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Absence of traveling wave solutions of conductivity type for the
Novikov-Veselov equation at zero energy

A.V. Kazeykina !
Abstract. We prove that the Novikov-Veselov equation (an analog of KdV in dimension
24 1) at zero energy does not have sufficiently localized soliton solutions of conductivity type.
1 Introduction

In this note we are concerned with the Novikov-Veselov equation at zero energy

O = 4Re(403v + 9, (vw)),
Ozw = —30,v, v =7, (1)
v=uov(xt), w=w(zt), z=(r,20) ER? tER,
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Definition 1. A pair (v,w) is a sufficiently localized solution of equation (1) if

where

e v,w € C(R? x R), v(-,t) € C3(R3),

t
<1+q\(x|)>2+6, 91 <3, for some € >0, w(z, ) — 0, |z] — oo,

o (v,w) satisfies (1).

o |do(w,t)] <

Definition 2. A solution (v,w) of (1) is a soliton (a traveling wave) if v(z,t) = V(z — ct),
c € R2

Equation (1) is an analog of the classic KdV equation. When v = v(z1,t), w = w(z1,t), then
equation (1) is reduced to KdV. Besides, equation (1) is integrable via the scattering transform
for the 2—dimensional Schrédinger equation

Ly =0,

2
L=—-A+uv(zt), A=40.0;, zeR> @

Equation (1) is contained implicitly in [M] as an equation possessing the following represen-
tation

JoL—-FE
where L is defined in (2), A and B are suitable differential operators of the third and zero order
respectively and [-,-] denotes the commutator. In the explicit form equation (1) was written

in [NV1], [NV2]|, where it was also studied in the periodic setting. For the rapidly decaying
potentials the studies of equation (1) and the scattering problem for (2) were carried out in
[BLMP], [GN] [T], [LMS]. In [LMS] the relation with the Calderén conductivity problem was

discussed in detail.

LCMAP, Ecole Polytechnique, Palaiseau, 91128, France; email: kazeykina@cmap.polytechnique.fr



Definition 3. A potential v € LP(R?), 1 < p < 2, is of conductivity type if v =~"2A~y1/2 for
some real-valued positive v € L™ (R?), such that v > 8y > 0 and Vy'/? € LP(R?).

The potentials of conductivity type arise naturally when the Calderén conductivity problem
is studied in the setting of the boundary value problem for the 2-dimensional Schrédinger equa-
tion at zero energy (see [Novl|, [N], [LMS]); in addition, in [N] it was shown that for this type
of potentials the scattering data for (2) are well-defined everywhere.

The main result of the present note consists in the following: there are no solitons of con-
ductivity type for equation (1). The proof is based on the ideas proposed in [Nov2|.

This work was fulfilled in the framework of research carried out under the supervision of

R.G. Novikov.

2 Scattering data for the 2-dimensional Schrodinger equation at
zero energy with a potential of conductivity type

Consider the Schrodinger equation (2) on the plane with the potential v(z), z = x1 + iz2,
satisfying

o(z) =0(3), ol(z) € I¥(0), "
lv(2)| < q(1 + |2|)~27¢ for some ¢ > 0, € > 0.

For k € C we consider solutions ¢ (z, k) of (2) having the following asymptotics

w(zv k) = eikz/*b(zv k)v M(Zv k) =1+ 0(1)7 as ’Z‘ — 00, (5)

i.e. Faddeev’s exponentially growing solutions for the two-dimensional Schrodinger equation (2)
at zero energy, see |F|, |GN], [Novl].

It was shown that if v satisfies (4) and is of conductivity type, then Vk € C\O there exists
a unique continuous solution of (1) satisfying (5) (see [N]). Thus the scattering data b for the
potential v of conductivity type are well-defined and continuous:

b(k) = // ei(kerEg)v(y)ﬂ(y, k)dReydlmy, ke C\0. (6)
C

In addition (see [N]), the function u(z,k) from (5) satisfies the following d-equation

N N U Syp—
—— = ——e "WTH(k k €C, keC\O 7
ak. 47Tk'e ( ):U’(Zv )7 z ) \ ( )
and the following limit properties:
wu(z, k) — 1, as |k| — oo, (8)
w(z, k) is bounded in the neighborhood of k = 0. 9)

The following lemma describes the scattering data corresponding to a shifted potential.

Lemma 1. Let v(z) be a potential satisfying (4) with the scattering data b(k). The scattering
data by (k) for the potential vy(z) = v(z —y) are related to b(k) by the following formula

by(k) = " T¥Dp(k), ke C\0, yeC. (10)



Proof. We note that ¢(z — y, k) satisfies (1) with v,(z) and has the asymptotics ¢ (z — y, k) =
e*==Y)(140(1)) as |2| — oo. Thus ¥, (2, k) = €*¥ep(z —y, k) and p, (2, k) = p(z —y, k). Finally,
we have

by(k) = / / "Ry () pay (€, k)dReCdIm¢ =
C
= [[ R u(c — (¢ — o R)dReCating = (),
C

O

As for the time dynamics of the scattering data, in [BLMP|, [GN] it was shown that if the
solution (v, w) of (1) exists and the scattering data for this solution are well-defined, then the
time evolution of these scattering data is described as follows:

b(k,t) = ! F* )iy 0), ke C\o, teR. (11)

3 Absence of solitons of conductivity type

Theorem 1. Let (v,w) be a sufficiently localized traveling wave solution of (1) of conductivity
type. Then v =0, w = 0.

Scheme of proof. From (10), (11), continuity of b(k) on C\0 and the fact that the functions k,
k, k3, k3, 1 are linearly independent in the neighborhood of any point, it follows that b = 0.
Equation (7) implies that in this case the function p(z, k) is holomorphic on k, k € C\0. Using
properties (8) and (9) we apply Liouville theorem to obtain that 4 = 1. Then (2, k) = e*?
and from (2) it follows that v = 0. O
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