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Abstract. Let (SDq) be the Stokes operator defined in a bounded domain € of R?* with
Dirichlet boundary conditions. We first prove that, generically with respect to the domain 2,
all the eigenvalues of (SDgq) are simple. That answers positively a question raised by J. H.
Ortega and E. Zuazua in [18, Section 6]. Our second result states that, generically with respect
to the domain €, the spectrum of (S Dg) verifies a non resonant property introduced by C. Foias
and J. C. Saut in [10] and used to linearize the Navier-Stokes system in a bounded domain
Q of R? with Dirichlet boundary conditions. The proofs of these results follow a standard
strategy based on a contradiction argument requiring shape differentiation. However, one
needs to shape differentiate twice the initial problem in the direction of carefully chosen domain
variations. The main step of the contradiction argument amounts to study the evaluation of
Dirichlet-to-Neumann operators associated to these domain variations.
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1 Introduction and main results

In this paper, we study the eigenvalue problem for the Stokes system with Dirichlet boundary
conditions defined in a bounded open subset Q of R3 with C*® boundary,

—Ap+Vp = A in(,
dive = 0 in €2,
(SDq) o = 0 on 09,

/Qp(:c)dx = 0.

Here we use ¢ € R? and p € R to denote respectively the velocity field and the pressure.
It is well-known that (SDg) admits an increasing sequence of positive eigenvalues (Ay,)n>1
tending to infinity as n goes to infinity. Consider the following property, referred as (Simple),
regarding the spectrum of (SDg)

(Simple) All the eigenvalues of (SDg) are simple.

We note that (Simple) is not always true, for instance if 2 is a disk (cf. [13, Chapter 4, pages
49-50]). First of all, recall that the set of bounded domains of R* with C® boundary denoted
by D3 can be endowed with the following topology: the base of open neighborhoods is given
by the sets V (€, ¢) defined, for any domain 2 € D3 and € > 0, as the images of Q by Id + u,
with u € W4(Q,R3) and |Jul|ya~ < & (cf. [I3] and [23]). Then ¢ is chosen small enough
so that Id +u : Q — (Id 4+ u)(Q2) is a diffeomorphism. As shown by A. M. Michelleti in [17]
(see also [13, Appendix 2|), V(Q,¢) is metrizable using a Courant-type distance, denoted by
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dy, and each (V(Q,¢),dy) is complete and separable. For any domain 2 € D3, we use D3(12)
to denote the Banach manifold obtained as the set of images (Id +u)(Q2) by u € W4*°(Q,R3),
which are diffeomorphic to 2. A property (P) will thus be referred to as “being generic with
respect to Q € D3” if, for every Q € Dj, the set of of domains of D3(£2) where (P) holds true
contains a countable intersection of open and dense subsets of D3(€).

One of the goals of the present paper consists in proving the following theorem.

Theorem 1.1. Generically with respect to Q € D3, (Simple) holds true, i.e., all the eigenvalues
of (SDgq) are simple.

Remark 1.1. In [18], several properties for the Stokes system with Dirichlet boundary condi-
tions (in particular (Simple)) were proved to be generic for domains in R%. Moreover, in the
same paper, the three dimensional case was considered in Section 6, pointing out why tech-
niques developed in [I8] could only handle the two dimensional case. In this regard, Theorem
answers positively the open question of Section 6 in [18].

In a second time, we aim at showing another generic property for the spectrum of (SDg).
For that purpose, we need the following definition, cf. [10, Definition 1].

Definition 1.1. We call resonance in the spectrum of (SDg) a relation of the type

k
b1 = ij/\j, where m; € N, 1< <k (1)

j=1
If no resonance occurs in the spectrum of (SDg), then (SDg) will be called nonresonant.

The concept of resonance was introduced by C. Foias and J. C. Saut in [I0] in order
to linearize the Navier-Stokes system and obtain a normal form for it as well as a useful
asymptotic expansion for its solutions in case when the corresponding Stokes operator (SDgq) is
nonresonant. As noticed in [10], nonresonance does not occur for periodic boundary conditions.
However the authors conjectured that nonresonance should be generic for Dirichlet boundary
conditions. In this paper, we confirm that conjecture.

Theorem 1.2. Generically with respect to Q0 € D3, the operator (SDgq) is nonresonant.

Remark 1.2. Theorem[I.1]is of course a particular case of Theorem[I.2] but we need to establish
first generic simplicity of the spectrum of (SDq) , and then, in a second step, the Foias-Saut
conjecture in full generality.

We now describe the main steps of our arguments. As it is standard since [, the reasoning
goes by contradiction and is based on shape differentiation.

We start with a description of the proof of Theorem [I.1] Fix a domain Qy € D3. For every
integer [, we define A, as the (open) subset of D3(€2y) whose elements 2 verify that the [ first
eigenvalues of (SDgq) are simple. Clearly, by Baire’s lemma, proving Theorem amounts to
show that A;. is dense in A; for every [ > 0. We argue by contradiction and assume that
there exists an integer [, a domain Q with C® boundary in A; and € > 0, such that, for every
u € WH(Q,R3) with ||ul|ps~ < &, the domain (Id + )2, or simply € + u, belongs to A;
but not to A;11. Let m > 2 be the multiplicity of A, the value of the (I + 1)-th eigenvalue of
(SDgq) and ¢;, t = 1,--- ,m, orthonormal eigenfunctions associated to A. Finally, let n be the
outward unit normal vector field on 9. By computing the shape derivative of the (I + 1)-th
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eigenvalue of (SDg), J. H. Ortega and E. Zuazua obtained in [I8] that, at every z € 0, one
has, for i,j =1,--- ,m, and i # j

0¢; 0p;i O, 0%i o 005 5
n=0 L= = || —==]|*. 2
. . . 0o;
If m > 2, then there necessarily exists 1 < ¢ < m so that = 0 on 0f) and one reaches a

contradiction using a unique continuation result due to Osseg (cf. |20]). However, in order to
obtain generic simplicity (m = 1), it was not clear how to pursue the reasoning by contradic-
tion, i.e., showing that relations in do not hold true generically with respect to the domains
of R? if m = 2. Note that, for questions involving scalar PDEs, if one wants to prove generic
simplicity of the spectrum of a self-adjoint operator with Dirichlet boundary conditions, then
it is standard to follow the lines of the above mentioned contradiction argument and to reach
Eq. . The second equation there is now a product of real numbers and a contradiction
follows readily by unique continuation, cf. [I] and [I3]. Therefore, the difficulty for showing
the generic simplicity of the spectrum of (SDg) stems, at this stage of the argument, from the
vectorial character of ¢;, i.e., the fact that we are dealing with a system of PDEs.

In this paper, we push further the contradiction argument by computing the shape deriva-
tive of the (I + 1)-th eigenvalue of (S)q., at every u € W4*(Q, R?) with [Jul|ys~ < € small
enough. The relations obtained in Eq. for €2 are now valid for every domain €2 + u with u
small enough. At this stage, we are not able to derive a contradiction. So we again take the
shape derivative of the above relations on 0¢2 and end up with expressions of the type

AM (0)

M'(u)(z) = —(u- n)(:z:)a—n(x), z € 09, (3)
for ||ul|y1.~ < e and where
_ 0¢i O¢; 09, i 5 10955

Taking into account the expression of M, its shape derivative M’(u) can also be expressed
in terms of Neumann data of the shape derivatives of the eigenfunctions whose Dirichlet data
have the regularity of v - n. By standard elliptic theory, if u - n belongs to the Sobolev space
H*(09Q), M'(u) a priori belongs to H*"1(9Q). Then, the key observation is that a gap of
regularity exists between the two sides of Eq. . The whole point now comes down to
prove that the gap of regularity actually leads to a contradiction. Two angles of attack,
essentially equivalent but technically different, are possible. In this paper, we reformulate the
issue at hand as follows: how to extract pointwise information (i.e., for x € 02) reflecting the
aforementioned gap of regularity and thus allow us to pursue the reasoning by contradiction?
This rather elementary line of attack, first considered in [7] and also applied in [4], consists
in choosing appropriate variations u “localized” at an arbitrary point z € 02. We note that
problems treated in [7] and [4] concerned planar domains and, therefore, equations of the type
were valid on closed C? curves of R%. In that case, the localization procedure is easier to
handle. Indeed, the strategy adopted in 7] and [4] consisted in extending M’(u) for variations
u defined on 0f) as continuous functions except at some point x € 0€2. More particularly,
u = u, can be taken as a Heaviside function admitting a single jump of discontinuity at x. In
order to exploit the gap of regularity, the singular part of M’(u,)(-) at x (in the distributional



sense) had to be computed, to eventually obtain the following expression,
, 1
M'(uy)(0) = My p.v. = R(o),

where o denotes the arclength (with o = 0 corresponding to =) and R(-) belongs to H'/27%(992)
for every ¢ > 0. Plugging back the above expression into Eq. , one deduces that My(-) =0
on 02 In [7], the previous relation provided additional information and allowed to conclude
the contradiction argument. However, in [4], it turns out that My(+) is proportional to M (0)(-)
and hence is trivially equal to zero. To determine the first non trivial term in the “singular”
expansion of M'(u;) + (u; - n) 8]\8{50) at x, in the distributional sense, a detailed study of
Dirichlet-to-Neumann operators associated to several Helmholtz equations was required.

In the present paper, the “localization” procedure, i.e., the choice of appropriate variations
u for any arbitrary point x € 0€), must be performed for functions defined on a surface 92
and not anymore on a curve, as in [7] and [4]. For that purpose, after fixing an arbitrary
point z € 0f), we will choose sequences of smooth functions u., approximating the Dirac
distribution at x. as e tends to zero, the point z. € 92 being any point at distance ¢ of . The
gap of regularity between the two sides of Eq. will be now quantified in terms of powers of

1 1
—, namely, the rigth-hand side of Eq. 1) is a O(—;) meanwhile we will establish that the left-
5 5

E 1 : . .
hand side of of Eq. is equal to w_3 +0(=), where w. is bounded independently of . Letting
3 3

¢ tend to zero, one deduces that lim._,ow. = 0 and finally one concludes the contradiction
argument. Theorem is proved in this manner. Note that the exact characterization of
w, requires, as in [4], a detailed study of certain Dirichlet-to-Neumann operators, but here,
associated to the Stokes system. That study heavily uses many technical results borrowed
from [I3], not only for handling certain weakly singular operators but also for the material
which is necessary to evaluate integrals defined on the surface 0€). It is noteworthy that, to
perform the evaluation of the surface integrals, we choose charts based at x. € 02 near the
fixed point x € 0f2, but not exactly at x. This trick turns out to be crucial for handling the
singularities in computations involving layer potentials. More importantly, it also provides
two degrees of freedom, namely the distance and the angle between x. and x, and functions
of these two variables being equal to zero give additional information to yield a contradiction.

Let us now briefly mention how goes the argument for Theorem [I.2] Since the resonance
relations of the type (/1)) are clearly of countable number, we can start a contradiction argument
similar to the abovementioned one. Therefore, there exists a resonance relation of the type
and denoted here by (RR), a domain  with C? boundary and & > 0, such that, for every
u € WH*(Q, R3) with ||ul|y~ < €, the domain Q+u verifies (RR). Moreover, since Theorem
holds true, one can assume that the eigenvalues involved in (RR) are all simple for 2+ u
with ||u|lw~ < €. We then take the shape derivative of (RR) but we are unable to derive
any contradiction. Assuming thus that this shape derivative is equal to zero for 2 + u with
lu||wa.0c small enough, we again differentiate the shape derivative of (RR) at u = 0. We then
consider the variations u. . introduced previously and embark into the characterization of
the main term of the second shape derivative of (RR). After lengthy computations, we get
a contradiction and conclude. It is interesting to notice the following difference betwen the
proofs of Theorem and Theorem respectively. Indeed, for the first result, one uses,
in the contradiction argument, the parameter defined by the angular part between x and x.
whereas for the second result, it is the radial part between x and z. which plays a crucial



role. Both parameters actually result from the vectorial character of our variations and that
enables one to adequately address the fact that (SDgq) is a system of PDEs. Therefore, one
should emphasize the flexibility of the approach proposed in this paper, which can be applied
to genericity questions for other systems of PDEs.

Before passing to the plan of the paper, we must mention that [I3] provides the best
update for genericity questions related to PDEs, where genericity is meant with respect to the
domain €2. Moreover, many new genericity results are proven there and in several situations,
the author (essentially) arrives to the same critical issue as the one explained previously, i.e.,
equations of the type and the gap of regularity they exhibit. D. Henry proposes the second
angle of attack to derive a contradiction from the gap remark. He chooses to reformulate
such an equation as the fact that a certain pseudo-differential operator has finite rank. Then,
to contradict that finiteness assumption, D. Henry applies the operator to rapidly oscillating
functions, which is a strategy much more general than ours but which is more complicated to
implement when one deals with systems of PDEs, such as in here with the Stokes system (see
[22] for a nice application of the strategy advocated in [I3] and also [2I] for an extension of
[13, Chapter §]).

The paper is organized as follows. In Section 2, we present the necessary material on the
Stokes system, shape differentiation and the result displayed in Eq. and first established in
[18]. The third section is devoted to the proof of Theorem assuming that the expansion of
a Dirichlet-to-Neuman operator in terms of inverse powers of ¢ is available. Then, in Section 4,
the argument to achieve such an expansion is provided using technical results on representation
formulas for Dirichlet-to-Neuman operators gathered in Section 6. The proof of Theorem
is given in Section 5. Background materials on layer potentials and integral representation
formulas for the Stokes system as well as the proofs of computational lemmas are gathered in
Appendices A and B.

Acknowledgements The authors would like to thank E. Zuazua and J. C. Saut for having
suggested the problems, as well as M. N. Ziane for helpful discussions.

2 Definitions and preliminary results

We start by defining precisely in Section the topology for the set of domains in R? with
C' boundary. The material is standard and borrowed from [13] and [23]. We then recall in
Section the definition of the Stokes operator and its spectrum. The presentation adopted
in this section is inspired by [9, Chapter II|, |25, Chapter 5] and [I§]. Results on the regularity
of the eigenvalues and eigenfunctions of the Stokes operator with respect to domain variations
are derived in Section [2.3 based on [15, Chapter 7] and [2]. Section [2.4]is devoted to the shape
differentiation for the Stokes system following the strategy of [23]. We finally recall in Section
J. H. Ortega and E. Zuazua’s result obtained in [I8] and provide an alternative proof. This
result will be the starting point of our proof for Theorem [1.1]

2.1 Topology on the domains

In this section, we provide the basic definitions needed in the paper. We work in this section
in R?%, d > 2, even though we will only be interested by the case d = 3. A domain 2 of R?,
d > 2, is an open bounded subset of R?. We provide now the standard topology for domains
with a regular boundary as well as basic results relative to shape differentiation. For [ > 1, the



set of domains 2 of R? with C! boundary will be denoted by ;. Following [23], we can define
a topology on ;. Consider the Banach space W!'1°°(Q, R?) equipped with its standard norm
defined by

||t]|i41,00 := supess{||Du(z)|; 0 <a <I+1, x € Q}.

For Q € Dy, u € WHL(Q,RY), let Q + u := (Id + u)(Q) be the subset of points y € R?
such that y = z + u(x) for some z € 2 and 0Q + u := (Id + u)(99) its boundary. For € > 0,
let V(€2,¢€) be the set of all Q + u with u € W (Q, R?) and ||u|y11.0 < g, small enough
so that Id +u : Q — (Id 4+ u)(Q?) is a diffeomorphism. The topology of D is defined by taking
the sets V(2, ) with £ small enough as a base of open neighborhoods of .

A. M. Michelleti in [I7] (and also reported in [I3, Appendix 2|) considered a Courant-type
metric, denoted d;; in this paper, so that V (€, ¢) is metrizable and each (V(,¢),d;11) is
complete and separable. For any domain Q) € D3, we use D;(Q2) to denote the the set of
images (Id + u)(Q) by u € Wh(Q,R?), which are diffeomorphic to Q. Then D;(Q) is a
Banach manifold modeled on u € W!1(9Q, R?) as proved in |13, Theorem A.10]. In the
sequel, we will sometimes identify, without further notice, the neighborhoods V (€2, €) with the
corresponding open balls of W!*1(Q) R?) centered at 0.

Definition 2.1. We say that a property (P) is generic in D if, for every Q € Dy, the set
of domains of I;(£2) on which Property (P) holds true is residual i.e., contains a countable
intersection of open and dense subsets of D;(£2).

2.2 Spectrum of the Stokes operator with Dirichlet boundary condi-
tions

The presentation here is inspired by [9, Chapter II], |25, Chapter 5| and [18]. Let © be a

domain of RY, d > 1 with C* boundary. We use D(Q2) and D’'(Q) to denote respectively the

space of C*° functions with compact support in 2 and the space of distributions on 2. The

duality bracket will be denoted by (-, ")prxp.
Consider the following fundamental functional spaces for the Stokes system:

V(Q) = {ve (H;(Q)*]|divv =0},
H(Q) = {ve (L) |dive=0 inQ, v-n=0 on JN}.

The space V() is equipped with the scalar product of (HZ(€2))¢ defined by

ou’ 8@
o 0%; 83;J (4)

uvv—/Vqu—

2,7=1

for u := (u!, -+ ,u?) and v := (v!,---  v?) in V(). The space H(Q) is equipped with the
scalar product of (L?(€))? which will be denoted by (-,-)z. Note that V() and H () are
separable Hilbert spaces as they are closed sub-spaces of respectively (Ha(€))¢ and (L*(Q))4.
We use L3(2) to denote the subspace of L*(Q2) made of the functions f with zero mean, i.e.
/ f(z)dz = 0.
0

Remark 2.1. If we define V(Q) := {v € (D(Q))¢ | div v = 0}, one can show that V() is the
closure of V in (H'(Q))? (cf. [27, Th.1.6, p.18]), and H () is the closure of V() in (L?(£2))¢
(cf. |27, Theorem 1.4, page 15] and |11, Theorem 2.8, page 30]).
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Let f € H. Since the linear form on V() defined by ¢(v) := /f -, for v € V(Q), is
Q
continuous, by Lax-Milgram’s Theorem, there exists a unique w € V(Q2) such that, for every

v e V(Q), (w,v)yy = £(v) and ||w|ly < C(Q)||f|lz, where the constant C'(£2) only depends on
Q). Therefore, the linear operator L from H(Q2) to H(2) defined by Lf = w is continuous.
As L is also self-adjoint and compact (cf. [0, Theorem IX.16, page 169|), then, by classical
spectral theory (cf. [0, Theorem VI.11, page 97|), the operator L admits a non-increasing
sequence of positive eigenvalues (y;);en tending to 0, and the corresponding eigenfunctions
(¢;)ien can be taken so that they constitute an orthonormal basis of H. In particular, one has

/QVqSi-Vv:/\i/Qqﬁi'v, VveV, (5)

1
where \; := —. Note that (\;);ey is a non-decreasing sequence tending to infinity. We use
m(A) to denote the multiplicity of the eigenvalue \.
For v € V, Eq. is equivalent to
(Adi + Nigi, v)prxp = 0. (6)
Theorem 2.1 (de Rham-Lions). Let g € (D'(Q))¢ such that
(¢, v)pxp =0, Vovel. (7)

Then, there ezists p € D'(2) such that ¢ = Vp. As a consequence of Them“em one deduces
from Eq. (3) that there exists p; € D'() such that

Ag; + Nigi = Vp;. (8)

Remark 2.2. Note that p in Theorem is unique up to an additive constant.

Remark 2.3. Theorem is a consequence of a more general result due to de Rham (cf. [8]
Theorem 177, page 95 |). This version is due to Lions, also stated in [27, Proposition 1.1, page
14]. A constructive proof can be found in [24].

Remark 2.4. There exists an equivalent presentation of the eigenvalue poblem for the Stokes
system based on the Stokes operator T, which is defined as the operator defined on VNW?2(Q)
by Tsu € H being the unique element satisfying

Au+ Tsu = Vp,

for some harmonique pressure field p, cf. [0, Chapter II|. Then, one has Ts = —PA where P
is the Leray projector. One then proceeds by standard functional analysis arguments.

The following regularity result holds for ¢; and p; (cf. |27, Section 2.6, page 38|).

Theorem 2.2 (Regularity). If the domain € is of class C™, for an integer m > 2, then, for
i €N, ¢; € H"(Q) and p; € H™" Q). If Q is of class C*, then, fori € N, ¢; € C*(Q) and
i € Coo(ﬁ)



We now summarize some computational results related to the Stokes system. We start by
providing several notions of “normal” derivatives used in this context. If ¢ = (¢');<;<3, the
5] )
Jacobian matrix of ¢ defined as (%)Ki’jq will be denoted by V¢. We use n to denote the
T; T
outward unit normal to 92 and the letter T" used below denotes the transpose of a matrix.
The corresponding normal derivative is given by

99
and we also have 96
—_— = Y on. 1
20 = (Vo+ Vo) m (10)
Finally, the conormal derivative g—f on Jf) is defined as follows
do  0¢
W =N P (11)

Moreover, we will use n, or n(z), with z € 0, to denote the value of the outward normal
vector at the point z.

Definition 2.2. For a and b are C' functions defined on an open neighborhood of Q, we use
Va : Vb to denote the following function

1
Va: Vb= 5(Va +V¥a) - (Vb+ V7'b),

where - is defined in Eq. as the Hadamard product of two matrices.
We recall the following Green’s formula (cf. [16]).

Lemma 2.3. Assume that d = 3. The following Green’s formula

/ma.%—l—/QV(div b)a—f—/Qq(diV a):/Q(VCL:Vb)—i—/QCL.(A(,_VQ)7 (12)

holds true for every a and (b,q), C' functions defined on an open neighborhood of 2, taking
values in R? and R® x R respectively.

A direct consequence of Lemma [2.3]is the following second Green’s formula.

Corollary 2.4. Assume that d = 3. The formula

/ma.%—/mb.%:/Qa.((A—l—n)b—Vq)_/Qb.((A_i_n)a_vp)’ (13)

holds for every n € R and for every pairs (a,p) and (b,q) of C' functions defined on an open
neighborhood of Q, taking values in R3 x R and satisfying div a = div b = 0.

Remark 2.5. One has noticed that the dot “-" has been used for scalar product a well as for
the Hadamard product in Eq. . We will make that abuse of notation throughout the paper.
We also need the following obvious result.

Lemma 2.5. Let d > 2 be an integer, a € (C*(Q))? N (HL(Q))? and Q C R? be an open
domain of class C*. Then,

Va=—n", on 0f. (14)



2.3 Regularity of the eigenvalues and eigenfunctions with respect to
the shape perturbation parameter

Let Q be a domain in D3. We consider perturbations u in the space W*4*°(R3 R3) with its
standard norm || -[|4,.0. To study perturbations of eigenvalues, we adopt the strategy described
in [I5, Chapter 7, Section 6.5, pages 423-425|.

Recall that the eigenvalue problem associated to the Stokes system on €2 with Dirichlet
boundary condition is given by

—A¢p+Vp = Ao in (),
dive = 0 in €2,
(SDQ) qb = 0 on aQ,
/p(x)d:c = 0.
Q

Consider any smooth map ¢ — T} defined for ¢ small enough so that 7j; = Id and 7; is a
diffeomorphism from € onto its image €, := T;(Q2). Let (¢4, pt, A\¢) be the solution of

—A¢i +Vp = Mgy in Y,
div ¢y = 0 in €,
(SDq,) o = 0 ond%y,

/pt(yt)dyt = 0.
Q¢

We next turn to the variational formulation of the above eigenvalue problem.
For every (w,q) € (H} ()3 x L3(€), it comes

Vo, : Vw dy —/

pe div(w) dy' +/
Q4

Q¢

Tr(Vy)q dy' = / A\t dpw dy.

Qt Qt

! := p, o T;. Define the change of variables y' := T;(y)

We set ¢f := ¢, 0T, € H} (), p
= q(y"). Then, one shows that (¢, p’) satisfies the following

and set z(y) := w(y") and r(y) :
identity

/Q AV : Vs — /Q PTH(B(E)V2)(E) + /Q Tr(B(#) V6! )r(t) = /Q N oota(t),  (15)

where v(t) = det(DT;), where A(t) = v(t)(DT; ')*(DT; ') and where B(t) = (DT, ')*. It
follows that (¢!, p') satisfies

—div(A()V) + div(p(DBE)) = A dy(t) in £,

Tr(B(t)V¢') = 0 in
ot = 0 on 09, (16)

/ﬁ@wmyzo.
Q

Let L%t be the Hilbert space equipped with the scalar product

wwm:lﬁwwmwwm, (17)
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and define L 7, := {v cL? : / v(x)y(t)dr = O}. We consider C(t) and L(t) the two oper-
Q
ators on H}(€)? given by

L.
C(t)v = —Wdlv(A(t)Vv), (18)
and
Lo =-Tr ((DT~")*Vv). (19)

The following result holds true.
Theorem 2.6 (cf. [2]).

1. The operator C(t) is self-adjoint with respect to the scalar product of L%, () and C(t ) Ly
coercive, i.e., there exists C' > 0 such that, for every g € H (), one has (g,C(t)7 ! >

Cllglla—r
2. The range of L(t) is closed and the adjoint L(t)* of L is given by
1
Lrq(t) = —=div(gy(t)). 20
(1) = vl (0) (20)

Moreover, the null space of L(t) is made of constant functions on 2 and its range is
equal to L§ 7,(€2).

Using the operators C(t) and L(t), we rewrite System as

Ct)g + LOP = N, in O
LH)$ = 0  in Q (21)
# =0  on 9.

Since the operator C(t) : (HE(Q))? — (H~1(R2))? is an isomorphism, we can write
o'+ CH)TIL ()P = NC() T, (22)
and since £(¢)¢' = 0, one has
L)C(H) L) P = ML(H)C(t) ™ "

Thanks to the coercivity of C(t)~!, one concludes that £(¢)C(¢)~'L(¢)* is continuous and one-
to-one in the space orthogonal to the null space of L(t)*. It follows that

ph= M (LOCE)TILE)) T LEOCE) e
Finally, reporting this expression of p into , we derive that
C(H)e" + AL(t)" (LE)C(H) L)) LE)C(H) o = Mo, (23)

-1

-1

or equivalently
C(t)o" = MA(t)g', (24)
where we have set

At) = [ (1 — L) (L@)e) L)) £(t)> C(t)ﬂ .

We are in the same situation as [15, Eq. (6.42), p. 42|. Indeed, shows that the operators
A and C are dependent on the parameter ¢ but are defined on a fixed Hilbert space, i.e.,
independent of . We also have that

11



e the operators A(t) and C(t) are closed operators.

e Assume that ¢ — 7T, is analytic in a neighborhood of ¢ = 0. Then, the operators
t — C(t) and t — C(t)~"' are analytic in a neighborhood of ¢t = 0, from W, into
L(H}()?),(HY(Q)?)) and L((L*(Q2)?),(H *(Q2)?)) respectively, and so is the inver-
sion of continuous operators. This shows that the mapping t — A(t) is analytic in a
neighbourhood of ¢t = 0. Furthermore, A(t) is bounded when ¢ is sufficiently small.

From [I5, Chapter 7, Sections 6.2 and 6.5], we deduce that (\;, ¢',p') defined in is
analytic in a neighborhood of ¢ = 0. Moreover, if A = A\(0) is an eigenvalue of multiplicity h,
by applying a standard Lyapunov-Schmidt argument (cf. for instance [15, Chapter 7], [12] or
[13]), one gets the following result when T; = Id + tu, with u € W4>(Q2, R3).

Theorem 2.7. Let Q C R? be an open bounded domain of class C3. Assume that \ is an
eigenvalue of multiplicity m(\) = h of the Stokes system with Dirichlet boundary condition on

the domain ). Then, there exist h real-valued continuous functions, u — \;(u) defined in a
neighborhood V' of 0 in W4 (Q, R?) such that the following properties hold,

e \(0)=A\, fori=1,.. h;

e for every open interval I C R, such that the intersection of I with the set of eigenvalues
of (SDq) contains only X\, there exists a neighborhood V; C V' such that, for every
u € Uy, there exist exactly h eigenvalues counting with multiplicity, \;(u), 1 < i < h, of
(SD(1d+uyn) contained in I;

o for every u € WH(Q,R?) and 1 < i < h, consider the map
. 0 R x HIO) x L)
t o= ( )‘z(u)’ ¢z(u)v pl(u) )

with J C R an open interval containing 0, for 1 < i < h, ¢t(u) := ¢ i(u) o (Id + tu)
and pi(u) == pi(u) o (Id + tu), where ¢y;(u) and p;(u) are respectively eigenfunction
and eigenpressure of (SDqyy). Then, for 1 <i < h, U, is analytic in a neighborhood of
t = 0. Moreover, the family (¢i1(u), ..., ¢rn(u)) is orthonormal in Hy (2 + u).

Remark 2.6. This result is actually the Stokes system’s version of [19, Theorem 3|. It is
important to insist on the fact that at ¢t = 0 the orthonormal family

(¢0,1(U)7 Sy ¢0,h<u)>>

of eigenfunctions associated to A does depend in general on u and continuity of the eigenfunc-
tions with respect to the shape parameter u does not hold true. Therefore, only directional
continuity and derivability with respect to u can be achieved and this is the object of the next
paragraph.

2.4 Shape differentiation

The subsequent developments follow a standard strategy (cf. [23, Theorem 2.13| for in-
stance) but seem to be new for the Stokes system with Dirichlet boundary conditions. Fix
u € Wh(Q,R?) and set T; = Id + tu for ¢ small enough. In this section, we define and

12



calculate the differential systems verified by the derivatives at ¢ = 0 of the eigenfunctions
(¢it(u), pie(u)) defined in Theorem 2.7] For that purpose, we must first consider the deriva-
tives of the maps ¢!(u) and pi(u). Since we perform such a computation along a fixed analytic
branch (AL(w), ¢ri(w), pri(u)), the index 7 is omitted for the rest of the paragraph.

According to Theorem 2.7, (¢(u), p(u)) is analytic in a neighborhood of ¢ = 0 and we set

¢(u) = dd)dl(fu} t=0’ p(u) = dpdffm =0

(25)

We next proceed in a similar way as in [23] Theorem 2.13|. For every open set w whose
closure is included in €2, we consider (¢¢(u))|, and (p:(u))|,, the restrictions of ¢;(u) and p;(u)
respectively to w. As compositions of two analytic maps in a neighborhood of t = 0, (¢ (u))|.
and (p:(u))l|, are also analytic in a neighborhood of t = 0 and their derivatives at ¢t = 0 are
equal to (¢(u) — Ve - u)|, and (p(u) — Vp - u)|, respectively. It is then easy to see that these
formulas are actually valid over the whole € and thus, if we use ¢/(u) and p’(u) to denote the

derivatives at t = 0 of ¢, and p, respectively, one finally gets that

¢ (u) =¢(u) = Vo -u, p'(u)=plu)—Vp-u, inQ. (26)

We refer to ¢'(u) and p’(u) as the shape derivatives in the direction u of the eigenfunction and
eigenpressure (¢, p) associated to \.

According to Theorem , d(u) and p(u) at least belong to H3(Q) and H?(2) respectively
and thus admit traces on 9 in H*2(9€)) and H?/%(99) respectively. From Egs. and
(16), we deduce at once, by using Eq. that p'(u) + div(up) € L3(Q2) and

¢ (u) + (u- n)% =0 on 9.

n

It remains to determine the relations satisfied by the derivatives ¢/'(u) and p’(u) inside the
domain 2. For that end, we take the derivative with respect to time evaluated at ¢ = 0 of Eq.
(15). For arbitrary test functions (z,r) € D(R?) x D(R), we obtain

/Q (A’(O)qu + V(;S(u)) :Vz— /Q (p(u)div(z) +pTr(B(0)Vz) + pdiv(z)y’(O))

+ /Q (Tr(B’(O)VqS) + div(b(u)) +div(¢)fy'(0))r - /Q (X(u)¢+ A (1) + Awm))z. (27)

To simplify the previous equation, we use the following relations between time derivatives and
shape derivatives,

A'(0) = div(u)ld — (Vu + VTu) and B'(0) = V7w

We first use the boundary conditions for ¢ and notice that the term multiplied by +/(0) =
div(u) in the integrand of Eq. is the PDE satisfied by ¢. Eq. then reduces to

/Q(V¢/<U)+V<V¢.u)_(vu+vTU)V¢) :Vz—/

: ((p’(u) + Vp-u)div(z) —i—pTr(VTqu)>

_ /Q (X¢>+A¢/(u) —i—)\V(b-u)z,

13



and

/ ( — Tr(VIuVe) + div(¢' (u)) + div(Vé - U)>r —0.
0

After some integrations by parts and using the boundary conditions, one deduces the two
identities

‘LV$W%Vz+AVWW)z:lxXWM+AﬁwD4

and

KﬁW@ﬁMr:O

These identities hold for every (z,7) € D(R?) x D(R), and they yield to the equations which
are valid in 2
—(A+N)¢'(u) + Vp'(u) = =N(u)g,  div(¢(u)) = 0.

In summary, the shape derivatives ¢/(u) and p’(u) satisfy the following inhomogeneous Stokes
system of PDEs

—(A+N¢ () +Vp'(u) = =N in,
div ¢'(u) = 0 in Q,
&' (u) + (u - n)% = 0 on 09, (28)
p'(u) + div(up) e LiO).

2.5 Ortega-Zuazua’s result

Our argument for establishing Theorem requires to perform shape differentiation of the
eigenvalue problem (SDg). The first step of the contradiction argument (i.e., assuming that
Property (Simple) is not generic) was already conducted by J. H. Ortega and E. Zuazua in [I8].
We next recall precisely the main result they obtained and, for that purpose, we introduce the
following definition.

Definition 2.3. Let d > 2. A domain Q € Dj verifies Property (Poz)q if, for every A
eigenvalue of the Stokes operator with Dirichlet boundary conditions (SDg), one has m(\) <
d—1andif m(A\)=d—1,for 1 <i,j <d-—1andi# j, the following three conditions must
hold on 09,

9oi
n

=0, (29)
Op; 0¢;

I 09;

5l - |52 @

where the ¢;’s, 1 <1i < d — 1 are orthonormal eigenfunctions associated with .
Then, the main result in [18] is the following.

Theorem 2.8. Let d > 2. Then Property (Poz)q defined above holds true, generically with
respect to 2 € Dj.

14



As an immediate corollary, it is proved in [I8] that Property (Simple) holds true generically
for domains in R?. Since we adopt a viewpoint different from [I8], we provide below a complete
argument. We need to provide the following definition, similar to that of “minimal multiplicity”
in [I3], page 56].

Definition 2.4. Let Q € D3 and A an eigenvalue of (SDg). We use mgq(A) to denote the
liminf over the multiplicities m(\,), where A, is an eigenvalue of (SDgq, ) such that Q, — Q
and A\, — A as n tends to infinity.

Several remarks are immediate with the previous definition.

Remark 2.7. There exists a sequence of domains (£2,,) in D3 and a sequence (), where )\, is
an eigenvalue of (Sq, ), such that Q, — Q, A, — X as n tends to infinity and m(A,) = mq(\)
(and it is also equal to mgq, (A,)).

Remark 2.8. Moreover, Property (Ppz)q for a domain € € Dy is clearly equivalent to the fact
that, for every A eigenvalue of (SDg), mq(A) < d — 1, besides the equality case.

Proof of Theorem [2.8 Fix a domain Qy € D3. We define, for [ € N, the sets
Ay = Ds3(Qp),
and, for [ > 1, consider
A= {Qo+u € Ay, u € WH(Qq, R?), mq,(\) < d—1 for the first [ first eigenvalues of (SDq,1y)}.
Set A := ("),cy Ai- Note that
A={Qy+uc Ay uecW(Qy,R?), mq,ru(N) <d—1 if \is an eigenvalue of (SDq,1y)}.

The proof is based on the application of Baire’s lemma to the sequence {A;}en. As A is
open in Ag for every [ € N, we only need to prove that, for [ € N, A;,; is dense in A;.

We proceed by contradiction. Assume that A;;; is not dense in A;. Then, there exists
u € A;\ A1 and a neighborhood U of u such that U C A;\ Ajyq. Set Q := Qo + u and let
A be the (I + 1)-th eigenvalue of (SDg). For s > 1, let As(-) be the function which associates
to Q € D the s-th eigenvalue of (SDg). Recall that \,(-) is continuous and X = A\ 1(€).
According to the contradiction assumption, one has m := mg(\) > d and then )\ (Q) < . As
a consequence, m(\y41) admits a local maximum at Q = Q and, if (€2,) is the sequence in Dy
considered in Remark and associated to €, then it has the following additional property:
for n large enough, there exists €, > 0 such that, for every ' with d({?,Q,) < &,, one has
that

m(A\1(Q)) =m > d.

In particular, m(A;;1(+)) is locally constant, equal to m > d in an open neighborhood of €,
for n large enough. We will contradict that latter fact, i.e. the existence of a domain (),
where m(A;41(+)) is constant and equal to m > d in an open neighborhood U, of Q.. For
simplicity, A is used to denote A\;;1(€),) in the remaining part of the argument. Once for all,
fix an orthonormal family v = (vy,...,v,,) of eigenfunctions of (SDgq,) associated to A and
define the m x m matrix

8’Ui 87)]'
M(v) = (/89(u ) on 6_n>1§i,j§m'
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Note that M (v) is real symmetric. We next perform shape differentiation with respect to the
parameter u € U,. Using the notations of Theorem 2.7, we consider, for every u € U,, the m
analytic branches ¢ — (X(u), ¢¢:(u), pri(u)), for i = 1,...,m, given by Theorem 2.7 We use
o(u) == (d1(u), ..., ¢m(u)) and (py(u), ..., pm(u)) respectively to denote

(¢0,1(u>7 s 7¢0,m(u))7 (pO,l(u>7 s 7QO,m(u))7

the eigenfunctions and eigenpressures associated to A (i.e., which correspond to the values of
the ¢ ;(u)’s and pe;(u)’s at t = 0).
Since v and ¢(u) are orthonormal families of eigenfunctions associated to the same eigen-

value A, then, for every 1 < ¢ < m, there exists m real numbers s;; such that ¢;(u) = Z;n:l 5iVj

and, if S(u) := (8i;)1<ij<m, then S(u) € SO(m) and ¢(u) = vS(u) (with the convention that
the ¢;(u)’s and the v;’s are viewed as column vectors of R™). One clearly obtains that

M(p(u)) = S(u)M(v)S(u)". (32)

We now need the following standard result whose proof is given in Section of Appendix.

Lemma 2.9. Using the notations defined above, then
diag(Aj(u))1<icm = —M (¢(u)) (33)
holds for every u € W4°(Q2,R3).

We next proceed with the proof of Theorem

The fact that m(\;11(+)) is constant and equal to m in a neighborhood of u = 0 is equivalent
to the fact that Aj(u) = Aj(u), 1 < 4,5 < m, for t small enough, implying that \j(u) takes
only one single value p as i runs from 1 to m. In other words, M (¢(u)) = —uld,, and then

one gets
M(v) = —pld,,,

thanks to Eq. . That yields the equations

2

81)1‘

9v;

2
_ _ - <ij<
Lol 5] - amiznnw
/ (u.n)a”i.% = 0, for1<i,j<d—1,i#j (35)
8. on on =)= ’ d

The integrals in the above equations define linear maps in (u.n) and are equal to zero in an
open neighborhood of uw = 0. It thus implies that, for distinct 1 < i, 5 < m,

avi (%j

‘ ol B |l = 0 on 0€,, (36)
81)1' an .

Moreover, using Lemma ([2.5)), one has, for 1 <i < m,

% -n =0, on 08,. (38)
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v . . .
Therefore, B must be identically equal to zero, for 1 < i < m. Indeed, assume that there
n

avi . .
exists xy € 0f2, and an index ¢ € {1,--- ,m} such that —(zy) is not zero. According to Egs.

on

v
(136), (37) and (38) , the m + 1 vectors given by a—vj(:co), 1 < j < m and n(zg) are all non
n

zero and two by two perpendicular. This is a contradiction because these vectors belong to a
d-dimensional vector space.

Thanks to a unique continuation type of argument due to Osses (cf. [20]), one concludes
that the v;’s must also be identically equal to zero, which is in contradiction with the facts
that the v;’s have L?-norm equal to one.

[]

Remark 2.9. This argument is an adaptation of the original proof by J. H. Albert in [I] to the
Stokes system with Dirichlet boundary conditions, and the perturbation parameters being the
domains of R3. See also [I3, Example 4.4] for a more general situation.

3 Proof of Theorem 1.1

We follow the classical strategy initiated by J. H. Albert in [I] for the Laplace operator with
Dirichlet boundary conditions. This strategy was in particular applied successfully in [I8] for
the generic simplicity of the Stokes operator in two space dimensions, and in [7] for other
Laplacian-like operators. Fix a domain €y € D3. We define, for [ € N, the sets

Ag :=D5(Q),
and, for [ > 1,
Ay = {Qo+u, u € WH®(Qo,R?), Qo+u € Agand the [ first eigenvalues of (SDq,.,) are simple}.
Set A :=("),cy Ai- Note that
A={ueW(Qo+u, Q,R?), Q+u€ Ay and the eigenvalues of (SDq, ) are simple}.

Again, the proof of the generic simplicity of (SDgq) is based on the application of Baire’s
lemma to the sequence {A;}ien. As A; is open in D3(Qy) for every [ € N, we only need to
prove that, for [ € N, A;,; is dense in A;. We proceed by contradiction. Assume that A;;
is not dense in A;. Then, there exists u € A; \ A;11 and a neighborhood U of u such that
UcC A\ Aj11. By Theorem , we can assume, without loss of generality, that there exists
Q = Qg + ug for some uy € U verifying the following: there exists an open neighborhood
V C U of 0 such that, for every u € V, then 2 4+ u verifies:

(i) the first [ eigenvalues A;(u), ..., \(u) of (SDgq4,) are simple;

(ii) the multiplicity of the (I + 1)-th eigenvalue A1 (u) of (SDgy,) is equal to 2 and, on
0f) + u, one has

99

o, n, = 0, 1=1,2, (39)
dp1 Opy
on, On, 0 (40)
O eJob)
ony, ‘ ony, " (41)
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where n, is used to denote the outer unit normal at 9 + u and (¢1, ¢2) is any pair of
orthonormal eigenfunctions associated with Ay (u).

Remark 3.1. These conditions simply state that, for an eigenvalue A of (SDq) (say the (I+1)-
th), its multiplicity is larger or equal to 2 and, for every variation v in W4°(Q + u, R?), there
are two equal directionnal derivatives (in the direction of v) of A\;.; at w. This fact actually
does not depend on the dimension d > 2 of the domain ). In dimension two, the above
conditions immediately yield that

061 _ 002 _,

on,  On,

for any pair of orthonormal eigenfunctions associated with A;;1(u), and one derives at once a
contradiction by the unique continuation result of [20], see also [I8]|. However, in dimension
d > 3, conditions , , and do not immediately yield a contradiction since three

non-zero two-by-two orthogonal vectors may exist in dimension d > 3.

For the rest of the paper, domains  are bounded subsets of R? with C? boundary, i.e., d = 3.

3.1 Shape derivation of Equations (39)) (40) and (41]

We begin with the following preliminary result.

Lemma 3.1. The shape derivative ¢, of ¢; in the direction V' satisfies

op;  0¢;
on  Ov

0¢; , 0 /
a(i ,nn + Vn% <(V¢i)Tn) + pin, (42)

+

where we use V,, to denote the normal component V - n of the direction V' on 0f).

Proof of Lemma[3.1. From the fact that ¢; vanishes on 9Q and satisfies div(¢;) = 0, one
knows that
(Vi) 'n=0. (43)

Taking the shape derivative of the two sides of Eq. , one gets

(V)" nt (Vo) '+ V- ((Vo)"n) =0.

Since (V)T = (% nT>T =n (g(fZ)T, it comes that

oo, 0
(,;i ,nn + Vn% ((ngﬁi)Tn) =0,

(Vo) n+

hence 9, 5
(V)T n= (5 nhm = Vase (V60 n))

The proof is finished once we report this expression in the definition of the co-normal derivative

of (bl
[
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Proposition 3.2. If ¢; satisfies (@) and (@), then we have, for 7 = 1,2,

<8¢; %>+< o 8¢z>

ov’ on dv’ on
(S (Lt ) (e )
Proof of Proposition[3.3. The shape derivative of Eq. gives
/ . ;. 09 i
EE ) w

0 .
Since ais -m = 0, it comes from Lemma 1' that
n

(G ) = (5 o) + {76 52),

hence we deduce that

od, 6\ 08, 9
<8ﬁ’%>+<8n’8i>

i 09; 0¢; 0¢; j i
(5o 3+ () + ¥ ((atTerm o) + (v )
From Eq. (45)), we get after identification that

| 90y . /96 0 o j |
(5o e ) = (g (oo e )+ Gt G+ v )

and this ends the proof of Proposition [3.2]

]

3.2 Special choice of V,

0
Let x € 09 such that the vectors i5(31:) %

on
a neighborhood of x in 9N such that, for all y belonglng to U,, the vectors a L (y) and Y)

span T,,(0€2). For y € 00 near x, we write the parametrized form of 0 near = as a graph
over the tangent plane at x : if n = P,(y — x) is the projection of y — z onto the tangent plane
T,.(0R2) with n sufficiently small, there exists an open neighborhood T,U, of 0 in T,,(9f2) such
that the map h, given by

( ) span the tangent space T,,(0f2). Let U, be
8(;5] i

hy: T.U, — U,

n oY=+ — (NN, (46)

is well-defined and is a diffeomorphism onto its image. For y near x, we have

1
va(n) = §nTKxn +O0(|n*), asn—0,

where K, is the symmetric matrix representing the curvature operator at x. We fix once for
all § > 0 small enough so that | 7 |< 2§ implies that y = x + 1 — v,(n)n, belongs to U,.

19



We are now ready to define V,,. Let ¢ << ¢ be a positive real number. We define xq € U,
as
To =2 + 1o — Va(10) e,

with ny € T,,(0%2) such that
no = ro(cos Oy, sin by),

for §y € S* and 0 < 9 < e. Note that x( is an arbitrary point in U,

Lemma 3.3. Let nl(n) = a%nx(n) € T,(090). We have

. B vi(n) + ng
Z) ny - /—1 _'_ ‘V;P,
1
i) (ng,y—z) =-— 577TKw +O0(|n’) asn—0,
1 (47)

i) (ng,n . —
) () —

1
= 1- 5!&(?7)?7!2) +O(In)*) asn— 0.

Proof of Lemma[3.3. These equations are easily obtained by standard facts from the theory
of surfaces (cf. [, Chapter 10]) and are explicitly given in [13, p. 146]. O

Remark 3.2. We note that the inverse of the Jacobian of the change of variables h! :y —
n = h;'(y) from a neighborhood of z on 95 to a neighborhood of 0 in R? is equal to (n,,n,).

Our choice for V,, will be
Va(y) = (aefs) o hy ' (y),

where, for n € R?,
1 | n—m
as(ﬁ) = ? exp[— 2 ]7

and (5(-) is a smooth cut-off function equal to 1 on B(0,38/2) and 0 on R?\ B(0,26).
Lemma 3.4. If y = h,(n) with n € B(0,0), then we have

20 (n)
o2

VVi(y) = Vae(n) = —

(n—10)-

In particular, (VV,(y),n,) = 0.

Proof of Lemma([3.4 Since the gradient nl,(n) = K,n is a vector belonging to 7,.(99) L n,,
we deduce after a straightforward chain rule computation that

VValy) = [Vhof_l(y)]TVaa(n) = [I = ni(n)nz |~ Vae(n)
= =251+ (m)ng](n —mo)
= 25 (n—m).
O

In the following, the gradient of a scalar function will be considered as a line vector in
accordance with the definition of the Jacobian matrix for a vector valued function.
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3.3 End of the proof of Theorem

The main technical result of the paper is summarized in the following proposition. The proof
is provided in Section [4]

Proposition 3.5. With V,, defined above, x € 02 and for j =1, 2, one has

99 e A 2 (7 j
Vi) = 25 (M (7o) M5 () — 7305 (7)) 2
M ) 2 o+ 0L, (15)

here MkAl(-), 2 < k <5, are nonzero entire function defined in Fqs. (@, (@, and
respectively.

We can now conclude the proof of Theorem . By conditions and , and Propo-
sition we have

O w), 220y 1 (92 a), 2y

_1:(2) a a
- _67T€3 M (7o) (o, aq:( )) (7o, %(a:» + O
_ e M (7o)r3 cos(01 — by) cos(0z — 0p) + O( 1 ),

el

5

e2

with %(a:) = ry(cos 0;,sin ;)" for i = 1,2.

on
However, Proposition implies that
¢y 9¢s Opy,  Op1, 1
(S (w), (@) + (S 2 (@), 2 w)) = O(5).

Therefore, if we now fix 7y < 1 such that M;" (7) # 0 and recall that re > 0, we have
cos(0y — 6y) cos(f2 — 0y) = O(e). (49)
By letting ¢ tend to zero, we deduce that
cos(60y — 6y) cos(f — ) = 0, (50)

since ) does not depend on €. Again, by conditions and (30)), one has |6; — 65| = 7/2.
Then, by replacing the arbitrary angle 6y by 6y — 6, in Eq. , one derives that

sin 26y = 0, (51)

holding for arbitrary angle 6,. This yields the final contradiction and Theorem is estab-
lished.

21



4 Proof of Proposition (3.5

This section is devoted to the proof of Proposition . The argument starts by applying (157
to ¢t = % J = 1,2, solution of ([160)-(163). The four terms of the rigth-hand side of (157)

correspond to four terms V[/Z»j , 1 <@ < 4 respectively. Since ¢ = —Vn% on 0f), it comes
n
that o0
5, (%) = Wi () + Wi () + Wi(x) + W] (@), (52)
where we have in coordinates, for £ =1,...,3, and ¢; = (97" )m1,....3,
; oPTY (v — ) P
J = 2pv. [ =——m—_Zy, L (y) d
W), = -2pv | G V) 5 W) doty). (53)

Wiw), = —((i[(—z)(@)*}k)[—m.v % Vi) 2L (3) do(y)) =)

- ([i (2] i) @), (54)

i), = (X [a0ar]) [ Lol )50 o), o
and
i), = [ (3 [r20])] [v. [ Doty )% )

- e (X [eam]) [l D)) dot). (56)

1 h=1(y) — h-1! 2
We take Vn(y) — ;exp[_| T (y) 62 z (-TO) |

term figuring in the right hand side of the equation quoted above. Our strategy is simple: we
show that the main term of the expansion is contained in Wf , where appears the effect of the
hyper-singular operator. Next, we prove that all other terms I/Vl-j (x), i = 2,3,4 are actually
remainder terms. These are the contents of Proposition and Proposition respectively
given in the next subsections.

| and tackle the asymptotic expansion of each

4.1 Expansion of W/

The goal of this subsection is to provide the main term in the expansion of W/ (z) defined in
Eq. . More precisely, we prove the following.

Proposition 4.1. With the notations above, we have, for ¢ > 0 small enough and j = 1,2,

=2
e "o

| .
W) = 2 (M) + M o) — M 1)) 2 (o)
i 0. 1
M () G )i+ (), 67
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where M,?l(~), 2 < k <5, are nonzero entire function defined in Fqs. (@, (@, and
respectively.
4.1.1 Computational lemmas

We begin by studying the term W/ (z) defined in Eq. . We start with the following lemma
whose proof is deferred in Appendix. For u = (u™),,=1.. 3 : 0Q — R3, we will use E(u)(x) to
denote the value at x € 02 of the hypersingular operator

Bw)@)] = pv. m%um(y) do,,  (=1,...3 (58)

Lemma 4.2. Let o : 00— R and ¥ : 002 — R3 be O functions. One has

AmB(ay)(x) = ) Ao ¥)(@), (59)

where

M) =p. [ P (), - 9)TTal) + (Val)(e - )0 d (60)
a(y)( nxa”y T

Aalo @) = pov. | i (Vo) + V7o) (& — y)do,, (61)
e, Y(y)) Valy)(x —y) — (W), z — y)Va(y)ne

As(a, ¥)(z) = p.v. /m P nydo,, (62)

[ W) (Vo) - V)~ y))
Ao v)a) = pv. [ 2 T 03, (63)

As(oni)(x) = / (2, y)[V () ())dor,, (64)

o0N

where 1(-,-) is a weakly singular operator of class C3(1) (see Appendiz[A.2 for a definition).

Lemma will be used with a = V,, and ¢ = %

variables introduced in Section and, using these notations, we set

. cos 0 . cos Oy . cos by,
=T < sin 6 ) » o -=To < sin 6, ) , p(@) =1y < sin 6y, ) ’

, 7 = 1,2, We will use the change of

and

Recall that, with the conventions of Subsection [3.2] one has 7y < 1. In the sequel, we will

provide an asymptotic expansion for each of the A;, 1 <7 < 5, using powers in the variable —.
€

_;g 1
‘ X; (or —X;) and the other one of the
gm gm

We will have two types of terms, one of the type
52
e 12

type Yz, where m; is an integer and X, Y; are vectors with bounded norms. For each A;,

23



0 1
1 < i <5, we will identify the term of the first type (i.e., ¢ - X; or —X;) with the largest
i g

value of m;, then gather them and consider all the others terms as a rest. For that purpose,
we will use repeateadly the following two lemmas whose proofs are deferred in Sections

and [B.4] of Appendix.

Lemma 4.3. With the notations above and for any non negative integer m, one has

/ ae(n) iy < C(m)’ (65)

o | m|t—m T T etom

with C'(m) a positive constant only depending on m.

Lemma 4.4. With the notations above,

2

o7 e A

by, / Wl"dn: M (7o), (66)
R2 | n | €

where M31(+) is a nonzero entire function defined in or below.

We will provide detailed computations for A;(a,)(x) in the expansion of W/ (z) and will
only sketch the main steps for the other terms. In these computations, we will systematically
refer to the following procedures. The first one consists of decomposing a C* vector-valued
function F(y) in two parts as F(y) = F(x) + G(z)(y — z), where G is a continuous matrix-

valued function. The second procedure consists of cutting an integral / ~--doy as
19)
i) B(0,26) B(0,5) B(0,26)\B(0,5)
52
e 12

and majorizing the second one by Cj for appropriate constant C; and integer m;. Finally,

note that (¢ (x),n,) = 0.

mi

4.1.2 Asymptotic expansion of A;

We give in this paragraph the asymptotic expansion of A;(a,)(z) with respect to . Recall
that

Al o)) = pv. [ A2 (1) — )V aly) + (Val)(e = 9)00)) doy

o0 \3? - y\?’

Proposition 4.5. For € > 0 small enough, one has

A )(w) = 257 (M5 (5) + M 7o) - RN () ) e
2 M o) (o, ()0 + O ). (67)
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For the sake of clarity, we set A;(a,¥)(x) := A1 1(a, ¥)(z) + A1 2(, ) () with

A )(@) = po. [ 2 0G) 0 - )V aly)da, (63)
Ao, d)(@) = pov. /a ) %wa@)@ Ny)do,. (69)

We will establish separately estimates of these two terms in Lemma [£.6] and Lemma 4.8

Lemma 4.6. For ¢ > 0 small enough, one has

=2
—7g

Ava(a9)(@) = 25 (M o) o, 6@ o + ME (o)) + O ), (70

where M3 () and M{*(-) are non-zero entire functions defined by (@ and (80}) respectively.

Proof of Lemma[{.6 Using the change of variables introduced in Subsection and taking
into account Lemma [3.4) and Remark we have

2 055(77)<77 - Vx(n)nxaw(y
Al 1\, r) = —F Pp.V.
) ( w)( ) 5 P /B(O,QE) ( ‘ n |2 + ’ %(77) |2>

~—

)

. 5 (n —no)dn.

Then,
Ap(a ) (@) = T (a, ) (@) + T4 (@, 9) (@) + R a, 9)),
with
A1 ._ z Oég<7])<7’],'¢( )> .
o) = o [ ST i ()
A11 - z as(ﬁ)0(|77|2) B
J (0471/1)(35) T £2 /B(O,(S) ‘n|3 (77 nO)dnv (72)
R a0)e) = [ (73)
B(0,26)\B(0,5)

where, in R411(, ) (z), one has the same integrand as in A;(a, 1) (). Clearly, there exists a

positve constant Cys only depending on § such that, for € small enough with respect to d, one
has

52
e <2
R a0, ) ()| < O (74)
Moreover, one can apply Lemma to JA1(a,1)(x), one gets that
2 C(O)To
74 (o, ) @) < S(CM) + =21,
and since o _ O(1), one finally deduces that there exists a positive constant C, such that
€
A1 Ci
[T e, ) (@) < — (75)

g2’
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Note that, for € small enough the upper bound of is larger than that of .
It remains to estimate 411 (v, %)(x). First of all, notice that the norm of

2 a:(n)(n, ()
/11@2\3(0 5)

£2 |77|3 (77 - UO)dna

52

4e2
is clearly less than or equal to

+— for some positive constant Cs only dependent on ¢ and
€

¢ small enough with respect to 9. )
We can therefore estimate, instead of 141 (o, ¢)(z), the quantity 1411 (a, ¥) () defined by

2 ambew)
Pifai)(a) o= 5 pv. | S 6~ g)ay (76)

By using polar coordinates, one gets
[44 (a,) ()

=2
e "o

o0 2 27 cos
= 92 i w/o exp(——)dr/o cos(f — Qw)eXP(Q 7o cos() — tp)) (sm@) dg

2

52 0o _r? 2m
_Qe_w (C_OS 90) o D.V. / exp(~3) 62)617”/ cos(0 — 0y) exp(2£fo cos(f — 6y))db
0 0 0

”
e 7o M (7o) cos(By — 0,) cos Oy + My (7o) sin(6y — 6,,) sin 8y
v M (7o) cos(By — 0,) sin 6y — MAI( 0) sin(fy — 0y) cos by
_30 o cos(0y — 62) (cos 90>

sin 0

267?(2) [th(io) — fOMg )] (00 — 0¢) COS 90 + MAl( ) in(Qo - 07/}) sin 00
= Tw 1
et \[M{Y (7o) — FoMs (o)) cos(Bo — 8,y sin By — My (%) sin(6y — 6,) cos 8y
where
27
M (7)) = / exp(— / cos? 0 exp(2r7, cos 6)db), (77)
0
2m
MM () = / / sin? 0 exp(2r7 cos 0)do, (78)
0
o 1 0o 677’2 2 B
M3 (7o) == — p.v. dr cos 6 exp(2r7q cos 0)db.. (79)
To o T 0

The needed information about the functions MZ-A1 (+),i=1,2,3, is gathered in the following
lemma, whose proof is given in Section in appendix.

Lemma 4.7. Fori= 1,2, M* () are entire functions. Moreover, the function M (-) defined
by the relation

MR (z) 1= (M (2) = M () — M (2)) (50)

s a nonzero entire function.
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Using Lemma , we further simplify I {4 "1 as follows.

I (o)
267773 [th (_0) (2]MA1 (770)] COS(QO — 9¢) COS 00 + MAl( 0) SID(QO 6¢) sin 00
= T
8\ (MM (Ro) — P2MS" ()] cos(6o ew) sin 0y — M3 (7) sin(fy — 0,) cos 6
e, B cos g 76 A cos Oy,
= 2—— = T2 MM (7o) cos(Bp — 0y) ( <in 00) —5 My (7 ) (Sin 6,
e L,
= 11 (70) {70, ¥ ()70 + 2 MAl( 0)¥(x). (81)
This ends the proof of Proposition [4.5]
]
Lemma 4.8. With the above notations, for € > 0 small enough, one has
2€_T0 Ay 20741 (= 1
Avp(a, ) (@) = —5— (M5 (7o) — 7o M3™ (7o) ¥ (2) + O(53), (82)

where M1 (cdot) is the non zero entire function defined as M (-) + Mz ().

Proof of Lemma[{.8 We proceed similarly as in the proof of Lemma [£.6] Besides remainder
terms, one must the principal term given by

Az ( ) = Vz a-(n){n,n — no) .
(o)) = prvgy [ Sy (o),

e2

Using polar coordinates, one gets

2 (e, ) (x)
(3/ aa(n)dn B % v, /]Rz ozs(77|)n<|z,no>dn>w(x)

e Jr2 |0
2 2 2e~70 o d
_ e / / r2 2rro cos 6 do dr — 63 To p.V./ / e 62”0 COSGCOSH do _T)w(x)
r=0 c " 0

-0 r

- 2‘;,°<M (o) — MY (7)) ),

where M;" (7y) and Mz (7y) are given respectively by (177) and (180 .

4.1.3 Asymptotic expansion of A; for 2 <i <5

We establish the following proposition for the asymptotic expansion of A; with ¢ =2,....8.

Proposition 4.9. Fori=2,...,5 and € > 0 small enough, one has
1
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Proof of Proposition[{.9. We proceed similarly as in the proof of Lemma [4.6]

For As(a,1)(x), we only need to estimate the following term:

R0 0)(a) = (V0(o) + T70(0) pv. [ SEibndn

By Lemma [4.4] one gets

6; M (70) (Vi () + VT () o = o(gi?), (84)

R (a,¢)(z) =

For As(a,1)(x), we first note that Va(y)n, = 0, and

(ne, ¥(y)) = (no, V(@ +n —na(n)ne)) = (e, (x) + Vi(z)n + O(|nl*)
= (Vi(x) ng,n) + O(Inf?).

Thus, we need to estimate the following integral,

2 (Vi) () s, m)

A3 (o T — «
R ( 777Z)>() 52 R? 6(”) |n|3

(n —no,n)dn n.

One can clearly apply Lemma [4.3[to R:**(a,)(z) with m = 0,1 and one gets,

2 c(0
IR0, @) < S + T
and since %O = O(1), one finally deduces that
1
R%(a,¢)(x) = O( ). (85)

For Ay(a,1)(x), we only need to estimate the following term:

R = (. [ S, (90 - T v

Using Lemma [4.4] one gets

R (0, 0)(x) = S MG () — V(@) mas = O(). (56)
For As(a,1)(x), one gets the estimate
R0, ) (a) = O(y), (57)

as a consequence of Lemma [£.10]

1
In summary, for i = 2,...,5, Ai(a,¢)(x) = O(=), which ends the proof of Proposition
€
4.9
[l
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Lemma 4.10. With the notations above, consider the function defined for x € OS2
Ra) = [ r(a)- Viaw))doly)
Q

where r(-,-) is a C2(1) weakly singular kernel and - stands for a linear action of r on the
coefficients of V(anp)(+). Then, there exists a positive constant Cr such that, for ¢ > 0 small
enough and x € 052, one gets

[R(@)] < = (88)

Proof of Lemma[{.10. As done for estimating A;, we use the change of variables introduced
in Subsection [3.2] and taking into account Lemma [3.4] and Remark [3.2] it is easy to see that
the most ‘singular” part corresponds to majorizing

/ Vo (n) .
B(0,5) 7]

Thus Eq. follows readily from Lemma .

4.2 Estimates of the remainder terms W.j, 1=2,3,4and 5 =1,2.

?

In this subsection, we upper bound the remainder terms Wz-j (x),1=2,3,4and j = 1,2, defined
respectively in Eqgs. , and . More precisely, we prove that

Proposition 4.11. With the notations above, we have, for e > 0 small enough, j = 1,2 and

i =234,
1

Wi(z) = O(). (59)

Remark 4.1. One must stress the similarity of our computations with those performed by

D. Henry in [I3]. More precisely, the terms A; and Ay in W7(:), which are (essentially)

the most ‘singular” part in the hypersingular operator E defined in Eq. , correspond

to the operator J(-) defined in Theorem 7.4.1 of [I3], page 135, with the specific choice of

Q(z, v, u) = Vn(y)y;x| and n = 3. Also notice that our Lemma |4.4] corresponds to an
x

ly — x| ly —
explicit computation of the polynomia -) (ct. eorem 7.4.1 o and follows the same
plici p ] f the poly 'lq()(fTh 7.4.1 f[13]) d foll h

lines as the strategy proposed in page 137 in [13]. In particular, one gets from Theorem 7.4.1
of [13] that Wi (-) extends uniquely to a continuous operator on 9.

Proof of Proposition[{.11. All the estimates to be established are consequences of (168)-(171)
obtained in Corollary [B.2l We rewrite it as follows. For u of class C? and x € 99, one writes
4w Eu(x) as the sum of two operators,

drBu(x) = Fu(z) + Lu(z) = p.v. ., f(z,y) - Vu(y)do(y) + /em l(z,y) - Vu(y)do(y), (90)

where ¢ - " stands for an action of the respective kernels which is linear with respect to Vu(-),

I(,) is a C3(1) kernel (of appropriate matrix size) defined in Appendix and the kernel
f(-,) defining the singular operator F' together with its action is given by

) My) i= M)+ M) el M) = MU )l m— s 0)
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for x # y, points on 9Q and M is C! matrix-valued function defined on 99.

In order to handle the remainder terms VVZ-j ’s, 1 = 2,3,4, one must handle the evaluation
at Vn% of the operators obtained as the composition of K3 defined in and its iterations
with W/, In fact, we will show next that all remainder terms W/’s, i = 2, 3,4 are O(%) and
to proceed, we will be only interested in the contribution of the “most” singular part in each
term sz ’s, i = 2,3,4. For that purpose, we will perform several (and standard) reductions.
The first one consists in considering the operator K9 instead of K} since K3 — KO admits a
C! kernel. Lemma already handles the term Wg . Next, recall K is a weakly singular
operator of class C3(1) (see Appendix for a definition). To handle the terms W3 and W7,
we first need the following result.

Lemma 4.12. The operator defined on C1(9) as the composition of K and F is a weakly
singular operator of class C3(1).

Thanks to the above lemma, the first term in the summation (54) is controlled as O(Z).
For the other terms, it is now enough to see that they correspond to compositions of iterates
of K with KQ o F' and thus we can apply Theorem given below on the composition of
weakly singular operators of Class C3(vy) with v > 0. We deduce at once that every term
appearing in the summation (54]) corresponds to the evaluation at V(V,, d¢])(-) of a weakly
singular operator of class C3(y ), with 7 > 1, and is therefore controlled as O(E%) The term
Wi is handled in a similar way and Proposition is established.

O

We now give the proof of Lemma [4.12]

Proof of Lemma[{.13 The argument given below is already contained in Section 7.6 of [13],
which considers a more general situation (see, more particularly, the proof of Theorem 7.6.3
page 147, [13]). For sake of clarity, we reproduce the main lines. Let M be a C' matrix-valued
function defined on 9. Then, the composition (K3 o F)[M](-) is defined, for x € 99, as the
sum

(Kg o F)[M|(z) = Ri(x) + Ra(w),

where
x — z,n(z)) AT . o
fle //aszxan |z —x | (r=2)(z=2)" [M{y)+ M (y)]| —y |3 doy do, (92)
and
r—zn(2)? (z—2) (n(2),[M(y) - M"(y)](z — )
R2 B //8Q><89 Z - |4 | Z— | | zZ—y |3 dO'y dUZQS)

Thanks to (155]), the operator R, is clearly more regular than R;. In the sequel, we only
provide details for R; and only give the estimate for Rs.
We next develop in coordinates the above expressions and obtain that, for ¢ = 1, 2, 3,

(fu@), = 1= v [ @) do,

k=1 o0
/ [<x—z,n(z))(x—z) (. —2)k (2 —9y)
Bly) |z =z |z —y |3
(x —z,n(2))(x — 2)i(z — 2); (z =y
* - aT FETike oy
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The integrand of shows that R; is the contraction of M (-) and a tensor field of order
(2,1) defined (in coordinates) by the interior integral in (94). In order to describe R; as a
convolution, we prefer to rewrite in a more elementary way, as follows,

(Rl(m)>i = %p.v. /aQ Tr(M(y)ci(z,y)) doy,

where the kernel ¢;(x,y) is defined for z # y and i = 1,2, 3, as

ci(x,y) :=p.v. /8Q (. —z,n(2)) (@ — 2); [(33 —2)(z—vy (z —y)(z— z)T p

|z -5 |z —y |3 |z —y 3

)T

o,.  (95)
Let (e;)i=123 be the canonical basis of R®. Then one has ¢;(x,y) = d;(z,y) + d;(z,y)", where
ie.9) = piv. | 2y’ (0)] do (96)

80

i.e., d;(x,y) is the kernel corresponding to the convolution of K with kernel £°(-,-) given by

0y gy e L ST=ynly) (@—y) (x—y)"
) = T o=y P lo—ylla=yl

and the singular operator G* with kernel ¢'(-, -) given by
i €; (33 - y)T
g'(x,y) = ——r.
#9) |z —y[?

To perform that analysis, one writes in the chart h, defined in and only considers
the most “singular” term of the composition, which is given by

T 5 T
p.v./ = m’ Y S-dn. (97)
B(0,6) |7 | ‘77—7711‘

Here, é; is the (orthogonal) projection of e; onto T, 09. In (97)), one clearly recognizes the
T K 5 T

RSy €7
|0 P |0 ?
Wl\Q(#) where the components of () are homogeneous polynomials of degree four defined on

m’ and The first kernel can also be written as

convolution between the kernels

St. According to [I3, Th. 7.3.1 p. 128] (which refers to [26] for more complete computations),
the Fourier transforms of these kernels are respectively equal to

PR ) = rT1| N(\%)’

P 5)(E) = %%,

where v, is a positive constant and the components of Q are homogeneous polynomials of
degree four. We get that the Fourier transform of the operator whose kernel is given by
is equal the product of the two Fourier transforms written previously and, as a consequence,
that operator is weakly singular of class C3(1). The same conclusion holds true as well for R;.
A similar line of reasoning shows that R is weakly singular of class C3(2) and Lemma is
finally proved.

and

]
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5 Proof of Theorem [1.2

In this section, we establish in full generality the Foias-Saut conjecture in 3D as stated in
[10]. First of all, notice that there is a countable number of resonance relations as defined in
Definition [1.1] To see that, simply remark that, for every positive integer N, there exists a
finite number of resonance relations of the type \x = Zﬁzl m;iAj, with A <--- < Ay < Ay, s0

that k + Z§:1 m; < N. We use (RR),, n > 1, to denote these resonances relations.
Fix a domain €y € 3. We define, for n € N, the sets

AO = ]D)g(Qo),
and, for n > 1,

An = {Qo +u, u € W4’OO(Q(],R3), Qo +ue AO
and the n first resonance relations (RR);, 1 < j < n, are not satisfied}.

Set A :=(),cn An. Note that
A={Qo+u, ue W°(Q,R?), Qy+u € Ay (SDg,4,) is not resonant}.

For n > 0, each set A,, is open and one must show that A, ,; is dense in A,,. Reasoning by
contradiction, assume that there exists n € N so that A, is not dense in A, and fix (RR),+1

to be equal to A\, = Z§=1 m;A;, for some integers k,l,my --- ,m;. With no loss of generality,

we assume that there exists Q2 € Dy and £ > 0 so that, for u € W** with |Jul|4 < &, we have
(i) the k first eigenvalues Ai(u), ..., Ax(u) of (SDgqy,) are simple;

(ii) the resonance condition holds true:

u) = ij)\j (). (98)

By Condition (i) and Eq. (33), one has, for u € W** with [juls. <e and 1 < j <k,

X (u) = / ()| 252, (99)

where ¢; is the orthonormal eigenfuncion associated to the eigenvalue A; of (SDqg).
Taking the shape derivative of Eq. , we have

L

a¢k 2 8¢] 2
/a< 2| —/ Z | S (100)

Since Eq. (100]) holds true for all u small enough, we obtain

14

B¢ 9.
IS5 =S mall 52 =0 on o9 (101)

Jj=1
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Continuing the argument by contradiction, we assume that Eq. (101)) holds true in a
neighborhood of 2 and take again the shape derivative. By Proposition [3.2] we have, on 0f2,

L

O, 0o\ ~—~_ 08 09\ 0 g 09 (0.09; 99,
<8Vk 8_nk> Zm <8V on > N —(u,n)[(%a—]\?, ank Z %8_]\7 _>} (102)

j=1 j=1

We choose a variation u such that (u,n) = V,, with V,, defined in Section Using
Proposition together with Eq. ((101]), since 7o is an arbitrary unitary vector of R?, we

obtain, on 0f,
D, [ Oy " 0¢; (90
an<an> _;mfaﬂarj) =0 (103)

From now on, fix = € 92 such that ¢k( ) # 0. Recall that such an z exists by the result
Ln

of Osses in [20]. According to Eq. , there exists an open neighborhood O, of z on 02
such that, for j =1,..., ¢, there is a 02 function p; such that

00, Oy,
— . 104
o~ i, on O, (104)
In addition, one has,
1-— E mj,u? =0, onO,. (105)

It is clear that all the equations from to were obtain by assuming that Eq. (98]
holds true in an open neighborood of u = 0. As a consequence, these equations must also
hold true in an open neighborood of v = 0 and thus, one can take the shape derivatives of
Equations at u = 0 along any variation. We will perform such a shape derivation along
the variations V,, defined in Section [3.2] with this time the real number § > 0 chosen so that
the support of V,, is contained in O,. Using Lemma , the shape derivative of Eq. is
equal to

/ / ¢ 0, ; i 1O
3 (o) o (5) ~Tmla (G + 5G] (106
+ (o G [n(Ge) + e = Som o+ G [(52) + e

j=1
- () S a) el (5 G )

where the above equation holds on 0f).
Moreover, on O,, one deduces that

0 0¢; op; 0
S0 = (Vo) = A T (),
%VT@H = V(u;(Vi¢pn))n = %VT@TL + 1,V (VT pm)n = 1;V (V7 ppn)n.
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This implies that, on O,,
0 9¢; _ Op; Opx
OnON  On On
with vy == V2¢(n,n) + V(VI¢pn)n. Therefore, one has on O,,

+ [k, (107)

9 ¢ <5¢k) N 8¢k< 0 quk) _i g,ug[ 9 0¢; (a¢k> i %(3%)1

an N \ on on \on ON = on ON \ On on \on ON
) ) Opt; Oy (0
- 1_27”]“] ( ¢k) ¢k a _22 iis Jal: ai%aﬁf)
Opi; Oy (O
= _22 mats e o () 10%)

Plugging Egs. ((104), (105]), and (108) into Eq. (106]), we obtain on O, that

/ / ¢ o'
(o) +on () = Lmml () + e ()]

¢
(o= St [ (52) + ]

_ 8#; 8¢l~c a¢k
B QVZ ]]8n0n<8n>' (109)
On O,, set
¢
D¢, 09}
j=1

The main part of the rest of the argument consists in deriving the main term of the

asymptotic expansion of dj at z, in terms of the powers of —. The first step will be to
€

1

establish that di(z) = O(=) and, in the second step, we will compute precisely the coefficient
3

d' defined as

1

di(x) = % + O(1),

where the coefficient d* will depend on the parameters involved in the special variation V,.
Once this is performed, we will resume the contradiction argument using the information
contained in d'.

To prepare these computations, we first rewrite Eq. using again Eq. as

() St (= ) 1)+ ]

0 0 0
Zm] 1 “’ (b’“(;;’“) . (111)
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0 0
Multiplying Eq. (111)) from the left by (%)T and from the right by %, we obtain the
n n

following scalar equation which will be used to achieve a contradiction.

0 ¢ Ot
(%,dk) = [ijuj%]‘/n. (112)

Jj=1

We now prove the following lemma.
1
Lemma 5.1. With the notations above, one has dp(z) = O(-).

5
_ O
Proof of Lemmal[5.1]. Set ¢ := B and, for y € O,
n

Bly) = ijuj(x)(uj (y) — (). (113)

Then, one has 8(y) = O(]z — y|?). More precisely, if we use the parameterization defined in
Eq. , we obtain

1,0 1
50) = 5 (S ey Kan " Hon) + O(nf*) = o Fen+ O(nf?),  (114)

where H, denotes the Hessian matrix of # at x. Note that by taking twice tangent derivatives
of Eq.(105), we know that H, is a negative semi-definite matrix.

Consider now the representation formula of d, as described in Eq. (157)). Note that two
1
contributions give rise to the term of order of O(=), namely b and ™.
€

The term corresponding to b(°) in that equation is equal to

B3V, 2% () (115)

Thanks to the estimate of 5 in ([114)), it is clear, by proceeding as in Subsection , that

1
all the other terms of the representation formula of dj are indeed of the type O(—=). Therefore,

one has only to determine the asymptotic expansion of the term given in Eq. (115]). According
to Lemma [4.2] it amounts now to estimate the five terms A4;, 1 <i <5, and after elementary
or standard computations using systematically Eq. (114) , we obtain

A 30)w) = 1 [ ST Ean (@) = m) + (0 = (e ) + (1), (126
1 e (n)

Ao B)(a) = = - [ S (W e+ (la),n) Ear)dn +0), - (117)

and, for 3 < j <5, Aj(a, fY)(z) = O(1).
Let us now treat the terms given by e™. Note that the presence of these terms reflects the

fact that ¢; and ¢, correspond to different eigenvalues of the Stokes operator. Using Lemma
, we define the operator A*(a, 1)) as follows

_A ae(ﬂ)(@b(x)an/mbidn
8 R2 |77| |77| ’
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It is clear that

Therefore, with above notations, we have

di(r) = Ai(0,0)(@) + Asla, ) (@) + > myp (i A (@, ) () — AN (a, 1) () + O(1)

Jj=1

= 0(2). (119)

This ends the proof of Lemma [5.1]
[l

Let us now pursue the proof of Theorem [I.2] Since the value of the right-hand side of Eq.
(112)) at z is given by the following expression

Zmyﬂj aﬂ] )} ¢ = O<i)a

we conclude that

5 . 0
E mp;(z MJ (x) =0, ie., %(x) =0, (120)
which implies that
Oy _
(P2 ) () = 0, (121)

In order to get additional information from Eq. (121)), we compute explicitly the numerical

1

coefficient in front of — in the asymptotic expansion of di(x). It is enough to have a closer
€

look at the representation formula of dj, as described in Eq. (157)). From Eq. (119)), we have

dp(z) = a1 + as + pas + O(1), (122)
where
o = o [ S (- + - moet))dn, (23
i i= =g [ S (v Eay (0G0, Fon) (124)
- _%/ as(n)<¢‘(7;v’),n/ln|>%dm (125)
p = f;mjmk—xj). (126)

Notice that p > 0 since A\, > A; for 1 < j <[ and at least one of the integers m; is positive.
We now compute the coefficients a;, 1 < i < 3. For 6, € S!, we set

__[costh —sinb Fiy.
R, = (sin@o cos Oy ) ’ = Rj, oFalian = (F % Jig=tz:
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For i = 6,...,10, we define the functions M; as follows.

Meg(z) = /000 e " r2dr /027r erzeostg, (127)

Mq(z) = /000 e " rdr /0% %7080 ¢os2 b, (128)

Mg(z) = / ey / " 22039 cost 0, (129)
0 0

My(z) = /000 e rdr OQW %% cos 0de, (130)

My(z) = /OOO e rdr /027r 750 cog3 0df. (131)

The expressions of ay, as, and a3 are summarized in the following lemma whose proof is
postponed in Section [B.6 of Appendix.

Lemma 5.2. We have

1 GTO(
a = —

7o) + (2Fy, — 3F32) M7 (To) — (Fy — F2)(Ms(7o) + Mio(7o)) — Fy2 My(70) | ()
ro) + (Fy, — F32) (Mao(7o) — 2Mg(70)) + (Fy, — 3F37) My (7o)

—  2Fp2 (M (7o) — Ms(To))ih(z) " 4 4F,7 (My(Fo) — MS(fo))@/J(?U)"’_IOW_Iol)a (132)

a = ———{ [FRMM (o) + (Fy) — FR)M™ (7o) | (@)

(M1 (7o) = M{™ (7o) (@) + (2M™ (7o) — M3 (7)) (), o) ) | (133)

0 = — L (M1 (7o) = M (7)) + (M (7o) — M5 (7)) {8 (2), i) o . (134)

Let us now finish the proof of Theorem We choose 79 L ¢ (x). Without loss of
generality, we also assume that 7, = (1,0)” and ¥(z)/|¢(z)| = (0,1)". Recall that we have
chosen x such that ¢ (z) # 0. Then, we deduce from Eq. (122)) and Lemma [5.2] that

=2
e "o

() = — (alw(x) + agth(a)t + agm(x)>, (135)
where,
ar = 2F7Mg(ro) + (2F} = BEP) My (o) — (F3' — F22)(Ms(ro) + Muo(Fo)) — Fi* M(ro)
—((F2+ 5)Mi () + (F}' = B2 = D)M{ (o)),
Qo = 2F;2(M9(f0) —+ Mg(fo) — MIO(FO) — M7(f0)),
az = — (MM () — M{"(7o)).
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Plugging Eq. (135) into Eq. (121)), we obtain
a1 + F2a; = 0. (136)

The final contradiction will be obtained by showing that the two non zero entire functions
of 7o given by a; and as cannot satisfy Eq. ((136)). For that purpose, we need to get more
explicit expressions. Eq. ((136)) writes

0 = 2F2Mq(ro) + (2F; ' — 3F2)M7(7o) — (F' — F2)(Mg(7o) + Mio(7o)) — F22My(7)
—(@F2 + 5)M () + (F)! = 282 = D)MM (7o)
= FM(2M7(7o) — Ms(7o) — Mio(7o) — M{™ (7))
+  F2(2M;(Fo) — 3M7(o) + Ms(Fo) + Mio(Fo) — My(Fo) — 2M2 (7o) + 2M{ (7))
+ LM (Fo) — M (7). (137)
Since the right-hand side of Eq. is an entire function, we deduce that all the coef-

ficients in its power series expansion are equal to zero. We need the following lemma whose
proof is deferred in Section [B.7 of Appendix.

Lemma 5.3. The entire functions involved in FEq. (137) have the following power series
exTPansions

2My(2) — My(2) — Mio(2) — M{" (= )

0o 22p+1 1 2p + 4p 3 0o 22p+2 3
- L(p+ —)I2p+2—z2p S _T(p+ )y 2,
=0 (2p)! 2 2p+3 pre (2p + 1)! 9
2Me(z) — 3M7(2) + Ms(z) + Mio(2) — Mo(z) — QMAl( )+2MA1( )
= 22+l 1 6p* + 16p+ L 922 3 1
= Lp+ =)I. I i1
; (2p)! v 2> 2p(2p+2)(2p—|—4 pz (2p+1)! I'(p+ 2) 2p+22p+4z

Using Lemmal5.3]and considering the coefficients of the odd powers of z in the power series
expansion of the right-hand side of Eq. (137)), we deduce that

FEM'(2p+3)+F?=0, foralpeN. (138)
This implies that
FM' = F? =0. (139)
Therefore, using Eq. ((137)), we have
£ (M (7o) = M3 (7)) = 0. (140)

Recall that M (z) — M{*'(2) is equal to M;"(z), then not identically equal to zero. Then

Eq. (140) yields that
p=0,
which is in contradiction with the fact that

¢
= Zm],ui(/\k — /\J) > 0.
j=1
Theorem [1.2]is finally proved.
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A Layer potentials and representation formulas

Most of the material presented here is borrowed from [3], [16] and [I3]. Let A be a non negative
real number. Consider ¢ and p satisfying the eigenvalue problem associated to the following
Stokes system
(A+XNp—Vp = h inQ
divg = 0 in
¢ = g on 0f)

/p=0,
Q

/¢~nds=0, (141)
r

where n is the outward unit normal to 0f). Recall that, for such a pair of fields, the conormal

0
derivative denoted by a—gb was defined in ([11)).
v

under the compatibility condition

A.1 Layer potentials
We denote by 0; the operator a%i and by v/—\ the complex number iv/\.

Fundamental tensors ~ We define the fundamental tensors I'* = (I'};)?,_, and F = (F})}_,

as
o _5ij€\/3\w\ 1 ‘e\/—i)\m -1
I 47rx|~ T | Y9 N (142)
F; L —
(%) A |z |3

In the sense of distributions, straightforward computations of the fundamental solution of
Helmholtz operator A 4+ A allow to get

where we use 6(x) to denote the delta distribution based at z € R®. The tensor I'°, which
corresponds to the standard Stokes system, is defined as

1 (i  wiw,
T (1) = —— (20 4 it
o =5 (P 1)

and one has, uniformly on compact subsets of R3,

i/ — A
I (x) =T (x) — ch +O(N). (143)
We also denote
A A
Note that
0/ —A A
A _ 9 . N 2
A)() = =22 = A () + O(eP) (145)
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with A;;(-) defined by

Ay (z) == 30, z| — ﬁx‘ﬂ (146)
x
After simple computations, one gets the following useful result.
Lemma A.1. We have
2AN (1 — \ _ N\ T
ON(z)ON(y)  8rlle—yl |z -y |z =yl
where Ty is a kernel of class C'. Here, the definition of 3% given in .
Single and double boundary layers In the sequel, we use the Einstein convention

for summation signs, i.e., we omit them for indices appearing twice. Let ¢ = (¢!, ¢, ¢*) €
L?*(09)3. The single-layer potential pair (Sa, Fo) with density ¢ is defined, for z € Q, as

SAdli(x) = /mrg(x—ywy) do,, 1<i<3,

‘ (148)
Falol) = [ Fo-élw) do,
o9

while the double hydrodynamic potential pair (Dg, Vq) with density ¢ is defined by

Di[gli(z) = / o (z —y) + Filx —y)n;(y) | ¢5(y) doy, 1<i<3
“ oo \ ON(y) ! ’ oo T (149)

OF; ,
o) = =2 [ Sa =)@ ) miy) do,

Recall that

or (O —y) AT (x —y)
—amy)(x_y)_( oy, )nl(y)’

according to the definition of aiN given in ((10)).

Some background results about the layer potential representations From [3], we
quote the following integral equations satisfied by ¢* and the associated pressure p*. First,
we have the following representation formulas,

P = ~SA 1)+ DM@, zen,
agb)\ \ (150)
P@) = —Falo-)@) + Vald'(x), zeQ

Applying the trace stress operators and taking into account the single layer potential as well as
the jump relations for the double layer potential across the boundary, we get for ¢ belonging
to L?(09Q)3 the following relations,

Dlw) = GI+EDEl@),  ac on0n
T 0el) = (5l + (Ka))lel(a), ae on 00,
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where the kernel K§[¢] is defined a.e. on 9 by its components,

& (y) d F j d 152
(PP oyt [ Bl () doy (152

Here, the notation “ p.v.” indicates the Cauchy principal value when the integrand is singular
at x, more precisely

Kj[@li(x) :== p.v.

p.v./...:lim
r €70 JO\B(x,e)

where B(z, ) is the ball centered at x of radius . The adjoint operator K" of K} is defined
similarly a.e. on 0f) by its components

8F3j
o0 ON(z)

(z — )¢/ () do, — pov. / Fi(x — )¢ (y)n;(x) do,  (153)

o0N

Kg [9li(x) = p.v.

for all functions ¢ belonging to L?(9€)3. Let us recall that in the case of the standard Stokes
system (A = 0), we have

O B

do,. (154)

An important fact is that the single and double layer potentials S3 and D@ are compact
perturbations of the single and double layer potentials corresponding to the standard Stokes
problem.

From the C® regularity of the boundary I', it comes that

[z —y,0(y))| < Clz —yl, (155)

hence, we deduce (cf. [16]) that the mapping Kj[¢] : C*(0Q) — CTL(O9Q) is in fact con-
tinuous. That shows that K}[¢] has a weakly singular kernel and then that it is a compact
operator on L?(99Q)3. According to (143)), the operators S — S§ and Dg — Dg, are smoothing
operators.

Thanks to the integral representations provided in the preceding paragraph, we can use
the trace and the stress operators to deduce the second boundary integral equation satisfied
by the conormal derivative. Indeed, by using the same arguments of jump relations and the
integral equations satisfied by ¢*, we get

(5705l = [ )]

(

Pr ) (156
)

i ij

1
We cannot deduce directly the Neumann data (conormal derivative) since the operator (—I +

(Ké)*) is not invertible. We give, in the next paragraph, the recipes to get the solution of
the system by using the projector methods.
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A.2 Weakly singular integral operators of exponent o > 0

The rest of the paragraph follows Section 7.2 of [I3]. Recall that the conormal derivative is
solution of Tz = b where T = I + 2(K})* is a Fredholm operator with a nontrivial kernel.
We use R(T) to denote its closed image and N(T) its finite dimensional null space. We can
therefore find projections P and () of finite rank such that there exists a unique operator S
satisfying T'S = I — () and PS = 0. Hence, the equation T'x = f has a solution if and only if
Qf = 0. In our context, we have T = [ — C' with C = —2(K})*, which is a compact operator.
From the projector theory recalled above, we can find S such that the equation Tx = b has
a solution x = Sf when Q = 0. To proceed, we need some regularity assumptions on the
operator T. For that purpose, we recall the following definition [I3] Definition 7.1.1, p117|.

Definition A.1. Let A be an open set in R3. A function K (z,y) defined for x # yin A x A
is a kernel of class C](a) in A (r non negative integer, and a > 0) if it is C" for x # y and for
any 0 > 0 and |i| + |j| + |k| < r, one has

QL03(0, + 0y K (2,y) = O(1 + |a — |2 li=bl=0),

uniformly for x # y in compact subsets of A. If a > m + [i| + [j|, we require 9,07 (0, +
0,)FK (z,y) to extend continuously to {z = y}.

Assume now that 7" is an integral operator with kernel C(«) for some o > 0. We may
choose the projections P and () to be integral operators with C" kernels so that, if S is the
operator such that

TS = 1,
S = I+R,

then the resolvent kernel R is an integral operator with C7(«) kernel. Then R — (C' + C? +
-+++ (CY) has kernel of class C7((j + 1)a) for each j > 1. Hence, for N sufficiently large, the
operator R — Zszl (Y has a smooth kernel of class C”. In summary, one has the following
result.

Theorem A.2 (Theorem 7.2.3, page 125 in [13]). We suppose Q regular of class C™1, for
some r > 0. If K a kernel of class K(a,r), then we may choose the kernels P and Q of
the projections to be of class C" and such that the resolvent kernel R belongs to K(a,r).
Furthermore N can be chosen sufficiently large so that the kernel of R — (K + K% + ... KY)
1s a C" kernel.

We return to the study of Eq. (156). We introduce the vectors b(®)(z) = (bl(»o) (x)); and
eMN(x) = (e(’\) (x)) where

7

0T —y)
O () — J A o

and where

) . aQA?j@ )
o= [ R 4

Hence it comes that

=

A N N
[aai] =00+ QKO + QKN + (R=) KOO +e™). (157)
v k=1 k=0 k=1
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Note that (I + R)e™ is actually a weakly singular operator acting on the Dirichlet data ¢* of
class C3(1).

In our study, we will apply to the case K = —2KJ. Moreover, with our specific
choice of Dirichlet data, we will show that N = 1 is sufficient in our context and that all the
other terms in the sum will be also absorbed by the remainder.

A.3 Composition of weakly singular kernels

For applications to our result on generic perturbation of the boundary, we need to give an
explicit representation of the conormal derivative or at least, of its principal and subprincipal
parts as it is treated in the case of the Laplacian (for more details in the Laplacian case, one
can refer to [28]). Some preliminaries are required in order to study the resolvent kernels and
their regularity. We begin by recalling some results due to D. Henry (cf. [13]). It concerns
kernels K (x,y) of the form

K(z,y) =z —y|*? Q(x,y, ﬁ) (158)

where Q(z,y, s) is of class C" (r > 0) on R?. We will denote by K(r, ) the set of such kernels,
which is a subclass of C](«).
These kernels are in fact smoothing operators and we recall the main result of [13].

Theorem A.3 (Theorem 7.1.2 in [I3]). Given a kernel K belonging to the class K(a,r),
a,r >0, we denote by K the corresponding integral operator

Ru(z) = | K(@.yuly) do,.
RQ
Then we have

o K : WiP— WP is a compact operator if j — o> k-

o K: C — C* is a compact operator if j +o+a>k+7, k<randk < j+a.

As it was mentioned in [13], the above result can be summarized by the fact the operator
K is smoothing of order . By analogy with the pseudo-differential operator theory, such an
operator is said of order . We will also need a result on the composition of certain weakly
singular operators. For that purpose, we first define the composition of corresponding kernels
as follows.

Definition A.2. Let K and L be kernels belonging to K(a, ) and KC(f3, r) respectively with
a, 3,7 > 0. Then K o L is defined by

KolL(z,y)= | K(z,2)L(z,z) dz (159)
R2
Then, one has the following property.

Theorem A.4 (Theorem 7.1.3, p. 119 in [13]). Let K and L be kernels belonging to K(«,r)
and (B, r) respectively, with o, B, > 0. Then K o L is kernel of compact support belonging
to K(ao+ B,7). Furthermore, if « + 8 > r + 2, then K o L is of class C".
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To these kernels, are associated integral operators u / K(z,y) dS(y) where dS is the
o0

surface area measure on 9€). In a first step, we begin to work in R%. To transfer all the results
to 0N (in particular, those provided above), one has to follow the classical steps: construct a
partition of unity and then define the integral by a local change of variables as it is precisely
performed in [I3], Section 7.1].

B Proofs of computational lemmas

B.1 Proof of Lemma 2.9
From Eq. , we get the following system

— (A +N@i(u) + Vpi(u) = N(u)pi(u) inQ, (160)
div qb (u) = 0 in €, (161)

¢ (u) + (u - n) ( ) = 0 ondQ, (162)
pi(u) + div (Upz( ) € Ly(9). (163)

Multiplying (160) by ¢x(u) with 1 < k < m, integrating over 2 and using Corollary [2.4] we

have
ov

()i, = — /Q Ok (u)[(A + X (u) — Vpi(u)] = ., 5 (u)

Hence, it comes that
ovs 9¢i(u) Oy (u)
()0 = /89(u n) o i (164)

Moreover, by Lemma ([2.5]), we have

O¢i(u) Ogp(w) _ I¢i(u) Iy(u)  r
on (;V = —on 5 + Vigr(u)n — pp(u)n)

_ 000 00in) | 060) | 06ulw) pir 06(0) 06)
on on on on on on
Therefore, we immediately get Eq. (33).

B.2 Proof of Lemma [4.2]

Lemma, is derived from [14, Lemma 2.2.3 Formula (2.2.34) and Lemma 2.3.1] by straight-
forward computations. For the reader’s convenience, we first summarize these results in the
following lemma and then give the proof of Lemma [4.2]

Lemma B.1. Let 99 be of class C* and u = (u*)y=123 be a Hélder continuously differentiable
function. Then the operator E defined in can be expressed as follows

Fu(z) — —%(nxxvx)- /a Qﬁ(nyxvy)u(y)da(y) (165)
1 (r—y)(z -y’ o Vel do
3 M@nn) [ I M, uly)do(y) (166)
1 /< 1
+E(Z;1m1k<ax,nz> | @) widow) L 6)
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where the (™ column of the matriz (n, x V,)u(y) is given by the vector n, x V,u(y), and the

Giinter derivatives M s given by the following matrix of differential operators
M0z, 1z) = (mji(0z, 1)) k=123 = (M O; — N i, ) jk=1,23,

with ng = (nx7j)j:17273.

Corollary B.2. Under the assumptions of Lemma [B.1], we have

irEu(r) = p.v. /asz % (Vu(y) + VTu(y)> (x —y)do,
b g [ (P - T )

n,do
|z —y|3 o

_ /8 ) &=y (Vu(y) + VTu(y))ndey

lz —y[?

N /8(2 %(I N Gl G y)T>M(ay,ny)u(y)day.

|z — y|?

Proof of Corollary[B.3 For (165]), we get

(e x ) [l % V) doty)
= p.v. /m(nx X Vmu—im) - (ny x Vyut(y))do(y).

For x # y, one has

(ng x Vx|x — y|) (n, x V,u'(y))
= (nIn ! Tut(y)) = (V,ub(y)n b n
= (n, y)(va:| _y|vy (v) — (Vyu'(y) x)(vx‘x_y‘ v)
- e - )+ T

Therefore, we have

1
(ngy x V) - /89 P— (ny x Vy)u(y)do(y)

= —p.V./ <nx’ny>vyu(y)(x—y)day—i-p.v./ @T;—y;j?)Vyu(y)nxday.
o0 1T —
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We compute now the second piece of (166)) and obtain for x # y

M, 0) EDE I (3 sy 0 )y
k=1 J=1.23

lz —yl? lz —yl?

3

= (Z(nzk&m — Ng,i0z, ) (e — o)y yj))i,jl,?,iﬂ

p |z —y[?

3
— an,k[_3 (l’z - yz)(wk - y’;)(l'j B yj) 4 5zk(l'J — 2]) n (SZ](JT]C — gk)]
k=1 |z —y| |z =yl |z — y]

-n .[_3(xk — y)* (25 — y)) 4 (z; — yj) i Orj (T — yr) )
o [z —yf? |z —y[? lz =yl Vij=123
<nx> €T — y> T nx(x — y)T (nx’ T — y)
= BT — @yl -y + I
[z —yl° jz — y3 1z — g3
+y%@—@T_y%@—@T_nAw—@T
|z —y |z —y| |z —y|
T

- B )

Therefore, we have

M (8, 1) /a ) (z—y)z—y) M(8,,n,)u(y)do(y)

lz —yf?

- p.v,/m_%w—w (13_3<x—y><x—y>

lz —y? |z — yl|?

T

>M(8y, ny)u(y)doy, (173)

keeping in mind that there is no principal value if one uses ((155)).
We finally turn to (167]). One has, for = # y,

3

1
(22 (me(@n:ma) (1) s By ()

j=1,2,3
E,k‘zl J (]

3
Ty — Tp —
= ( Z < — nx,k—e v + ng;,z—|xk_ ;{;) (nw@ykug(y) — ny,kayjug(y)>>

e |z —y|3 j=1,2,3
_ T _ _
(1, (V) =T =), gn
|z =y [z —y
(na, ny) o
+ Viu(y)(x
P— (W)(z —y)
Therefore, we have
3
(32 rm(@nn) | om0t o)
(na, (Vuly) — VTu(y))(z — y)) / (x —y,ny) or
= p.v. n,do, — p.V. — = V'u(y)n,do
b /an |z —yl? v TP o |z —yf? ) !
+ p.v./ <nx’nyz>,)VTu(y)(x—y)day. (174)
oe [T =yl
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Gathering (172)), (173)), and ((174)), Corollary is proved.

[
Proof of Lemma[].3 Recall that u = a1) with a: 9Q + R and 1 : 9Q — R3. We note that
Viwp) = aVip+1YVa,. (175)

and

M0y, n) () (y (me ny, 0,)(@(y)de(y)))

i=1,2,3

=y M@y, n)0 ) + (D (radyaly) = nyidyaly) i)
= a(y)M(3y, ny)¥(y) + (ny, L(y)) V' aly) — (Val(y)y(y))n,
= aly)M(Dy,m)(y) — (Va(u)b()n, (176)

Then, the expressions of A;, 1 <i < 4, simply result from developping Vu in ((168)) and (169)
of Corollary and Aj collects (170) and (171)) as a weakly singular operator of class C3(1).
Hence Lemma [£.2] follows.

i=1,2,3

{
(

O

B.3 Proof of Lemma 4.3

Using polar coordinates, we have

/oa’ﬁ\lm B /05 Wlm

75 6/e pr2m
- m/ / exp (—r? + 2r7g cos 0)r™drdf

/ / exp ( ———|—2 7“00089) "drdf

el-

2m
— / / exp (—1? + 2r7g cos O)r
e Jo Jo

As 7y < 1, there exists a constant C'(m) > 0 depending only on m such that holds true.

[e.e]

< exp —(r — 7o) *r™dr

B.4 Proof of Lemma 4.4

We use polar coordinates and get

a:(n)n ™70 et o _ cos 6
V. /R2 P dn = = p.v./0 . dr/o exp(2r7o cos(6 — 6y)) (81119) do

—72 oo - 2
= & p.V./ ‘ dr/ cos 0 exp(2rrq cos 0)df (CQSGO)
0 0

o2 sin 6,
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where we recall that 17y = <C.OS 90) and where we have set
sin 6,
1 oo €—7~2 27
MM (2) = = p.v‘/ dr/ cos 0 exp(2rz cos 0)do. (177)
z 0 r 0

Standard computations yield that

1 o0 o1’
MM (z) = —p.v/ dr oskHGd@

z

B 4 /oo e—r2d (27’)2p+122p+1

= p.-v. ; ., szo (2p+1)! 2p+2
> 92p+1 1

= 2y ——— D, oI(p+ )%
2 ey 0y

w/2 0o
where [, = / cos” 0df is the Wallis integral and I'(s) := / t"le'dt is the Gamma
0 0

2
function. Using the fact that I, = 22( (}9))2 g we have
p!
— T(p+3)
M (2) =7y —— 2%, 178

The radius of convergence of M§41 is clearly infinite, since
iy L)+ D0 +2)! (D +2)
pooo D(p+ 3)pl(p +1)! P+

where we have used the standard fact that I'(z + 1) = 2I'(z) for R(z) > 0. Lemma [4.4]is thus
established.

= 00,

B.5 Proof of Lemma
One has
M (2 )

e 2m
= / / cos” 0 exp 2rzcos€)d9—/ er2dr/ cos QZ cos” 0do
0 0

o 22p22p [e9) )
_ k42 _ —rs_ 2p
— / cos™2 6 = j—(zp)! IQM/O e " r?Pdr

k=0 p=0

22p+1[ F( 1) 2p
= oy lepr2l (p+5)2
= (2p)! 2

2
Using the fact that I, = 22(p<pp))2g we have

) T 2p + 2)( 2p + 1) 1

MM (z) = = > T'(p+ 5)22”. (179)
p=0
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The radius of convergence of M;" is infinite since

2p+2)(2p+1) ((p+2))? T+ 3)

li = +o00.
bt (2p+ 4)(2p+3) (p+ D2 T(p+ 2 +1)
Let M (z) be defined by
0 2T
MM (2) = / exp(—rQ)dr/ exp(2rz cos 0)df. (180)
0 0
We have
00 27 00 27
MM (z) = / exp(—rQ)dT/ exp(2rz cos0)dl = / e cos® 0df
0 0
0 22p+1 9]
= D e+ 32" = Z
= (2p)! purd

It is clear that the radius of convergence of M'(-) is infinite. Since Mj"(z) = M (z) —
M (%), the radius of convergence of M;"(z) is also infinite.
We now prove that z — M;"(2) is well-defined and not identically equal to zero. Indeed,

M (2) — 2M3 (2) — M3 (2)

> P(p+ L )
= 2MM(2) — WZ %22” - 22]\/[;1(,2)

p=0
et DEp+1) 1 Loy NP L s
=7 — F'p+ =)z -7 ——I'(p— =)z
D (s 1 T A U Pl ]
_ 3 M=) L,
2 ~ (p+ 1))
Then, the function z — M} (z) is defined by
Mfl — _3_7T p + p + ) Z2p, (181)
2 = (p+2)( p—l—l))

which is clearly a non zero entire function.

B.6 Proof of Lemma [5.2|

We give in this section explicit expressions of a1, as, and az defined respectively in Egs. (123)),
(124), and (125]). The computations are lengthy but straightforward.
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We start by computing a;.

/]R2 O];—?”TFMW(%), n)ndn

00 2
— ce Ry, / e r2dr / >0 (Fyl cos® 6 + 2F,” cos Osin 0 + F32(1 — cos®0))
0 0

cos?f  sinfcosf -
(sin@ cosf 1 — cos? 0) df Ry, ()

) 00 ) 2m
= ge 70 RHO / e " TQdT'/ e2rro cos 6
0 0

F3? cos® 0 + (F, ! — Fy?) cos' 0, 2F? cos® (1 — cos® 0)
2F;? cos® 0(1 — cos? 0), F3? + (Fy! — 2F3%) cos® 0 — (F,! — F3?) cos" 6
Rj ().

The functions Mg(-), M7(-), and Mg(-) were defined in Eqgs. (127)), (128) and (129)) respec-
tively. Then, we have

Q. . _
[, S (o), = e Ry M0 (), (152)
RQ
with
M(7)
.: (F(%QM?(TO) + (Fyy — F32) M (7o), 2F;2 (M (7o) — Ms(70)) )
' 2Fy2 (M (o) — Mg (7o), Fg2 M (o) + (Fy) — 2F32) Mz(ro) — (Fy) — F32)Mg(r0) )
Then,
R, M (7o) Ry,
My + M?QI n My — May [(cos26,  sin 26, M —sin 260y cos 26,
- 2 2 2 sin 26, — cos 26, 12\ cos20, sin26y )’
with

M+ M 1 . i

Mut Ma 5(1«;20%\46(740)+(F9101—1«';,202)1\47(71))),

My — M 1 i i i

TS = (20— M) — ()~ SER) M) — FM ()
My = 2F2(My(ro) — Ms(7o)).

We also note that

1 1 (cos 20 sin 20
r _ 1L 1 0 0
oo = 2[2 * 2 (sin 20y — cos 290> ’
1
2

170 -1 +1 —sin 260y cos 26,
1 0 2 \ cos20y sin26y)°

20

Moy =



0 -1

We get R@OM(fo)Rg; = MQQ]Q + (MH - MQQ)ﬁOﬁg - M12 (1 0

implies that

) + 2M 275 7§, which

/R 2 O];(Q)UTFMW(@m)ndn (183)

— e (Mzg@b(@ + (M1 — Maz)(¥p(), o) ilo — Maoth(z) " + 2Maa(1(z), 770>770L>-

On the other hand, one has

/]R 2 O];(g) " Fen( (), n)dn

o0 21 22 11 22\ 13
_ T —r? 2r7g cos @ FGO cost + (FQO B FGO ) cos” ¢
e "0’ () Ry, /0 e Tdr/o e < 2F2 cos (1 — cos? ) do.

The functions My(-) and Mjo(-) were defined in Eqs. (130)) and (131)) respectively. Then,

we have

a:(n) ¢ . BT (s F32My(ro) + (Fy) — Fg2) Mao(7o)
/]R2 |77|3 n Fxn<¢< )ﬂ?)dﬁ ¢ ( )RQO( 2F9102<M9(f0) _M10<770>> )

Since YT (z)Ry, = ((¢(x),70), (¥(x), 7)), we obtain

/R2 07;(’7;) " Fan((x),m)dn = €70 <[F49202M9(f0) + (Fy, = Fy) Mo (7o) | (0 (@), 7o) (184)
+ 2FR(My() — Mao(70) ) (2), ) ).

One also gets

oo 27
/]1&2 aig?)nTFxndn = 6€_F3/0 e_r2r2d7‘/0 e* 70 (Fpt cos® 0 + F,? sin® 0)df

00 27
= ce 70 / 6_72r2dr/ e*T0 O[22 4 (Fy! — F?) cos® 0)df
0 0
= e O (FRMg(o) + (Fol — F32) M (7).

Finally, one derives

ae(n
/ (3) (n" Fan)ndn
r2 7]

[e%S) 2 22 11 22 3
2 2 . F;?cosO + (F,' — F;7)cos® 6
T R T 217 cos 0 0o 6o 6o
¢ "l /0 ‘ rdr/o ‘ ( 2F;?(cos 6 — cos® 0) 40

_ g, ((FaeMs(ro) + (Fy — F5) Mio(ro)
% 2Fy2(My(7o) — Mo (7o) ‘

Since 7j¢ Ry, = (1,0), we have

Q —72 = r
/ |77(|2) (0" Fan)(no, n)dn = e~ (Fp2 Mo(To) + (Fy| — F2) Mio(7o)). (185)
RQ
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In summary, we get

i = = (Maso) + (Mar = M) (9(0), ol — Masth () + 2Man (0(0), o
— [(F2My(Fo) + (Fy, — F32) Mao(70) ) (¢ (), o) + 25 (Mo(Fo) — Mo (70)) (¢ (), Ty

+ (Fy (Ms(7o) — Mo(Fo)) + (Fg, — Fy) (M (7o) — Mm<fo>>w<a:>)

1 e
= e

[2F;? Mg

(
—  [(F32My(0) + (Fy, — F32)(Mao(ro) — 2Ms(To)) + (Fy, — 3F52) Mz(7)
+F3 Mg (70) ) (0 (), Tlo) + 2F37 (My(7o) — Mao(To)) (w(), 7y ) | o
— 232 (Ma(o) — My(o) () + AF§2 (M (7o) — Ms(70))((a), )iy ).

Let us now compute a,. Using the computations performed for the term a;, one has

—72 ) , 2 B
/ —as(g)nTFxndn = ¢ / e " d'r’/ 62”0“39(}7’9101 cos® 0 + Fgf(l — cos*0))df
r |7l € Jo 0
=2
e o
= [ FRMN ) + (B — FRIM ().

The other contribution in as is given by the following expression.

/R ) 1) ) Fud

2 |nl?

_f2 o0 2 2 3
_ FxReoe o/ e_radr/ 270 cos® ( cos 6  sinfcos 9) a6 RY (x)
€ Jo 0

sinfcosf 1 — cos?6

_2 A
. e "o M 1( ) 0 T
B FRQU( 0 Méql(TO)—M{ql(To)) Ba ()
=2
e LA, A Tooa cos 20,  sin 26,
¢ F(QM (To) I + (M;™ (7o )_§M5 (7o) sin 20, — cos 26, >w(x)
=2
e "o

= T F (MY () — M (Fo)) - (2M7 (7o) — M3 (7o) ) (a).
Therefore, we have

1 e
Ao = 47-( . {[F92MA1( ) (Felol_Fgf)MiAl(fO) 1/1<$)

(M (7o) = M (Fo) b ) + (2M™ (7o) — M3 (7)) (). o) o) }-

02

)]

Mo

7o) + (2Fy) — 3F32) M7 (To) — (Fp — F32)(Ms(7o) + Mio(7o)) — Fy2 My(70) | ¢ (x)
o) +



Finally, as is computed as follows.

1 / ac(n){¥(),n/lnl) n
dn)

“ T T . Inl 7]
_ _%e;’"o R, /OOO o /:Tr (2170 cos 0 (511(1309820989 (iiliec(;osg g)) doR; ¥(z)
_72 Aj /=
-~ F (Ml 0 N M;‘h(ro)) Hah ()
_72
= M ) — M () + (M () — ML () (), -

This ends the proof of Lemma [5.2]

B.7 Proof of Lemma [5.3

Recall that
1

2 0o 1
/ cos® 0d) = 41, / e rPdr = “T(p+ 2).
0 0 2 2

Then, one gets

o0 27 o 2k 00 27
Ms(z) = /o eTQTQdT/O ezrzcosedezzﬁ[/o e’”Qrk”dr/O cos” fdf] z*

k=0
o0 22p+1 )
— D(p + 2Vl 22
00 2 oo 2k 00 2
M;(z) = / erzrzdr/ %730 cos? Odf) = Z—J/ e’“27"k+2d7"/ cos** §df] z*
0 0 —~ ko 0
e 22p+1 )
- D(p+ 2)lopss 22
g <2p)| (p + 2) 2p+2 z 9
00 ) 27 o 2k 00 ) 27
Mg(z) = / e" r2d7’/ 730 cost fdf = Z—'[/ e " rk+2dr/ cos* ™ §df] z*
0 0 —~ ko 0
© 92p+l1 3
— r z 2p
pgo <2p)| (p + 2) 2p+4 Z,
00 ) 2w & Qk 00 ) 2m
My(z) = / e” rdr/ 2<% cos 0dh = Z—'[/ e " rk“dr/ cos* ™ §df] 2
0 0 —~ ko 0
> 22p+2 _—
= L e e
p=0 '
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and finally

00 2m 0 k o0 2m
2 2 2
Mip(2) = / e " rd’r’/ ¢80 cos® Odf) = Z—'[/ e " ’r’k+1dr/ cos" ™ 9df] 2
0 0 —~ ko 0
o~ 22 3
T 2p+1
pZZp—I—l Pt 3 by =
Therefore, we obtain
2M+(2) — Ms(z) — Myo(2) — M (2)
=, 22pH1 1 2p% +4p — 3 o 92pt2 3
= D(p+ ) loppo——— 227 -y ———T(p+ )L P
2 ey Ry 0 e

IMg(2) — 3M7(2) + Mg(2) + Myg(2) — My(z) — 2MZ (2) + 2M;" (2)

~—

2, 92+l 1 6p% + 16p + % X, 92+2 3 1
— D(p+ )1 2 . _NT_Z pip4 )T 2p+1,
2 (2p)! b ) ey 2y 1 4) ; Epr ) P
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