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Abstract

We consider a population structured in trait. When a birth occurs, the trait of the
parent is hereditarily transmitted to the offspring unless a mutation occurs. We associate
with each individual its lineage consisting of all the traits of his ancestors. The evolution
of the population results from the aging, births and deaths of individuals, with a dynamics
that may depend on the past history of the lineage and that allows interactions between
individuals. We introduce the stochastic process that describes the system and consider its
diffusion limit under the assumptions of large populations, individuals of small masses and
allometric demographies.
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1 Introduction

We consider a population of interacting particles evolving with aging and with the occurrence
of births and deaths. Each individual is characterized by a vector trait x ∈ Rd. The trait of
an individual remains constant during its life and is transmitted hereditarily unless a mutation
occurs. There exist many possible dependencies on the past. Our purpose is to keep tracks
of the genealogy of the particles. The dynamics and interaction depend here on the trait past
history. For example the birth and death rates of an individual could depend on all the traits of
its ancestors or on the time since its trait first appeared in the lineage. With such dependencies
on the past, we are inspired mathematically by the works of Dynkin [20] or Perkins [41] and
study a historical version of the process where each particle can be represented by its lineage,
i.e. the path that associates at each time in the past the trait of its ancestor living at that time.

We are interested in the limits of these processes in large populations, when individuals
have small masses and allometric demographies (here: short lives and reproduction times). The
investigation of these problems for historical processes has been considered by Dynkin [20], Daw-
son and Perkins [16] in cases where there is no interaction. Kaj and Sagitov [33] considered a
similar asymptotic for age-structured processes without interaction and mention the possibility
of carrying their study with a historical approach. In previous papers [39, 38], we studied cases
where the birth, death and competition rates were functions of the traits and of the physical
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ages of the particles. In Méléard and Tran [38], the convergence is studied, without tackling the
genealogies, and averaging phenomena are exhibited.

The evolution of genealogies in population dynamics is a major problem, which motivated
an abundant literature and with applications to evolution and population genetics. The histor-
ical approach of Dawson and Perkins [14, 16, 41] models evolving genealogies, in the forward
physical time and with variable population size (including extinction phenomena). Our model
generalizes this approach and emphasizes how the competition between individuals, expressed
as nonlinear death-rates, and mutations drive the ecological dynamics. In absence of interaction,
it is possible to describe the genealogy of individuals sampled in the population at time t by
coalescent processes: Kingman’s coalescent [34], Λ-coalescents (see Berestycki [6] and references
therein for a survey) or Ξ-coalescents (see e.g. Möhle and Sagitov [40], Schweinsberg [45] or
Limic [37]). Barton, Etheridge and Véber [4] studied the genealogies of a spatial version of the
Λ-Fleming-Viot and obtain in the limit Kingman coalescent, Λ-coalescent or coalescing Brown-
ian motions depending on their various parameters. Depperschmidt, Greven, Pfaffelhuber and
Winter [17, 27] proposed to view genealogical trees (for instance Λ-coalescents) as marked ultra-
metric spaces and described their evolution. All these models allow to incorporate selection and
mutation (see also e.g. [36, 3, 23]) but not competition between individuals.

In a first section, we construct a historical particle system which dynamics depends on the
past. At a given time t, we associate to each particle the lineage that gives for each s ≤ t
the trait of the ancestor living at this time s, and extended for s > t by the constant function
equal to the trait of the individual at t (see Fig. 1). Since each particle keeps a constant trait
during its life, these lineages are càdlàg paths constant by parts. We denote by DRd the space
of càdlàg paths with values in Rd embedded with the Skorohod topology (see e.g. [7]). The
total population is represented by a point measure on DRd where each particle is represented
by a Dirac mass. When a particle dies, the corresponding Dirac mass is removed and when a
birth occurs, a new Dirac mass is created. As a result, we keep only the genealogical tree of the
individuals living at time t, extended to a constant genealogy after t (see Fig. 1 (b)).
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Figure 1: (a) Example of a path constituted with ancestral traits. (b) Genealogies of the individuals at

time t = 7.8. We have drawn the support of the time marginals Xt of the historical process. The vertical

dotted line corresponds to points with abscissa t. The ancestral paths of the individuals alive at time t

provides the genealogical tree of individuals living at time t. Births corresponds to new leaves. Upon

death, branches may disappear.

The diffusive limit in large population is studied in Section 2. We rescale the size of the ini-
tial condition proportionally to a parameter n ∈ N∗ = {1, 2, . . .} that we will let grow to infinity.
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The weight of the individuals is renormalized by 1/n (to keep the total biomass of the same
order when n varies) and the birth and death rates are of order n to reflect allometric demogra-
phies, while preserving the demographic balance. To study the convergence of the sequence of
stochastic processes indexed by n, we proceed with tightness-uniqueness arguments. The proof
of tightness is based on the ideas in Dawson and Perkins [16] for the historical super-Brownian
process but requires new arguments to account for interactions. We then identify the limiting
values as solution of a nonlinear martingale problem for which uniqueness is stated.
Examples are carried in Section 3. First examples deal with evolution models of adaptive dynam-
ics with local (see [18]) or asymmetric (see [35]) competition. Evolution shows that for a range
of parameters, the population separates into groups concentrated around some trait values. We
then consider a spatial model (see [1] or [41, Ex. 4.3 p.50]): particles consume ressources where
they live and the offspring arriving in previously habited regions are penalized. We will see that
this tends to separate the cloud of particles in several distinct families whose common ancestor
is very old. Finally, we look at a logistic age and size-structured population (see [39, 38]), where
averaging phenomena appear.

Notation: For a given metric space E, we denote by DE = D(R+, E) the space of càdlàg
functions from R+ to E. For E = R, we will use the more simple notation D = D(R+,R).
These spaces are embedded with the Skorohod topology associated with the distance on E and
meterized by a distance dSk (e.g. [7, 31, 32], see also (B.1) in appendix).

For a function x ∈ DE and t > 0, we denote by xt the stopped function defined by xt(s) =
x(s ∧ t) and by xt− the function defined by xt−(s) = limr↑t x

r(s). We will also often write
xt = x(t) for the value of the function at time t. For y, w ∈ DE and t ∈ R+, we denote by
(y|t|w) ∈ DE the following path:

(y|t|w) =

{
yu if u < t
wu−t if u ≥ t. (1.1)

When the path w is constant with ∀u ∈ R+, wu = x, we will write (y|t|x) with a notational
abuse.

We denote by MF (E) (resp. Mn
P (E), P(E)) the set of finite measures on E (resp. of point

measures renormalized by 1/n, of probability measures). These spaces are embedded with the
topology of weak convergence.

2 The historical particle system

In this section, we construct the finite interacting historical particle system that we will study.
Trait-structured particle systems without dependence on the past have been considered in
Fournier and Méléard [26] or Champagnat et al. [11]. For populations with age-structure,
we refer to Jagers [30, 29] and Méléard and Tran [39, 46] for instance. Here, we are inspired by
these works and propose a birth and death particle system where the lineage of each particle,
i.e. the traits of its ancestors, is encoded into a path of DRd .

2.1 Lineage

We consider a discrete population in continuous time where the individuals reproduce asexually
and die with rates that depend on a hereditary trait and on their past. To each individual is
associated a quantitative trait transmitted from its parent except when a mutation occurs. The
rates may express through the traits carried by the ancestors of the individual. One purpose
is for example to take into account the accumulation of beneficial and deleterious mutations
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through generations.

Individuals are characterized by a trait x ∈ Rd. The lineage or past history of an individual
is defined by the succession of ancestral traits with their appearance times and by the succession
of ancestral reproduction times (birth of new individuals). To an individual of trait x born at
time Sm, having m − 1 ancestors born after t = 0 at times S1 = 0 < S2 < · · · < Sm−1, with
Sm−1 < Sm, and of traits (x1, x2, . . . xm−1), we associate the path

yt =
m−1∑
j=1

xj1Sj≤t<Sj+1 + xm1Sm≤t. (2.1)

This path is called the lineage of the individual. We denote by L the set of possible lineages of
the form (2.1). Since a path in L is entirely characterized by the integer m and the sequence
(0, x1, . . . , sm−1, xm−1, sm, x) of jump times and traits, it is possible to describe each element of
L by an element of N×

⋃
m∈N(R+ × Rd)m, which we can embed with a natural lexicographical

order.

2.2 Population dynamics

Let us introduce a parameter n ∈ N∗ that will grow to infinity. This parameter can be seen as
the order of the carrying capacity, when the total amount of resources is fixed. To keep the total
biomass constant, individuals are attributed a weight of 1/n. The population is represented by
a point measure as follows:

Xn
t :=

1

n

Nn
t∑

i=1

δyi.∧t ∈ M
n
P (L) ⊂Mn

P (DRd), (2.2)

where Nn
t = n 〈Xn

t , 1〉 is the number of individuals alive at time t.
Following the notation in Fournier and Méléard [26], let us define the map Y = (Y i)i∈N∗ from⋃
n∈N∗Mn

P (L) in L defined by: ∀n and N in N∗,

Y j

(
1

n

N∑
i=1

δyi

)
=

{
yj , if j ≤ N
0 else.

where the individuals are sorted by the lexicographical order. This will be useful to extract a
particular individual from the population. When there is no ambiguity, we will write Y i instead
of Y i(X) for a point measure X ∈

⋃
n∈N∗Mn

P (L).

The individuals in our population reproduce asexually during their lives, and give birth at
random times to new mutant individuals or clones. They also compete and die. We consider
allometric demographies where lifetimes and gestation lengths are proportional to the biomass.
Birth and death rates are thus of order n, with expressions that characterize the constraint of
preservation of the demographic balance. Also, the mutation steps are rescaled by 1/n.

Let us now define the population dynamics. For n ∈ N∗, we consider an individual charac-
terized at time t by the lineage y ∈ DRd in a population Xn ∈ DMn

P (DRd ).

Reproduction The birth rate at time t is bn(t, y), where

bn(t, y) = n r(t, y) + b(t, y).
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The function b is a continuous nonnegative real function on R+×DRd . We are interested in the
following forms for instance:

b(t, y) =B
(∫ t

0
yt−sνb(ds)

)
(2.3)

where B is a continuous function bounded by B̄ and νb is a Radon measure on R+. The
allometric function r is given by:

r(t, y) = R
(∫ t

0
yt−sνr(ds)

)
(2.4)

where R is continuous and bounded below and above by R and R̄, and where νr is a Radon
measure on R+. We also assume that R1/2 is Lipschitz continuous.

When an individual with trait yt− gives birth at time t, the new offspring is either a mutant
or a clone. With probability 1 − p ∈ [0, 1], the new individual is a clone of its parent, with
same trait yt− and same lineage y. With probability p ∈ [0, 1], the offspring is a mutant of trait
yt− + h, where h is drawn in the distribution kn(h) dh. We associate to this mutant the lineage
(y|t|yt− + h). For the sake of simplicity, we will consider here that the mutation density kn(h)
is a Gaussian density with mean 0 and covariance matrix σ2 Id/n. However the model could be
generalized for instance to mutation densities kn(yt− , h) with dependence on the parent’s trait.
We introduce the notation:

Kn(dh) = pkn(h)dh+ (1− p)δ0(dh). (2.5)

Example 2.1. (i) If we choose νb(ds) = δ0(ds), then
∫ t

0 yt−sνb(ds) = yt is the trait of the
individual of the lineage y living at time t.
(ii) If we choose νb(ds) = e−αsds, with α > 0, then

∫ t
0 yt−sνb(ds) =

∫ t
0 e
−α(t−s)ysds. This means

that the traits of recent ancestors have a higher contribution in the birth rate of the individual
alive at time t. Such rates may be useful to model social interactions, for instance cooperative
breeding where the ancestors contribute to protect and raise their descendants. When ancestors
have advantageous traits, they may help their offspring to reproduce in more favorable conditions
and increase their birth rates. 2

Death To define the death rate, let us consider a bounded continuous interaction kernel U ∈
Cb(R+ × D2

Rd ,R), a bounded continuous function D on R+ × DRd and a Radon measure νd
weighting the influence of the past population on the present individual y at time t. The death
rate is

dn(t, y,Xn) = n r(t, y) + d(t, y,Xn),

where for a process X ∈ DMF (DRd ),

d(t, y,X) =D(t, y) +

∫ t

0

∫
DRd

U(t, y, y′)Xt−s(dy
′)νd(ds). (2.6)

The first term with function r allows us to preserve the demographic balance. The term D(t, y)
is the natural death rate, while U(t, y, y′) represents the competition exerted at time t by an
individual of lineage y′ on our individual of lineage y. We assume that:

∃D̄ > 0, ∀y ∈ D, ∀t ∈ R+, 0 ≤ D(t, y) < D̄,

∃U, Ū > 0, ∀y, y′ ∈ D, ∀t ∈ R+, 0 < U(t, y, y′) < Ū. (2.7)
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Example 2.2. The following examples are developed in Section 5.
(i) Kisdi’s model with asymmetrical competition:
If we choose D = 0, νd(ds) = δ0(ds) and the asymmetric competition kernel proposed by Kisdi
[35]

U(t, y, y′) =
2

K

(
1− 1

1 + αe−β(yt−y′t)

)
, (2.8)

then, the death rate becomes:

d(t, y,X) =
2

K

∫
DRd

(
1− 1

1 + αe−β(yt−y′t)

)
Xt(dy

′). (2.9)

(ii) Perkins’ variant of Adler’s fattened goats [1, 42]:
In this model, trait is space and the genealogy describes the trajectory of the past ancestors. It
corresponds to the choice of D = 0, of νd(ds) = e−αsds with α > 0 and of

U(t, y, y′) = Kε

(
yt − y′t

)
.

Here, Kε is a symmetric smooth kernel with maximum at 0, for instance the density function of
a centered Gaussian distribution with variance ε.
From the definition of the processes (see (2.1)), if y′ belongs to the support of Xs(dy

′) then
almost surely (a.s.) y′ is a path stopped at s and for all t ≥ s, y′t = y′s. Thus, we obtain in this
case

d(t, y,X) =

∫ t

0

∫
DRd

Kε

(
yt − y′s

)
Xs(dy

′)e−α(t−s)ds. (2.10)

This describes a setting where the goat-like particles consume resources at the point where
they are staying, and when they arrive in a region where the population has previously grazed,
their death rate is increased. The parameter α describes the speed at which the environment
replenishes itself. 2

Remark 2.3. A generalization to physical age structure as considered in [38] for instance is
possible provided we extend the trait space to add a color to each individual. This consists in
associating to each individual an additional path indicating its color. This color is an indepen-
dent uniform [0, 1]-valued r.v. that is drawn at each birth. The lineage of colors of the individual
is denoted by c ∈ D(R+, [0, 1]).
The colors allow us to define the birth date of the individual of the lineage alive at time t.

τc,t = inf{s ≤ t, cs = ct} = sup{s ≤ t, cs 6= ct} (2.11)

We define by:
a(t) := t− τc,t (2.12)

the age of the latter individual at time t. It is a càdlàg function that is discontinuous at the
birth times. 2

2.3 Stochastic Differential Equation (SDE)

Following the work of Fournier and Méléard [26], it is possible to propose an SDE driven by a
Poisson Point Measure (PPM) to describe in a pathwise manner the evolution of (Xn

t )t∈R+ , for
any n ∈ N∗. The measure representing the population evolves with the occurrences of births and
deaths. Since the rates may vary with time, we use acceptance-rejection techniques to obtain
these events’ occurrences by mean of PPMs. According to the event that happens we add or
remove Dirac masses in (2.2). This construction provides an exact simulation algorithm that is
extensively used in Section 5.
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Definition 2.4. Let us consider on the probability space (Ω,F ,P):

1. a random variable Xn
0 ∈Mn

P (DRd) such that E (〈Xn
0 , 1〉) < +∞ and such that the support

of Xn
0 contains a.s. only constant functions,

2. a PPM Q(ds, di, dh, dθ) on R+ × E := R+ × N∗ × Rd × R+ with intensity measure ds ⊗
n(di) ⊗ dh ⊗ dθ and independent from Xn

0 , n(di) being the counting measure on N∗ and
ds, dh and dθ the Lebesgue measures on R+, Rd and R+ respectively.

We denote by (Fnt )t∈R+ the canonical filtration associated to Xn
0 and Q, and consider the

following SDE with values in Mn
P (DRd):

Xn
t = Xn

0 +
1

n

∫ t

0

∫
E

1{i≤n〈Xn
s− ,1〉}

[
δ(Y i|s|Y is−+h)1lθ≤mn1 (i,s,h) + δY i1lmn1 (i,s,h)<θ≤mn2 (i,s,h)

− δY i1lmn2 (i,s,h)<θ≤mn3 (i,s,h,Xn,s− )

]
Q(ds, di, dh, dθ), (2.13)

where

mn
1 (i, s, h) = p bn(s, Y i(Xn

s−))kn(h),

mn
2 (i, s, h) = mn

1 (i, s, h) + (1− p) bn(s, Y i(Xn
s−))kn(h)

mn
3 (i, s, h,Xn,s−) = mn

2 (i, s, h) + dn(s, Y i(Xn
s−), Xn,s−)kn(h). (2.14)

2

Existence and uniqueness of the solution (Xn
t )t∈R+ of SDE (2.13), for every n ∈ N∗, are

obtained from a direct adaptation of the proof of Theorem 3.1 in [26], using the following
moment estimates and martingale properties.

Proposition 2.5. Let us assume that the initial populations have sizes proportional to n and
that:

sup
n∈N∗

E
(
〈Xn

0 , 1〉3
)
< +∞. (2.15)

Then:
(i) For all T > 0,

sup
n∈N∗

E
(

sup
t∈[0,T ]

〈Xn
t , 1〉p

)
< +∞, with p ∈ {2, 3}. (2.16)

(ii) For a bounded and measurable function ϕ,

〈Xn
t , ϕ〉 = 〈Xn

0 , ϕ〉+M
n,ϕ
t +

∫ t

0
ds

∫
DRd

Xn
s (dy)

[
nr(s, y)

(∫
Rd
ϕ(y|s|ys + h)Kn(ys, dh)− ϕ(y)

)
+b(s, y)

∫
Rd
ϕ(y|s|ys + h)Kn(ys, dh)− d(s, y, (Xn)s)ϕ(y)

]
(2.17)

where Mn,ϕ is a square integrable martingale starting from 0 with quadratic variation:

〈Mn,ϕ〉t =
1

n

∫ t

0

∫
DRd

[(
nr(s, y) + b(s, y)

) ∫
Rd
ϕ2(y|s|ys + h)Kn(ys, dh)

+
(
nr(s, y) + d(s, y, (Xn)s)

)
ϕ2(y)

]
Xn
s (dy) ds. (2.18)

Proof. The proofs of (i) and (ii) follow from the proofs of Lemma 5.2 and Theorem 5.6 in [26]. �
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3 The historical superprocess limit

We now investigate a diffusive limit of the sequence of processes Xn defined by (2.13). Let us
first introduce a class of test functions that we will use to define the limit process.

Definition 3.1. For a real C2
b -function g on R+ ×Rd and a real C2

b -function G on R, we define
the continuous function Gg on the path space DRd by

Gg(y) = G
(∫ T

0
g(s, ys)ds

)
. (3.1)

Let us remark that the class generated by finite linear combinations of such functions is
stable under addition and separates the points. The latter fact is a consequence of Lemma A.1
in Appendix A.

Notice that if y is a càdlàg path stopped at t then

Gg(y) = G
(∫ t

0
g(s, ys)ds+

∫ T

t
g(s, yt)ds

)
.

Also, in the sequel, the following quantity will appear for t ∈ [0, T ] and y ∈ DRd :

D2Gg(t, y) = G′
(∫ T

0
g(s, ys)ds

)∫ T

t
∆xg(s, yt)ds

+G′′
(∫ T

0
g(s, ys)ds

) d∑
i=1

(∫ T

t
∂xig(s, yt)ds

)2
. (3.2)

This quantity generalizes the Laplacian. For instance, if G(x) = x and if g(s, x) = g(x) does
not depend on time, we obtain that D2Gg(t, y) = (T − t)∆g(yt).

Note that Dawson ([14], p. 203) and Etheridge ([22], p. 24) introduce another class of test
functions of the form

ϕ(y) =
m∏
j=1

gj(ytj ), (3.3)

for m ∈ N∗, 0 ≤ t1 < · · · < tm and ∀j ∈ {1, . . . ,m}, gj ∈ C2
b (Rd,R). This class is not convenient

when dealing with càdlàg processes since the functions are not continuous for the Skorohod
topology. However, we can use these test functions when it is ensured that we deal with contin-
uous paths y.

If y is a continuous path stopped at t then ϕ(y) =
∏m
j=1 gj(ytj∧t). We use the notation

introduced in [14] p.203) to generalize the Laplacian to these test functions ϕ. For a path
y ∈ C(R+,Rd), a time t > 0, we define

∆̃ϕ(t, y) =
m−1∑
k=0

1l[tk,tk+1[(t)
( k∏
j=1

gj(ytj )∆
( m∏
j=k+1

gj
)
(yt)

)
, (3.4)

where t0 = 0.
The following lemma which links the test functions (3.1) and (3.3) will be used in the sequel.

It is proved in Appendix A

Lemma 3.2. Let ϕ be a test function of the form (3.3). Then there exists test functions (ϕq)
of the form (3.1) such that for every y ∈ C(R+,Rd) and t ∈ [0, T ], the sequences (ϕq(y))q∈N∗

and (D2ϕq(t, y))q∈N∗ are bounded uniformly in q, t and y and converge respectively to ϕ(y) and

∆̃ϕ(t, y).
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3.1 Main convergence result

Let us assume that the initial conditions converge:

∃X0 ∈MF (DRd), lim
n→+∞

Xn
0 = X̄0 for the weak convergence. (3.5)

The main theorem of this section states the convergence of the sequence (Xn
t )n∈N∗ :

Theorem 3.3. Assume (3.5) and (2.15). Then the sequence (Xn)n∈N∗ converges in law in
D(R+,MF (DRd)) to the superprocess X̄ ∈ C(R+,MF (DRd)) characterized as follows, for test
functions Gg of the form (3.1):

M
Gg
t = 〈X̄t, Gg〉 − 〈X̄0, Gg〉 −

∫ t

0

∫
DRd

(
p r(s, y)

σ2

2
D2Gg(s, y)

+ γ(s, y, X̄s)Gg(y)
)
X̄s(dy) ds (3.6)

is a square integrable martingale with quadratic variation:

〈MGg〉t =

∫ t

0

∫
DRd

2 r(s, y)σ2G2
g(y)X̄s(dy) ds, (3.7)

where D2Gg(t, y) has been defined in (3.2) and where γ(t, y, X̄t) defines the growth rate of indi-
viduals y at time t in the population X̄:

γ(t, y, X̄t) = b(t, y)− d(t, y, X̄t). (3.8)

. 2

For the proof of Theorem 3.3, we proceed in a compactness-uniqueness manner. First, we
establish the tightness of the sequence (Xn)n∈N∗ (Section 3.2) then use Prohorov’s theorem and
identify the limiting values as unique solution of the martingale problem (3.6), (3.7).

3.2 Tightness of (Xn)n∈N∗

In this subsection, we shall prove that:

Proposition 3.4. The sequence (L(Xn))n∈N∗ is tight on P(D(R+,MF (DRd))).

For this, we use the following criterion adapted from Jakubowski [31] and Dawson and
Perkins [16], characterizing the uniform tightness of measure-valued càdlàg processes. The two
ingredients are heuristically the compactness of the support of the measures and the uniform
tightness of their masses.

Lemma 3.5. (Xn)n∈N∗ is tight in D(R+,MF (DRd)) if:
(i) ∀T > 0, ∀ε > 0, ∃K ⊂ DRd compact,

sup
n∈N∗

P (∃t ∈ [0, T ], Xn
t (Kc

T ) > ε) ≤ ε,

where Kc
T is the complement set of

KT =
{
yt, yt− | y ∈ K, t ∈ [0, T ]

}
⊂ DRd . (3.9)

(ii) ∀Gg of the form (3.1), the family ((〈Xn
t , Gg〉)t∈R+)n∈N∗ is uniformly tight in DR+.
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Sketch of proof. Recall that DRd embedded with the Skorohod topology is a polish space. By
Lemma 7.6 in Dawson and Perkins [16], the set KT is compact in DRd . The set

K(ε) = {µ ∈MF (DRd) | µ(Kc
T ) ≤ ε}

is then relatively compact inMF (DRd) by the Prohorov theorem, since it corresponds to a tight
family of measures. We can then rewrite Point (i) of Theorem 3.5 in ∀T > 0, ∀ε > 0, ∃K ⊂
MF (DRd) relatively compact,

sup
n∈N∗

P
(
∃t ∈ [0, T ], X̄n

t /∈ K
)
≤ ε.

Moreover the class of functions Gg separates the point and is closed under addition. Thus Points
(i) and (ii) of Lemma 3.5 allow us to apply the tightness result of Jakubowski (Theorem 4.6 [31])
and ensure that the sequence of the laws of (X̄n)n∈N∗ is uniformly tight in D(R+,MF (DRd)). �

Proof of Proposition 3.4. We divide the proof into several steps.

Step 1 Firstly, we consider Point (ii) of Lemma 3.5. Let T > 0 and let Gg be of the form (3.1).
Since for every t ∈ [0, T ] and every A > 0

P(|〈Xn
t , Gg〉| > A) ≤ ‖G‖∞ supn∈N∗ E(〈Xn

t , 1〉)
A

, (3.10)

which tends to 0 when A tends to infinity thanks to (2.16). This proves the tightness of the
family of marginals 〈Xn

t , Gg〉 for n ∈ N∗.
Then, we use the Aldous and Rebolledo criteria (e.g. [32]). For ε > 0 and η > 0, it is

satisfied if there exists n0 ∈ N∗ and δ > 0 such that for all n > n0 and for all stopping times
Sn < Tn < (Sn + δ) ∧ T :

P(|An,GgTn
−An,GgSn

| > η) ≤ ε and P(|〈Mn,Gg〉Tn − 〈Mn,Gg〉Sn | > η) ≤ ε (3.11)

where An,Gg denotes the finite variation process in the r.h.s. of (2.17).

Let us begin with some estimates. We fix t ∈ [0, T ], h ∈ Rd and a path y ∈ DRd stopped at
t. Using Taylor-Lagrange formula, there exists θy,t,h ∈ (0, 1) such that:

Gg(y|t|yt− + h)−Gg(y) = G
(∫ T

0
g(s, (y|t|yt− + h)s)ds

)
−G

(∫ T

0
g(s, ys)ds

)
= G′

(∫ T

0
g(s, ys)ds

)
Λ(y, t, h) +

1

2
G′′
(∫ T

0
g(s, ys)ds+ θy,t,hΛ(y, t, h)

)
Λ(y, t, h)2 (3.12)

where

Λ(y, t, h) =

∫ T

t

(
g(s, yt− + h)− g(s, yt−)

)
ds (3.13)

converges to zero when h tends to zero. Using Taylor-Lagrange formula again for the integrand
in Λ(y, t, h), there exists a family ηy,t,h,s of (0, 1) such that:

Λ(y, t, h) =

∫ T

t

(
h · ∇xg(s, yt−) +

1

2
th [Hess g(s, yt− + ηy,t,h,sh)] h

)
ds. (3.14)
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Using (3.12) and (3.14), we integrate Gg(y|t|yt− + h) − Gg(y) with respect to Kn(dh). Since
kn(h) is the density of the Gaussian distribution of mean 0 and covariance σ2Id/n, integrals of
odd powers and cross-products of the components of h vanish. Thus:∫

Rd

(
Gg(y|t|yt− + h)−Gg(y)

)
Kn(dh) = G′

(∫ T

0
g(s, ys)ds

)σ2p

2n

∫ T

t
∆xg(s, yt− + ηt,y,h,sh)ds

+
pσ2

2n
G′′
(∫ T

0
g(s, ys)ds+ θy,t,hΛ(y, t, h)

) d∑
i=1

(∫ T

0
∂xig(s, yt−)ds

)2
+
C

n2

where C is a constant that depends on G, g, σ2 and p but not on n. Therefore:

lim
n→+∞

n
∣∣∣ ∫

Rd

(
Gg(y|u|yu + h)−Gg(y)

)
Kn(dh)− σ2p

2n
D2Gg(u, y)

∣∣∣ = 0. (3.15)

Noting that for G and g in C2
b , D2Gg is bounded from the definition (3.1), we obtain the following

upper bound:

E(|An,GgTn
−An,GgSn

|) ≤ δ
[(
R̄
pσ2

2

(
‖D2Gg‖∞ + 1

)
+ (B̄ + D̄)‖G‖∞

)
sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉)

+ ‖G‖∞Ū νd[0, T ] sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉2)

]
. (3.16)

For the quadratic variation process:

E(|〈Mn,Gg〉Tn − 〈Mn,Gg〉Sn |)

≤‖G‖2∞δ
[(

2r̄ +
b̄+ d̄

n

)
sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉) +

Ū νd[0, T ]

n
sup
n∈N∗

E( sup
t∈[0,T ]

〈Xn
t , 1〉2)

]
. (3.17)

We thus obtain (3.11) by applying the Markov inequality and using the moment estimates of
Proposition 2.5.

Step 2 Let us now check that Point (i) of Lemma 3.5 is satisfied. We follow here ideas introduced
by Dawson and Perkins [16] who proved the tightness of a system of independent historical
branching Brownian particles. Here, we have interacting particles. Let T ∈ R+ and ε > 0.

Let K be a compact set of DRd . We denote by Kt = {yt | y ∈ K} ⊂ DRd the set of the paths of
K stopped at time t and we recall that KT defined in (3.9) is the set of the paths of K stopped
at any time before time T and of their left-limited paths stopped at the same time. Let us define
the stopping time

Snε = inf{t ∈ R+ |Xn
t (Kc

T ) > ε}. (3.18)

From this definition:
P
(
∃t ∈ [0, T ], Xn

t (Kc
T ) > ε

)
= P(Snε < T ). (3.19)

Our purpose is to prove that it is possible to choose K and n0 such that supn≥n0
P(Snε < T ) ≤ ε.

We decompose (3.19) by considering the more tractable Xn
T ((KT )c) and write:

P(Snε < T ) =P
(
Snε < T, Xn

T ((KT )c) >
ε

2

)
+ P

(
Snε < T, Xn

T ((KT )c) ≤ ε

2

)
≤2

ε
E
(
Xn
T ((KT )c)

)
+ P

(
Snε < T, Xn

T ((KT )c) ≤ ε

2

)
(3.20)
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by using the Markov inequality. We will show in Steps 3 to 5 that there exists η ∈ (0, 1) such
that for n large enough,

P
(
Snε < T, Xn

T ((KT )c) ≤ ε

2

)
≤ P(Snε < T )(1− η). (3.21)

Together with (3.20), this entails that:

P(Snε < T ) ≤
2E
(
Xn
T ((KT )c)

)
εη

. (3.22)

In Step 6, we will also prove that the compact set K can be chosen such that

E
(
Xn
T ((KT )c)

)
<
ε2η

2
. (3.23)

This will conclude the proof.

Step 3 Let us prove (3.21). Heuristically, the event {Snε < T, Xn
T ((KT )c) ≤ ε

2} means that
most of the trajectories that exited K before Snε have died at time T . On the set {Snε < T},
yS

n
ε /∈ KSnε implies yT /∈ KT . Indeed, if the paths stopped at time Snε do not belong to K, then

this is also not the case when we stop them at T > Snε . Thus on {Snε < T}:

Xn
T ((KT )c) ≥ Xn

T ({ySnε /∈ KSnε }). (3.24)

Hence:

-

6

0

traits

timeSnε T

.
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Figure 2: The compact K corresponds, here, to the region between the two lines. The paths which

are drawn correspond to the support of Xn
T . Xn

T ((KT )c) counts the trajectories that do not belong to

K between 0 and T : here we have y1, y2, y4, y5 and y6. The quantity Xn
T ({ySn

ε /∈ KSn
ε }) counts the

trajectories, at time T , that do not belong to K between 0 and Sn
ε : here, we have y1, y4, y5 and y6 ;

although y2 does not belong to K between time 0 and T , it belongs to K between 0 and Sn
ε . To obtain the

trajectories accounting for Xn
T ({ySn

ε /∈ KSn
ε }), we can count the descendents of the 3 points at time Sn

ε

corresponding to trajectories yS
n
ε /∈ KSn

ε . We can also check that relation (3.24) is satisfied.

P
(
Snε < T, Xn

T ((KT )c) ≤ ε

2

)
≤P
(
Snε < T, Xn

T ({ySnε /∈ KSnε }) ≤ ε

2

)
=E
(

1lSnε <TP
(
Xn
Snε +(T−Snε )({y

Snε /∈ KSnε }) ≤ ε/2 | FSnε
))
. (3.25)

Our purpose is to upper bound the probability under the expectation in the r.h.s. of (3.25) by
(1 − η) with η ∈ (0, 1). This term is the probability that the population which descends from
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particles which at time Snε satisfy yS
n
ε /∈ KSnε has a size less than ε/2. In view of (3.25), we will

work on the set {Snε < T} until the end of the proof.
The mass process 〈Xn

. , 1〉 is a semi-martingale with drift and bracket that can be bounded by
linear functions of 〈Xn

. , 1〉 with bounded coefficients and independently of n. Hence, using (2.16)
and Markov’s inequality, it is possible, for any η > 0, to choose N > 0 sufficiently large such
that:

P
(

sup
Snε ≤s≤T

〈Xn
s , 1〉 > N | FSnε

)
< η. (3.26)

Let us introduce the process (Znt (dy))t∈R+ of independent particles as follows. The particles of
Zn are started at time Snε with the trajectories of Xn

Snε
such that {ySnε /∈ KSnε } and we define

the initial condition:
ZnSnε (dy) = 1lySnε /∈KSnε X

n
Snε

(dy). (3.27)

Their birth and death rates are nr(t, y) and nr(t, y) + D̄ + ŪN . By a coupling argument, we
have:

P
(
Xn
T ({ySnε /∈ KSnε }) ≤ ε/2 | FSnε

)
≤P
(
〈ZnT , 1〉 ≤

ε

2
; sup
Snε ≤s≤T

〈Xn
s , 1〉 ≤ N | FSnε

)
+ P

(
sup

Snε ≤s≤T
〈Xn

s , 1〉 > N | FSnε
)

≤1− P
(

inf
s∈[Snε ,T ]

〈Zns , 1〉 >
ε

2
| FSnε

)
+ η

(3.28)

If we can exhibit η > 0 such that for n large enough

E
(

1lSnε <T P
(

inf
s∈[Snε ,T ]

〈Zns , 1〉 >
ε

2
| FSnε

))
> 2ηP(Snε < T ), (3.29)

then from (3.25) and (3.28), the r.h.s. of (3.25) is strictly smaller than (1− 2η+ η)P(Snε < T ) =
(1− η)P(Snε < T ), which proves (3.21).

Step 4 Let us prove (3.29). Notice that on the set {Snε < T}:

〈ZnSnε , 1〉 = Xn
Snε

({ySnε /∈ KSnε }) ≥ Xn
Snε

({ySnε /∈ KSnε }) ≥ X
n
Snε

({ySnε /∈ KT }) = Xn
Snε

(Kc
T ) > ε.

By coupling arguments (using deletions of particles in the initial condition ZnSnε ), and since we
are considering a minoration with an infimum in (3.29), we can consider without restriction that
〈ZnSnε , 1〉 = ([nε] + 1)/n, where [x] denotes the integer part of x.

Now, we establish a diffusion approximation of 〈ZnSnε +., 1〉 when n is large. We know that for
all t ≥ 0:

〈ZnSnε +t, 1〉 = 〈ZnSnε , 1〉 −
(
D̄ + ŪN

) ∫ t

0
〈ZnSnε +s, 1〉ds+Mn,Z

t (3.30)

where Mn,Z is a square integrable martingale such that for all s ≤ t:

2R

∫ t

s
〈ZnSnε +u, 1〉du ≤ 〈Mn,Z〉t − 〈Mn,Z〉s =

∫ t

s

〈
ZnSnε +u, 2r(S

n
ε + u, .) +

D̄ + ŪN

n

〉
du

≤
(
2R̄+

D̄ + ŪN

n

) ∫ t

s
〈ZnSnε +u, 1〉du. (3.31)

Using Proposition 2.5 and adaptations of (3.16) and (3.17), the laws of (〈ZnSnε +., 1〉, 〈Mn,Z〉.)
are uniformly tight in D(R+,R2

+). As a consequence, there exists a subsequence, again denoted
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by (〈ZnSnε +., 1〉, 〈Mn,Z〉.)n∈N∗ by abuse of notation, that converges in distribution to a limit, say
(Z,A) where Z and A are necessarily continuous. Let us define on the canonical space

Nt = Zt − ε+

∫ t

0
(D̄ + ŪN)Zsds (3.32)

Let 0 ≤ s1 ≤ · · · ≤ sk < s < t and let φ1, · · ·φk be bounded measurable functions on R+. We
define:

Ψ(Z) = φ1(Zs1) · · ·φk(Zsk)
{
Zt −Zs +

∫ t

s
(D̄ + ŪN)Zu du

}
. (3.33)

From (3.30), E(Ψ(〈ZnSnε +., 1〉)) = 0. Similarly to Prop. 2.5 (ii), we can prove from the SDE (3.30)

that E(supt∈[0,T ]〈ZnSnε +t, 1〉3) < +∞ for any T > 0. Then the sequence (Ψ(〈ZnSnε +., 1〉))n∈N∗ is

uniformly integrable and by the continuity of Z, limn→+∞ E
(
Ψ(〈ZnSnε +., 1〉

)
= E(Ψ(Z)). Then

we deduce that E(Ψ(Z)) = 0, for all Ψ defined by (3.33). Hence, N is a continuous square inte-
grable martingale, and Theorem 6.1 p. 341 in Jacod and Shiryaev [28] together with Proposition
2.5 implies that its quadratic variation process is 〈N〉 = A.

Moreover, using the Skorokhod representation theorem (see e.g. [8] Th. 25.6 p.333), there
exist a random sequence (Z̃n, Ãn)n∈N∗ and a random couple (Z̃, Ã) defined on the same proba-
bility space, distributed as (〈ZnSnε +., 1〉, 〈Mn,Z〉.)n∈N∗ and (Z,A), and such that

lim
n→+∞

(Z̃n, Ãn) = (Z̃, Ã) a.s. (3.34)

Then, from (3.31), we have a.s. that for all 0 ≤ s ≤ t:

2R

∫ t

s
Z̃u du ≤ Ãt − Ãs ≤ 2R̄

∫ t

s
Z̃u du. (3.35)

This implies (see e.g. Rudin [44, Chapter 8]) that Ã is a.s. an absolutely continuous function
and that there exists a random Ft-measurable function ρ(u) such that ∀u ∈ R+, 2R ≤ ρ(u) ≤ 2R̄
and:

Ãt =

∫ t

0
ρ(u)Z̃u du a.s. (3.36)

Then there exists a standard real Brownian motion (Bt)t∈R+ such that almost surely:

Ñt = Z̃t − ε+

∫ t

0
(D̄ + ŪN)Z̃sds =

∫ t

0

√
ρ(u)Z̃udBu. (3.37)

Now that the diffusive limit for 〈ZnSnε +., 1〉 has been obtained, let us return to (3.29):

P
(

inf
s∈[Snε ,T ]

〈Zns , 1〉 >
ε

2
| FSnε

)
1lSnε <T = P

(
inf

u∈[0,T−Snε ]
〈ZnSnε +u, 1〉 >

ε

2
| FSnε

)
1lSnε <T

≥P
(

inf
u∈[0,T ]

(y|s|Z̃n)s+u >
ε

2

)∣∣∣
y=〈Zn

.∧Snε
,1〉, s=Snε

1lSnε <T . (3.38)

Notice that for all y and s

lim
n→+∞

P
(

inf
u∈[0,T ]

(y|s|Z̃n)s+u >
ε

2

)
=P
(

inf
u∈[0,T ]

(y|s|Z̃)s+u ≥
ε

2

)
= Py,s

(
inf

u∈[0,T ]
Z̃u ≥

ε

2

)
, (3.39)

where the notation Py,s reminds that the distribution of Z̃ depends on ρ which may itself depend
on (y, s). If the limit in (3.39) is positive, we are close to (3.29). However, to conclude with
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(3.38), we need some uniformity of the convergence in (3.39) with respect to y and s.

For ζ > 0 and (z, r) ∈ D × [0, T ], we denote by B((z, r), ζ) the open ball centered at (z, r)
with radius ζ. There exists ζ > 0 small enough such that for all (y, s) ∈ B((z, r), ζ) and Z ∈ D,
dSk

(
(y|s|Z), (z|r|Z)

)
< ε/4 (see Proposition B.1 in appendix). As a consequence, for this choice

of ζ and all n ∈ N∗,

P
(

inf
u∈[0,T ]

(z|r|Z̃n)r+u >
3ε

4

)
≤ P

(
inf

u∈[0,T ]
(y|s|Z̃n)s+u >

ε

2

)
. (3.40)

Let ξ > 0 be a small positive number. Since the sequence of laws of 〈Zn. , 1〉 is uniformly tight,
there exists a compact set Kξ of DRd such that for sufficiently large n, P

(
〈Zn. , 1〉 /∈ Kξ

)
< ξ.

Since Kξ × [0, T ] is compact, there exists a finite sequence (zi, ri)1≤i≤M with M = M(ξ) ∈ N∗
such that

Kξ × [0, T ] ⊂
M(ξ)⋃
i=1

B
(
(zi, ri), ζ

)
.

With an argument similar to (3.39), there exists, for each i ∈ {1, . . . ,M}, an integer ni such
that for all n ≥ ni,

P
(

inf
u∈[0,T ]

(zi|ri|Z̃n)ri+u >
3ε

4

)
>

1

2
Pzi,ri

(
inf

u∈[0,T ]
Z̃u ≥

3ε

4

)
. (3.41)

Hence, thanks to (3.40), we obtain that for all (y, s) ∈ Kξ × [0, T ] and n ≥ max1≤i≤M(ξ) ni,

P
(

inf
u∈[0,T ]

(y|s|Z̃n)s+u ≥
ε

2

)
≥ min

1≤i≤M
P
(

inf
u∈[0,T ]

(zi|ri|Z̃n)ri+u >
3ε

4

)
> min

1≤i≤M(ξ)

1

2
Pzi,ri

(
inf

u∈[0,T ]
Z̃u ≥

3ε

4

)
=: 2η(ξ). (3.42)

Then, from (3.38) and (3.42), the left hand side of (3.29) is lower bounded as follows:

E
(

1lSnε <T P
(

inf
s∈[Snε ,T ]

〈Zns , 1〉 >
ε

2
| FSnε

))
≥E
(
P
(

inf
u∈[0,T ]

(y|s|Z̃n)s+u >
ε

2

)∣∣∣
y=〈Zn

.∧Snε
,1〉, s=Snε

1lSnε <T 1l〈Zn. ,1〉∈Kξ

)
≥ 2η(ξ) P

(
Snε < T, 〈Zn. , 1〉 ∈ Kξ

)
.

(3.43)

The term P
(
Snε < T, 〈Zn. , 1〉 ∈ Kξ

)
in the right hand side converges to P(Snε < T ) when ξ tends

to zero, and there exists ξ0 > 0 sufficiently small such that this term is larger than P(Snε < T )/2
for every ξ < ξ0 (in case P(Snε < T ) = 0, the proof is done and this is also true). Thus, for
0 < ξ < ξ0, the left hand side in (3.43) is lower bounded by η(ξ)P(Snε < T ). This proves (3.29)
provided η is positive, what we show in Step 4.

Step 4 Let us prove that η defined in (3.42) is positive. Since it is a minimum over a finite
number of terms, let us consider one of the latter. For this, we consider (z, r) ∈ DRd and our
purpose is to prove that

Pz,r
(

inf
u∈[0,T ]

Z̃u ≥
3ε

4

)
> 0.

For M > 0, let us define the stopping time ςM = inf{t ≥ 0, Z̃ ≥M} and let us introduce:

τε/2 = inf
{
t ≥ 0, Z̃t ≤

ε

2

}
(3.44)
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such that Pz,r(infs∈[0,T ] Z̃s > ε/2) = Pz,r(τε/2 > T ). Our purpose is to prove that the latter
quantity is positive. Let λ > 0. From Itô’s formula:

eλZ̃t∧ςM =eλε +

∫ t∧ςM

0

(
λ2R̄− λ(D̄ + ŪN)

)
Z̃seZ̃sds+

∫ t∧ςM

0
λ

√
ρ(s)Z̃seZ̃sdBs.

Taking the expectation and choosing N sufficiently large (N > (λR̄ − D̄)/Ū), we obtain that
E
(

exp(λZ̃t∧ςM )
)
≤ exp(λε). From (3.37) and since 2R ≤ ρ(u) ≤ 2R̄, we can classically show

that E
(

supt∈[0,T ] Z̃2
t

)
< +∞, from which we deduce that limM→+∞ ςM = +∞ a.s. Moreover,

it follows by Fatou’s lemma that for any t ∈ [0, T ], E
(

exp(λZ̃t)
)
≤ exp(λε) and by Jensen’s

inequality and Fubini’s theorem, we have:

E
(
e
∫ T
0

(D̄+ŪN)2

2ρ(s)
Z̃sds

)
≤ 1

T

∫ T

0
E
(
e

(D̄+ŪN)2T
2R

Z̃s)ds ≤ E
(
e

(D̄+ŪN)2Tε
2R

)
< +∞. (3.45)

Novikov’s criterion is satisfied, and applying Girsanov’s theorem tells us that under the proba-
bility M such that:

dM
dPz,r

∣∣∣
Ft

= exp
(
−
∫ t

0

(D̄ + ŪN)

√
Z̃u√

ρ(u)
dBu −

1

2

∫ t

0

(D̄ + ŪN)2Z̃u
ρ(u)

du
)
, (3.46)

Z̃ is a martingale started at ε. Then we have:

M(τε/2 ≤ T ) + M(τε/2 > T ) = 1
ε

2
M(τε/2 ≤ T ) + EM(Z̃T 1lτε/2>T

)
= ε.

If M(τε/2 ≤ T ) = 1, this yields thus a contradiction since we would obtain ε/2 = ε for the second
equation. Thus, M(τε/2 ≤ T ) < 1 and Pz,r(τε/2 ≤ T ) < 1. This shows that η > 0.

Step 6 It now remains to prove (3.23). We follow Dawson and Perkins [16, Lemma 7.3]. For
n ∈ N∗, we can exhibit, by a coupling argument, a process X̃n constituted of independent parti-
cles with birth rate nr(t, y) + b(t, y) and death rate nr(t, y), started at Xn

0 and which dominates

Xn. In particular, for T > 0 and for any compact set K ⊂ DRd , E(Xn
T ((KT )c)) ≤ E(X̃n

T ((KT )c)).

The tree underlying X̃n can be obtained by pruning a Yule tree with traits in Rd, where
a particle of lineage y at time t gives two offspring at rate 2nr(t, y) + b(t, y). One has lineage
y and the other has lineage (y|t|y + h) where h is drawn in the distribution Kn(dh). Using
Harris-Ulam-Neveu’s notation to label the particles (see e.g. Dawson [14]), we denote by Y n,α

for α ∈ I =
⋃+∞
m=0{0, 1}m+1 the lineage of the particle with label α. Particles are exchangeable

and the common distribution of the process Y n,α is the one of a pure jump process of Rd, where
the jumps occur at rate 2nr(t, y) + b(t, y) and where the jump sizes are distributed according
to the probability measure 1

2δ0(ds) + 1
2K

n(dh). We denote by Pnx its distribution starting from
x ∈ Rd. It is standard to prove that the family of laws (Pnx, n ∈ N∗, x ∈ C) is tight as soon as
C is compact set of Rd.

At each node of the Yule tree an independent pruning is made: the offspring are kept with
probability (nr(t, y)+b(t, y))/(2nr(t, y)+b(t, y)) and erased with probability nr(t, y)/(2nr(t, y)+
b(t, y)). Let us denote by Vt the set of individuals alive at time t and write α � i to say that
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the individual α is a descendent of the individual i:

E
(
X̃n
T ((KT )c)

)
=E

 1

n

Nn
0∑

i=1

∑
α�i

E
(

1lY n,α /∈KT 1lα∈VT

) = E

 1

n

Nn
0∑

i=1

PnXi
0

(
(KT )c

)
E
(∑
α�i

1lα∈VT

)
≤E

 1

n

Nn
0∑

i=1

PnXi
0

(
(KT )c

)
eB̄T

 = eB̄T
∫
DRd

Xn
0 (dy)Pny0

(
(KT )c

)
,

where eB̄T is an upper bound of the mean population size at T that descends from a single
initial individual, when the growth rate is bounded by B̄. For each ε > 0 there exists a compact
set C of Rd and a compact set K of DRd such that

sup
n∈N∗

Xn
0 (Cc) ≤ ε and sup

n∈N∗
sup
y0∈C

Pny0

(
(KT )c

)
≤ ε,

which concludes the proof. �

3.3 Identification of the limiting values

Let us denote by X̄ ∈ C(R+,MF (D)) a limiting process of (X̄n)n∈N∗ . Our purpose here is to
characterize the limiting value via the martingale problem that appears in Proposition 3.3.
Notice that the limiting process X̄ is necessarily almost surely continuous as:

sup
t∈R+

sup
ϕ, ‖ϕ‖∞≤1

|〈X̄n
t , ϕ〉 − 〈X̄n

t− , ϕ〉| ≤
1

n
. (3.47)

For the proof of Proposition 3.3, we will need the following Proposition, which establish
the uniqueness of the solution of (3.6)-(3.7). Since the limiting process takes its values in
C([0, T ],MF (C(R+,Rd))), we will use the test functions (3.3) instead of (3.1).

Proposition 3.6. (i) The solutions of the martingale problem (3.6)-(3.7) also solve the following
martingale problem, where ϕ is a test function of the form (3.3) and ∆̃ has been defined in (3.4):

Mϕ
t = 〈X̄t, ϕ〉 − 〈X̄0, ϕ〉 −

∫ t

0

∫
DRd

(
p r(s, y)

σ2

2
∆̃ϕ(s, y) + γ(s, y, X̄s)ϕ(y)

)
X̄s(dy) ds (3.48)

is a square integrable martingale with quadratic variation:

〈Mϕ〉t =

∫ t

0

∫
DRd

2 r(s, y)σ2ϕ2(y)X̄s(dy) ds. (3.49)

(ii) There exists a unique solution to the martingale problem (3.48)-(3.49).
(iii) There exists a unique solution to the martingale problem (3.6)-(3.7).

In the course of the proof, we will need the following lemma, which proof uses standard
arguments with r(t, y) depending on all the trajectory (see (2.4)):

Lemma 3.7. Let us consider the following SDE on Rd driven by a standard Brownian motion
B:

Yt = Y0 +

∫ t

0

√
σ2p r(s, Y s)dBs. (3.50)

There exists a unique solution to (3.50).
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Proof of Prop. 3.6. It is clear that (iii) follows from (i) and (ii).

Let us begin with the proof of (i). Let us consider a function ϕ of the form (3.3) and let
us assume without restriction that the functions gj ’s are positive. First, let us show that (3.48)
defines a martingale. Proceeding as for the proof of Th. 5.6 in [26], let us introduce the following
function. For k ∈ N∗, let 0 ≤ s1 ≤ . . . sk < s < t and let φ1, . . . φk be bounded measurable
functions on MF (DRd). We define for X ∈ D(R+,MF (DRd)):

Ψ(X) = φ1(Xs1) . . . φk(Xsk)
{
〈Xt, ϕ〉 − 〈Xs, ϕ〉 −

∫ t

s

∫
DRd

(
pr(u, y)

σ2

2
∆̃ϕ(y)

+ γ(u, y, X̄u)
)
ϕ(y)

)
X̄u(dy) du

}
. (3.51)

Let us prove that E(Ψ(X̄)) = 0. We consider, for q ∈ N∗, test functions ϕq(y) = Ggq(y) with
G(x) = exp(x) and gq(s, x) =

∑m
j=1 log(gj(x))kq(tj − s). From (3.6)-(3.7) and (2.16), we have

that

M
ϕq
t = 〈X̄t, ϕq〉 − 〈X̄0, ϕq〉 −

∫ t

0

∫
DRd

(
p r(s, y)

σ2

2
D2ϕq(s, y)

+ γ(s, y, X̄s)ϕq(y)
)
X̄s(dy) ds (3.52)

is a square integrable martingale, hence uniformly integrable. The latter property together with
Lemma 3.2 implies that φ1(Xs1) . . . φk(Xsk)(M

ϕq
t −M

ϕq
s ) converges to Ψ(X̄) in L1 and that

E(Ψ(X̄)) = 0.
Now, let us show that the bracket of Mϕ is given by (3.49). We first check that the following

process is a martingale:

〈X̄t, ϕ〉2 − 〈X̄0, ϕ〉2 −
∫ t

0

∫
D

2r(s, y)σ2ϕ2(y)X̄s(dy)ds−
∫ t

0
2〈X̄s, ϕ〉

∫
D

(
pr(s, y)

σ2

2
∆̃ϕ(y)

+ γ(s, y, X̄s)ϕ(y)
)
X̄s(dy) ds. (3.53)

The computation is similar to the way we proved that (3.48) is a martingale in the beginning
of this proof, by considering the analogous martingale problem with tests functions ϕq’s. Then,
using Itô’s formula and (3.48),

〈X̄t, ϕ〉2 − 〈X̄0, ϕ〉2 − 〈Mϕ〉t −
∫ t

0
2〈X̄s, ϕ〉

∫
D

(
pr(s, y)

σ2

2
∆̃ϕ(y)

+ γ(s, y, X̄s)ϕ(y)
)
X̄s(dy) ds (3.54)

is a martingale. Comparing (3.53) and (3.54), we obtain (3.49).

The proof of (ii) is now separated into several steps. Let P be a solution of the martingale
problem (3.6)-(3.7) and let X̄ be here the canonical process of C(R+,MF (DRd)). We first
use Dawson-Girsanov’s theorem (see [15, Section 5], [24, Theorem 2.3]) to get rid of the non-
linearities. Their result applies because:

E
(∫ T

0

∫
DRd

γ2(s, y, X̄s)X̄s(dy) ds
)
< +∞.
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Indeed, γ is bounded and E
(

supt∈[0,T ]〈X̄t, 1〉2
)
< +∞ by taking (2.16) to the limit. Hence,

there exists a probability measure Q on C(R+,MF (DRd)) equivalent to P such that under Q,
and for every test function ϕ of the form (3.3), the process

M̃ϕ
t = 〈X̄t, ϕ〉 − 〈X̄0, ϕ〉 −

∫ t

0

∫
DRd

pr(s, y)σ2

2
∆̃ϕ(s, y)X̄s(dy)ds, (3.55)

is a martingale with quadratic variation (3.7). Thus, if there is uniqueness of the probability
measure Q which solves the martingale problem (3.55)-(3.7) we will deduce the uniqueness of
the solution of the martingale problem (3.6)-(3.7).

Let us now prove that the Laplace transform of X̄ under Q is uniquely characterized using
SDE Y (3.50). We associate with Y its path-process W ∈ C(R+, C(R+,Rd)) defined by:

Wt = (Yt∧s)s∈R+ . (3.56)

The path-process W is not homogeneous but it is however a strong Markov process with semi-
group defined for all s ≤ t and all ϕ ∈ Cb(C(R+,Rd),R) by:

Ss,tϕ(y) = EQ(ϕ(Wt) |Ws = ys
)
. (3.57)

Moreover, the infinitesimal generator Ã of W at time t is defined for all ϕ as in (3.3) by:

Ãϕ(t, y) =
pσ2

2
r(t, y)∆̃ϕ(t, y). (3.58)

Then it can be shown that the log-Laplace functional of X̄t under the probability Q, L(s, t, y, ϕ) =
EQ( exp(−〈X̄t, ϕ〉) | X̄s = δys

)
satisfies

L(s, t, y, ϕ) = e−Vs,tϕ(y) (3.59)

where Vs,tϕ(y) solves:

Vs,tϕ(y) =E
(
ϕ(Wt)−

∫ t

s

pσ2

2
r(u,Wu)

(
Vu,tϕ(Wu)

)2
du |Ws = ys

)
=Ss,tϕ(y)−

∫ t

s

pσ2

2
Ss,u

(
r(u, .)

(
Vu,tϕ(.)

)2)
(y)du. (3.60)

Adapting Theorem 12.3.1.1 of [14, p.207], there exists a unique solution to (3.60). Indeed, let
V 1 and V 2 be two solutions. From (3.60), we see that for i ∈ {1, 2}:

sup
s,t,y
|V i
s,tϕ(y)| ≤ sup

y
|ϕ(y)| = ‖ϕ‖∞. (3.61)

We have:

|V 2
s,tϕ(y)− V 1

s,tϕ(y)| =
∣∣∣pσ2

2

∫ t

s
Ss,u

(
r(u, .)

(
(V 2
u,tϕ(.))2 − (V 1

u,tϕ(.))2
))

(y)du
∣∣∣

≤pσ
2

2

∫ t

s
Ss,u

(
r(u, .)2‖ϕ‖∞

∣∣V 2
u,tϕ(.)− V 1

u,tϕ(.)
∣∣)(y)du

≤pσ2‖ϕ‖∞R̄
∫ t

s
Ss,u

(∣∣V 2
u,tϕ− V 1

u,tϕ
∣∣)(y)du.

We conclude with Dynkin’s generalized Gronwall inequality (see e.g. [14, Lemma 4.3.1]).
In conclusion, the Laplace transform of X̄t is uniquely characterized for every t > 0 by

EX̄0

(
exp(−〈X̄t, ϕ〉)

)
= exp(−〈X̄0, V0,tϕ〉). Thus, the one-marginal distributions of the martin-

gale problem (3.55)-(3.7) are uniquely determined and thus, there exists a unique solution to
(3.55)-(3.7). �
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It is now time to turn to the:

Proof of Theorem 3.3. Let X̄ ∈ C(R+,MF (DRd)) be a limiting process of the sequence (X̄n)n∈N∗

and let us denote by (X̄n)n∈N∗ again the subsequence that converges in law to X̄. Since the
limiting process is continuous, the convergence holds in D(R+,MF (DRd)) embedded with the
Skorohod topology, but also with the uniform topology for all T > 0 (e.g. [7]).

The aim is to identify the martingale problem solved by the limiting value X̄. We will see
that it satisfies (3.6)-(3.7) which admits a unique solution by Proposition 3.6. This will conclude
the proof.

First, we show that (3.6) defines a martingale by proceeding again as for the proof of Th.
5.6 in [26]. For k ∈ N∗, let 0 ≤ s1 ≤ . . . sk < s < t and let φ1, . . . φk be bounded measurable
functions onMF (DRd). Let G ∈ C2

b (R,R), g ∈ C0,2
b (R+×Rd,R) and Gg be functions as in (3.1).

We define for X ∈ D(R+,MF (DRd)):

Φ(X) = φ1(Xs1) . . . φk(Xsk)
{
〈Xt, Gg〉 − 〈Xs, Gg〉 −

∫ t

s

∫
DRd

(
pr(u, y)

σ2

2
D2Gg(u, y)

+ γ(u, y, X̄u)Gg(y)
)
X̄u(dy) du

}
. (3.62)

Let us prove that E(Φ(X̄)) = 0. From (3.6),

0 =E
(
φ1(X̄n

s1) . . . φk(X̄
n
sk

)
(
M

n,Gg
t −Mn,Gg

s

))
=E
(
Φ(X̄n)

)
+ E

(
φ1(X̄n

s1) . . . φk(X̄
n
sk

)
(
An +Bn

))
(3.63)

where:

An =

∫ t

s

∫
DRd

r(u, y)
{
n
(∫

Rd
Gg(y|u|yu + h)Kn(dh)−Gg(y)

)
(3.64)

− pσ2

2
D2Gg(u, y)

}
X̄n
u (dy) du

Bn =

∫ t

s

∫
DRd

b(u, y)

∫
Rd

(
Gg(y|u|yu + h)−Gg(y)

)
Kn(dh) X̄n

u (dy) du.

As X̄ is continuous, Φ is a.s. continuous at X̄. Moreover |Φ(X)| ≤ C
(

sups≤t〈Xs, 1〉 +
sups≤t〈Xs, 1〉2

)
. From this and Prop. 2.5, we deduce that (Φ(X̄n))n∈N∗ is a uniformly inte-

grable sequence such that

lim
n→+∞

E
(
Φ(X̄n)

)
= E

(
Φ(X̄)

)
. (3.65)

Estimates (2.16) and (3.15) imply that An and Bn defined in (3.64) converge in L1 to zero. Hence
(3.63) and (3.65) entail the desired result. The computation of the bracket of the martingale
MGg is classical (see for instance [26]). The proof is complete. �

4 Distributions of the genealogies

An important question is to gather information on the lineages of individuals alive in the pop-
ulation.
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First, remark that the construction in Steps 2 and 3 of Proposition 3.6 re-establish a represen-
tation result proved by Perkins [41, Th. 5.1 p.64]: under Q, (X̄t)t∈R+ has the same distribution
as the historical superprocess (Kt)t∈R+ that is the unique solution of:

Yt(y) = Y0(y) +

∫ t

0

√
σ2pr(s, Y s(y))dys (4.1)

K0 = X̄0, 〈Kt, ϕ〉 =

∫
DRd

ϕ(Y (y)t)Ht(dy) (4.2)

where (Ht(dy))t∈R+ is under Q a historical Brownian superprocess (see [16]), and for ϕ in a
sufficiently large class of test functions, of the form (3.3) for instance.

4.1 Lineages drawn at random

For t > 0, X̄t is a random measure on DRd and its restriction to D([0, t],Rd) correctly renormal-
ized gives the distribution of the lineage of an individual chosen at random at time t. Let us
define µt(dy) = X̄t(dy)/〈X̄t, 1〉 such that for all measurable test function ϕ on DRd :

〈µt, ϕ〉 =
〈X̄t, ϕ〉
〈X̄t, 1〉

. (4.3)

For instance, choosing ϕ(y) = 1lA(y) for a measurable subset A ⊂ DRd , we obtain the proportion
of paths belonging to A under the random probability measure µt. Studying such random
probability measure remains unfortunately a difficult task and we will also consider its intensity
probability measure Eµt defined for all test function ϕ as: 〈Eµt, ϕ〉 = E(〈µt, ϕ〉). This approach
has been used for cases where the branching property holds in [2, 21, 25] for instance.

Proposition 4.1. For t > 0, a test function ϕ as in (3.3) and µt defined in (4.3):

E
(
〈µt, ϕ〉

)
=E
(
〈µ0, ϕ〉

)
+ E

(∫ t

0

〈
µs, pr(s, .)σ

2∆̃ϕ(s, .)
〉
ds
)

+E
(∫ t

0

(
〈µs, γ(s, ., X̄s)ϕ(.)〉 − 〈µs, ϕ〉〈µs, γ(s, ., X̄s)〉

)
ds
)

+E
(∫ t

0

2σ2

〈X̄s, 1〉
(
〈µs, ϕ〉〈µs, r(s, .)〉 − 〈µs, r(s, .)ϕ(.)〉

)
ds
)

(4.4)

Proof. We consider (3.6)-(3.7) and Itô’s formula:

E
(
〈µt, ϕ〉

)
= E

(〈X̄t, ϕ〉
〈X̄t, 1〉

)
= 〈µ0, ϕ〉+ E

(∫ t

0

∫
DRd

pr(s, y)σ2∆̃ϕ(s, y) + γ(s, y, X̄s)ϕ(y)

〈X̄s, 1〉
X̄s(dy) ds

)
−E
(∫ t

0

∫
DRd

〈X̄s, ϕ〉
〈X̄s, 1〉2

γ(s, y, X̄s)X̄s(dy) ds
)

+E
(1

2

[ ∫ t

0

∫
DRd

2〈X̄s, ϕ〉
〈X̄s, 1〉3

2r(s, y)σ2X̄s(dy) ds− 2

∫ t

0

∫
DRd

1

〈X̄s, 1〉2
2r(s, y)σ2ϕ(y)X̄s(dy) ds

])
=E
(
〈µ0, ϕ〉

)
+ E

(∫ t

0

〈
µs, pr(s, .)σ

2∆̃ϕ(s, .) + γ(s, ., X̄s)ϕ(.)
〉
ds
)

+E
(∫ t

0
〈µs, ϕ〉〈µs, γ(s, ., X̄s)〉ds

)
+ E

(∫ t

0

〈µs, ϕ〉〈µs, 2r(s, y)σ2〉
〈X̄s, 1〉

ds−
∫ t

0

〈µs, 2r(s, .)σ2ϕ〉
〈X̄s, 1〉

ds
)

This ends the proof. �
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In (4.4), we recognize two covariance terms under the measure µs:

Covµs(γ(s, ., X̄s), ϕ) = 〈µs, γ(s, ., X̄s)ϕ(.)〉 − 〈µs, ϕ〉〈µs, γ(s, ., X̄s)〉
Covµs(r(s, .), ϕ) = 〈µs, r(s, .)ϕ(.)〉 − 〈µs, ϕ〉〈µs, r(s, .)〉.

These terms can be viewed as generators of jump terms. For example:

Covµs(γ(s, ., X̄s), ϕ) = 〈µs, γ(s, ., X̄s)〉
∫
DRd

(∫
DRd

ϕ(z)
γ(s, z, X̄s)µs(dz)

〈µs, γ(s, ., X̄s)
− ϕ(y)

)
µs(dy).

Particles are resampled in the distribution µs biased by the function γ(s, y, X̄s) which gives
more weight to particles having higher growth rate.

Proposition 4.2. (i)If the function r(s, y) is constant, r ≡ R̄, Covµs(r(s, .), ϕ) = 0, and simi-
larly if γ(s, y, X̄s) ≡ γ̄ is constant (including the ”neutral” case γ ≡ 0), Covµs(γ(s, ., X̄s), ϕ) = 0.
(ii) For constant functions r and γ, the lineage distributions under E(µt) are Brownian motions.

Proof. The proof of (i) is easy. For (ii), we have for any test function ϕ of the form (3.3):

〈E(µt), ϕ〉 = 〈E(µ0), ϕ〉+

∫ t

0
〈E(µs), pR̄σ

2∆̃ϕ(s, .)〉ds.

This proves that under E(µt), the lineages have the same finite-dimensional distributions as
Brownian motions with diffusion coefficient pR̄σ2. �

4.2 Relation with the Fleming-Viot process

For some applications, for instance if we are interested in the time of the most recent common
ancestor (MRCA) of two individuals chosen at random in the population, we are interested in
quantities of the form:

〈µt ⊗ µt, χ(t, ., .)〉 =

∫
DRd

∫
DRd

χ(t, y, z)µt(dy)µt(dz). (4.5)

Proposition 4.3. (i)For a constant allometry function r, and for a function χ(y, z) such that
y 7→ χ(y, z) and z 7→ χ(y, z) are of the form (3.3),

E
(
〈µt ⊗ µt, χ〉

)
= E

(
〈µ0 ⊗ µ0, χ〉

)
+
prσ2

2

∫ t

0
E
(
〈µs ⊗ µs, ∆̃(2)χ

)
ds

+E
(∫ t

0

∫
D2
Rd

(
γ(s, y, X̄s) + γ(s, y, X̄s)− 2〈µs, γ(s, ., X̄s)〉

)
χ(y, z)µs ⊗ µs(dy, dz)ds

)
+E
(

2rσ2

∫ t

0

1

〈X̄s, 1〉
(
〈µs, y 7→ χ(y, y)〉 − 〈µs ⊗ µs, χ〉

)
ds
)
.

(4.6)

where ∆̃(2)χ(y, z) = ∆̃(y 7→ χ(y, z)) + ∆̃(z 7→ χ(y, z)).
(ii) If γ is also constant, we recover the Fleming-Viot process whose generator is defined, for
test functions φ(µ) = 〈µ⊗ µ, χ〉 with χ(y, z) a test function of two variables, by:

LFV χ(X) =
prσ2

2

〈 X

〈X, 1〉
⊗ X

〈X, 1〉
, ∆̃(2)χ

〉
+

2rσ2

〈X, 1〉

(∫
DRd

χ(y, y)
X(dy)

〈X, 1〉
− 〈 X

〈X, 1〉
⊗ X

〈X, 1〉
, χ〉
)
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Proof. Let ϕ and ψ be two real test functions on DRd . Using Itô’s formula:

〈µt, ϕ〉〈µt, ψ〉 = 〈µ0, ϕ〉〈µ0, ψ〉+Mϕ,ψ
t

+

∫ t

0

(prσ2

2
〈µs ⊗ µs, ∆̃(ϕψ)(s, .)〉+

∫
DRd

(γ(s, y, X̄s) + γ(s, z, X̄s))ϕ(y)ψ(z)µs(dy)µs(dz)
)
ds

−2

∫ t

0

(
〈µs, ϕ〉〈µs, ψ〉〈µs, γ(s, ., X̄s)〉

)
ds

+2rσ2

∫ t

0

∫
R

(ϕ(y)− 〈µs, ϕ〉)(ψ(y)− 〈µs, ψ〉)
〈X̄s, 1〉

X̄s(dy)ds,

(4.7)

where Mϕ,ψ is a square integrable martingale with bracket:

〈Mϕ,ψ〉t =

∫ t

0

∫
R

2rσ2 (ϕ(y)− 〈µs, ϕ〉)(ψ(y)− 〈µs, ψ〉)
〈X̄s, 1〉

X̄s(dy)ds. (4.8)

For a function χ(y, z) =
∑K

k=1 λkϕk(y)ψk(z) with K ∈ N and λk ∈ R, we can generalize (4.7)
by noting that:

〈µt ⊗ µt, χ〉 =

K∑
k=1

λk〈µt, ϕk〉〈µt, ψk〉

∆̃(2)χ(y, z) =
K∑
k=1

λk∆̃ϕk(y)ψk(z) +
K∑
k=1

λkϕk(y)∆̃ψk(z).

Since every bounded measurable function on D2
Rd can be approximated by functions of the

previous form, for the bounded pointwise topology, the proposition is proved. �

With Proposition 4.3, we obtain a historical construction, from a branching process, of the
Fleming-Viot process with genealogies introduced by [27].

5 Examples

In this section, we give several examples of applications of historical processes in Biology. In the
Examples 1 and 2, we investigate two examples of adaptative dynamics. The dynamics does not
depend on the past, but we show that the historical processes can bring a new point of view to
the problem. In particular, the historical process provides the ancestral paths of living particles.
When the superprocess is diffusive, the individual dimension is lost and ancestral paths can not
be read from the sole information of the support of the measure that represents the population.
Several decompositions of superprocesses have been exposed: see for instance the backbones of
[5]. But nothing ensures that the backbones correspond to the real ancestral paths of immortal
individuals. In Example 3, we consider an example inspired by Adler Tribe [1] and Perkins [41],
where the death rates depend on the past histories of the particles. The last examples deals
with the case of an age-structured population.

5.1 A model with competition for resources

We first introduce a model of adaptation with competition for resources that has been considered
by Roughgarden [43], Dieckmann and Doebeli [18], Champagnat and Méléard [13]. In this model,
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the parameters are the following. The trait x ∈ [0, x0], with x0 = 4 can be thought as being the
size. The birth and death rates are chosen as:

r(t, y) = 1, b(t, y) = exp
(
− (yt − 2)2

2σ2
b

)
, d(t, y,X) =

∫
D

exp
(
− (yt − y′t)2

2σ2
U

)
X(dy′)

The birth rate is indeed maximal at x∗ = 2 and there is a local competition with neighbors of
closed traits. If the competition kernel was flat (σU = +∞), evolution would favor individuals
with maximal growth rate x∗. For σU < +∞, Champagnat and Méléard [13] proved that, under
a time scale that differ from the present one and depending on whether σb < σU or σb > σU ,
the configuration might be in 0 or constituted of several groups concentrated around different
traits values.
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Figure 3: Dieckmann-Doebeli model. σ = 0.4, σb = 0.4, σU = 0.3, x0 = 4, p = 0.5, n = 300. The 300

particles are started with the trait 1.5. In this example, σb > σU and we observe the separation of the

population into two subgroups concentrated around different trait values.

5.2 A model with asymmetric competition

This second illustration in adaptive dynamics has been investigated in Champagnat et al. [12].
The hereditary trait can be thought here as being the size of an individual, which is assumed to
be constant during her life. We use the following birth rate and competition kernel, proposed
by Kisdi [35] (see example 2.2):

b(t, y) = x0 − yt,

d(t, y,X) =

∫
D

2

K

(
1− 1

1 + α exp(−β(yt − y′t))

)
X(dy′) (5.1)

with x0 = 4, α = 1.2 and β = 4.
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Kisdi’s kernel introduces asymmetry among the individuals. The idea is that larger indi-
viduals are more competitive: they exert more competition on the rest of the population and
are less sensitive to the pressure for resources created by smaller competitors. The trade-off
comes from the fact that these individuals are disadvantaged for births since giving birth to big
offspring is more costly. The analysis of such models can be done without a historical approach.
However, new questions can be raised. In [12, 39], it is shown that the trait in the population
evolves towards values where the mean number of offspring is maximized. Once these states are
reached, the population may split in several subgroups characterized by different trait values.
Understanding the distribution of surviving lineages (Fig. 4, 5) gives insight on the path taken
by evolution and brings information on how the different evolutionary states are reached.
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Figure 4: Kisdi’s model. α = 1.2, β = 4, x0 = 4, σ = 0.2, p = 1, K = 2, n = 10. The 50 particles are

started with the trait 1.5.

In Fig. 4, we see that a branching phenomenon appears: at time 3, the different individuals
are separated into 3 families with MRCAs around time 1. Because of the selection, the branches
are very thin, showing that only a few lineages provide the living population at the current time.
Contrarily to Fig. 4, we see in 5 that the MRCAs are distributed relatively regularly along the
branches of the tree. This can be a consequence of the higher density of particles and of the
weaker selection. Also, the evolution is much slower than in Fig. 4.

5.3 A variant of Adler’s fattened goats: a spatial model

In many models, trait or space play a similar role. Spatial models have been extensively studied
as toy models for evolution (see Bolker and Pacala [9, 10] or Dieckmann and Law [19]).

Here we consider a spatial model where the competition exerted by past ancestors is softened.
This model is a variant of Adler’s fattened goats (e.g. [1, 41]):

r(t, y) = 1, b(t, y) = b,

and d(t, y,X) =

∫ t

0

∫
Rd

Kε

(
y′(s)− y(t)

)
K

Xs(dy
′, dc′) e−α(t−s)ds (5.2)
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Figure 5: Kisdi’s model. α = 1.2, β = 4, x0 = 4, σ = 0.2, p = 1, K = 100, n = 100. The 100 particles

are started with the trait 1.5.

The goat-like particles consume resources at the point where they are staying, and when they
arrive in a region where the population has previously grazed, their death rate is increased. The
parameter α describes the speed at which the environment replenishes itself. The kernel Kε can
be the density function of a centered Gaussian distribution with variance ε for instance. The
parameter K can be seen as a carrying capacity controlling the mass of Xs.

Due to the form of their interaction, we see in Fig. 6 that the goats spread quickly in the
whole space and separate into families with very old MRCAs. The families become quickly
disjoint and geographically isolated.

5.4 Logistic age and size-structured population

Let us consider the framework of Remark 2.3. Following Méléard and Tran [39], the following
example for a population structured by age and size is considered:

b(t, y, c) = yt
(
x0 − yt

)
e−n(t−τc,t)1lyt∈[0,x0],

d(t, y, c,X) = d0 + η
(
x0 − yt

)
1lyt∈[0,x0]〈X, 1〉 (5.3)

with x0 = 4, d0 = 1/4 and η = 0.1. PDE limits, TSS and Canonical Equations are considered
in [39]. Here, we choose r(t, y, c) = 1. The birth rate is here of the form (2.3). The difficulty of
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Figure 6: Simulation for Adler’s fattened goats. α = 10, ε = 0.8, b = 0.75, σ = 1, p = 1, K = 50 and

n = 50. The 100 initial particles are started at location 1.5.
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Figure 7: Simulation for Adler’s fattened goats. α = 0, ε = 0.8, b = 0.75, σ = 1, p = 1, K = 50 and

n = 50. The 100 initial particles are started at location 1.5. In this example, the consumed resources

never replenish. Thus individuals die faster.

these models is that age is a fast component that is hard to track when the process is accelerated.
Using time scales separations, as predicted in [38], we can see in Fig. 8 that the age distribution
stabilizes to an exponential distribution with rate 1.

In the simulations, we see that the MRCA is less old than in the previous example. This is
reminiscent of Fig. 1 (b). In these figures, it is seen that because of the selection, the MRCA is
relatively recent. An excursion appears between times 20 and 30. Since the traits then reunite
with the upper branch, this branch has escaped selection.

Acknowledgements: This work benefited from the support of the ANR MANEGE (ANR-09-
BLAN-0215), from the Chair “Modélisation Mathématique et Biodiversité” of Veolia Environnement-
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A Properties of the test functions (3.1) and (3.3)

We begin with a lemma that will be useful to link the classes of test functions (3.1) and (3.3).
This lemma also shows that the class of test functions (3.1) separates points.

Lemma A.1. For q ∈ N∗, recall that we denote by kq(u) the density of the Gaussian distribution
with mean 0 and variance 1/q. Let g ∈ Cb(Rd,R). For G(x) = x and gq(s, x) = kq(t − s)g(x),
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Figure 8: Simulation for the logistic age and size-structured population. The last line corresponds to the

age-distribution at time t = 0.5 and t = 4. σ = 0.2, p = 1, x0 = 4, d0 = 0.25, η = 0.1, n = 20. The 100

particles are started with trait 1.5 and age 0.

we have for all y ∈ DRd and all t ∈ [0, T ] at which y is continuous that:

lim
q→+∞

Ggq(y) = g(yt).

Proof. First notice that all the Ggq are bounded by ‖g‖∞. Let ε > 0. Since y is continuous
at t, so is g ◦ y and there exists α > 0 sufficiently small so that for every s ∈ (t − α, t + α),
|g(ys)− g(yt)| ≤ ε/2. We can then choose q sufficiently large such that∫

|t−s|>α
kq(t− s)ds < ε

4‖g‖∞
.

Then:

|Ggq(y)− g(yt)| =
∣∣∣ ∫ T

0
kq(t− s)

(
g(ys)− g(yt)

)
ds
∣∣∣

≤2‖g‖∞ε
∫
|s−t|≥α

kq(t− s)ds+
ε

2

∫
|s−t|<α

kq(t− s)ds ≤ ε.

�

We are now in position to give the:
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Proof of Lemma 3.2. We can assume without restriction that the functions gj in the definition
of ϕ (3.5) are positive. Let us define for y ∈ C(R+,Rd):

ϕq(y) = exp
(∫ T

0

m∑
j=1

log gj(ys)k
q(tj − s)ds

)
.

By Lemma A.1, the term in the integral is bounded uniformly in q and y and converges when
q tends to infinity to

∑m
j=1 log gj(ytj ). As a consequence, for every y ∈ C(R+,Rd), the sequence

(ϕq(y))n∈N∗ is bounded and converges to

exp
( m∑
j=1

log gj(ytj )
)

=
m∏
j=1

gj(ytj ) = ϕ(y)

when q tends to infinity. Moreover,

D2ϕq(t, y) = exp
(∫ T

0

m∑
j=1

log gj(ys)k
q(tj − s)ds

)

×
(∫ T

t

m∑
j=1

∆x(log gj)(yt)k
q(tj − s)ds+

d∑
i=1

(∫ T

t

m∑
j=1

∂xi(log gj)(yt)k
q(tj − s)ds

)2)
.

When q tends to infinity, we have by Lemma A.1:

lim
q→+∞

D2ϕq(t, y) =

m∏
j=1

gj(ytj )
( ∑
j | tj>t

∆xgj(yt)

gj(yt)
−

d∑
i=1

(
∂xigj(yt)

)2
g2
j (yt)

+
d∑
i=1

( ∑
j | tj>t

∂xigj(yt)

gj(yt)

)2)

=
m∏
j=1

gj(ytj )
( ∑
j | tj>t

∆xgj(yt)

gj(yt)
+ 2

d∑
i=1

∑
j 6=k

tj ,tk>t

∂xigj(yt)∂xigk(yt)

gj(yt)gk(yt)

)

=

m∏
j=1

gj(ytj )
∆x

(∏
j | tj>t gj

)
(yt)∏

j | tj>t gj(yt)
= ∆̃

( m∏
j=1

gj

)
(t, y).

This concludes the proof.
�

B Technical result on concatenated paths

Let H be the set of increasing bijections from [0, T ] to [0, T ], where T > 0. We recall that the
Skorokhod distance is defined for y, z ∈ D by:

dSk(y, z) = inf
λ∈H

max

{
‖y ◦ λ− z‖∞, sup

t,s<T

∣∣∣ log
(λ(t)− λ(s)

t− s

)∣∣∣} . (B.1)

In the sequel, we consider y, z ∈ D and s, r ∈ [0, T ]. Without loss of generality, we can
assume that s < r.

Proposition B.1. If dSk(y, z) < ε and if s and r are sufficiently close so that:

0 ≤ max
{

log
r

s
, log

T − s
T − r

}
≤ ε. (B.2)

Then for all w ∈ D, dSk((y|s|w), (z|r|w)) < 3ε.
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In the proof, we will need the following change of time λ0 ∈ H:

λ0(u) =
r

s
u1lu≤s +

(
r +

T − r
T − s

(u− s)
)

1lu>s. (B.3)

The bijection λ0 depends on r and s. For u and v ∈ [0, T ], we have:∣∣∣ log
(λ0(u)− λ0(v)

u− v

)∣∣∣ ≤ max
{

log
(r
s

)
, log

(T − s
T − r

)}
. (B.4)

The right hand side converges to 0 when r/s converges to 1, and is upper bounded by ε under
the Assumptions (B.2) of Proposition B.1.

Lemma B.2. For all w ∈ D. If (B.2) is satisfied, then dSk(w ◦ λ0, w) ≤ ε.

Proof. The infimum in (B.1) can be upper bounded by choosing λ = λ−1
0 , which is the inverse

bijection of λ0:

λ−1
0 (u) =

s

r
u1lu≤r +

(
s+

T − s
T − r

(u− r)
)

1lu>r. (B.5)

For such choice, we have:

dSk(w ◦ λ0, w) ≤max
{

0,max
(

log
r

s
, log

T − s
T − r

)}
≤ ε.

�

Let us now prove Proposition B.1:

Proof. By the triangular inequality:

dSk((y|s|w), (z|r|w)) ≤ A+B, where (B.6)

A = d((y|s|w), (y ◦ λ0|r|w ◦ λ0))

B = d((y ◦ λ0|r|w ◦ λ0), (z|r|w)).

By Lemma B.2, A ≤ ε. For the second term, using Lemma B.2 again:

B ≤dSk(y ◦ λ0, z) + d(w ◦ λ0, w) ≤ dSk(y ◦ λ0, z) + ε. (B.7)

Now, since dSk(y, z) ≤ ε, there exists λ ∈ H such that ‖y ◦ λ− z‖∞ ≤ 2ε and

sup
u,v≤T

∣∣∣ log
λ(u)− λ(v)

u− v

∣∣∣ ≤ 2ε.

Then, considering the change of time λ−1
0 ◦ λ:

dSk(y ◦ λ0, z) ≤ max
{
‖y ◦ λ0 ◦ λ−1

0 ◦ λ− z‖∞, sup
u,v≤T

∣∣∣ log
λ−1

0 ◦ λ(u)− λ−1
0 ◦ λ(v)

u− v

∣∣∣}
≤max

{
‖y ◦ λ− z‖∞, sup

u,v≤T

∣∣∣ log
λ−1

0 ◦ λ(u)− λ−1
0 ◦ λ(v)

λ(u)− λ(v)

∣∣∣+ sup
u,v≤T

∣∣∣ log
λ(u)− λ(v)

u− v

∣∣∣}
≤max

(
ε, 3ε

)
.

�
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[12] N. Champagnat, R. Ferrière, and S. Méléard. From individual stochastic processes to macroscopic models
in adaptive dynamics. Stochastic Models, 24:2–44, 2008.
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