ECOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES APPLIQUÉES

 UMR CNRS 764191128 PALAISEAU CEDEX (FRANCE). Tél: 01693346 00. Fax: 0169334646
http://www.cmap.polytechnique.fr/

Absence of traveling wave solutions of conductivity type for the Novikov-Veselov equation at zero energy

Anna Kazeykina
R.I. 717
June 2010

Absence of traveling wave solutions of conductivity type for the Novikov-Veselov equation at zero energy

A.V. Kazeykina ${ }^{1}$

Abstract. We prove that the Novikov-Veselov equation (an analog of KdV in dimension $2+1$) at zero energy does not have sufficiently localized soliton solutions of conductivity type.

1 Introduction

In this note we are concerned with the Novikov-Veselov equation at zero energy

$$
\begin{align*}
& \partial_{t} v=4 \operatorname{Re}\left(4 \partial_{z}^{3} v+\partial_{z}(v w)\right), \\
& \partial_{\bar{z}} w=-3 \partial_{z} v, \quad v=\bar{v}, \tag{1}\\
& v=v(x, t), \quad w=w(x, t), \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, \quad t \in \mathbb{R},
\end{align*}
$$

where

$$
\partial_{t}=\frac{\partial}{\partial t}, \quad \partial_{z}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right), \quad \partial_{\bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}\right) .
$$

Definition 1. A pair (v, w) is a sufficiently localized solution of equation (1) if

- $v, w \in C\left(\mathbb{R}^{2} \times \mathbb{R}\right), v(\cdot, t) \in C^{3}\left(\mathbb{R}^{3}\right)$,
- $\left|\partial_{x}^{j} v(x, t)\right| \leqslant \frac{q(t)}{(1+|x|)^{2+\varepsilon}},|j| \leqslant 3$, for some $\varepsilon>0, w(x, t) \rightarrow 0,|x| \rightarrow \infty$,
- (v, w) satisfies (1).

Definition 2. A solution ($v, w)$ of (1) is a soliton (a traveling wave) if $v(x, t)=V(x-c t)$, $c \in \mathbb{R}^{2}$.

Equation (1) is an analog of the classic KdV equation. When $v=v\left(x_{1}, t\right), w=w\left(x_{1}, t\right)$, then equation (1) is reduced to KdV. Besides, equation (1) is integrable via the scattering transform for the 2-dimensional Schrödinger equation

$$
\begin{gather*}
L \psi=0, \\
L=-\Delta+v(x, t), \quad \Delta=4 \partial_{z} \partial_{\bar{z}}, \quad x \in \mathbb{R}^{2} . \tag{2}
\end{gather*}
$$

Equation (1) is contained implicitly in $[\mathrm{M}]$ as an equation possessing the following representation

$$
\begin{equation*}
\frac{\partial(L-E)}{\partial t}=[L-E, A]+B(L-E), \tag{3}
\end{equation*}
$$

where L is defined in (2), A and B are suitable differential operators of the third and zero order respectively and $[, \cdot$,$] denotes the commutator. In the explicit form equation (1) was written$ in [NV1], [NV2], where it was also studied in the periodic setting. For the rapidly decaying potentials the studies of equation (1) and the scattering problem for (2) were carried out in [BLMP], [GN] [T], [LMS]. In [LMS] the relation with the Calderón conductivity problem was discussed in detail.

[^0]Definition 3. A potential $v \in L^{p}\left(\mathbb{R}^{2}\right), 1<p<2$, is of conductivity type if $v=\gamma^{-1 / 2} \Delta \gamma^{1 / 2}$ for some real-valued positive $\gamma \in L^{\infty}\left(\mathbb{R}^{2}\right)$, such that $\gamma \geqslant \delta_{0}>0$ and $\nabla \gamma^{1 / 2} \in L^{p}\left(\mathbb{R}^{2}\right)$.

The potentials of conductivity type arise naturally when the Calderón conductivity problem is studied in the setting of the boundary value problem for the 2-dimensional Schrödinger equation at zero energy (see [Nov1], [N], [LMS]); in addition, in [N] it was shown that for this type of potentials the scattering data for (2) are well-defined everywhere.

The main result of the present note consists in the following: there are no solitons of conductivity type for equation (1). The proof is based on the ideas proposed in [Nov2].

This work was fulfilled in the framework of research carried out under the supervision of R.G. Novikov.

2 Scattering data for the 2-dimensional Schrödinger equation at zero energy with a potential of conductivity type

Consider the Schrödinger equation (2) on the plane with the potential $v(z), z=x_{1}+i x_{2}$, satisfying

$$
\begin{align*}
& v(z)=\overline{v(z)}, \quad v(z) \in L^{\infty}(\mathbb{C}) \\
& |v(z)|<q(1+|z|)^{-2-\varepsilon} \text { for some } q>0, \varepsilon>0 \tag{4}
\end{align*}
$$

For $k \in \mathbb{C}$ we consider solutions $\psi(z, k)$ of (2) having the following asymptotics

$$
\begin{equation*}
\psi(z, k)=e^{i k z} \mu(z, k), \quad \mu(z, k)=1+o(1), \text { as }|z| \rightarrow \infty \tag{5}
\end{equation*}
$$

i.e. Faddeev's exponentially growing solutions for the two-dimensional Schrödinger equation (2) at zero energy, see [F], [GN], [Nov1].

It was shown that if v satisfies (4) and is of conductivity type, then $\forall k \in \mathbb{C} \backslash 0$ there exists a unique continuous solution of (1) satisfying (5) (see [N]). Thus the scattering data b for the potential v of conductivity type are well-defined and continuous:

$$
\begin{equation*}
b(k)=\iint_{\mathbb{C}} e^{i(k y+\bar{k} \bar{y})} v(y) \mu(y, k) d \operatorname{Re} y d \operatorname{Im} y, \quad k \in \mathbb{C} \backslash 0 . \tag{6}
\end{equation*}
$$

In addition (see $[\mathrm{N}])$, the function $\mu(z, k)$ from (5) satisfies the following $\bar{\partial}$-equation

$$
\begin{equation*}
\frac{\partial \mu(z, k)}{\partial \bar{k}}=\frac{1}{4 \pi \bar{k}} e^{-i(k z+\bar{k} \bar{z})} b(k) \overline{\mu(z, k)}, \quad z \in \mathbb{C}, \quad k \in \mathbb{C} \backslash 0 \tag{7}
\end{equation*}
$$

and the following limit properties:

$$
\begin{align*}
\mu(z, k) \rightarrow 1, \text { as }|k| \rightarrow \infty \tag{8}\\
\mu(z, k) \text { is bounded in the neighborhood of } k=0 . \tag{9}
\end{align*}
$$

The following lemma describes the scattering data corresponding to a shifted potential.
Lemma 1. Let $v(z)$ be a potential satisfying (4) with the scattering data $b(k)$. The scattering data $b_{y}(k)$ for the potential $v_{y}(z)=v(z-y)$ are related to $b(k)$ by the following formula

$$
\begin{equation*}
b_{y}(k)=e^{i(k y+\bar{k} \bar{y})} b(k), \quad k \in \mathbb{C} \backslash 0, \quad y \in \mathbb{C} . \tag{10}
\end{equation*}
$$

Proof. We note that $\psi(z-y, k)$ satisfies (1) with $v_{y}(z)$ and has the asymptotics $\psi(z-y, k)=$ $e^{i k(z-y)}(1+o(1))$ as $|z| \rightarrow \infty$. Thus $\psi_{y}(z, k)=e^{i k y} \psi(z-y, k)$ and $\mu_{y}(z, k)=\mu(z-y, k)$. Finally, we have

$$
\begin{aligned}
b_{y}(k)=\iint_{\mathbb{C}} e^{i(k \zeta+\bar{k} \bar{\zeta})} v_{y}(\zeta) \mu_{y}(\zeta, & k) d \operatorname{Re} \zeta d \operatorname{Im} \zeta= \\
& =\iint_{\mathbb{C}} e^{i(k \zeta+\bar{k} \bar{\zeta})} v(\zeta-y) \mu(\zeta-y, k) d \operatorname{Re} \zeta d \operatorname{Im} \zeta=e^{i(k y+\bar{k} \bar{y})} b(k)
\end{aligned}
$$

As for the time dynamics of the scattering data, in [BLMP], [GN] it was shown that if the solution (v, w) of (1) exists and the scattering data for this solution are well-defined, then the time evolution of these scattering data is described as follows:

$$
\begin{equation*}
b(k, t)=e^{i\left(k^{3}+\bar{k}^{3}\right) t} b(k, 0), \quad k \in \mathbb{C} \backslash 0, \quad t \in \mathbb{R} \tag{11}
\end{equation*}
$$

3 Absence of solitons of conductivity type

Theorem 1. Let (v, w) be a sufficiently localized traveling wave solution of (1) of conductivity type. Then $v \equiv 0, w \equiv 0$.

Scheme of proof. From (10), (11), continuity of $b(k)$ on $\mathbb{C} \backslash 0$ and the fact that the functions k, $\bar{k}, k^{3}, \bar{k}^{3}, 1$ are linearly independent in the neighborhood of any point, it follows that $b \equiv 0$. Equation (7) implies that in this case the function $\mu(z, k)$ is holomorphic on $k, k \in \mathbb{C} \backslash 0$. Using properties (8) and (9) we apply Liouville theorem to obtain that $\mu \equiv 1$. Then $\psi(z, k)=e^{i k z}$ and from (2) it follows that $v \equiv 0$.

References

[BLMP] Boiti M., Leon J.J.P., Manna M., Pempinelli F.: On a spectral transform of a KdV-like equation related to the Schrodinger operator in the plane. Inverse Problems. 3, 25-36 (1987)
[F] Faddeev L.D. Growing solutions of the Schrödinger equation. Dokl. Akad. Nauk SSSR. 165, 514-517 (1965); translation in Sov. Phys. Dokl. 10, 1033-1035 (1966)
[GN] Grinevich P.G., Novikov S.P.: Two-dimensional "inverse scattering problem" for negative energies and generalized-analytic functions. I. Energies below the ground state. Funct. Anal. Appl. 22(1), 19-27 (1988)
[LMS] Lassas M., Mueller J.L., Siltanen S.: Mapping properties of the nonlinear Fourier transform in dimension two. Communications in Partial Differential Equations. 32, 591-610 (2007)
[M] Manakov S.V.: The inverse scattering method and two-dimensional evolution equations. Uspekhi Mat. Nauk. 31(5), 245-246 (1976) (in Russian)
[N] Nachman A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Annals of Mathematics. 143, 71-96 (1995)
[Nov1] Novikov R.G.: Multidimensional inverse spectral problem for the equation $-\Delta \psi+(v(x)-$ $E u(x)) \psi=0$. Funkt. Anal. i Pril. 22(4), 11-22 (1988); translation in Funct. Anal. Appl. 22, 263-272 (1988)
[Nov2] Novikov R.G.: Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy. Physics Letters A. 375, 1233-1235 (2011)
[NV1] Novikov S.P., Veselov A.P.: Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations. Dokl. Akad. Nauk SSSR. 279, $20-24$ (1984), translation in Sov. Math. Dokl. 30, 588-591 (1984)
[NV2] Novikov S.P., Veselov A.P.: Finite-zone, two-dimensional Schrödinger operators. Potential operators. Dokl. Akad. Nauk SSSR. 279, 784-788 (1984), translation in Sov. Math. Dokl. 30, 705-708 (1984)
[T] Tsai T.-Y. The Schrödinger operator in the plane. Inverse Problems. 9, 763-787 (1993)

[^0]: ${ }^{1}$ CMAP, Ecole Polytechnique, Palaiseau, 91128, France; email: kazeykina@cmap.polytechnique.fr

