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eJuly 21, 2011Abstra
tWe 
onsider the spatial Λ-Fleming-Viot pro
ess model ([BEV10℄) for frequen
ies of ge-neti
 types in a population living in R
d, in the spe
ial 
ase in whi
h there are just twotypes of individual, labelled 0 and 1. At time zero, everyone in the half-spa
e 
onsistingof points whose �rst 
oordinate is non-positive is type 1, whereas everyone in the 
omple-mentary half-spa
e is of type 0. We are 
on
erned with patterns of frequen
ies of the twotypes at large spa
e and time s
ales. We 
onsider two 
ases, one in whi
h the dynami
s ofthe pro
ess are driven by purely `lo
al' events and one in
orporating large-s
ale extin
tionre
olonisation events. We 
hoose the frequen
y of these events in su
h a way that, undera suitable res
aling of spa
e and time, the an
estry of a single individual in the population
onverges to a symmetri
 stable pro
ess of index α ∈ (1, 2] (with α = 2 
orresponding toBrownian motion). We 
onsider the behaviour of the pro
ess of allele frequen
ies under thesame spa
e and time res
aling. For α = 2, and d ≥ 2 it 
onverges to a deterministi
 limit. Inall other 
ases the limit is random and we identify it as the indi
ator fun
tion of a randomset. In parti
ular, there is no lo
al 
oexisten
e of types in the limit. We 
hara
terise the setin terms of a dual pro
ess of 
oales
ing symmetri
 stable pro
esses, whi
h is of interest in itsown right. The 
omplex geometry of the random set is illustrated through simulations.
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AMS 2010 subje
t 
lassi�
ations. Primary: 60G57, 60J25, 92D10 ; Se
ondary: 60J75,60G52.Key words and phrases: Generalised Fleming-Viot pro
ess, limit theorems, duality, sym-metri
 stable pro
esses, population geneti
s.1 Introdu
tionIn this arti
le, we are interested in the behaviour over large spa
e and time s
ales of the spatial
Λ-Fleming-Viot pro
ess (or SLFV) on R

d. This pro
ess arises as a parti
ular instan
e of theframework introdu
ed in [Eth08, BEV10, BKE10℄ for modelling allele frequen
ies (that is fre-quen
ies of di�erent geneti
 types) in a population that evolves in a spatial 
ontinuum. From themodelling perspe
tive, this framework is interesting as it over
omes an obstru
tion to modellingbiologi
al populations in 
ontinua, dubbed `the pain in the torus' by Felsenstein ([Fel75℄), whi
his typi�ed by the `
lumping and extin
tion' seen in spatial bran
hing pro
ess models in low di-mensions. The key idea of the SLFV framework is to base reprodu
tion events on a spa
e-timePoisson pro
ess rather than on individuals in the population. In this way one 
an de�ne what
an be thought of as a 
ontinuum version of the Kimura stepping stone model ([Kim53℄) whi
his a widely a

epted model for evolution of allele frequen
ies in spatially subdivided populations.Moreover, one 
an in
orporate large-s
ale extin
tion-re
olonisation events through a series of `lo-
al' population bottlene
ks, ea
h a�e
ting substantial portions of the spe
ies range. Su
h eventsdominate the demographi
 history of many spe
ies and, as we shall see in our results here, 
anhave a very signi�
ant in�uen
e on patterns of allele frequen
ies.From a mathemati
al perspe
tive, the SLFV pro
ess is a natural extension to the spatial
ontext of the generalised Fleming-Viot pro
esses whi
h 
an be tra
ed to �3.1.4 of [DK99℄ butwere �rst studied in detail by Bertoin & Le Gall ([BLG03℄). These pro
esses are dual to the so-
alled Λ-
oales
ents whi
h have been the subje
t of intensive study sin
e their introdu
tion over ade
ade ago by Donnelly & Kurtz, Pitman and Sagitov ([DK99, Pit99, Sag99℄). The duality withthe generalised Fleming-Viot pro
esses extends that between the Kingman 
oales
ent and theWright-Fisher di�usion and our work here will exploit a similar duality between spatial versions ofthe Λ-
oales
ents and the SLFV. One of the attra
tions of the SLFV pro
esses is that they allowus to 
apture many of the features of Wright-Fisher noise, but in any spatial dimension (whereassto
hasti
 partial di�erential equations driven by Wright-Fisher noise only make sense in onedimension). Thus, although they were originally motivated by purely biologi
al 
onsiderations,we believe that these models are also of intrinsi
 mathemati
al interest.1.1 The spatial Λ-Fleming-Viot pro
essFirst we des
ribe the model. Ea
h individual in the population is assigned a geneti
 type, from a
ompa
t spa
eK, and a lo
ation, in R
d. At time t, the population is represented by a measurablefun
tion ρt : R

d → M1(K), where M1(K) is the set of all probability measures onK. (In fa
t, asexplained in �3, in de�ning the state spa
e, Ξ, of the pro
ess we identify any two su
h fun
tionsthat are equal for Lebesgue-a.e. x ∈ R
d.) The interpretation of the model is as follows: thepopulation density is uniform a
ross R

d and, for ea
h x ∈ R
d, if we sample an individual from

x, then its geneti
 type is determined by sampling from the probability measure ρt(x).The dynami
s of the population are driven by a Poisson point pro
ess, Π, on R×R
d×(0,∞)×

[0, 1], ea
h point of whi
h spe
i�es a (lo
al) extin
tion-re
olonisation event. If (t, x, r, u) ∈ Π,then, at time t: 2



1. An extin
tion-re
olonisation event a�e
ts the 
losed ball B(x, r) ⊆ R
d, and nothing hap-pens outside this region.2. A parent is 
hosen uniformly in the ball; that is, we sample a lo
ation z uniformly atrandom over B(x, r) and a type k a

ording to the distribution ρt−(z).3. For ea
h y ∈ B(x, r) (in
luding z), a fra
tion u of the lo
al population is repla
ed byo�spring, whose type is that of the 
hosen parent. That is,

ρt(y) := (1 − u)ρt−(y) + u δk.Here, we are thinking of reprodu
tion events as equivalent to (frequent) small-s
ale extin
tion-re
olonisation events.In [BEV10℄, the intensity measure of the Poisson point pro
ess Π has the form dt ⊗ dx ⊗
ζ(dr, du), thus allowing the `impa
t', u, of an event to depend on its radius, r. For instan
e,small-s
ale reprodu
tion events may a�e
t only a tiny fra
tion of individuals, 
ompared to mas-sive extin
tion-re
olonisation events whi
h 
ould wipe out most of the population in a largegeographi
al region. Of 
ourse, we require some 
onditions on the intensity of Π if our pro
ess isto be well-de�ned: a

ording to Theorem 4.2 of [BEV10℄ (stated for d = 2, but the proof is iden-ti
al for any dimension d ≥ 1), the 
orresponding spatial Λ-Fleming-Viot pro
ess is well-de�nedwhenever

∫

(0,∞)×[0,1]
ζ(dr, du) uVr <∞, (1)where Vr denotes the volume of a d-dimensional ball of radius r.1.2 Main resultsOur previous mathemati
al analysis of the SLFV pro
ess ([BEV10, EV11℄) has been 
on
ernedwith understanding the genealogi
al relationships between individuals sampled from the popu-lation. Here, although studying the lineages an
estral to a sample from the population will befundamental to our analysis, we are interested in understanding the patterns of allele frequen
iesthat result from su
h a model.Saadi ([Saa11℄) 
onsiders a 
losely related model (whi
h di�ers from ours only in that thelo
ation of the `parent' in a reprodu
tion event is always taken to be the 
entre of the event).He 
onsiders the most biologi
ally interesting 
ase of two spatial dimensions and, for simpli
ity,takes all reprodu
tion events to have �xed size r and �xed impa
t u ∈ (0, 1]. Noti
e that if aparti
ular geneti
 type is present in a region at some time t, then, unless u = 1, it will alsobe there at all later times. Saadi shows that if a parti
ular geneti
 type is only present in abounded region at time zero, then, with probability one, its range, that is the region in whi
h itis ever seen is bounded. On the other hand, the shape of this region will be 
omplex. In orderto try to gain some understanding of the boundary of the range, he has also simulated a simplersituation. The idea is to 
onsider just two `
ompeting' types on a two-dimensional torus whi
hwe 
an identify with (−L,L]2 ⊆ R

2. At time zero, all points of the torus with a non-positive �rst
oordinate are of one type and all with a stri
tly positive �rst 
oordinate are of the other type.The region in whi
h both types 
oexist develops in a rather 
ompli
ated way, but it is naturalto ask whether if one `stands ba
k' and views the pro
ess over large spatial s
ales (at su�
ientlylarge times) a simpler pattern emerges. Saadi's simulations were the starting point for our workhere. 3



We shall 
on
entrate our attention on two spe
ial 
ases of the SLFV model, in both of whi
hindividuals 
an be one of only two geneti
 types, labelled 0 and 1. Evidently it is then enoughto 
onsider the proportion of type -1 individuals at ea
h site and so we de�ne, for every x ∈ R
dand t ≥ 0,

w(t, x) := ρt(x)({1}). (2)For the sake of 
larity, we shall also take the fra
tion u ∈ (0, 1] to be the same for all events. Inour previous notation, this 
orresponds to taking ζ(dr, dv) = µ(dr)δu(dv), for a measure µ on
(0,∞). We shall allow the measure µ to take two forms:Case A (�xed radius): We �x r ∈ (0,∞), and 
hoose µ to be the Dira
 mass at r.Case B (heavy-tailed distribution): We �x α ∈ (1, 2) and de�ne the measure µ by

µ(dr) = r−α−d−1
1{r≥1} dr, (3)where we re
all that d is the dimension of the geographi
al spa
e.It is easy to 
he
k that the 
ondition (1) whi
h guarantees existen
e of the SLFV pro
ess issatis�ed in both 
ases.Case A bears some similarity to the nearest-neighbour voter model, in that an individualspreads its type (/opinion) in a `
lose' neighbourhood. Case B in
orporates some large-s
aleevents and 
onsequently, as we shall see, behaves very di�erently. The parti
ular form of µ ismotivated by the fa
t that with this 
hoi
e, under a suitable res
aling of spa
e and time, themotion of an an
estral lineage will 
onverge to a symmetri
 α-stable Lévy pro
ess (and, moregenerally, the an
estry of �nitely many individuals 
onverges to a system of 
oales
ing dependent

α-stable pro
esses, see �5). Combined with duality, this will imply that with the same spa
e-time res
aling, the forwards in time pro
ess of allele frequen
ies will also 
onverge to a non-triviallimit.Suppose that the initial 
ondition of the pro
ess is
w(0, x) = 1{x(1)≤0},where here again x(1) denotes the �rst 
oordinate of x. In words, we start from a half-spa
e Hof 1's. Let us set α = 2 in Case A, and, for a given α ∈ (1, 2] and any n ∈ N, de�ne the res
aleddensity wn by

wn(t, x) := w(nt, n1/αx), t ≥ 0, x ∈ R
d.We denote by ρn the Ξ-valued pro
ess whose lo
al density of 1's at time t is wn(t, ·). Our mainresults are the following two theorems, whi
h des
ribe the asymptoti
 behaviour of ρn as n tendsto in�nity. In Case A, σ2 is the varian
e of the displa
ement, after one unit of time, of a singlean
estral lineage from its starting point (see (7)).Theorem 1. (Case A) There exists a Ξ-valued pro
ess {ρ(2)

t , t ≥ 0} su
h that
ρn −→ ρ(2) as n→ ∞,in the sense of weak 
onvergen
e of the (temporal) �nite-dimensional distributions.Furthermore, at every time t ≥ 0, the lo
al density w(2)(t, ·) := ρ

(2)
t ({1}) of type -1 individuals
an be des
ribed as follows. If X denotes standard d-dimensional Brownian motion and

p2(t, x) := Px[Xσ2t ∈ H], t ≥ 0, x ∈ R
d,then: 4



1. If d = 1, for every t ≥ 0 and a.e. x ∈ R, w(2)(t, x) is a Bernoulli random variablewith parameter p2(t, x). The 
orrelations between their values at distin
t sites of R arenon-trivial and are des
ribed in (15).2. If d ≥ 2, for every t ≥ 0 and a.e. x ∈ R
d, w(2)(t, x) is deterministi
 and equal to p2(t, x).Remark 2. Note that, in one dimension, the two types almost surely do not 
oexist at anygiven point, sin
e w(2)(t, x) is a Bernoulli random variable. However, in higher dimensions, thetwo types 0 and 1 do 
oexist at every site instantaneously.Remark 3. Although we have expressed everything in terms of densities, the 
onvergen
e inTheorem 1, whi
h we de�ne expli
itly in �3, is equivalent to the 
onvergen
e of the �nite di-mensional distributions of the Markov pro
esses {dx ρn

t (x)(dk), t ≥ 0}, taking their values in thespa
e of Radon measures on R
d × {0, 1} equipped with the topology of vague 
onvergen
e andthe asso
iated Borel σ-�eld. See [VW11℄ for a measure-valued formulation of the SLFV and fora proof of this equivalen
e.Remark 4. The quantity p2(t, x) impli
itly depends on the dimension. Also, sin
e u and r are�xed, substituting in (7),

σ2 =
u

dVr

∫

Rd

dz |z|2Lr(z)

(

=
4ur3

3
when d = 1

)is �nite and proportional to u. Indeed, Lr(z) := Vol(B(0, r)∩B(0, z)) = (2r−|z|)+ in dimension
1 and, more generally, Lr(z) ≤ 1{|z|≤2r}Vr for any d ≥ 1.In 
ontrast to the 
ase of �xed radii, in Case B, in the limit as n → ∞ types are alwayssegregated, irrespe
tive of dimension.Theorem 5. (Case B) There exists a Ξ-valued pro
ess {ρ(α)

t , t ≥ 0} su
h that
ρn −→ ρ(α) as n→ ∞,in the sense of weak 
onvergen
e of the (temporal) �nite-dimensional distributions.Furthermore, there exists a symmetri
 α-stable pro
ess Xα su
h that if

pα(x, t) := Px

[

Xα
ut ∈ H

]

, t ≥ 0, x ∈ R
d,then for every t > 0 and a.e. x ∈ R

d, w(α)(t, x) is a Bernoulli random variable with parameter
pα(t, x). The 
orrelations between the values of the densities at di�erent sites (and at the sametime t) are again given by (15) (or (9)), where the pro
ess ξ∞ is now the system of 
oales
ing
α-stable pro
esses obtained in Proposition 10.Here again, one should noti
e that the speed of evolution of the limiting pro
ess is proportionalto the parameter u.Comparing the results of Theorem 1 and Theorem 5, one 
an see that very large extin
tion-re
olonisation events 
reate 
orrelations between lo
al geneti
 diversities over a mu
h largerspatial s
ale (n1/α ≫ √

n) than purely lo
al reprodu
tion events. This is be
ause an an
estrallineage 
an move a distan
e O(n1/α) over the 
ourse of n generations. One might initially guessthat, sin
e the motion of a single an
estral lineage under our res
aling 
onverges to a symmetri
stable pro
ess, two distin
t an
estral lineages would (asymptoti
ally) only meet (and thus havea 
han
e to 
oales
e) in dimensions where the stable pro
ess hits points. This is pre
isely what5



we see in Case A and, in that 
ase, lies behind the deterministi
 limit in d ≥ 2. However, this iswhere the dependen
e between an
estral lineages in the SLFV pro
ess (see �3.2) 
omes into play.The detailed analysis of the an
estral pro
ess for Case B (whi
h we present in �5) reveals that`very large' events are frequent enough to 
apture lineages that have moved to arbitrarily largeseparations. In parti
ular, Lemma 12 shows that, in Case B, any �nite sample of individualswill �nd its most re
ent 
ommon an
estor in �nite time a.s. (see also Remark 13). The largeevents will, momentarily, 
reate extensive areas in whi
h the two geneti
 types 
oexist. Ouranalysis will also show that, under our res
aling, `small' events then o

ur su�
iently qui
kly toinstantaneously restore the allele frequen
ies in ea
h in�nitesimal region to 0 or 1 (see also thesimulations presented in �2).The rest of the paper is laid out as follows. In �2, we present some simulations that illustratethe results and the me
hanisms underlying them. In �3, we are expli
it about the meaning of`weak 
onvergen
e of the (temporal) �nite-dimensional distributions' and we des
ribe the dualitybetween allele frequen
ies and an
estral pro
esses that provides the main tool in our proofs. It isthen used to �nd 
onditions, expressed in terms of the genealogi
al trees relating individuals ina sample from the population, under whi
h w(α)(t, x) (at ea
h time t > 0 and a.e. point x ∈ R
d)takes the parti
ular forms seen in our main theorems (see Lemma 7). Theorems 1 and 5 are thenproved in �4 and �5 respe
tively. This last se
tion also 
ontains some results (Lemma 12 and thea

ompanying remark), of independent interest, on the system of 
oales
ing (dependent) Lévypro
esses that generates the genealogi
al trees relating a sample of individuals from the limitingpopulation.2 SimulationsOur results show that in the 
ases where the res
aled density of type 1 individuals 
onverges toa random limit, at any �xed time that limit takes the form of the indi
ator fun
tion of a randomset. In one dimension, provided that either u = 1 or α = 2 (the radius of events is �xed), the settakes a simple form, but for α ∈ (1, 2) this is no longer the 
ase. In this se
tion we present somesimulations that illustrate the 
omplex geometry of the limiting random sets and the me
hanismthat leads to their 
reation. We are extremely grateful to Jerome Kelleher from the Universityof Edinburgh for performing these simulations and produ
ing the �gures.First suppose that we are in one spatial dimension. If u = 1, then at every stage of theres
aling we will have wn(t, x) = 1In

t
(x) where In

t is a half-line with right endpoint Rt followinga random walk on R. Under our res
aling, as n → ∞, the pro
ess Rt will 
onverge to aBrownian motion if α = 2 and to a symmetri
 stable pro
ess of index α for α ∈ (1, 2). If α = 2,and d = 1, then the same is true for u < 1. This 
an be understood via the dual pro
ess ofan
estral lineages. As we shall see, this 
onverges to a system of independent Brownian motionswhi
h 
oales
e instantaneously on meeting. The type of an individual sampled at x at time t isdetermined by the type at time t before the present of the 
orresponding an
estral lineage. Sin
ethe Brownian motions are 
ontinuous, and they 
oales
e as soon as they meet, it is impossible fortwo lineages to `
ross over'. Consequently, asymptoti
ally, if a lineage started from x tra
es ba
kto a point to the left of the origin at time t before the present, then so must all lineages startedfrom points to the left of x. As a result, at time t, the density of type 1s will still be the indi
atorfun
tion of a half-line. The boundary, Rt, moves in the same way as a single an
estral lineage,that is as a Brownian motion with a 
lo
k that runs at a rate proportional to u. Figure 1 showsthe results of a simulation of the pro
ess of alleli
 types in this 
ase. In two dimensions, twoBrownian motions won't meet and so for α = 2, asymptoti
ally, the an
estral lineages will justlook like independent Brownian motions and forwards in time, asymptoti
ally, allele frequen
ies6



are smeared out by the deterministi
 heat �ow.(a)
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Figure 1: Fixed radius in d = 1 on a line of length 20. (a) initial 
onditions; (b) after 105 events;(
) after 107 events. The model parameters are u = 0.8, r = 0.033, n = 103.The 
ase α ∈ (1, 2) is mu
h more interesting. Now, even in the limit, an
estral lineages evolvein a series of jumps and if u < 1 they 
an `
ross over'. Thus although our results show that thelimiting allele frequen
ies always look like the indi
ator fun
tion of a random set, even in d = 1we 
an no longer expe
t that set to be 
onne
ted. Forwards in time what our results suggest, andsimulations 
on�rm, is that a large event 
an 
reate a region in whi
h allele frequen
ies are stri
tlybetween zero and one, but these frequen
ies are rapidly (and asymptoti
ally instantaneously)`resolved' by `small' events so that the state is restored to being the indi
ator fun
tion of a set.Figure 2 shows how on the line this me
hanism leads to allele frequen
ies that look like a seriesof `
renellations'. Even in one spatial dimension, our methods are not powerful enough to allowus to 
apture detailed information about the random sets observed in the limit.Figure 3 illustrates the same me
hanism in two spatial dimensions. To isolate the e�e
t inwhi
h we are interested, we suppose that a large event 
overs a previously unblemished portionof the interfa
e and observe the resolution of the resulting pat
h of 
oexisten
e.3 Convergen
e and duality3.1 State-spa
e and form of 
onvergen
eIn order to make the 
onvergen
e in Theorems 1 and 5 expli
it, let us re
all some fa
ts aboutthe state spa
e of the SLFV from [BEV10℄. In �1.1, we des
ribed the pro
ess as taking its valuesin the set Ξ̃ of all measurable fun
tions ρ : R
d → M1(K) (where the 
ompa
t type spa
e K isnow {0, 1}). In fa
t, we need to de�ne an equivalen
e relation on this spa
e by setting

ρ ∼ ρ′ ⇔ Vol
(

{x ∈ R
d : ρ(x) 6= ρ′(x)}

)

= 0.The state-spa
e Ξ of the SLFV is then de�ned as the quotient spa
e Ξ̃/ ∼ of equivalen
e 
lassesof ∼. 7
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Figure 2: Variable radius in d = 1 on a line of length 20. (a) initial 
onditions; (b) after 100events, full range; (
) after 100 events, zooming in; (d) after 106 events, full range; (e) after 106events, zooming in. The model parameters are u = 0.8, n = 104 and α = 1.3.

(a) (b) (
)Figure 3: Model in d = 2 after (a) 105; (b) 106; and (
) 107 events. We have a square range ofedge 8, and the initial pat
h is a 
ir
le of radius 4 with frequen
y 0.8 (white is frequen
y 1, bla
kis 0). The model parameters are u = 0.8, α = 1.3 and n = 103.8



The topology asso
iated with Ξ (see �3 in [Eva97℄) 
an be shown to 
oin
ide with that of vague
onvergen
e if we identify ea
h equivalen
e 
lass ρ ∈ Ξ with the Radon measure dx ρ(x)(dk) on
R

d ×K (see [VW11℄). However, this identi�
ation will not be required here, sin
e Lemma 4.1 in[BEV10℄ provides us with a family of fun
tions whi
h is dense in the set of 
ontinuous fun
tionson Ξ. To introdu
e this 
lass of fun
tions, for a spa
e E, let C(E) denote the set of all 
ontinuousfun
tions on E and, for a measure ν, let L1(ν) be the set of all fun
tions whi
h are integrablewith respe
t to ν. For every j ∈ N, ψ ∈ C((Rd)j) ∩ L1(dx⊗j) and χ1, . . . , χj ∈ C(K), we de�nethe fun
tion Ij(· ; ψ, (χi)1≤i≤j) as follows. For every ρ ∈ Ξ,
Ij(ρ ; ψ, (χi)1≤i≤j) :=

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)

(

j
∏

i=1

〈

χi, ρ(xi)
〉

)

,where 〈f, ν〉 is the integral of the fun
tion f with respe
t to the measure ν.Sin
e in our setting K = {0, 1}, we have, for every χ,
〈χ, ρ(x)〉 = χ(1)w(x) + χ(0)(1 − w(x))

=
(

χ(1) − χ(0)
)

w(x) + χ(0),where, as before, w(x) := ρ(x)({1}) denotes the mass of 1's at site x. We 
an therefore restri
tour attention to the set of fun
tions Ij su
h that χi = Id for every i ∈ {1, . . . , j}, that is
Ij(ρ ; ψ) =

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)

(

j
∏

i=1

w(xi)

)

. (4)Indeed, any Ij(· ; ψ, (χi)1≤i≤j) 
an be written as a �nite linear 
ombination of fun
tions of theform (4). The 
onvergen
e stated in Theorems 1 and 5 
an now be expressed for a single time
t ≥ 0 as: for every j ∈ N and ψ ∈ C((Rd)j) ∩ L1(dx⊗j),

lim
n→∞

E
[

Ij
(

ρn
t ; ψ

)]

= E
[

Ij
(

ρ
(α)
t ; ψ

)]

. (5)The extension of this de�nition of 
onvergen
e to joint 
onvergen
e at several times t1, . . . , tk isstraightforward.3.2 Duality between the SLFV and its genealogiesThe proofs of Theorems 1 and 5 rely on a duality relation between the SLFV pro
ess, and thesystem of 
oales
ing jump pro
esses that we 
all the genealogi
al pro
ess of a sample of individualsfrom the population. We re
all this relation in the parti
ular form in whi
h we shall need it. Inparti
ular we restri
t our attention to K = {0, 1}. A more general statement (and proofs) 
anbe found in �4 of [BEV10℄.First suppose that we wish to tra
e the an
estry of a single individual alive in the 
urrentpopulation. Let us, for now, work in a general setting as it will allow us to understand 
ondi-tion (1) a little better. Sin
e the model is translation invariant, without loss of generality wemay suppose that the individual is 
urrently at the origin in R
d. Tra
ing ba
kwards in time,at the �rst time in the past when 0 is in the area B(x, r) a�e
ted by a reprodu
tion event,our individual has probability u of being an o�spring of that event, in whi
h 
ase the an
estrallineage jumps to the position of the parent (whi
h is uniformly distributed on B(x, r)). Sin
e the9



Poisson pro
ess driving events is reversible, we see that the rate at whi
h our an
estral lineageexperien
es a jump is
∫

Rd

∫

(0,∞)×[0,1]
ζ(dr, du)dx 1{0∈B(x,r)}u =

∫

(0,∞)×[0,1]
ζ(dr, du) uVr.By translation invarian
e in time and spa
e of the law of Π, this tells us that the quantity in(1) is just the instantaneous jump rate of an an
estral lineage (at any time and any lo
ation),and we are requiring it to be �nite. We refer to �4 in [BEV10℄ for an explanation of why thisguarantees existen
e and uniqueness of the pro
ess (ρt)t≥0.We will need to be more pre
ise about the law of the 
ompound Poisson pro
ess followedby an an
estral lineage and so we now establish the rate at whi
h it jumps from 0 to z (or, bytranslation invarian
e, from y to y + z). In order for su
h a jump to o

ur, �rst 0 and z mustboth belong to the area hit by the event; se
ond our lineage at 0 must belong to the fra
tion uof individuals repla
ed; and third the parent must be 
hosen from site z. The intensity measureof the jump pro
ess is therefore equal to

m(dz) :=

∫

Rd

∫

(0,∞)×[0,1]
ζ(dr, du)dx1{x∈B(0,r)∩B(z,r)}u

dz

Vr

=

(

∫

(0,∞)×[0,1]
ζ(dr, du)

uLr(z)

Vr

)

dz, (6)where Lr(z) denotes the volume of the interse
tion B(0, r)∩B(z, r). (To see this, note that for anevent of radius r to a�e
t both 0 and z, its 
entre, x, must lie in the region B(0, r)∩B(z, r) andthat sin
e the parent is 
hosen uniformly from the region, the fa
tor 1/Vr arises as the density ofthe uniform distribution on B(x, r).) In parti
ular, by rotational symmetry, in the spe
ial 
asewhere the varian
e of the displa
ement of a lineage over one unit of time is �nite, its 
ovarian
ematrix is of the form σ2Id, with
σ2 :=

∫

Rd

m(dz)
(

z(1)
)2

=
1

d

∫

Rd

m(dz) |z|2 (7)(here, z(1) denotes the �rst 
oordinate of z, and |z| its L2-norm).Mu
h of our analysis will rest upon understanding the an
estry of (larger) samples fromthe population, and these 
an be established in mu
h the same way as the motion of a singlean
estral lineage. If we sample k individuals (possibly from the same lo
ation), the an
estry isgiven by a system of (�nite-rate) jump pro
esses, whi
h are a priori 
orrelated, sin
e their jumpsare generated by the same Poisson point pro
ess of events. Furthermore, if at least two of themare en
ompassed by the same event and lie within the fra
tion of the lo
al population repla
ed,then these lineages tra
e ba
k to the same parent and thus merge into a single lineage during theevent. Tra
ing further ba
k in time, that single lineage and all other remaining lineages 
ontinueto evolve in the same manner. Note that if u < 1, there may be other lineages in the ball wherethe event takes pla
e, but not in the sub-population repla
ed. Su
h lineages neither jump nor
oales
e during the event.Let (At)t≥0 be a system of �nitely many (the initial number will always be spe
i�ed expli
itly)an
estral lineages as des
ribed above. That is, ea
h lineage follows a �nite-rate jump pro
esswith jump intensity (6), and two or more lineages 
oales
e whenever they are a�e
ted by thesame event. See Equation (24) in �5 for an expression for the generator of this pro
ess, in theparti
ular 
ase where u is �xed. For every t ≥ 0, let us write Nt for the number of distin
t10



lineages at time t, and ξ1t , . . . , ξNt
t ∈ R

d for their spatial lo
ations at that time. The weak dualityrelation we shall use in the sequel is also based on the family of fun
tions in (4), and states thatfor every j ∈ N and ψ ∈ C((Rd)j) ∩ L1(dx⊗j), we have, for every t ≥ 0,
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj) E
[

w(t, x1) . . . w(t, xj)
∣

∣w(0, ·) = w0

] (8)
=

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj) E
[

w0(ξ
1
t ) · · ·w0

(

ξNt
t

)
∣

∣N0 = j, ξ10 = x1, . . . , ξ
j
0 = xj

]

.Sin
e (8) is valid for all fun
tions ψ as above, we also have for Lebesgue-a.e. (x1, . . . , xj),
E
[

w(t, x1) . . . w(t, xj)
∣

∣w(0, ·) = w0

]

= E
[

w0(ξ
1
t ) · · ·w0

(

ξNt
t

) ∣

∣N0 = j, ξ10 = x1, . . . , ξ
j
0 = xj

]

.(9)Remark 6. The weak duality in (9) is very similar to the duality between the Kimura steppingstone model and a system of 
oales
ing random walks (see e.g. Chap.6 of [Eth11℄). Here, however,in 
ontrast to the dis
rete spa
e setting, we 
annot dedu
e an expression for the se
ond or higherorder moments of the w(t, x)'s sin
e (9) only holds for Lebesgue-a.e j-tuple (x1, . . . , xj) (andthe xi's are pairwise distin
t for Lebesgue-a.e. ve
tor). The problem stems from the fa
t thea
tual obje
t with whi
h we are dealing is the random measure w(t, x)dx and not the 
olle
tion
{w(t, x)}x∈Rd . The topology on Ξ is too weak to 
onsider the evolution of the density of 1'sat every single point, and we are obliged to 
hara
terize this density through a lo
al averagingpro
edure, see (12).Thanks to (8), proving the 
onvergen
e of ρn

t ≡ {w(nt, n1/αx)}x∈Rd boils down to showingthat the genealogi
al pro
ess relating a �nite sample of individuals 
onverges, and to transferringthe result to the forwards-in-time pro
ess. In addition, these duality relations enable us to obtainan expli
it des
ription of the lo
al densities w(α)(t, x). Indeed, (5) and (8) lead us to an impli
it
hara
terisation of the limiting random �eld ρ(α) through the values of
E
[

Ij(ρ
(α)
t ; ψ)

]

= E

[
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)

( j
∏

i=1

w(α)(t, xj)

)]

.However, the following result gives us more information on the form of the w(α)(t, x)'s.Lemma 7. Suppose that (ρt)t≥0 is a Ξ-valued pro
ess dual to an ex
hangeable and 
onsistentsystem of 
oales
ing Markov pro
esses (At)t≥0 through the relations (8). Let (ξt)t≥0 denote theMarkov pro
ess followed by a single lineage, and suppose that the initial 
ondition of ρ is su
hthat for every t > 0, the map z 7→ Ez[w(0, ξt)] is 
ontinuous on R
d.(i) If for every ε > 0 we have

lim
|y−x|→0

P
[

lineages 1 and 2 have not coalesced by time ε
∣

∣ ξ10 = x, ξ20 = y
]

= 0, (10)where the 
onvergen
e is uniform with respe
t to x ∈ R
d, then for every t > 0 and a.e.

x ∈ R
d, w(t, x) is a Bernoulli random variable with parameter Ex[w(0, ξt)].(ii) If (At)t≥0 is a system of independent Markov pro
esses whi
h never 
oales
e whenever theystart from distin
t lo
ations, then for every t > 0 and a.e. x ∈ R

d, w(t, x) is deterministi
and equal to Ex[w(0, ξt)]. 11



Here, by `ex
hangeable' we mean that the law of (At)t≥0 is invariant under relabelling of theinitial lineages; `
onsistent' means that for every j ∈ N, if A starts with j+1 lineages but we onlyfollow the evolution of the �rst j of them, we obtain a system of 
oales
ing Markov pro
essesthat has the same law as A started with only j lineages. In other words, the evolution of the
(j + 1)-st lineage does not in�uen
e that of the other j. It is not di�
ult to see that the system
(At)t≥0 introdu
ed at the beginning of this se
tion is indeed ex
hangeable and 
onsistent (sin
eea
h lineage present in the area hit by an event is a�e
ted with probability u independently ofall others). The limiting genealogies we shall obtain will inherit these properties.Proof of Lemma 7. Let us �x t ≥ 0, and 
onsider the random measure ℓ(dx) on R

d de�nedby: for every nonnegative measurable fun
tion ψ,
∫

Rd

ℓ(dx) ψ(x) :=

∫

Rd

dx ψ(x)w(t, x). (11)Noti
e that, a

ording to the des
ription of Ξ given in �3.1, w(t, ·) := ρt(·)({1}) is in fa
t anequivalen
e 
lass of fun
tions of the form w̃ : R
d → [0, 1]. Two representatives of w(t, ·) di�eronly on a Lebesgue negligible subset of R

d. For the rest of this proof we assume that forevery ω in the probability spa
e (Ω,F ,P) on whi
h ρt is de�ned, we have �xed a representative
w̃(ω) : R

d → [0, 1] of w(ω, t, ·) and de�ne ℓ(ω, dx) as in (11), with w(ω, t, ·) repla
ed by w̃(ω, ·).Let (ϕm)m∈N be a sequen
e of 
ontinuous fun
tions on R
d su
h that for every m, 0 ≤ ϕm ≤ 1,

ϕm ≡ 1 on B(0, 1/m) and ϕm ≡ 0 outside B(0, 2/m). Let us write ϕm(Rd) for the integral
∫

Rd dz ϕm(z). Sin
e w̃ is lo
ally integrable (it has values in [0, 1]), the Lebesgue Di�erentiationTheorem guarantees that for every ω ∈ Ω, there exists a Lebesgue null set N (ω) su
h that forevery x /∈ N (ω),
lim

m→∞
1

ϕm(Rd)

∫

Rd

ℓ(ω, dz) ϕm(x+ z) = w̃(ω, x). (12)Consequently, by Fubini's theorem there exists a Lebesgue null set O su
h that for every x /∈ O,the 
onvergen
e in (12) o

urs with P(dω)-probability one. Evidently, if we 
an show that therandom variable w̃(x) is as in the statement of Lemma 7 for every x /∈ O, we shall obtain thedesired result for w(t, ·).Now �x x ∈ R
d \ O, so that (12) holds P-a.s. We show that w̃(x) is a Bernoulli randomvariable under the 
ondition stated in (i), and a deterministi
 
onstant under the 
onditiongiven in (ii). Let j ∈ N. On the one hand, the Dominated Convergen
e Theorem yields that
lim

m→∞
E

[(

ϕm(Rd)−1

∫

Rd

ℓ(dz) ϕm(x+ z)

)j]

= E
[

w̃(x)j
]

. (13)On the other hand, by Fubini's theorem and (8), we have that for every m ∈ N

E

[(

ϕm(Rd)−1

∫

Rd

ℓ(dz) ϕm(x+ z)

)j]

= ϕm(Rd)−j

∫

(Rd)j

dz1 . . . dzj ϕm(x+ z1) · · ·ϕm(x+ zj) E
[

w(t, z1) . . . w(t, zj)
]

= ϕm(Rd)−j

∫

(Rd)j

dz1 . . . dzj E
[

w(0, ξ1t ) · · ·w
(

0, ξNt
t

)
∣

∣N0 = j, ξ10 = z1, . . . , ξ
j
0 = zj

]

×

ϕm(x+ z1) · · ·ϕm(x+ zj). (14)12



Sin
e the Lebesgue measure of the set of j-tuples with at least two identi
al 
oordinates is 0,under the 
ondition of (ii) the quantity in the right-hand side of (14) is equal to
∫

(Rd)j

dz1 . . . dzj

j
∏

i=1

{

ϕm(x+ zi)

ϕm(Rd)
Ezi [w(0, ξt)]

}

=

(
∫

Rd

dz
ϕm(x+ z)

ϕm(Rd)
Ez[w(0, ξt)]

)j

.By our 
ontinuity assumption, this quantity tends to Ex[w(0, ξt)]
j as m → ∞. Combined with(13), this gives us that w̃(x) is a.s. equal to the 
onstant Ex[w(0, ξt)] under the 
ondition statedin (ii).To see (i), 
onsider the 
ase j = 2 (i.e., A 
onsists of two an
estral lineages) and let us write

τ for the time at whi
h they 
oales
e, with the 
onvention that τ = ∞ if A always 
ontainstwo lineages. Sin
e ϕm(x+ ·) is 
on
entrated on B(x, 2/m), using (10) we obtain that for every
ε > 0,

lim
m→∞

1

ϕm(Rd)2

∫

(Rd)2
dz1dz2 ϕm(x+ z1)ϕm(x+ z2)P

[

τ > ε |N0 = 2, ξ10 = z1, ξ
2
0 = z2

]

= 0.Hen
e, for j = 2 and ε < t, the quantity on the right-hand side of (14) 
an be written
∫

(Rd)2
dz1dz2 E

[

w(0, ξ1t )1{τ≤ε}
∣

∣N0 = 2, ξ10 = z1, ξ
2
0 = z2

]ϕm(x+ z1)ϕm(x+ z2)

ϕm(Rd)2
+ δ(ε,m),where δ(ε,m) → 0 as m→ ∞ for every �xed ε. By the same argument, we have

∫

(Rd)2
dz1dz2 E

[

w(0, ξ1t )1{τ≤ε}
∣

∣N0 = 2, ξ10 = z1, ξ
2
0 = z2

]ϕm(x+ z1)ϕm(x+ z2)

ϕm(Rd)2

=

∫

(Rd)2
dz1dz2 E

[

w(0, ξ1t )
∣

∣N0 = 2, ξ10 = z1, ξ
2
0 = z2

]ϕm(x+ z1)ϕm(x+ z2)

ϕm(Rd)2
+ δ′(ε,m)

=

∫

(Rd)2
dz1dz2 Ez1[w(0, ξt)]

ϕm(x+ z1)ϕm(x+ z2)

ϕm(Rd)2
+ δ′(ε,m)

=

∫

Rd

dz1 Ez1[w(0, ξt)]
ϕm(x+ z1)

ϕm(Rd)
+ δ′(ε,m),where δ′(ε,m) also tends to 0 as m → ∞ for every ε > 0, and the third line is justi�ed by the
onsisten
y of (At)t≥0. Using again our 
ontinuity assumption on z 7→ Ez[w(0, ξt)], we obtainthat under the 
ondition stated in (i), the quantity on the right-hand side of (14) 
onverges to

Ex[w(0, ξt)] as m→ ∞. Hen
e, 
oming ba
k to (13), we arrive at
E
[

w̃(x)2] = Ex[w(0, ξt)] = E
[

w̃(x)].Sin
e w̃(x) ∈ [0, 1] almost surely, we dedu
e that w̃(x) ∈ {0, 1} almost surely, when
e w̃(x) is aBernoulli random variable. This 
ompletes the proof of Lemma 7 (i). �Note that (ii) 
orroborates a remark at the beginning of �5 in [Eva97℄. In Evans' 
onstru
tion,all the genealogi
al pro
esses used as duals are made up of independent Hunt pro
esses that
oales
e instantaneously upon meeting. Evans points out that, in this 
ase, if ξ and ξ′ aretwo independent pro
esses having the same law as the motion of a single lineage, then the
orresponding Ξ-valued pro
ess evolves deterministi
ally i�
Vol
({

(z1, z2) ∈ (Rd)2 : Pz1,z2

[

∃ t ≥ 0 : ξt = ξ′t
]

> 0
})

= 0.13



That is, if the set of pairs of starting points (z1, z2) su
h that ξ and ξ′ have a positive 
han
eto meet in �nite time is negligible with respe
t to Lebesgue measure, then for every t > 0, ρt isa deterministi
 fun
tion of its initial value (and so is w(t, ·)). Our proof of Lemma 7 gives analternative proof of Evans's remark when the type-spa
e K is {0, 1}.4 Proof of Theorem 1Let us start by proving the 
onvergen
e stated in Theorem 1 for a single time t ≥ 0. Sin
e westart from w(0, ·) = 1H(·) (where H ⊂ R
d is the half-spa
e of all points whose �rst 
oordinate isnon-positive), for every n ∈ N we have w(0, ·√n) = 1H(·). Hen
e, we need only prove the resultfor t > 0.From our de�nition of 
onvergen
e (see (5)), our aim is to show that for every j ∈ N and

ψ ∈ C((Rd)j) ∩ L1(dx⊗j),
lim

n→∞
E

[
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)w(tn, x1

√
n) · · ·w(tn, xj

√
n)

]

= E

[
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)w
(2)(t, x1) · · ·w(2)(t, xj)

]

.As we explained in �3.2, this question boils down to establishing the asymptoti
 behaviourof
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

w(0, ξ1tn) · · ·w(0, ξNtn
tn )

∣

∣N0 = j, ξ10 = x1

√
n, . . . , ξj

0 = xj

√
n
]

.This will be a
hieved in Lemmas 8 and 9 below, but �rst we need some notation. Re
all that ξrepresents the motion of a single an
estral lineage, that is ξ is a 
ompound Poisson pro
ess inwhi
h jumps from x to x+ z have intensity
m(dz) =

uLr(z)

Vr
dz.Observe in passing that this intensity is 0 whenever |z| ≥ 2r (sin
e the start and end points ofa jump must belong to the same ball of radius r and so the size of this jump is bounded by 2r).For every n ∈ N, let ξn be the pro
ess on R

d de�ned by
ξn
t :=

1√
n
ξtn, t ≥ 0,and let An be the 
orresponding res
aling of A in whi
h time is multiplied by n and spatiallo
ations are s
aled down by √

n.Lemma 8. If d = 1, for every j ∈ N and x1, . . . , xj ∈ R
d, the pro
ess An starting from j lineagesat lo
ations x1, . . . , xj 
onverges, in the sense of �nite-dimensional distributions, to a system A∞of independent Brownian motions with 
lo
k speed σ2 that 
oales
e instantaneously upon meeting.More generally, let k ∈ N and 0 < t1 < . . . < tk. Suppose that we start An with j0 lineages atdistin
t lo
ations x0,1, . . . , x0,j0, let the pro
ess evolve until time t1, add to the surviving lineages

j1 lineages at distin
t lo
ations x1,1, . . . , x1,j1 , let all resulting lineages evolve until time t2 whenwe add j2 further lineages, and so on. Call the 
orresponding pro
ess Ân. De�ne Â∞ analogously.Then for any t ≥ 0, the law of Ân
t 
onverges to that of Â∞

t as n tends to in�nity.14



Lemma 9. If d ≥ 2, for every j ∈ N and distin
t x1, . . . , xj ∈ R
d, the pro
ess An starting from

j lineages at lo
ations x1, . . . , xj 
onverges to a system of independent Brownian motions withspeed σ2. In parti
ular, the limiting lineages never 
oales
e.More generally, de�ne Ân and Â∞ as in Lemma 8. Then for any t ≥ 0, the law of Ân
t
onverges to that of Â∞

t as n tends to in�nity.We postpone the proofs of Lemmas 8 and 9 until the end of this se
tion.Sin
e the frontier of H has zero Lebesgue measure, Portmanteau's Lemma and the �rst partof Lemma 8 give us that if d = 1, (using the obvious generalisation to A∞ of our previousnotation)
lim

n→∞

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

1H(ξ1tn) · · · 1H

(

ξNtn
tn

) ∣

∣N0 = j, ξ10 = x1

√
n, . . . , ξj

0 = xj

√
n
]

= lim
n→∞

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

1H(ξn,1
t ) · · · 1H

(

ξ
n,Nn

t
t

)∣

∣Nn
0 = j, ξn,1

0 = x1, . . . , ξ
n,j
0 = xj

]

=

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

1H(ξ∞,1
t ) · · · 1H

(

ξ
∞,N∞

t
t

) ∣

∣N∞
0 = j, ξ∞,1

0 = x1, . . . , ξ
∞,j
0 = xj

]

.Now, Theorem 4.1 in [Eva97℄ guarantees that there exists a unique Ξ-valued Markov pro
essstarting from (the equivalen
e 
lass of) 1H(x) and dual to A∞ through the relations (8). Let us
all this pro
ess ρ(2). Using the more 
ompa
t notation of �3.1, we obtain that for every j ∈ Nand ψ ∈ C((Rd)j) ∩ L1(dx⊗j),
lim

n→∞
E
[

Ij(ρ
n
t ; ψ)

]

= E
[

Ij(ρ
(2)
t ; ψ)

]

.Sin
e this family of test fun
tions in dense in C(Ξ) (
.f. �3.1), we 
an 
on
lude that ρn
t

L→ ρ
(2)
tas n → ∞. It is then straightforward to 
he
k that the 
onditions of Lemma 7 (i) are satis�ed,and so for a.e. x ∈ R

d, w(2)(t, x) is a Bernoulli random variable with parameter
Px

[

ξ∞t ∈ H
]

= Px

[

Xσ2t ∈ H
]

= p2(t, x).Moreover, by Lemma 8 and (9), the 
orrelations between the values of w(2)(t, ·) at di�erent sites
an be des
ribed as follows. For every j ∈ N and Lebesgue-a.e. (x1, . . . , xj),
E
[

w(2) (t, x1) . . . w
(2)(t, xj)

]

= E

[

w(2)(0, ξ∞,1
t ) · · ·w(2)

(

0, ξ
∞,N∞

t
t

)

∣

∣

∣
N∞

0 = j, ξ∞,1
0 = x1, . . . , ξ

∞,j
0 = xj

]

= P

[

ξ∞,i
t ∈ H, ∀i ∈ {1, . . . ,N∞

t }
∣

∣

∣
N∞

0 = j, ξ∞,1
0 = x1, . . . , ξ

∞,j
0 = xj

]

. (15)Sin
e we are dealing with Bernoulli random variables, equation (15) 
ompletely 
hara
terizesthese 
orrelations.If d ≥ 2, by the same 
hain of arguments (using this time Lemma 9), we obtain
lim

n→∞

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

1H(ξ1tn) · · · 1H(ξNtn
tn )

∣

∣N0 = j, ξ10 = x1

√
n, . . . , ξj

0 = xj

√
n
]

=

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)Px1

[

ξ∞,1
t ∈ H

]

· · ·Pxj

[

ξ∞,j
t ∈ H

]

.Here again, these equalities guarantee the 
onvergen
e in law of ρn
t towards the value at time tof the unique Ξ-valued Markov pro
ess ρ(2) starting from 1H(x) and dual to the system A∞ of15



independent Brownian motions whi
h never 
oales
e. Lemma 7 (ii) then applies and gives usthat for a.e. x ∈ R
d, w(2)(t, x) is the deterministi
 
onstant p2(t, x).So far, we have obtained the desired 
onvergen
e at a given time t > 0, and the form of thelo
al densities of 1's in the limit. It remains to show that the 
onvergen
e holds true for �nitelymany times 0 ≤ t1 ≤ · · · ≤ tk. Be
ause fun
tions of the form Ij(· ; ψ) are dense in C(Ξ), we needonly show that for every j1, . . . , jk and ψ1, . . . , ψk,

lim
n→∞

E

[ k
∏

i=1

Iji

(

ρn
ti ; ψi

)

]

= E

[ k
∏

i=1

Iji

(

ρ
(2)
ti

; ψi

)

]

. (16)Therefore, let us �x j1, . . . , jk and ψ1, . . . , ψk su
h that ψi ∈ C((Rd)ji) ∩ L1(dx⊗ji). To simplifynotation, we write xi for the ve
tor (xi
1, . . . , x

i
ji
) and W n

i (xi) for the produ
t ∏ji

l=1 w
n(ti, x

i
l).Our strategy is to use duality again, but now with the genealogi
al pro
ess des
ribed in these
ond part of Lemmas 8 and 9. On
e again, to simplify our notation, let us denote the law of

An (resp., An
t ) starting from j lineages at lo
ations x = (x1, . . . , xj) by P

n
x (resp., P

n
x,t). Usingthe Markov property of w at time tk−1n and the duality property (8), we 
an write

E

[ k
∏

i=1

Iji

(

ρn
ti ; ψi

)

]

=

∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)

×E

[{ k−1
∏

i=1

W n
i

(

xi
)

}

P
n
xk

[

wn
(

tk−1, ξ
n,1
tk−tk−1

)

· · · wn
(

tk−1, ξ
n,Nn

tk−tk−1
tk−tk−1

)]

]

=

∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)

∫

dPn
xk,tk−tk−1

(

mk−1, y
k−1
1 , . . . , yk−1

mk−1

)

E

[{ k−2
∏

i=1

W n
i

(

xi
)

}

wn
(

tk−1, x
k−1
1

)

· · ·wn
(

tk−1, x
k−1
jk−1

)

wn
(

tk−1, y
k−1
1

)

· · · wn
(

tk−1, y
k−1
mk−1

)

]

.Sin
e the law of the lo
ations at time tk − tk−1 of the Nn
tk−tk−1

lineages is absolutely 
ontinuouswith respe
t to Lebesgue measure, we 
an 
arry on the re
ursion and use the Markov property(this time at time tk−2) and duality to write the quantity above as
∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)

∫

dPn
xk,tk−tk−1

(

mk−1, y
k−1
1 , . . . , yk−1

mk−1

)

×
∫

dPn
xk−1∪yk−1,tk−1−tk−2

(

mk−2, y
k−2
1 , . . . , yk−2

mk−2

)

E

[{ k−3
∏

i=1

W n
i

(

xi
)

}

×wn
(

tk−2, x
k−2
1

)

· · · wn
(

tk−2, x
k−2
jk−2

)

wn
(

tk−2, y
k−2
1

)

· · · wn
(

tk−2, y
k−2
mk−2

)

]

=

∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)

∫

dPn
xk,tk−tk−1

(

mk−1, y
k−1
1 , . . . , yk−1

mk−1

)

×
∫

· · ·
∫

dPn
x1∪y1,t1

(

m0, y
0
1 , . . . , y

0
m0

)

E

[

wn
(

0, y0
1) · · ·wn

(

0, y0
m0

)

]

. (17)Now, re
all the family of pro
esses Ân introdu
ed in the se
ond part of Lemmas 8 and 9. Letus denote the times of appearan
e and the lo
ations of the additional lineages in the form16



(τ1, z
1), . . . , (τk, z

k). Using (re
ursively) the Markov property of Ân, we obtain that the quantityon the right-hand side of (17) is equal to
∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)

×E

[

wn
(

0, ξ̂ n,1
tk

)

· · · wn
(

0, ξ̂
n,N̂n

tk
tk

)
∣

∣

∣

(

0, xk
)

,
(

tk − tk−1, x
k−1
)

, . . . ,
(

tk − t1, x
1
)

]

.Let us now 
on
lude when d = 1 (the reasoning is exa
tly the same when d ≥ 2). Re
all that forevery n ∈ N, wn(0, ·) = 1H(·) = w(2)(0, ·). By the se
ond part of Lemma 8 and the DominatedConvergen
e Theorem (and the fa
t that the frontier of H has zero Lebesgue measure), we obtainthat
lim

n→∞
E

[ k
∏

i=1

Iji

(

ρn
ti ; ψi

)

]

=

∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)

×E

[

w(2)
(

0, ξ̂ ∞,1
tk

)

· · ·w(2)
(

0, ξ̂
∞,N̂∞

tk
tk

) ∣

∣

∣

(

0, xk
)

,
(

tk − tk−1, x
k−1
)

, . . . ,
(

tk − t1, x
1
)

]

.Analogous 
al
ulations using the duality between A∞ and ρ(2) lead to (16). This 
ompletes theproof of Theorem 1. �It remains to prove Lemmas 8 and 9. Let us start with the latter, whi
h is somewhat simpler,but 
ontains the main ingredients of both proofs.Proof of Lemma 9. Let x1, . . . , xk be k distin
t points of R
d. Suppose that An starts from

k lineages at lo
ations x1
√
n, . . . , xk

√
n. First, sin
e a single lineage ξ follows a �nite-ratehomogeneous jump pro
ess whose jumps are uniformly bounded by 2r, standard argumentsguarantee that ξn = (n−1/2ξtn)t≥0 
onverges in distribution to Brownian motion with 
lo
kspeed σ2 given in (7).Se
ond, observe that two lineages 
an be hit by the same event (and possibly 
oales
e) onlyif they lie at distan
e at most 2r of ea
h other. Consequently, as long as they are at distan
egreater than 2r they evolve independently, a

ording to the law of the motion of a single lineage.Hen
e, let us de�ne nτn to be the �rst time at whi
h at least two of the k initial lineages arewithin distan
e at most 2r of one another. Equivalently, τn is the �rst time at whi
h at leasttwo lineages of An are at separation at most 2r/

√
n. We wish to show that for any t ≥ 0,

P
n
x[τn ≤ t] → 0 as n→ ∞.To this end, note that until time τn, the motions of the res
aled lineages ξn,1, . . . , ξn,k 
anbe embedded in the paths of independent standard Brownian motions X1, . . . ,Xk starting from
x1, . . . , xk (we use the same Brownian motions for all n). Indeed, for ea
h path i we pro
eed asfollows (this 
onstru
tion is in the spirit of the one-dimensional Skorokhod Embedding Theorem,see e.g. [Bil95℄). Let (Rn,i

j )j≥1 be a sequen
e of i.i.d. random variables (independent of Xi)distributed a

ording to the law of the radius of a typi
al jump of ξn, and let us de�ne asequen
e {sn
i,j, j ≥ 0} of random times, re
ursively, by1. sn

i,0 := 0,2. for every j ≥ 1, sn
i,j is the �rst time greater than sn

i,j−1 at whi
h Xi exits the ball
B
(

Xi
sn
i,j−1

, Rn,i
j

). 17



By rotational symmetry of the law of a jump of ξn,i, 
onditional on its radius being γ thelo
ation of ξn,i just after the jump is uniformly distributed over the sphere ∂B(ξn,i
t− , γ). Likewise,
onditional on the variable Rn,i

j being equal to γ, the lo
ation of Xi
sn
i,j

is uniformly distributedover ∂B(Xi
sn
i,j−1

, γ). Consequently, by 
omparing their jump rates and their jump distributions,one 
an show that for every i ∈ {1, . . . , k} the pro
esses (ξn,i
t )t≥0 and (Xi

sn
i,j(n,i,t)

)

t≥0
have thesame laws, where (j(n, i, t))t≥0 is a Poisson pro
ess with intensity nuVr (re
all from (1) that

uVr is the jump rate of an unres
aled lineage under the 
onditions of Case A, where Vr is thevolume of a ball of radius r). Sin
e the lineages ξn,1, . . . , ξn,j evolve independently until time τn,we 
an ask that the Poisson pro
esses {j(n, 1, ·), . . . , j(n, k, ·)} should be independent and theembedding holds for all i ∈ {1, . . . , k} simultaneously until the �rst time t su
h that
∣

∣Xi
sn
i,j(n,i,t)

−Xm
sn
m,j(n,m,t)

∣

∣ ≤ 2r/
√
n for some i 6= m.Now, ea
h res
aled lineage makes jumps of size at most 2rn−1/2 at rate O(n). Hen
e, ea
hdi�eren
e sn

i,j − sn
i,j−1 is the exit time of Brownian motion from a ball of radius O(n−1/2), and

sn
i,j(n,i,t∧τn) is the sum of (morally) O(n) su
h quantities, all independent of one another. Moreformally, if we write R for the (random) radius of a typi
al jump of an unres
aled lineage andif we noti
e that the exit time of Brownian motion starting at 0 from a ball B(0, γ) is boundedby the �rst time that one of its 
oordinates leaves the interval [−γ, γ], then for all n ∈ N and all

1 ≤ i ≤ k we 
an write
E
[

sn,i
1

]

≤ dE

[

(

Rn,i
1

)2
]

=
d

n
E
[

R2
]

≤ 4dr2

n
,where the �rst inequality uses the property that the exit time from [−γ, γ] of one-dimensionalBrownian motion starting at 0 has expe
tation γ2. By the independen
e of Xi and the Poissonpro
esses, this yields that for all n and i,

E
[

sn
i,j(n,i,t∧τn)

]

= E
[

j(n, i, t ∧ τn)
]

.E
[

sn
i,1

]

≤ 4duVrr
2.To 
on
lude our proof, let us observe that P

n
x[τn ≤ t] is bounded by the probability thatat least two of the k independent Brownian motions X1, . . . ,Xk 
ome within distan
e 2rn−1/2before time min{sn

i,j(n,i,t), 1 ≤ i ≤ k}. But if τ̃n denotes the �rst time at whi
h two independentBrownian motions starting at x1 6= x2 
ome within distan
e 2rn−1/2, for every T ≥ 0 we have
lim

n→∞
Px1,x2

[

τ̃n ≤ T
]

= 0.Hen
e, the probability that at least two out of k independent Brownian motions 
ome withindistan
e 2rn−1/2 before any given time T also tends to 0, and thanks to the uniform boundon the expe
tation of sn
i,j(n,i,t∧τn) (together with the Markov inequality), it is straightforward toobtain that for any t ≥ 0

lim
n→∞

P
n
x

[

τn ≤ t
]

= 0.We have thus shown that with probability growing to 1 as n→ ∞, until a given time t ≥ 0 the kan
estral lineages evolve as if they were independent. Sin
e the law of ea
h ξn,i 
onverges to thatof Brownian motion with 
lo
k speed σ2, the 
onvergen
e of the one-dimensional distributionsof An to those of a 
olle
tion of k independent Brownian motions is proved.The proofs of the 
onvergen
e of the �nite-dimensional distributions and that of the se
ondpart of Lemma 9 follow the same lines, using the Markov property of ea
h An at suitable times.Details are left to the reader. �18



Proof of Lemma 8. On
e again we start with the one-dimensional distributions, and pro
eedby re
ursion on the number m of lineages of An. As in the proof of Lemma 9, before res
alingea
h lineage follows a homogeneous symmetri
 (�nite rate) jump pro
ess, whose jumps havelength at most 2r, and so ξn = (n−1/2ξnt)t≥0 
onverges in distribution to Brownian motion with
lo
k speed σ2 as n tends to in�nity.Let us 
onsider the 
ase m = 2. As we saw in the proof of Lemma 9, the two res
aledlineages evolve independently until they 
ome within distan
e 2rn−1/2 of one another. Let us �rstshow that this `meeting' time 
onverges to the meeting time (at distan
e 0) of two independentBrownian motions starting at x1 and x2 and with 
lo
k speed σ2, and se
ondly that 
oales
en
eis quasi-instantaneous on
e the lineages are gathered at this distan
e.For the �rst 
laim, let us write τn for the time at whi
h ξn,1 and ξn,2 �rst 
ome withindistan
e at most 4rn−1/2 of one another (note the 
onstant 4 instead of 2, whi
h we shall needlater for purely te
hni
al reasons). Be
ause the motion of a single lineage is a symmetri
 jumppro
ess, until τn the law of the di�eren
e ξn,1 − ξn,2 is the same as that of the motion of asingle res
aled lineage, run at speed 2. Let X be a standard one-dimensional Brownian motion,starting from x1 − x2 and independent of all ξn's. Using anew the 
onstru
tion introdu
ed inthe proof of Lemma 9, for every n we 
an �nd a sequen
e of random times {sn
j , j ≥ 0} su
h that

(ξn,1
t − ξn,2

t )t≥0 has the same law as (Xsn
j(n,t)

)t≥0, where j(n, ·) is a Poisson pro
ess, independentof X and with intensity 4nru (that is, twi
e the jump rate of a single res
aled lineage). Re
allfrom the proof of Lemma 9 that for every n ∈ N, the random variables sn
j − sn

j−1, j ≥ 1, arei.i.d and if R is distributed like the radius of a typi
al jump of ξ, we have E[nsn
1 ] = E[R2] <∞.Let t ≥ 0, and, as a �rst step, let us show that sn

j(n,t) 
onverges in probability towards 2σ2tas n grows to in�nity. The se
ond step will then 
onsist of proving that, for every t ≥ 0, theprobability that τn > t tends to the probability that the hitting time of 0 by X is greater than
2σ2t. This will give us the desired result.By de�nition, j(n, t) is a Poisson random variable with parameter (4nur)t. By the CentralLimit Theorem, we therefore have that

n−1/2
(

j(n, t) − 4nurt
) (d)−→ N (0, 4urt). (18)Now, re
alling the properties of the sn

i − sn
i−1's expounded above, by the Strong Law of LargeNumbers we have

sn
⌊4nurt⌋ =

1

n

⌊4nurt⌋
∑

i=1

n
(

sn
i − sn

i−1

) a.s.−→ 4urt× E[R2] as n→ ∞, (19)where ⌊z⌋ denotes the integer part of z. But σ2 is de�ned in (7) as the varian
e of the displa
ementat time 1 of a single unres
aled lineage, and so
σ2 = 2urE[R2],whi
h shows that the limit in (19) is equal to 2σ2t. To 
on
lude the �rst step, observe that

|sn
j(n,t) − sn

⌊4nurt⌋| is the sum of |j(n, t) − ⌊4nurt⌋| i.i.d. terms of the form sn
i − sn

i−1, all of themindependent of j(n, t), so that for every ε > 0 and every n ≥ 1 we have
P
[
∣

∣sn
j(n,t) − sn

⌊4nurt⌋
∣

∣ > ε
]

≤ P
[

|j(n, t) − 4nurt| > n3/4
]

+ P





n3/4
∑

i=1

(

sn
i − sn

i−1

)

> ε



 .19



As n → ∞, the �rst term on the right-hand side tends to 0 by (18), while Markov's inequalitygives us that
P





n3/4
∑

i=1

(

sn
i − sn

i−1

)

> ε



 ≤ 1

ε
E





n3/4
∑

i=1

(

sn
i − sn

i−1

)



 =
C

εn1/4
−→ 0.Sin
e this is true for any ε > 0, sn

j(n,t) − sn
⌊4nurt⌋ 
onverges in probability to 0. But we haveshown that sn

⌊4nurt⌋ 
onverges a.s. to 2σ2t, and so we obtain that sn
j(n,t) 
onverges in probabilityto 2σ2t, as required.As explained above, we 
an now use this result to show that τn 
onverges in distribution tothe hitting time of 0 by (X2σ2t)t≥0. Indeed, by 
onstru
tion of the random times sn

i and the fa
tthat the res
aled jumps of a lineage are bounded by 2r/
√
n, for any i ≥ 1 the Brownian motion

X 
annot move to a distan
e greater than 2r/
√
n from Xsn

i−1
before time sn

i . Thus, if τ0 denotesthe hitting time of 0 by X, we have
Px1−x2[τn > t] ≤ Px1−x2

[

τ0 > sn
j(n,t)

]

.But we showed that sn
j(n,t) 
onverges in probability towards 2σ2t as n→ ∞, and so

lim sup
n→∞

Px1−x2[τn > t] ≤ Px1−x2

[

τ0 > 2σ2t
]

. (20)On the other hand, for every ε ∈ (0, |x1 − x2|/2) and every n large enough, we 
an write
Px1−x2[τn > t]≥Px1−x2

[

X does not enter B(0, 4r/
√
n) before sn

j(n,t)

]

≥Px1−x2

[

X does not enter B(0, ε) before sn
j(n,t)

]

.Again, we 
an dedu
e from the 
onvergen
e in probability of sn
j(n,t) to 2σ2t that

lim inf
n→∞

Px1−x2[τn > t] ≥ Px1−x2

[

X does not enter B(0, ε) before 2σ2t
]

.This inequality holds for every small ε > 0, and by the point re
urren
e of one-dimensionalBrownian motion, we 
an 
on
lude that
lim inf
n→∞

Px1−x2[τn > t] ≥ Px1−x2

[

τ0 > 2σ2t
]

. (21)Together with (20), we obtain that for every t > 0

lim
n→∞

Px1−x2[τn > t] = Px1−x2

[

τ0 > 2σ2t
]

, (22)from whi
h we 
an 
on
lude that the `meeting time at distan
e 4r/
√
n' of two res
aled lineagesstarting at x1 and x2 
onverges in distribution to the hitting time of 0 by Brownian motion with
lo
k speed 2σ2, or equivalently to the meeting time of 2 independent Brownian motions ea
h of
lo
k speed σ2.Let us now prove our se
ond 
laim; that is, let us show that on
e at distan
e at most

4r/
√
n, the additional time the two lineages need to merge be
omes negligible as n tends toin�nity. Be
ause the proof is highly reminis
ent of that of Proposition 6.4(b) in [BEV10℄, weonly outline the main steps here. Let us work with the unres
aled lineages, and suppose theystart at distan
e at most 4r of ea
h other. First, it is not di�
ult to 
onvin
e oneself that the20



�rst time at whi
h the two lineages are at separation less than 2r is of order O(1), `uniformly'over all initial lo
ations whi
h are at separation at most 4r. On
e 
lose together, they be
ome
orrelated, be
ause they 
an be hit by the same reprodu
tion event. But for the same reason,they have a positive probability of being a�e
ted by the same event and of 
oales
ing beforeseparating again to distan
e at least 2r. If they do 
oales
e, the additional time they had towait for this event is also of order O(1). If they separate rather than 
oales
ing, then again thetime they need to 
ome ba
k to separation less than 2r is of order O(1), and on
e `gathered'they have a positive 
han
e to 
oales
e before separating, and so on. In the end, the number ofex
ursions of ξ1− ξ2 out of B(0, 2r) before the two lineages merge 
an be sto
hasti
ally boundedby a geometri
 random variable, and ea
h of the �nitely many ex
ursions and in
ursions lasts atime of order O(1). This tells us that for every ε > 0, one 
an �nd T (ε) > 0 su
h that
sup

|y1−y2|≤4r
P(y1,y2)

[

ξ1 and ξ2 do not coalesce before T (ε)
]

≤ ε.Rephrasing the above inequality in terms of the res
aled lineages, we obtain that, for every n ≥ 1,
sup

|z1−z2|≤4r/
√

n

P(z1,z2)

[

ξn,1 and ξn,2 do not coalesce before T (ε)/n
]

≤ ε. (23)Finally, if τ c
n denotes the 
oales
en
e time of ξn,1 and ξn,2, using the strong Markov property of

(ξn,1, ξn,2) at time τn, we have, for every t > 0,
P(x1,x2)[τ

c
n − τn > t] = E(x1,x2)

[

1{τn<∞}P(ξn,1
τn ,ξn,2

τn )
[τ c

n > t]
]

.By (23), the probability inside the expe
tation tends to 0 as n → ∞, and so does the quantityon the left-hand side (by dominated 
onvergen
e). Hen
e, τ c
n − τn 
onverges to 0 in probability.This 
on
ludes the proof of the �rst part of Lemma 8 when m = 2: in the limit, the two lineagesfollow independent Brownian motions run at 
lo
k speed σ2 until the �rst time at whi
h theymeet, whi
h is also the time at whi
h they 
oales
e by the 
onvergen
e of τ c

n − τn to 0.We now pro
eed by indu
tion. Suppose we know that the result of Lemma 8 holds true fora system of m − 1 lineages. Let x1 < . . . < xm be m distin
t points of R and suppose that mlineages start from these lo
ations. Be
ause the lineages `
hoose' to take part in an event thaten
ompasses them independently of one another, the law of the restri
tion of the system startedfrom m lineages to that started from m − 1 lineages at x1, . . . , xm−1 is the same as that of the
(m− 1)-system starting from x1, . . . , xm−1. (This is the `
onsisten
y' of the genealogi
al pro
essdes
ribed below Lemma 7). Hen
e, our indu
tive hypothesis tells us that the restri
ted pro
ess
onverges to a system of (initially) m−1 independent Brownian motions with 
lo
k speed σ2, that
oales
e instantaneously upon meeting. Now, as we explained several times already, the motionof the m-th lineage, starting at the right-most lo
ation xm, is independent of that of the othersuntil the �rst time, τn, at whi
h it 
omes to within distan
e 2r/

√
n of another lineage. But withprobability tending to 1, the right-most lineage among those that started from x1, . . . , xm−1 is thelineage an
estral to the individual sampled in xm−1. Indeed, our indu
tive hypothesis guaranteesthat the probability that the lineage starting from xm−1 jumps over a lineage on its left without
oales
ing with it tends to 0 as n tends to in�nity. Again by 
onsisten
y of the genealogi
alpro
ess, when singled out, the motion of lineage m− 1 has the same law as the pro
ess ξn (thatis, a typi
al single lineage), and so we 
an fo
us on the two right-most lineages and use theresults obtained for m = 2 to 
on
lude: their meeting time at distan
e at most 4r/

√
n 
onvergesin distribution to the meeting time of two independent Brownian motions run at 
lo
k speed σ2,and in the limit this meeting time is also the 
oales
en
e time of the two lineages. But this is21



pre
isely the evolution of a system of (initially) m independent Brownian motions whi
h 
oales
einstantaneously when they meet, and so the desired 
onvergen
e also holds for a system startingwith m lineages.As in the proof of Lemma 9, the other points of Lemma 8 are obtained by using the 
onver-gen
e of the one-dimensional distributions and the Markov property at suitable times. �5 Heavy-tailed 
aseIn this se
tion, we prove Theorem 5 and give some properties of the limiting genealogi
al pro
ess,whi
h are of independent interest. Re
all that the fra
tion of individuals a�e
ted by an eventis set 
onstant, equal to u ∈ (0, 1], and the radii of the events are sampled a

ording to theintensity measure
µ(dr) = r−α−d−1

1{r≥1} dr,where d is the dimension of the geographi
al spa
e.As in the proof of Theorem 1, due to the duality relations (8) we need only establish theasymptoti
 behaviour of the res
aled genealogi
al pro
ess (An
t )t≥0 of a �nite sample of individ-uals, de�ned in our previous notation by

An
t ≡

(

ξn,1
t , . . . , ξ

n,Nn
t

t

)

:=
(

n−1/αξ1nt, . . . , n
−1/αξNnt

nt

)

.In words, we speed up time by a fa
tor n and s
ale down the spatial lo
ations of the lineages by
n1/α. Indeed, if we 
an show that the �nite-dimensional distributions of An 
onverge to thoseof a system of 
oales
ing pro
esses A∞ that has su�
iently ni
e properties (i.e., whi
h 
an beused to 
onstru
t a dual Ξ-valued pro
ess ρ(α) using the te
hnique of [Eva97℄), then the samearguments as those used in the proof of Theorem 1 will grant us the 
onvergen
e of the �nite-dimensional distributions of ρn to those of ρ(α). Then it will remain to show that A∞ satis�esthe 
onditions of Lemma 7(i) to obtain the desired form for the lo
al densities of 1's, w(α)(t, x),and to use (9) to 
hara
terize the 
orrelations between these Bernoulli random variables. Hen
e,the 
ru
ial step is to prove the following proposition.Proposition 10. There exists a system A∞ of 
oales
ing symmetri
 α-stable Lévy pro
essessu
h that

An → A∞, as n→ ∞,in the sense of weak 
onvergen
e of the �nite-dimensional distributions. Moreover, if we de�nethe pro
ess Ân and Â∞ in an analogous way to the 
orresponding pro
esses in Lemmas 8 and 9,we also have 
onvergen
e of the one-dimensional distributions of Ân to those of Â∞.Proof of Proposition 10. Our aim is to write down the generator Gn of An, and to show thatit 
onverges to the generator of a system of 
oales
ing symmetri
 α-stable pro
esses. Up to now,we were able to be rather vague about the pre
ise representation of the an
estral lineages, butin order to write down a sensible generator we now need to be more pre
ise. Suppose we startwith k lineages. The system at any time t ≥ 0 is represented by a marked partition of {1, . . . , k}.Ea
h blo
k of An
t 
ontains the labels of all individuals in the initial sample whi
h have the samean
estor at time t in the past (that is, whose an
estral lineages merged before t), and the markasso
iated to the blo
k gives the spatial lo
ation of this an
estor at time t.Sin
e only the lineages present in the area hit by an event 
an be a�e
ted by this event, forevery y ∈ R

d, r > 0 and every marked partition A let us write J(y, r,A) for the set of indi
es oflineages (blo
ks) of A whose mark belongs to B(y, r) (to index the blo
ks of A, we rank them in22



in
reasing order of the smallest label that ea
h 
ontains). For 
onvenien
e, we shall also use thenotation Jn(y, r,A) := J(n−1/αy, n−1/αr,A). Next, if A 
ontains m blo
ks and I ⊂ {1, . . . ,m},then for every z ∈ R
d we write ΦI(A, z) for the marked partition obtained by merging all blo
ksof A indexed by i ∈ I and by assigning the mark z to this new blo
k (the other blo
ks andmarks remain un
hanged). For instan
e, if A = {({1, 5}, x1), ({2, 3}, x2), ({4, 6}, x3), ({7}, x4)}and I = {1, 4}, then

ΦI(A, z) =
{

({1, 5, 7}, z), ({2, 3}, x2 ), ({4, 6}, x3)
}

.Finally, we write |I| for the 
ardinality of the set I, and we re
all that Vr denotes the volume ofa ball of radius r.Be
ause lineages jump and merge at �nite rate, the generator G of the system of unres
aledlineages (At)t≥0 
an be expressed as follows. For every bounded measurable fun
tion f and everymarked partition A (of some �nite set {1, . . . , k}),
Gf(A) =

∫

Rd

dy

∫ ∞

0
µ(dr)

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A)

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

. (24)Indeed, if an event o

urs in B(y, r) and the parent is 
hosen at lo
ation z, then every lineagepresent in this area is a�e
ted by the event with probability u, independently of ea
h other, andall lineages that are a�e
ted merge and jump onto the lo
ation z of their parent.Mutiplying time by n and marks by n−1/α, we obtain from the expression in (24) that thegenerator of An is given, for every f and A as above, by
Gnf(A) = n

∫

Rd

dy

∫ ∞

0
µ(dr)

∫

B(y,r)

dz

Vr

∑

I⊂Jn(y,r,A)

u|I|(1 − u)|J\I|
[

f(ΦI(A,n
−1/αz)) − f(A)

]

.To see where the sum 
omes from, observe that an unres
aled mark belongs to B(y, r) i� itsres
aled version belongs to B(n−αy, n−1/αr), and that the a�e
ted (res
aled) lineages jumponto n−1/αz when their unres
aled 
ounterparts jump to z. Making the 
hange of variables
z′ = n−1/αz, and then y′ = n−1/αy and r′ = n−1/αr, we obtain that Gn(A) is equal to
n1+ d

α

∫

Rd

dy

∫ ∞

1

dr

rα+d+1

∫

B(n−1/αy,n−1/αr)

dz

Vr

∑

I⊂Jn(y,r,A)

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

=

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A)

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

=

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A),|I|≥2

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

+

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

i∈J(y,r,A)

u(1 − u)|J |−1
[

f(Φ{i}(A, z)) − f(A)
]

. (25)Let us de�ne δ(A) as half of the minimal pairwise distan
e between marks in A (δ(A) := +∞if A 
ontains only one blo
k), and let us show that for every A su
h that δ(A) > 0 and every f
ompa
tly supported and of 
lass C2 with respe
t to the marks, Gnf(A) 
onverges as n → ∞

23



towards the quantity Gαf(A) de�ned by
Gαf(A)

:=

∫

Rd

dy

∫ ∞

0

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A),|I|≥2

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

+ u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

×
∫

B(y,r)

dz

Vr

[

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉1{|z−xi|≤1}
]

+ u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr
〈z − xi,∇if(A)〉1{|z−xi|≤1},(26)where |A| denotes the number of blo
ks of A, xi is the mark of the i-th blo
k, ∇if is the gradientof f with respe
t to xi and 〈·, ·〉 is the s
alar produ
t in R

d.We shall 
omment on the di�erent terms of Gαf(A) later. For now, let us show the desired
onvergen
e, as well as the �niteness of Gαf(A). Let us start with the �rst term on the right-hand side of (25). By de�nition of δ(A), a ball of radius r < δ(A) 
annot 
ontain more than 1lineage (mark), so that the integral over r runs in fa
t from n−1/α ∨ δ(A) to +∞. For n largeenough, this �rst term is thus equal to
∫

Rd

dy

∫ ∞

δ(A)

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A),|I|≥2

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

,and so is the �rst term of Gαf(A). Sin
e u ∈ (0, 1], f is bounded, the sum over I is �nite and sin
eany event lo
ation B(y, r) must interse
t the 
ompa
t support of f to have a nonzero 
ontributionto the generator (so that we may restri
t the integral over y to some ball B(0, r + ∆(f)) with
∆(f) depending only on f), there exists a 
onstant C(f) > 0, independent of A, su
h that theabsolute value of the �rst term of Gαf(A) is bounded by

C(f) 2|A|
∫ ∞

δ(A)

dr

rα+d+1
rd <∞. (27)Now 
onsider the se
ond term on the right-hand side of (25). Let us split it on
e again into

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

i∈J(y,r,A)

u(1 − u)|J |−1

×
[

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉1{|z−xi|≤1}
] (28)

+

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

i∈J(y,r,A)

u(1 − u)|J |−1〈z − xi,∇if(A)〉1{|z−xi|≤1}. (29)We rewrite ∑i∈J(y,r,A) as ∑|A|
i=1 1{xi∈B(y,r)}, and, for n large enough, we split the integral over

r ∈ [n−1/α,∞] in (29) into the integral over [n−1/α, δ(A)) and that over [δ(A),∞). The se
ondintegral is �nite for the same reasons as in (27). On the other hand, if r < δ(A) then J(y, r,A) ≤ 124



for every y, and so the �rst integral is equal to
u

|A|
∑

i=1

∫

Rd

dy

∫ δ(A)

n−1/α

dr

rα+d+1
1{xi∈B(y,r)}

∫

B(y,r)

dz

Vr
〈z − xi,∇if(A)〉1{|z−xi|≤1}

= u

|A|
∑

i=1

∫ δ(A)

n−1/α

dr

Vrrα+d+1

∫

B(xi,1)
dz

∫

Rd

dy 1{|xi−y|≤r}1{|z−y|≤r}〈z − xi,∇if(A)〉

= u

|A|
∑

i=1

∫ δ(A)

n−1/α

dr

Vrrα+d+1

∫

B(xi,1)
dz
(

Vol
(

B(xi, r) ∩B(z, r)
)

)

〈z − xi,∇if(A)〉,and, by symmetry, the integral over z is equal to 0 for every r. The integral in (29) is thus equalto
u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

δ(A)

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr
〈z − xi,∇if(A)〉1{|z−xi|≤1},and if we de
ompose the range (0,∞) over whi
h we integrate r in the third term of Gαf(A) into

(0, δ(A)) and [δ(A),∞), we �nd that the integral over the latter is equal to the quantity above.Finally, let us show that (28) 
onverges to the se
ond term of Gαf(A). This time, we split(28) into
u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

n−1/α

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr

(

f(Φ{i}(A, z)) − f(A)
)

1{|z−xi|>1}

+u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

n−1/α

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

×
∫

B(y,r)

dz

Vr

(

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉
)

1{|z−xi|≤1}.The �rst term is �nite for the same reasons as in (27), sin
e for the parent to be at distan
egreater than 1 from the a�e
ted lineage, one must have r > 1/2. Now, using the same steps asabove, we obtain that the se
ond term is equal to
u

|A|
∑

i=1

∫

B(xi,1)
dz

∫ ∞

n−1/α∨ |z−xi|

2

dr

Vrrα+d+1

∫

B(z,r)∩B(xi,r)
dy (1 − u)|J(y,r,A)|−1

×
(

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉
)

. (30)But f is of 
lass C2 and has 
ompa
t support, and so we 
an �nd a 
onstant C̃(f) > 0, inde-pendent of A, su
h that for every i and every z ∈ B(xi, 1),
∣

∣f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉
∣

∣ ≤ C̃(f)|z − xi|2.
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As a 
onsequen
e, the absolute value of the quantity in (30) is bounded by
uC̃

|A|
∑

i=1

∫

B(xi,1)
dz

∫ ∞

n−1/α∨ |z−xi|

2

dr

rα+d+1

Vol
(

B(z, r) ∩B(xi, r)
)

Vr
|z − xi|2

≤ uC ′|A|
∫

B(0,1)
dz |z|2

(

n−1/α ∨ (|z|/2)
)−α−d

= uC ′|A|
{

n1+ d
α

∫

B(0,2n−1/α)
dz |z|2 + 2α+d

∫

B(0,1)\B(0,2n−1/α)
dz |z|2−α−d

}

≤ C ′′|A|
{

n−
2−α

α + C ′′′(1 − n−
2−α

α
)}

, (31)where all the 
onstants appearing in this bound depend on f , d and α, but not on A. Sin
e
α < 2, (30) remains bounded as n→ ∞ and (28) 
onverges to
u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr

[

f(Φ{i}(A, z)) − f(A)

− 〈z − xi,∇if(A)〉1{|z−xi|≤1}
]

,whi
h is pre
isely the se
ond term of Gαf(A) (and is �nite a

ording to the analysis above).Tra
ing ba
k our 
al
ulations, we see that for n large enough (su
h that n−1/α < δ(A)) thedi�eren
e between Gnf(A) and Gαf(A) is equal to the di�eren
e between the quantity in (30)and its 
ounterpart in Gαf(A) (that is, the se
ond term of Gαf(A) in whi
h y is only integratedover B(xi, 1)). Hen
e, a

ording to (31), for every n > δ(A)−α

∣

∣Gnf(A) − Gαf(A)
∣

∣ ≤ cf (2|A| + |A|)n− 2−α
α ,where the 
onstant cf is again independent of A. Consequently, for every f whi
h is 
ompa
tlysupported and of 
lass C2 with respe
t to the marks, the fun
tion Gαf is bounded and the
onvergen
e

lim
n→∞

sup
δ(A)>ε,|A|≤k

∣

∣Gnf(A) − Gαf(A)
∣

∣ = 0 (32)holds for any 
hoi
e of ε > 0 and k ∈ N.To 
on
lude the proof of Proposition 10, let us use the following result, whose proof wepostpone for the sake of 
larity. For every ε > 0, let tε be the �rst time at whi
h at least twolineages lie at distan
e less than ε > 0 without having 
oales
ed.Lemma 11. For every initial value A0 su
h that δ(A0) > 0, we have
lim
ε→0

PA0[tε <∞] = 0. (33)As a 
onsequen
e, the martingale problem asso
iated to (Gα, A0) has a unique solution (with
àdlàg paths) for any initial value A0 satisfying δ(A0) > 0. Let us denote this solution by A∞.Then A∞ is a 
onsistent system of 
oales
ing symmetri
 α-stable pro
esses.Let us suppose that Lemma 11 has been established, and verify that the 
onditions of The-orem 4.8.2(b) of [EK86℄ are then ful�lled. First, one 
an 
he
k that the set of fun
tions f
onsidered above is dense in the set of all bounded 
ontinuous fun
tions on marked partitions.We 
an thus restri
t our attention to these parti
ular fun
tions. Se
ond, (33) enables us to use26



(32) and dominated 
onvergen
e to obtain that Condition (8.7) of Theorem 4.8.2(b) of [EK86℄is satis�ed, and 
onsequently that the �nite-dimensional distributions of An 
onverge weakly tothose of A∞ as n tends to in�nity. The arguments for the 
onvergen
e of the one-dimensionaldistributions of Ân are the same as in the 
ase with �xed radii, and so the proof of Proposition 10is now 
omplete. �Before proving Lemma 11, let us study some of properties of the `genealogi
al' pro
ess A∞.Indeed, in order to use Lemma 7(a), we need to show that (10) holds. In fa
t we 
an be morepre
ise about the way 
oales
en
e o

urs.Lemma 12. Sample two individuals at separation x, and 
onsider their an
estral lineages (Xt, t ≥
0), (Yt, t ≥ 0). Let

τ = inf{t ≥ 0 : Xs = Ys for all s ≥ t}be their 
oales
en
e time. Then τ < ∞ almost surely, and moreover, there exists a randomvariable Z, a.s. �nite and independent of x, su
h that
τ � xαZ, (34)where � stands for sto
hasti
 domination.Proof of Lemma 12. In essen
e, the strategy of the proof 
onsists of showing that if the twolineages start at distan
e a > 0, they have some positive 
han
e (independent of a) of 
oales
ingbefore they either separate to a distan
e greater than 2a or 
ome within distan
e less than a/2 ofea
h other. The dependen
e on xα in the lemma then 
omes from the fa
t that the time neededto 
oales
e, or separate, or get 
loser by a fa
tor of 2, is of the order of xα when the initialseparation is x.By translation invarian
e, we may assume without loss of generality that the origin of R

d sitsat the midpoint between X0 and Y0. Let T (x) be the �rst time that any point in B := B(0, x)is tou
hed by an event whose radius r is greater than x/4. Then T (x) is an exponential randomvariable whose rate λ(x) is given for every x > 0 by
λ(x) =

∫ ∞

x/4

dℓ

ℓd+1+α
Vol(B(0, x + ℓ)). (35)Indeed, re
all the intensity measure (3) we introdu
ed before res
aling the pro
ess. In the originalunits of time and spa
e, the rate at whi
h any point of the 
losed ball B(0, x) (x ≥ 4) is hit byan event of radius greater than x/4 is given by

∫

Rd

dz

∫ ∞

x/4

dℓ

ℓd+1+α
1{B(0,x)∩B(z,ℓ)6=∅} =

∫ ∞

x/4

dℓ

ℓd+1+α
Vol(B(0, x+ ℓ)).Multiplying this rate by n and looking at distan
es of the form xn1/α, a simple 
hange of variablesgives us that for every x ≥ 4n−1/α, the res
aled rate of interest is also equal to the expressionabove, independently of n. Passing to the limit n→ ∞ yields (35).Now, setting ℓ = rx we 
an write

λ(x) = x−d−α

∫ ∞

1/4

dr

rd+1+α
Vol(B(0, x+ rx))

= x−α

∫ ∞

1/4

dr

rd+1+α
Vol(B(0, 1 + r)) = Cx−α, (36)27



where the 
onstant C is independent of x.On the other hand, similar 
al
ulations enable us to see that the rate at whi
h B is entirely
ontained within the area B(z, r) of an event is given by
∫

Rd

dz

∫ ∞

|z|+x

dℓ

ℓd+1+α
=

∫ ∞

x

dℓ

ℓd+1+α

∫

Rd

dz 1{|z|≤r−x}

= x−α

∫ ∞

1

dr

rd+1+α
Vol(B(0, r − 1)) = C ′x−α,where we used the same 
hange of variable as before and C ′ > 0 is again independent of x. Asa 
onsequen
e, with probability p0 := C ′/C independent of x, the �rst event of radius greaterthan x/4 that hits at least one point of B a
tually 
overs the whole ball. Moreover, (36) alsoimplies that for arbitrary q ≥ 1/4, the radius R(x) of the event o

urring at time T (x) satis�es

P(R(x) > qx) ≤ cq−α, (37)for some 
onstant c whi
h does not depend on x or q.Let X̃, Ỹ be the motion of the lineages as governed by all the events ex
ept those that a�e
tsome point in B and whose radius is greater than x/4. Then by the Poisson point pro
essformulation of the reprodu
tion events, T (x) is independent from X̃, Ỹ and (Xt, Yt, t < T (x))
oin
ides with (X̃t, Ỹt, t < T (x)). Let S(x) := inf{t ≥ 0 : D̃t ≤ x/2 or X̃t /∈ B or Ỹt /∈ B}, where
Dt = |X̃t − Ỹt|. Fix δ > 0, and de�ne the following events:

E := {T (x) ≤ δxα}, F := {S(x) ≥ δxα}.Then E and F are independent, and by (36) there exists p(δ) > 0 su
h that P(E) = p(δ) forall x > 0. A similar property holds for F . Indeed, note �rst that up until the time S(x), thetraje
tories X̃ and Ỹ are independent, sin
e the traje
tories 
an only move as a result of eventso

urring in ne
essarily disjoint regions of spa
e. Moreover, using e.g. the generator (40) withradii trun
ated at x/4, it is easy to 
he
k that
(1

x
X̃txα∧S(x),

1

x
Ỹtxα∧S(x)

)

t≥0has the same distribution as the pair (X̃t∧S(1), Ỹt∧S(1))t≥0 obtained by taking x = 1: both
oordinates of this pro
ess perform independent stable Lévy pro
esses where ea
h jump greaterthan 1/4 o

urring in B(0, 1) is removed, and the pro
ess is stopped when either 
oordinateleaves B(0, 1) or they 
ome within distan
e 1/2 of one another. Hen
e for all x > 0, P(S(x) ≥
δxα) = P(S(1) ≥ δ) =: q(δ), and q(δ) > 0 whenever δ is 
hosen small enough.Let us denote the 
entre, radius and impa
t parameter of the event taking pla
e at time T (x)by (Z(x), R(x), u). We shall say that a su

ess o

urs if both E and F o

ur, and if(a) B(0, x) ⊂ B(Z(x), R(x)),(b) both XT (x), YT (x) are both a�e
ted by the event o

urring at time T (x) (this is possiblesin
e under these assumptions, XT (x) and YT (x) are still both in B(0, x) whi
h is entirely
overed by the event.)Note that by the above dis
ussion,

℘ := P( su

ess ) = p(δ)q(δ)p0u
2, (38)28



independently of x > 0.If a su

ess did not o

ur, we say that a failure has o

urred. Sin
e the su

ess probabilityis independent of x and the waiting time between two attempts is always sto
hasti
ally boundedby an exponential random variable of the form T (y) (whi
h is a.s. �nite), we dedu
e that aftera Geometri
(℘) number N of attempts, su

ess is guaranteed, hen
e τ < ∞ almost surely.Moreover, in the 
ase of failure, 
onsider the mutual distan
e DT (x)∧S(x) between the two lineagesat time T (x) ∧ S(x). Then DT (x)∧S(x) ≤ 2x+R(x). From (37) we 
an dedu
e that there existsa random variable R, independent of x and a.s. �nite, su
h that 2 +R(x)/x � R in the sense ofsto
hasti
 domination. Let R1, R2, . . . be a sequen
e of i.i.d. random variables with distribution
R. The strong Markov property and (36) then show that

τ � xα
{

E [C] + E
[

CR−α
1

]

+ . . .+ E
[

C(R1 · · ·RN )−α
]

}

,where E [y] stands for an exponential random variable with parameter y and all the above expo-nential random variables are 
onditionally independent given their arguments. De�ne Z as therandom variable within the 
urly bra
kets to 
on
lude. �Remark 13. The system A∞ inherits the 
onsisten
y property from its 
onstru
tion as thelimit of An (this property 
an also be shown dire
tly from the generator of A∞). Hen
e, anotable 
onsequen
e of Lemma 12 is that any �nite sample of lineages �nds its most re
ent
ommon an
estor in �nite time with probability one. The same kind of behaviour, as well as the
onvergen
e of the forwards-in-time pro
ess to a �eld of 
orrelated Bernoulli random variables,was already observed by Evans in the 
ase where the genealogi
al pro
ess of his 
ontinuous sitesstepping-stone model is a system of one-dimensional independent α-stable motions 
oales
inginstantly upon meeting. See �5 in [Eva97℄ for a full des
ription of his results. However, theunderlying me
hanisms are quite di�erent here. Not only does Lemma 12 hold for any α ∈ (1, 2)and any dimension, whi
h 
annot be the 
ase in Evans' framework sin
e two independent stablepro
esses may not meet, but even in dimension 1 the way lineages 
oales
e is di�erent: the limitin (33) shows that two lineages of A∞ have no 
han
e to meet, but their 
oales
en
e is due tothe fa
t that large events of the appropriate size are just frequent enough to 
at
h them evenwhen they are very far from ea
h other. As a last 
onsequen
e, it is then possible to see multiplemergers during the evolution of A∞, whi
h is not the 
ase when the α-stable pro
esses moveindependently of ea
h other and 
oales
e only when they meet.Let us now �nish with the proof of Lemma 11 and of Theorem 5. Re
all that for any markedpartition A, δ(A) stands for half the minimum distan
e between two marks in A (δ(A) = +∞ if
A has only one blo
k).Proof of Lemma 11. Be
ause most of the ideas and 
omputations we shall use to establish(33) are developed in detail in the proof of Lemma 12, we only present an outline here and referto that proof for more pre
ise arguments. Sin
e we always deal with partitions of some �nite set,it is su�
ient to show the result when A0 
onsists of just two blo
ks starting at some positiveseparation.If x > 0 denotes the initial distan
e between our two lineages, let us 
all T (x) the �rst timeat whi
h any of the lineages is in the geographi
al area of an event of radius greater than x/4,and let us 
all S(x) the �rst time at whi
h the distan
e between the two lineages is greaterthan 2x, or less than x/2. Noti
e that the lineages evolve independently until the random time
T (x)∧S(x), sin
e they are hit by events that are ne
essarily disjoint until that time. Moreover,they both move a

ording to the law of a symmetri
 α-stable pro
ess whose large jumps havebeen trun
ated (see (40) below). Hen
e it is not di�
ult to show that S(x) is of the order of29



xα, and so is T (x), while the 
oales
en
e rate of two lineages at distan
e x is 
ommensuratewith x−α. Using the more 
areful analysis performed in the proof of Lemma 12, we 
an in fa
t
on
lude that the probability p0 that the two lineages 
oales
e before their distan
e doubles oris divided by two is not only positive, but also independent of x. Together with the fa
t that
T (y) ∧ S(y) is a.s. �nite for every y > 0 (for reasons expounded in Lemma 12), the number ofattempts before su

eeding to 
oales
e is a geometri
 random variable with parameter p0, whi
hwe shall denote by N .As a se
ond step, suppose that the lineages fail to 
oales
e at time T (x) ∧ S(x). The newlo
ation of the lineage whi
h jumps at that time (at most one of them jumps, otherwise theywould 
oales
e) is uniformly distributed over the area of the event, and sin
e the lineages are atdistan
e at least x/2 from ea
h other just before T (x)∧S(x) a small 
al
ulation using the s
alingproperties of the evolution me
hanism shows that the probability π(η) that their new distan
eat that time is less than ηx satis�es(a) π(η) is independent of x,(b) limη→0 π(η) = 0.As a 
onsequen
e, if η ∈ (0, 1/10) and k ∈ N, we 
an write

PA0

[
oal. before distan
e de
reases by ηk
]

≥ E
[

(1 − π(η))N−1
1{N<k}

]

. (39)Note in passing that, by monotoni
ity, the same inequality holds if we repla
e ηk by any ε ≤ ηk.Let us now draw some 
on
lusions from these observations. We �x c > 0, and 
hoose k(c)and η(c) su
h that for every k ≥ k(c) and η ≤ η(c),
P[N ≥ k] ≤ c

2
and E

[

(1 − π(η))N−1
]

≥ 1 − c

2
.Then, using the fa
t that the event des
ribed in the left-hand side of (39) implies tε = +∞ forevery ε ≤ ηkx, we have that, for every su
h ε,

PA0[tε = ∞] ≥ 1 − c

2
− c

2
= 1 − c.Sin
e c was arbitrary, (33) follows.As regards the se
ond part of Lemma 11, re
all from (26) that the operator Gα is de�ned,for every fun
tion f of 
lass C2 with 
ompa
t support and every marked partition A satisfying

δ(A) > 0, by
Gαf(A) =

∫

Rd

dy

∫ ∞

δ(A)

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A),|I|≥2

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

+ u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

×
∫

B(y,r)

dz

Vr

[

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉1{|z−xi|≤1}
]

+u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr
〈z − xi,∇if(A)〉1{|z−xi|≤1}.30



In parti
ular, if A = {(b1, x1)} 
ontains only one blo
k and if f is a fun
tion of its mark only,then Gαf(A) is equal to
u

∫

Rd

dy

∫ ∞

0

1{x1∈B(y,r)}dr

rα+d+1

∫

B(y,r)

dz

Vr

[

f(z) − f(x1) − 〈z − x1,∇f(x1)〉1{|z−x1|≤1}
]

+ u

∫

Rd

dy

∫ ∞

0

1{x1∈B(y,r)}dr

rα+d+1

∫

B(y,r)

dz

Vr
〈z − x1,∇f(x1)〉1{|z−x1|≤1}

= u

∫

Rd

dz

(

∫ ∞

0

dr

rα+d+1

Vol
(

B(z, r) ∩B(x1, r)
)

Vr

)

[

f(z) − f(x1) − 〈z − x1,∇f(x1)〉1{|z−x1|≤1}
]

+ u

∫

Rd

dz

(

∫ ∞

0

dr

rα+d+1

Vol
(

B(z, r) ∩B(x1, r)
)

Vr

)

〈z − x1,∇f(x1)〉1{|z−x1|≤1}.Be
ause the intensity ι(z) asso
iated to z ∈ R
d depends only on |z|, the se
ond term is zero (bysymmetry) and

Gαf(A) =

∫

Rd

dz ι(z)
(

f(z) − f(x1)
)

. (40)Now, one 
an 
he
k that for any k > 0

k ι(zk−1/α) d(zk−1/α) = ι(z) dzand so the motion of a single lineage is a symmetri
 α-stable Lévy pro
ess.When there are at least two blo
ks, as long as δ(A∞
t ) > 0 the �rst term of Gαf(A∞

t ) is �niteand 
learly represents the merger and jump at �nite rate of several blo
ks of A∞. However, the
oales
en
e rate of two lineages at distan
e ε is equal to
u2

∫

Rd

dy

∫ ∞

ε/2

dr

rα+d+1
1{x1,x2∈B(y,r)} = u2

∫ ∞

ε/2

dr

rα+d+1
Vol
(

B(x1, r) ∩B(x2, r)
)

∝ ε−αas ε→ 0, and so one 
an prove the existen
e of the pro
ess A∞ only up to tε, for any ε > 0. Yet(33) is a
tually more than what is required to invoke Theorem 4.6.3 in [EK86℄ and 
omplete theproof of existen
e of A∞. �Proof of Theorem 5. There is nothing else to do. Duality and the 
onvergen
e of An give usthe 
onvergen
e of ρn exa
tly as in the proof of Theorem 1. Lemma 12 is su�
ient to show that(10) holds and so the limiting densities w(α)(t, x) are Bernoulli random variables as stated. �Referen
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