ = (N∗
i )1≤i≤d solve thedire
t and adjoint 
ell problems, respe
tively,





−div(aΘ∇Ni) + bΘ · ∇Ni = ∂yj
aΘ

ij(y) − bΘ
i (y), Y,

y 7→ Ni Y − periodi
; (4.8)




−div((aΘ)T∇N∗
i ) − bΘ · ∇N∗

i = ∂yj
aΘ

ji(y) + bΘ
i (y), Y,

y 7→ N∗
i Y − periodi
. (4.9)The matrix aeff is positive de�nite (see, for example, [8℄, [20℄, [25℄) and is exa
tlythe same homogenized matrix as in the homogenization of the spe
tral problem[11℄. Note that N and N∗ are Hölder 
ontinuous fun
tions (see [16℄). The solutionof problem (4.6) 
an be written expli
itly:

Φ0(t, x, ξ) =
1

(4πt)d/2

1

det aeff
exp

{
− (x − ξ)T (aeff)−1(x − ξ)

4t

}
.The �rst-order approximation for the Green fun
tion Φ, solution of (4.5), is de-�ned as follows

Φ1(τ, y, η) = Φ0(τ, y, η) + N(y) · ∇xΦ0(τ, y, η) + N∗(η) · ∇ξΦ0(τ, y, η). (4.10)By means of Blo
h wave analysis it has been shown in [1℄ that, under assumption(3.4), there exists a 
onstant C su
h that, for any τ ≥ 1 and y, η ∈ R
d,

|Φ(τ, y, η) − Φ0(τ, y, η)| ≤ C

τ (d+1)/2
,

|Φ(τ, y, η) − Φ1(τ, y, η)| ≤ C

τ (d+2)/2
.

(4.11)Thus, in view of the res
aling (4.4), there exists a 
onstant C > 0, whi
h doesnot depend on ε, su
h that, for any t ≥ ε2, x, ξ ∈ R
d,

|Φε(t, x, ξ) − Φ0(t, x, ξ)| ≤ C ε

t(d+1)/2
;

|Φε(t, x, ξ) − Φε
1(t, x, ξ)| ≤ C ε2

t(d+2)/2
.

(4.12)Here Φε
1(t, x, ξ) = ε−d Φ1

(
t
ε2 , x

ε , ξ
ε

), namely
Φε

1(t, x, ξ) = Φ0(t, x, ξ)+ εN
(x

ε

)
·∇xΦ0(t, x, ξ)+ εN∗

(ξ

ε

)
·∇ξΦ0(t, x, ξ). (4.13)11



Next, we study the asymptoti
 behavior of Vε, solution of (4.3). The (formal)two-s
ale asymptoti
 expansion method suggests to approximate Vε by a �rst-order ansatz de�ned by
V ε

1 (t, x, ξ) = V0(t, x, ξ) + εN
(x

ε

)
· ∇xV0(t, x, ξ) + εN∗

(ξ

ε

)
· ∇ξV0(t, x, ξ), (4.14)where N and N∗ are the solutions of 
ell problems (4.8) and (4.9), respe
tively,and, for �xed ξ, V0, as a fun
tion of (t, x), is the solution of the e�e
tive problem





∂tV0(t, x, ξ) = divx(aeff∇xV0(t, x, ξ)), (t, x) ∈ (0, T ) × Ω,

V0(t, x, ξ) = Φ0(t, x, ξ), (t, x) ∈ (0, T ) × ∂Ω,

V0(0, x, ξ) = 0, x ∈ Ω.

(4.15)Due to the maximum prin
iple and to the expli
it formula for Φ0, there exists a
onstant C, whi
h depends only on Λ and d, su
h that, for any 
ompa
t subset
B ⋐ Ω, ξ ∈ B, (t, x) ∈ [0, T ] × Ω,

0 ≤ V0(t, x, ξ) ≤ max
(t,x)∈[0,T )×∂Ω

Φ0(t, x, ξ) ≤ C

dist(B, ∂Ω)d
. (4.16)Moreover, 
ombining (4.16) with the lo
al estimates of the derivatives of V0 gives

∣∣∣∂k
t ∂l

xj
∂m

ξj
V0(t, x, ξ)

∣∣∣ ≤ C

dist(B, ∂Ω)d+2k+l+m
, (t, x, ξ) ∈ [0, T ] × Ω × B.(4.17)To �nish the proof of Lemma 4.1 we need the following intermediate result.Lemma 4.2. Let Vε and V0 be solutions of problems (4.3) and (4.15), respe
tively.Then, for any 
ompa
t subset B ⋐ Ω, there exists a positive 
onstant C, onlydepending on dist(B, ∂Ω),Ω, d,Λ, su
h that, for any (t, ξ) ∈ [0, T ] × B,

∫

Ω

|Vε(t, x, ξ) − V0(t, x, ξ)|2 dx ≤ C ε2.Proof. Let V ε
1 be the �rst-order approximation of Vε de�ned by (4.14). Evaluatingthe remainder after substituting the di�eren
e Ṽ ε = V ε

1 − Vε into problem (4.3),we get 



̺Θ

(x

ε

)
∂tṼ

ε + Aε
ΘṼ ε = F

(
t, x, ξ;

x

ε
,
ξ

ε

)

+ε f
(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T ) × Ω,

Ṽ ε = Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T ) × ∂Ω,

Ṽ ε(0, x, ξ) = 0, x ∈ Ω,

(4.18)
12



with F, f and G de�ned by
F (t, x, ξ; y, η) = ̺Θ(y) ∂tV0 − divy(a

Θ(y)∇x(N(y)∇xV0(t, x, ξ)))

−divy(a
Θ(y)∇x(N∗(η)∇ξV0(t, x, ξ))) − divx(aΘ(y)∇xV0(t, x, ξ))

−divx(aΘ(y)∇y(N(y)∇xV0(t, x, ξ))) + bΘ(y) · ∇x(N(y)∇xV0(t, x, ξ)))

+bΘ(y) · ∇x(N∗(η)∇ξV0(t, x, ξ));

f(t, x, ξ; y, η) = N(y) · ∂t∇xV0(t, x, ξ) + N∗(η) · ∂t∇ξV0(t, x, ξ)

−divx(aΘ(y)∇x(N(y) · ∇xV0(t, x, ξ)))

−divx(aΘ(y)∇x(N∗(y) · ∇ξV0(t, x, ξ)));

Gε(t, x, ξ; y, η) = Φ0(t, x, ξ) − Φε(t, x, ξ)

+εN(y) · ∇xV0(t, x, ξ) + εN∗(η) · ∇ξV0(t, x, ξ).By linearity, we represent Ṽ ε as a sum Ṽ ε = Ṽ ε
1 + Ṽ ε

2 , where Ṽ ε
1 and Ṽ ε

2 aresolutions of the follwoing problems




̺Θ

(x

ε

)
∂tṼ

ε
1 + Aε

ΘṼ ε
1 = F

(
t, x, ξ;

x

ε
,
ξ

ε

)

+ε f
(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T ) × Ω,

Ṽ ε
1 = 0, (t, x) ∈ (0, T ) × ∂Ω,

Ṽ ε
1 (0, x, ξ) = 0, x ∈ Ω;

(4.19)




̺Θ

(x

ε

)
∂tṼ

ε
2 + Aε

ΘṼ ε
2 = 0, (t, x) ∈ (0, T ) × Ω,

Ṽ ε
2 = Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
, (t, x) ∈ (0, T ) × ∂Ω,

Ṽ ε
2 (0, x, ξ) = 0, x ∈ Ω.

(4.20)The tri
k is to estimate Ṽ ε
1 by standard energy estimates and Ṽ ε

2 by the maximumprin
iple. First, we estimate Ṽ ε
1 . Taking into a

ount (4.17) and the boundednessof N,N∗, after integration by parts one has, for ξ ∈ B ⋐ Ω,

∣∣∣∣∣∣

∫

Y

F (t, x, ξ; y, η)w(y) dy

∣∣∣∣∣∣
≤ C‖w‖H1

#(Y ), ∀w ∈ H1
#(Y ),where H1

#(Y ) stands for the 
losure of Y -periodi
 smooth fun
tions with respe
tto the H1(Y ) norm. Thus, as a fun
tion of y, F belongs to the dual spa
e
H−1

# (Y ) uniformly in (t, x, ξ, η). As is usual in the method of two-s
ale asymptoti
expansion, equating the Y -average of F to zero yields the homogenized equation(4.15). Therefore, it is no surprise that, in view of (3.4), (4.15) and the periodi
ityof aΘ
ij , N,N∗, we 
ompute

∫

Y

F (t, x, ξ; y, η) dy = 0.13



Thus, for any t, x, ξ there exists a Y -periodi
 with respe
t to y ve
tor fun
tion
χ = χ(t, x, ξ; y, η), whi
h belongs to L2

#(Y ; Rd), su
h that
F (t, x, ξ; y, η) = divyχ(t, x, ξ; y, η)
∫

Y

|χ(t, x, ξ; y, η)|2 dy ≤ C, ξ ∈ B ⋐ Ω.
(4.21)By res
aling we obtain

F (t, x, ξ; y, ξ/ε) = εdivx

(
χ(t, x, ξ;x/ε, η)

)
− ε

(
divxχ

)
(t, x, ξ;x/ε, η). (4.22)Sin
e bΘ is divergen
e-free, the a priori estimates are then obtained in the 
lassi
alway. Multiplying the equation in (4.19) by Ṽ ε

1 , integrating by parts and using(4.21), (4.22) yield
∫

Ω

|Ṽ ε
1 (t, x, ξ)|2 dx ≤ C ε2, (t, x) ∈ [0, T ] × Ω, ξ ∈ B ⋐ Ω. (4.23)Se
ond, we estimate Ṽ ε

2 , solution of (4.20), by using the maximum prin
iple. Ournext goal is to prove that
|Gε

(
t, x, ξ;

x

ε
,
ξ

ε

)
| ≤ C ε, (t, x) ∈ [0, T ] × ∂Ω, ξ ∈ B ⋐ Ω. (4.24)By (4.12), for any β ≤ 2 and t ≥ εβ,

|Φε(t, x, ξ) − Φε
1(t, x, ξ)| ≤ C ε2−(d+2)β/2. (4.25)In (4.25) we �nd 2− (d+2)β/2 ≥ 1 if and only if β ≤ (1+d/2)−1 whi
h is alwayssmaller than 2. For x ∈ ∂Ω, ξ ∈ B ⋐ Ω, uniformly with respe
t to t ≥ 0, we have

|∇xΦ0(t, x, ξ)| ≤ C |x − ξ|
t1+d/2

e−
C0|x−ξ|2

t ≤ Cand a similar bound for ∇ξΦ0. Thus, from (4.13) we dedu
e
|Φε

1(t, x, ξ) − Φ0(t, x, ξ)| ≤ C ε, t ≥ 0, x ∈ ∂Ω, ξ ∈ B ⋐ Ω. (4.26)Combining (4.25) and (4.26) yields, for any 0 < β ≤ (1 + d/2)−1,
|Φε(t, x, ξ) − Φ0(t, x, ξ)| ≤ C ε, t ≥ εβ , x ∈ ∂Ω, ξ ∈ B ⋐ Ω. (4.27)To estimate Φε − Φ0 for small t ∈ [0, εβ) we make use of the Aronson estimates[6℄. Taking into a

ount (3.4) and (4.4), we see that Φε admits the followingbound

0 ≤ Φε(t, x, ξ) = ε−d Φ
( t

ε2
,
x

ε
,
ξ

ε

)
≤ C

td/2
exp

{
− C0|x − ξ|2

t

}with the 
onstants C0, C independent of ε. Thus, for su�
iently small ε, weobtain
|Φε(t, x, ξ) − Φ0(t, x, ξ)| ≤ |Φε(t, x, ξ)| + |Φ0(t, x, ξ)|

≤ C

td/2
exp

{
− C0|x − ξ|2

t

}
≤ C

εdβ/2
exp

{
− C0|x − ξ|2

εβ

}
.

(4.28)14



Thus, for t ∈ [0, εβ), x ∈ ∂Ω and ξ ∈ B ⋐ Ω, the di�eren
e |Φε(t, x, ξ)−Φ0(t, x, ξ)|is exponentially small if β > 0. Combining (4.27) and (4.28) yields
|Φε(t, x, ξ) − Φ0(t, x, ξ)| ≤ C ε, (t, x) ∈ [0, T ] × ∂Ω, ξ ∈ B ⋐ Ω, (4.29)with the 
onstant C depending on dist(B,Ω),Λ, d. The boundedness of N,N∗,estimates (4.17) and (4.29) imply (4.24).Then, we use the maximum prin
iple in (4.20) to dedu
e from (4.24) that

|Ṽ ε
2 (t, x, ξ)| ≤ C ε, (t, x, ξ) ∈ [0, T ) × Ω × B. (4.30)In view of (4.23) and (4.30), we 
on
lude

∫

Ω

|Vε(t, x, ξ) − V ε
1 (t, x, ξ)|2 dx ≤ C ε2, t ∈ [0, T ], ξ ∈ B ⋐ Ω.Re
alling the de�nition of V ε

1 and using estimate (4.17) 
omplete the proof ofLemma 4.2.Turning ba
k to the proof of Lemma 4.1, the Green fun
tion K0(t, x, ξ), whi
his de�ned as the solution of (4.1), satis�es K0 = V0−Φ0. Similarly, by de�nition,
Kε = Vε − Φε. Taking into a

ount (4.12), Lemma 4.2 implies

∫

Ω

|Kε(t, x, ξ) − K0(t, x, ξ)|2 dx ≤ C ε2, t ≥ t0 > 0, ξ ∈ B ⋐ Ω.We would like to emphasize that the 
onstant C in the last estimate only dependson t0, dist(B, ∂Ω), Λ, d,Ω. Due to the Nash-De Giorgi estimates for the paraboli
equations (see, for example, [19℄), Kε is Hölder 
ontinuous (of 
ourse K0 is), and,thus, one 
an dedu
e a uniform estimate
|Kε(t, x, ξ) − K0(t, x, ξ)| ≤ C εγ , t ≥ t0 > 0, x ∈ Ω, ξ ∈ B ⋐ Ω (4.31)for some γ > 0 depending on Ω,Λ and d. We emphasize that the 
onstants C, γ donot depend on ε. Indeed, due to 
ondition (3.4), problem (3.2) 
an be rewrittenin divergen
e form, without any 
onve
tive term and without any ε-fa
tor in frontof the 
oe�
ients. The proof of Lemma 4.1 is 
omplete.Remark 4.1. Estimate (4.31) is enough for our purpose, but we emphasize that it
an be improved. Namely, 
onstru
ting su�
iently many terms in the asymptoti
expansion for Vε, one 
an show that

|Kε(t, x, ξ) − K0(t, x, ξ)| ≤ C ε, t ≥ t0 > 0, x ∈ Ω, ξ ∈ B ⋐ Ω.5 Asymptoti
s of uε or vεThe goal of this se
tion is to prove our main result Theorem 2.1 and a
tually togive a more pre
ise statement of it in Theorem 5.1. By the fa
torization prin
iple15



(3.1) it is equivalent to �nd a pre
ise asymptoti
 expansion of vε. Re
all that vε,as a solution of (3.2), 
an be represented in terms of the 
orresponding Greenfun
tion Kε by using formula (3.5). Bearing in mind Lemma 4.1, we rearrange(3.5) as follows
vε(t, x) = Iε

1 + Iε
2 (5.1)with

Iε
1 =

∫

Ω

K0(t, x, ξ)
u0(ξ)

pΘ

( ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ,

Iε
2 =

∫

Ω

(
Kε(t, x, ξ) − K0(t, x, ξ)

) u0(ξ)

pΘ

( ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ.Of 
ourse, be
ause of (4.31), the se
ond integral in (5.1) is going to be, at least,
εγ times smaller that the �rst one. Re
all that, by assumption (H3), u0 has a
ompa
t support ω ⋐ Ω so we are able to use the previous estimates of Lemma 4.1.Let us 
ompute approximately the �rst integral Iε

1 . Sin
e Θ · (x − x̄) > 0 for
x ∈ ω \ {x̄}, it is 
lear that the main 
ontribution is given by integrating overa neighborhood of the point x̄. We 
onsider the 
ase of general position, when
ondition (H5) is ful�lled, that is, in lo
al 
oordinates in a neighborhood Uδ(x̄)of the point x̄, ∂ω 
an be de�ned by

zd = (Sz′, z′) + o(|z′|2)for some positive de�nite (d − 1) × (d − 1) matrix S. Here (z1, · · · , zd) is anorthonormal basis su
h that the 
oordinates z′ = (z1, · · · , zd−1) are tangential to
∂ω and the axis zd is the interior normal at x̄. Note that, by assumption (H4),
Θ is dire
ted along zd. The neighborhood of x̄ is de�ned by

Uδ(x̄) = {z ∈ ω : |z′| ≤ δ, 0 ≤ zd ≤ δ2‖S‖},where ‖S‖ = max|x′|=1 |Sx′|. Choosing δ = ε1/4 guaranties that the integral overthe 
omplement to Uδ(x̄) is negligible. Indeed,
∣∣∣

∫

ω\Uδ(x̄)

K0(t, x, ξ)
u0(ξ)

pΘ

( ξ
ε

) e−
Θ·(ξ−x̄)

ε dξ
∣∣∣ = O(e

− 1√
ε ).Let us now 
ompute the integral over Uδ(x̄), δ = ε1/4. Expanding K0 and u0(whi
h is of 
lass C2 in ω) into Taylor series about x̄ and taking into a

ountassumption (H6), for t ≥ t0 > 0, we obtain

Iε
1 = K0(t, x, x̄)

∂u0

∂Θ
(x̄)

∫

Uδ(x̄)

Θ

|Θ| · (ξ − x̄)
(
pΘ

(ξ

ε

))−1
e−

Θ·(ξ−x̄)
ε dξ + O(ε3 ε

d−1
2 )

= K0(t, x, x̄)
∂u0

∂Θ
(x̄)

∫

Uδ(0)

Θ

|Θ| · ξ
(
pΘ

(ξ

ε
+

x̄

ε

))−1
e−

Θ·ξ
ε dξ + O(ε3 ε

d−1
2 ).where ∂u0/∂Θ := ∇u0 · Θ/|Θ| is the dire
tional derivative of u0 along Θ (thetangential derivative of u0 vanishes at x̄ be
ause u0 is 
ontinuous and equal to16



0 outside ω). Note that we have anti
ipated the pre
ise order of the remainderterm whi
h will be 
lear on
e we 
ompute the leading integral. Let us introdu
ethe rotation matrix R whi
h de�nes the lo
al 
oordinate system (z1, z2, · · · , zd) =

(z′, zd) previously de�ned. By de�nition it satis�es ξ = R
−1 z and Θ · ξ = |Θ| zd.Applying this 
hange of variables we get

pΘ

(ξ

ε
+

{ x̄

ε

})
= pΘ

(
R

−1
(z

ε
+ R

{ x̄

ε

}))
≡ PΘ

(z

ε
+ z̄ε

)
, (5.2)where {x̄/ε} is the fra
tional part of x̄/ε and z̄ε = R {x̄/ε}. In the 
ase when

Θ1,Θ2, · · · ,Θd are rationally dependent in pairs, PΘ remains periodi
 with an-other period. Otherwise PΘ is merely almost periodi
. It happens, for example,when all Θk, k = 1, ..., d are rationally independent in pairs.We turn to the 
omputation of the integral over Uδ(0). By the above 
hangeof variables we get
Iε
1 = K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
∫

|z′|≤δ

dz′
δ2‖S‖∫

(Sz′,z′)

zd P−1
Θ

(z

ε
+ z̄ε

)
e−

|Θ|zd
ε dzd + o(ε2 ε

d−1
2 ).

(5.3)To blow-up the integral in (5.3) we make a (paraboli
) res
aling of the spa
evariables
ζ ′ =

z′√
ε
, ζd =

zd

ε
,and re
alling that δ = ε1/4, we arrive at the following integral

Iε
1 = ε2 ε

(d−1)
2 K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd P−1
Θ

( ζ ′√
ε

+ (z̄ε)′, ζd + z̄ε
d

)
e−|Θ|ζd dζd + o(ε2 ε

d−1
2 ),where the reaminder term takes into a

ount the fa
t that the domain of integra-tion is now in�nite. Changing the order of integration we have

Iε
1 = ε2 ε

(d−1)
2 K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
+∞∫

0

ζd e−|Θ|ζd dζd

∫

(Sζ′,ζ′)≤ζd

P−1
Θ

( ζ ′√
ε

+ (z̄ε)′, ζd + z̄ε
d

)
dζ ′ + o(ε2 ε

d−1
2 ).The fun
tion P−1

Θ

(
η′, τd

) is uniformly 
ontinuous; moreover, it is almost periodi
with respe
t to the �rst variable. Thus, for any bounded Borel set B ⊂ R
d−1,the following limit exists

M{P−1
Θ

(
·, τd

)
} = lim

t→∞

1

|tB|

∫

tB

P−1
Θ

(
η′ + τ ′, τd

)
dη′. (5.4)17



We emphasize that the 
onvergen
e is uniform with respe
t to τ ′ and τd, and thelimit does not depend on τ ′. Therefore, by Lemma 8.2, as ε → 0, we eventuallydedu
e
Iε
1 = ε2 ε

d−1
2 K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄ε

d

)
} dζd + o(ε2 ε

d−1
2 ),

(5.5)where the remainder term is asymptoti
ally smaller than the leading order term(uniformly in t ≥ 0, x ∈ Ω) but we 
annot say how mu
h sin
e there is no pre
isespeed of 
onvergen
e for averages of almost periodi
 fun
tions in Lemma 8.2.The 
ase of the se
ond integral Iε
2 is then very similar. Taking into a

ountthe positiveness of pΘ, and Lemma 4.1, for t ≥ t0 > 0, we obtain

|Iε
2 | ≤ C εγ

∫

ω

|u0(x)| e−
Θ·(ξ−x̄)

ε dξ,where C does not depend on ε. The same 
omputation as above (but withoutthe ne
essity of 
onsidering almost periodi
 fun
tions) yields
|Iε

2 | ≤ C εγ

∣∣∣∣
∂u0

∂Θ
(x̄)

∣∣∣∣
∫

ω

∣∣∣∣
Θ

|Θ| · (ξ − x̄)

∣∣∣∣ e−
Θ·(ξ−x̄)

ε dξ

≤ C εγ

∣∣∣∣
∂u0

∂Θ
(x̄)

∣∣∣∣
∫

Rd−1

dz′
+∞∫

S0|z′|2

zd e−
|Θ|zd

ε dzd

≤ C ε2+γ

∣∣∣∣
∂u0

∂Θ
(x̄)

∣∣∣∣
∫

Rd−1

(1 + S0 |z′|2 ε−1) e−
|Θ|S0|z′|2

ε dz′

≤ C ε2+γ ε
d−1
2 ,for some 
onstant S0 > 0 and C = C(S0,Θ). Finally, we have derived thefollowing asymptoti
s of vε, as ε → 0,

vε(t, x) = ε2 ε
d−1
2

(
1 + rε(t, x)

)
K0(t, x, x̄)

∂u0

∂Θ
(x̄)

×
∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄ε

d

)
} dζd,where rε(t, x) 
onverges to zero uniformly with respe
t to (t, x) ∈ [t0, T ]×Ω withany t0 > 0.We summarize the result, just obtained, by formulating a more pre
ise versionof Theorem 2.1, des
ribing the asymptoti
s of uε(t, x).Theorem 5.1. Suppose 
onditions (H1) − (H6) are satis�ed and Θ 6= 0. Let uεbe the solution of problem (1.1). Then, for t ≥ t0 > 0,

uε(t, x) = ε2 ε
d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ

(x

ε

)
u(t, x),18



where (λ1(Θ), pΘ) is the �rst eigenpair de�ned by Lemma 2.1 and rε(t, x) → 0, as
ε → 0, uniformly with respe
t to (t, x) ∈ [t0, T ] × Ω. The fun
tion u(t, x) solvesthe homogenized problem





∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) = ∇u0(x̄) · Θ

|Θ| δ(x − x̄), x ∈ Ω,

(5.6)with aeff being a positive de�nite matrix given by (4.7), δ(x − x̄) is the Dira
delta-fun
tion at the point x̄. The 
onstant Mε is de�ned by
Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄ε

d

)
} dζd, (5.7)where M{P−1

Θ

(
·, τd

)
} is the mean-value of the almost periodi
 fun
tion η′ →

P−1
Θ (η′, τd) (see (5.4)), PΘ is given by (5.2) and z̄ε

d = R{x̄/ε} · Θ
|Θ| .

ω

Ω

x̄
b

b b

b

b

(a)
x̄

b

b b

b

b

(b)
x̄

b

b b

b

b(
)Figure 2: Position of x̄ in εY for di�erent values of εRemark 5.1. The 
onstant Mε de�ned by (5.7) depends on z̄ε
d = R{x̄/ε} · Θ

|Θ| ,that is on the 
omponent, parallel to Θ, of the fra
tional part of x̄/ε, or, in otherwords, on the relative position of x̄ inside the 
ell εY (see Figure 2). Noti
e that
Mε is bounded, thus, up to a subsequen
e, it 
onverges to some M∗, as ε → 0. The
hoi
e of the 
onverging subsequen
e is only a matter of the geometri
 de�nitionof the periodi
 medium. For example, if x̄ is known, we may de
ide to make itthe origin and to de�ne the periodi
 mi
rostru
ture relative to this origin. Then
x̄ = 0, z̄ε = 0 is �xed in the periodi
ity 
ell, and Mε = M is independent of ε.It might happen that the ve
tor Θ is su
h that its 
omponents Θd and Θkare rationally independent for all k 6= d. In su
h a 
ase, it turns out that the
onstant Mε does not depend on ε and, moreover, 
an be expli
itly 
omputed.This is the topi
 of the following result.19



Corollary 5.1. Let 
onditions of Theorem 5.1 be satis�ed. And assume thatthe ve
tor Θ is su
h that Θd and Θk, for any k = 1, · · · , (d − 1), are rationallyindependent. Then Mε is independent of ε and is given by
Mε =

(d − 1)

|Θ|2
( π

|Θ|
) d−1

2
(det S)1/2

∫

Y

p−1
Θ (y) dy.In other words, for t ≥ t0 > 0,

uε(t, x) =
( ε

|Θ|
)2+ d−1

2
K e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε pΘ

(x

ε

)
u(t, x)

(
1 + rε(t, x)

)
,where rε(t, x) → 0, as ε → 0, uniformly with respe
t to (t, x) ∈ [t0, T ]×Ω; u(t, x)solves the homogenized problem (5.6). The 
onstant K is given by

K = (d − 1)π
d−1
2 (detS)1/2

∫

Y

p−1
Θ (y) dy.Proof. It is su�
ient to noti
e that in the 
ase when Θd and Θk, k = 1, 2, · · · (d−

1), are rationally independent, the mean value of the almost periodi
 fun
tion
P−1

Θ (ζ ′, τd) with respe
t to the �rst variable ζ ′, for any τd, 
oin
ides with itsvolume average
M{P−1

Θ (·, τd)} =

∫

Y

p−1
Θ (y) dy.Thus, the 
onstant Mε given by (5.7) does not depend on ε and has the followingform

Mε =
(∫

Y

p−1
Θ (y) dy

) ∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζd e−|Θ|ζd dζd.Evaluating the last integral we obtain
Mε =

(d − 1)

|Θ|2
( π

|Θ|
) d−1

2
(detS)1/2

∫

Y

p−1
Θ (y) dythat implies the desired result.Remark 5.2. Theorem 5.1 does not provide any rate of 
onvergen
e due to severalreasons. First of all, without spe
ifying the remainder in hypothesis (H5), one
annot expe
t any estimate in (5.3). One possible option would be to assume thatin lo
al 
oordinates, in the neighbourhood of the point x̄, ∂ω is de�ned by

zd = (Sz′, z′) + O(|z|3).Then in (5.3) one would obtain the error O(ε3 ε(d−1)/2).The se
ond reason for the la
k of estimates is 
on
ealed in Lemma 8.2. In
ontrast with the 
lassi
al mean value theorem for periodi
 fun
tions, Lemma 8.2does not provide any rate of 
onvergen
e. However, if all the 
omponents of theve
tor Θ are rationally dependent, then PΘ remains periodi
 (maybe with another20



period), and one 
an apply the mean value theorem for smooth periodi
 fun
tionsthat gives an error O(ε), and, 
onsequently, O(ε3 ε(d−1)/2) in (5.5).Finally, estimate (4.31) guaranties that the se
ond integral in (5.1) is εγsmaller than the �rst one, where 0 < γ ≤ 1 depends on Λ,Ω, d.Remark 5.3. We stress that if 
ondition (H3) is violated and the support of
u0 tou
hes the boundary of Ω, then the two integrals in (5.1) are of the sameorder, and we 
annot negle
t the se
ond integral any more. In this 
ase it isne
essary to 
onstru
t not only the leading term of the asymptoti
s for Kε, butalso a 
orre
tor term together with a boundary layer 
orre
tor. It is possible insome parti
ular 
ases, for example, when x̄ belongs to a �at part of the boundaryof Ω, or when the 
oe�
ients of the equation are 
onstant. But it is well knownthat boundary layers in homogenization are very di�
ult to build in the 
ase ofa non �at boundary. Simple 
ases (�at boundaries, 
ylindri
al domains) will be
onsidered in our forth
oming paper [3℄.Another typi
al situation arises when we do not assume anymore that theinitial data u0 is 
ontinuous on Ω but merely that it has 
ompa
t support and is
C2 inside its support. In parti
ular, in this new situation we may have u0(x̄) 6= 0.The next theorem, 
hara
terizing the asymptoti
 behaviour of uε in this 
ase, 
anbe proved in exa
tly the same way as Theorem 5.1.Theorem 5.2. Suppose 
onditions (H1), (H2), (H4), (H5) are satis�ed and Θ 6=
0. Assume that u0 has 
ompa
t support ω ⋐ Ω, u0 ∈ C2(ω) and u0(x̄) 6= 0. If uεis a solution of problem (1.1), then, for t ≥ t0 > 0

uε(t, x) = ε ε
d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε Mε pΘ

(x

ε

)
u(t, x),where rε(t, x) → 0, as ε → 0, uniformly with respe
t to (t, x) ∈ [t0, T ]×Ω. Here,

u(t, x) solves the e�e
tive problem




∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) = u0(x̄) δ(x − x̄), x ∈ Ω.The 
onstant Mε is now given by
Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

e−|Θ|ζd M{P−1
Θ

(
·, ζd + z̄ε

d

)
} dζd,with the same de�nitions of the mean-value M, of the almost periodi
 fun
tion

PΘ and of z̄ε
d as in Theorem 5.1.Remark 5.4. Yet another possible situation is that u0 = ∂u0/∂Θ = 0 in theneighborhood of x̄. If we assume that u0 ∈ C3(ω) and repla
e 
ondition (H6) by

∂2u0

∂Θ2
(x̄) =

∂

∂Θ

(∂u0

∂Θ

)
(x̄) 6= 0,21



where ∂u0/∂Θ is the dire
tional derivative of u0 in the dire
tion of Θ, then we
an prove in this 
ase that, for t ≥ t0 > 0,
uε(t, x) = ε3 ε

d−1
2

(
1 + rε(t, x)

)
e−

λ1(Θ)t

ε2 e−
Θ·(x−x̄)

ε Mε pΘ

(x

ε

)
u(t, x),where rε(t, x) → 0, as ε → 0, uniformly with respe
t to (t, x) ∈ [t0, T ] × Ω and

u(t, x) is a solution of




∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) =
1

2

∂2u0

∂Θ2
(x̄) δ(x − x̄), x ∈ Ω.The 
onstant Mε is now given by

Mε =

∫

Rd−1

dζ ′
+∞∫

(Sζ′,ζ′)

ζ2
d e−|Θ|ζd M{P−1

Θ

(
·, ζd + z̄ε

d

)
} dζd.The 
ase when u0 vanishes on the boundary of ω together with its derivatives upto order k, 
an be treated similarly.It should be noti
ed that a statement similar to that of Corollary 5.1 remainsvalid for Theorem 5.2 and Remark 5.4.6 The 
ase of a �at boundary of ωIn the previous se
tions we analyzed the 
ase when the quadrati
 form of thesurfa
e ∂ω is non-degenerate at the point x̄. The asymptoti
s of the solution ofproblem (1.1) 
an also be 
onstru
ted when x̄ belongs to a �at part Σ of ∂ω andthe ve
tor Θ is orthogonal to Σ.More pre
isely, we repla
e the previous assumptions (H4), (H5), (H6) withthe following ones.(H4') The set of points x̄ whi
h provide the minimum in minx∈ω Θ · x is a subset

Σ of ∂ω whi
h is in
luded in an hyperplane of R
d and Σ has a positive

(d − 1)-measure.(H5') u0(y) = 0 for all y ∈ Σ. There exists x̄ ∈ Σ su
h that ∂u0

∂Θ
(x̄) 6= 0.Remark 6.1. Assumption (H4') implies that

Θ · (x − x̄) > 0 for all x ∈ ω \ Σ, x̄ ∈ Σ,and Θ is orthogonal to Σ and dire
ted inside ω (see Figure 3). Furthermore,
x̄Θ = x̄ · Θ

|Θ| is the same for all x̄ ∈ Σ.In this 
ase we prove the following result.22



Σ

ω

Ω

b

x̄

Θ

Figure 3: The 
ase of a �at part of the boundary ∂ωTheorem 6.1. Assume that 
onditions (H1)-(H3) and (H4')-(H5') are ful-�lled, and Θ 6= 0. Then, for t ≥ t0 > 0, the asymptoti
 behaviour of the solution
uε of problem (1.1) is des
ribed by

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε (1 + rε(t, x))Mε pΘ

(x

ε

)
u(t, x),where rε(t, x) → 0, as ε → 0, uniformly with respe
t to (t, x) ∈ [t0, T ] × Ω,

(λ1(Θ), pΘ) is the �rst eigenpair de�ned by Lemma 2.1, x̄ is an arbitrary pointon Σ and u(t, x) solves the homogenized problem




∂tu = div(aeff ∇u), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × ∂Ω,

u(0, x) =
∂u0

∂Θ
(x) δΣ, x ∈ Ω.

(6.1)Here aeff is still de�ned by (4.7), δΣ is the Dira
 delta-fun
tion on Σ and the
onstant Mε is given by
Mε =

+∞∫

0

ζd e−|Θ| ζd M{P−1
Θ

(
·, ζd +

x̄Θ

ε

)
}dζdwithM{P−1

Θ (·, τd)} being the mean value of the almost periodi
 fun
tion P−1
Θ (·, τd)(see (5.4)), PΘ(z) being the rotation of pΘ in the lo
al 
oordinates of Σ: PΘ(ζ) =

pΘ(R−1ζ), where R is the rotation matrix.Proof. The proof starts, like that of Theorem 5.1, by using the representationformula (3.5) for the solution vε of (3.2) in terms of the Green fun
tion Kε.Writing Kε = K0 + (Kε − K0) we arrive at (5.1), namely
vε(t, x) = Iε

1 + Iε
2 .By Lemma 4.1, we 
an estimate Iε

2 , passing to lo
al 
oordinates, as in the proof
23



of Theorem 5.1,
|Iε

2 | ≤ C εγ

∫

ω

|u0(ξ)| e−
Θ·(ξ−x̄)

ε dξ

≤ C εγ

∫

Σ

∣∣∂u0

∂Θ
(z′, x̄Θ)

∣∣dz′
+∞∫

0

zd e−
|Θ|zd

ε dzdfor some γ = γ(Λ,Ω, d) > 0 de�ned in (4.31). Making the 
hange of variables
ζd = zd/ε, we see that

|Iε
2 | ≤ C ε2+γ

∫

Σ

∣∣∂u0

∂Θ
(z′, x̄Θ)

∣∣dz′
+∞∫

0

ζd e−|Θ|ζd dζd ≤ C ε2+γ .In order to 
ompute approximately Iε
1 , we again pass to the lo
al 
oordinates.Namely, we rotate 
oordinates z = R ξ in su
h a way that Θ is dire
ted along zd.It is obvious that only the neighborhood of Σ 
ontributes in Iε

1 . Expanding K0and u0 into a Taylor series with respe
t to zd and making the 
hange of variables
ζd = zd/ε leads to
Iε
1 = ε2

+∞∫

0

ζd e−|Θ| ζd dζd

∫

Σ

K0(t, x, z′, x̄Θ)
∂u0

∂Θ
(z′, x̄Θ)P−1

Θ

(z′

ε
, ζd+

x̄Θ

ε

)
dz′+o(ε2).where PΘ(ζ) ≡ pΘ(R−1ζ) with R being the rotation matrix.Sin
e P−1

Θ (ζ ′, τd) is uniformly 
ontinuous, and, moreover, almost periodi
 withrespe
t to ζ ′, by Lemma 8.1, we have
Iε
1 = ε2 Mε

∫

Σ

K0(t, x, z′, x̄Θ)
∂u0

∂Θ
(z′, x̄Θ) dz′ + o(ε2),where

Mε =

+∞∫

0

ζd e−|Θ| ζd M{P−1
Θ

(
·, ζd +

x̄Θ

ε

)
}dζd.Here M{P−1

Θ (·, τd)} is the mean value of the almost periodi
 fun
tion P−1
Θ (·, τd)(see (5.4)).Consequently, as ε → 0,

vε(t, x) = ε2 Mε

∫

Σ

K0(t, x, z′, x̄Θ)
∂u0

∂Θ
(z′, x̄Θ) dz′ + o(ε2).Re
alling that K0 is the Green fun
tion of the e�e
tive problem (4.1) 
ompletesthe proof.Corollary 6.1. Let 
onditions of Theorem 6.1 be ful�lled. Assume that the ve
tor

Θ is su
h that Θd and Θk, for any k = 1, · · · , (d−1), are rationally independent.Then, for t ≥ t0 > 0,
uε(t, x) =

( ε

|Θ|
)2

e−
λ1(Θ)t

ε2 e
Θ·(x−x̄)

ε (1 + rε(t, x)) pΘ

(x

ε

) (∫

Y
p−1
Θ dy

)
u(t, x),24



where rε(t, x) → 0, as ε → 0, uniformly with respe
t to (t, x) ∈ [t0, T ] × Ω and
u(t, x) solves the homogenized problem (6.1).Corollary 6.1 is proved in the same way as Corollary 5.1.7 Numeri
al examplesIn this se
tion we illustrate the results obtained in the previous se
tions by dire
t
omputations performed with the free software FreeFEM++ ([15℄).When studying 
onve
tion-di�usion equation, the so-
alled e�e
tive 
onve
-tion (e�e
tive drift) de�ned by (2.4) plays an important role. As was alreadynoti
ed, 
ondition b̄i 6= 0 yields Θi 6= 0. The question arises, if b̄ 
oin
ide with Θor not. The answer is negative, and the 
orresponding example is given below.Example 1. Let Ω ⊂ R

2 be a bounded domain. Consider the followingboundary value problem with 
onstant 
oe�
ients:




∂tu
ε − ∂2uε

∂x2
1

− 2
∂2uε

∂x1 ∂x2
− 2

∂2uε

∂x2
2

+
1

ε
b

∂uε

∂x2
= 0, in (0, T ) × Ω,

uε(t, x) = 0, on (0, T ) × ∂Ω,

uε(0, x) = u0(x), x ∈ Ω.

(7.1)Here b > 0 is a real parameter and it is obvious that the e�e
tive drift is b̄ = {0, b}.To �nd Θ, one should 
onsider the spe
tral problem (2.1) on the periodi
ity 
ell.Sin
e the 
oe�
ients of the equation are 
onstant, λ1(θ) 
an be found easily:
λ1(θ) = −θ2

1 − 2 θ1 θ2 − 2 θ2
2 + b θ2.The maximum of λ1 is attained at Θ = {−b/2, b/2} 6= b̄.For the numeri
al 
omputations, we 
hoose Ω to be the unit 
ir
le Ω = {x :

|x1−1|2 + |x2−1|2 ≤ 1}, u0 being the 
hara
teristi
 fun
tion of the smaller 
ir
le
{x : |x1−1|2+ |x2−1|2 ≤ 0.5} (see Figure 4(a)), b = 1 and ε = 0.03. Theorem 2.1predi
ts that the �hot spot� or 
on
entration point of the solution uε will be atthe point xc = (1 −

√
2/2, 1 +

√
2/2) where Θ is orthogonal to ∂Ω.The presen
e of the large parameter in front of the 
onve
tion in (1.1) suggeststo use Chara
teristi
s-Galerkin Method (see [14℄, [22℄). As a �nite element spa
e,a spa
e of pie
ewise linear 
ontinuous fun
tions has been 
hosen. The number oftriangles is 21192. The result of the dire
t 
omputations at di�erent times arepresented on Figure 4.Splitting ea
h triangle of the mesh in 9, we have 
ompared two solutions, u1de�ned on the original mesh and u2 on the re�ned one, and 
omputed the relative

L2-error for small t

sup
t

‖u1 − u2‖L2(Ω)

‖u1‖L2(Ω)
≈ 0.002.It is small enough so we 
an 
on
lude that 
onvergen
e under mesh re�nement isattained. It 
an be seen from Figure 4 that the solution pro�le, vanishing with25



(a) t=0 (b) t=0.01 (
) t=0.02
(d) t=0.03 (e) t=0.04 (f) t=0.05Figure 4: Isolines of uε for small values of ttime, moves �rst in the verti
al dire
tion (along the e�e
tive drift) and then tothe left. Be
ause of the very fast de
ay, it is not possible to plot the solution itselfat large time. Thus, instead of uε we 
onsider ũε = uε/maxΩ uε. On Figure 5the isolines of ũε are presented. One 
an see that indeed the 
on
entration o

ursat the point (1−

√
2/2, 1 +

√
2/2), not the point (1, 2) where b̄ is normal to ∂Ω.We perform another numeri
al test in a non
onvex domain for the same valuesof the parameters in (7.1). The isolines of the res
aled solution ũε are ploted onFigure 6. It is interesting to see how the initial pro�le �rst moves in the dire
tionof the e�e
tive drift, then vanishes and reappear afterwards to 
on
entrate at the�hot spot� where Θ · x attains its maximum, as predi
ted by Theorem 2.1. Su
han example is 
learly non-intuitive (at least to the authors).8 Some results from the theory of almost pe-riodi
 fun
tions.Denote by Trig(Rd) the set of all trigonometri
 polynomials

Trig(Rd) =
{
P(x)

∣∣ P(x) =
∑

ξ∈Rd

cξ eix·ξ
}
,where in the sum only �nite number of cξ 6= 0. We designate by CAP(Rd)(set of almost periodi
 fun
tions) a 
losure of Trig(Rd) with respe
t to the norm

sup
Rd

|P(x)|. For any almost periodi
 fun
tion g ∈ CAP(Rd), there exists a meanvalue
M{g} = lim

t→∞

1

|tB|

∫

tB

g(x) dx, (8.1)26



(a) t=0 (b) t=0.1 (
) t=0.2
(d) t=0.3 (e) t=0.4 (f) t=0.5Figure 5: Isolines of res
aled uε for di�erent values of twhere B ⊂ R

d is a Borel set, |B| - its volume. The mean-value theorem takespla
e for almost periodi
 fun
tions ([18℄).Lemma 8.1. Given g ∈ CAP(Rd) and v ∈ L2(Q), Q ⊂ R
d, the following equalityholds true:

lim
ε→0

∫

Q

g
(x

ε

)
v(x) dx = M{g}

∫

Q

v(x) dx,where M{g} is given by formula (8.1).Lemma 8.1 
an be formulated also in more general form.Lemma 8.2. Given a fun
tion g(x, y) ∈ C[Q; CAP(Rd)], Q ⊂ R
d, the followingequality holds:

lim
ε→0

∫

Q

g
(
x,

x

ε

)
dx =

∫

Q

M{g(x, ·)} dx,where
M{g(x, ·)} = lim

t→∞

1

|tB|

∫

tB

g(x, y) dy.The last statement 
an be proved 
ombining the approximation of g(x, y) by�nite sums of the type ∑
f1(x) f2(y) and the result of Lemma 8.1.A
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(a) t=0 (b) t=0.1 (
) t=0.2
(d) t=0.3 (e) t=0.4 (f) t=0.44
(g) t=0.46 (h) t=0.5 (i) t=0.6
(j) t=0.7 (k) t=0.8 (l) t=0.9
(m) t=1.0 (n) t=1.2 (o) t=1.3Figure 6: Isolines of res
aled uε for di�erent values of t in a non-
onvex domain
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