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d, in the speial ase in whih there are just twotypes of individual, labelled 0 and 1. At time zero, everyone in the half-spae onsistingof points whose �rst oordinate is non-positive is type 1, whereas everyone in the omple-mentary half-spae is of type 0. We are onerned with patterns of frequenies of the twotypes at large spae and time sales. We onsider two ases, one in whih the dynamis ofthe proess are driven by purely `loal' events and one inorporating large-sale extintionreolonisation events. We hoose the frequeny of these events in suh a way that, undera suitable resaling of spae and time, the anestry of a single individual in the populationonverges to a symmetri stable proess of index α ∈ (1, 2] (with α = 2 orresponding toBrownian motion). We onsider the behaviour of the proess of allele frequenies under thesame spae and time resaling. For α = 2, and d ≥ 2 it onverges to a deterministi limit. Inall other ases the limit is random and we identify it as the indiator funtion of a randomset. In partiular, there is no loal oexistene of types in the limit. We haraterise the setin terms of a dual proess of oalesing symmetri stable proesses, whih is of interest in itsown right. The omplex geometry of the random set is illustrated through simulations.
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AMS 2010 subjet lassi�ations. Primary: 60G57, 60J25, 92D10 ; Seondary: 60J75,60G52.Key words and phrases: Generalised Fleming-Viot proess, limit theorems, duality, sym-metri stable proesses, population genetis.1 IntrodutionIn this artile, we are interested in the behaviour over large spae and time sales of the spatial
Λ-Fleming-Viot proess (or SLFV) on R

d. This proess arises as a partiular instane of theframework introdued in [Eth08, BEV10, BKE10℄ for modelling allele frequenies (that is fre-quenies of di�erent geneti types) in a population that evolves in a spatial ontinuum. From themodelling perspetive, this framework is interesting as it overomes an obstrution to modellingbiologial populations in ontinua, dubbed `the pain in the torus' by Felsenstein ([Fel75℄), whihis typi�ed by the `lumping and extintion' seen in spatial branhing proess models in low di-mensions. The key idea of the SLFV framework is to base reprodution events on a spae-timePoisson proess rather than on individuals in the population. In this way one an de�ne whatan be thought of as a ontinuum version of the Kimura stepping stone model ([Kim53℄) whihis a widely aepted model for evolution of allele frequenies in spatially subdivided populations.Moreover, one an inorporate large-sale extintion-reolonisation events through a series of `lo-al' population bottleneks, eah a�eting substantial portions of the speies range. Suh eventsdominate the demographi history of many speies and, as we shall see in our results here, anhave a very signi�ant in�uene on patterns of allele frequenies.From a mathematial perspetive, the SLFV proess is a natural extension to the spatialontext of the generalised Fleming-Viot proesses whih an be traed to �3.1.4 of [DK99℄ butwere �rst studied in detail by Bertoin & Le Gall ([BLG03℄). These proesses are dual to the so-alled Λ-oalesents whih have been the subjet of intensive study sine their introdution over adeade ago by Donnelly & Kurtz, Pitman and Sagitov ([DK99, Pit99, Sag99℄). The duality withthe generalised Fleming-Viot proesses extends that between the Kingman oalesent and theWright-Fisher di�usion and our work here will exploit a similar duality between spatial versions ofthe Λ-oalesents and the SLFV. One of the attrations of the SLFV proesses is that they allowus to apture many of the features of Wright-Fisher noise, but in any spatial dimension (whereasstohasti partial di�erential equations driven by Wright-Fisher noise only make sense in onedimension). Thus, although they were originally motivated by purely biologial onsiderations,we believe that these models are also of intrinsi mathematial interest.1.1 The spatial Λ-Fleming-Viot proessFirst we desribe the model. Eah individual in the population is assigned a geneti type, from aompat spaeK, and a loation, in R
d. At time t, the population is represented by a measurablefuntion ρt : R

d → M1(K), where M1(K) is the set of all probability measures onK. (In fat, asexplained in �3, in de�ning the state spae, Ξ, of the proess we identify any two suh funtionsthat are equal for Lebesgue-a.e. x ∈ R
d.) The interpretation of the model is as follows: thepopulation density is uniform aross R

d and, for eah x ∈ R
d, if we sample an individual from

x, then its geneti type is determined by sampling from the probability measure ρt(x).The dynamis of the population are driven by a Poisson point proess, Π, on R×R
d×(0,∞)×

[0, 1], eah point of whih spei�es a (loal) extintion-reolonisation event. If (t, x, r, u) ∈ Π,then, at time t: 2



1. An extintion-reolonisation event a�ets the losed ball B(x, r) ⊆ R
d, and nothing hap-pens outside this region.2. A parent is hosen uniformly in the ball; that is, we sample a loation z uniformly atrandom over B(x, r) and a type k aording to the distribution ρt−(z).3. For eah y ∈ B(x, r) (inluding z), a fration u of the loal population is replaed byo�spring, whose type is that of the hosen parent. That is,

ρt(y) := (1 − u)ρt−(y) + u δk.Here, we are thinking of reprodution events as equivalent to (frequent) small-sale extintion-reolonisation events.In [BEV10℄, the intensity measure of the Poisson point proess Π has the form dt ⊗ dx ⊗
ζ(dr, du), thus allowing the `impat', u, of an event to depend on its radius, r. For instane,small-sale reprodution events may a�et only a tiny fration of individuals, ompared to mas-sive extintion-reolonisation events whih ould wipe out most of the population in a largegeographial region. Of ourse, we require some onditions on the intensity of Π if our proess isto be well-de�ned: aording to Theorem 4.2 of [BEV10℄ (stated for d = 2, but the proof is iden-tial for any dimension d ≥ 1), the orresponding spatial Λ-Fleming-Viot proess is well-de�nedwhenever

∫

(0,∞)×[0,1]
ζ(dr, du) uVr <∞, (1)where Vr denotes the volume of a d-dimensional ball of radius r.1.2 Main resultsOur previous mathematial analysis of the SLFV proess ([BEV10, EV11℄) has been onernedwith understanding the genealogial relationships between individuals sampled from the popu-lation. Here, although studying the lineages anestral to a sample from the population will befundamental to our analysis, we are interested in understanding the patterns of allele frequeniesthat result from suh a model.Saadi ([Saa11℄) onsiders a losely related model (whih di�ers from ours only in that theloation of the `parent' in a reprodution event is always taken to be the entre of the event).He onsiders the most biologially interesting ase of two spatial dimensions and, for simpliity,takes all reprodution events to have �xed size r and �xed impat u ∈ (0, 1]. Notie that if apartiular geneti type is present in a region at some time t, then, unless u = 1, it will alsobe there at all later times. Saadi shows that if a partiular geneti type is only present in abounded region at time zero, then, with probability one, its range, that is the region in whih itis ever seen is bounded. On the other hand, the shape of this region will be omplex. In orderto try to gain some understanding of the boundary of the range, he has also simulated a simplersituation. The idea is to onsider just two `ompeting' types on a two-dimensional torus whihwe an identify with (−L,L]2 ⊆ R

2. At time zero, all points of the torus with a non-positive �rstoordinate are of one type and all with a stritly positive �rst oordinate are of the other type.The region in whih both types oexist develops in a rather ompliated way, but it is naturalto ask whether if one `stands bak' and views the proess over large spatial sales (at su�ientlylarge times) a simpler pattern emerges. Saadi's simulations were the starting point for our workhere. 3



We shall onentrate our attention on two speial ases of the SLFV model, in both of whihindividuals an be one of only two geneti types, labelled 0 and 1. Evidently it is then enoughto onsider the proportion of type -1 individuals at eah site and so we de�ne, for every x ∈ R
dand t ≥ 0,

w(t, x) := ρt(x)({1}). (2)For the sake of larity, we shall also take the fration u ∈ (0, 1] to be the same for all events. Inour previous notation, this orresponds to taking ζ(dr, dv) = µ(dr)δu(dv), for a measure µ on
(0,∞). We shall allow the measure µ to take two forms:Case A (�xed radius): We �x r ∈ (0,∞), and hoose µ to be the Dira mass at r.Case B (heavy-tailed distribution): We �x α ∈ (1, 2) and de�ne the measure µ by

µ(dr) = r−α−d−1
1{r≥1} dr, (3)where we reall that d is the dimension of the geographial spae.It is easy to hek that the ondition (1) whih guarantees existene of the SLFV proess issatis�ed in both ases.Case A bears some similarity to the nearest-neighbour voter model, in that an individualspreads its type (/opinion) in a `lose' neighbourhood. Case B inorporates some large-saleevents and onsequently, as we shall see, behaves very di�erently. The partiular form of µ ismotivated by the fat that with this hoie, under a suitable resaling of spae and time, themotion of an anestral lineage will onverge to a symmetri α-stable Lévy proess (and, moregenerally, the anestry of �nitely many individuals onverges to a system of oalesing dependent

α-stable proesses, see �5). Combined with duality, this will imply that with the same spae-time resaling, the forwards in time proess of allele frequenies will also onverge to a non-triviallimit.Suppose that the initial ondition of the proess is
w(0, x) = 1{x(1)≤0},where here again x(1) denotes the �rst oordinate of x. In words, we start from a half-spae Hof 1's. Let us set α = 2 in Case A, and, for a given α ∈ (1, 2] and any n ∈ N, de�ne the resaleddensity wn by

wn(t, x) := w(nt, n1/αx), t ≥ 0, x ∈ R
d.We denote by ρn the Ξ-valued proess whose loal density of 1's at time t is wn(t, ·). Our mainresults are the following two theorems, whih desribe the asymptoti behaviour of ρn as n tendsto in�nity. In Case A, σ2 is the variane of the displaement, after one unit of time, of a singleanestral lineage from its starting point (see (7)).Theorem 1. (Case A) There exists a Ξ-valued proess {ρ(2)

t , t ≥ 0} suh that
ρn −→ ρ(2) as n→ ∞,in the sense of weak onvergene of the (temporal) �nite-dimensional distributions.Furthermore, at every time t ≥ 0, the loal density w(2)(t, ·) := ρ

(2)
t ({1}) of type -1 individualsan be desribed as follows. If X denotes standard d-dimensional Brownian motion and

p2(t, x) := Px[Xσ2t ∈ H], t ≥ 0, x ∈ R
d,then: 4



1. If d = 1, for every t ≥ 0 and a.e. x ∈ R, w(2)(t, x) is a Bernoulli random variablewith parameter p2(t, x). The orrelations between their values at distint sites of R arenon-trivial and are desribed in (15).2. If d ≥ 2, for every t ≥ 0 and a.e. x ∈ R
d, w(2)(t, x) is deterministi and equal to p2(t, x).Remark 2. Note that, in one dimension, the two types almost surely do not oexist at anygiven point, sine w(2)(t, x) is a Bernoulli random variable. However, in higher dimensions, thetwo types 0 and 1 do oexist at every site instantaneously.Remark 3. Although we have expressed everything in terms of densities, the onvergene inTheorem 1, whih we de�ne expliitly in �3, is equivalent to the onvergene of the �nite di-mensional distributions of the Markov proesses {dx ρn

t (x)(dk), t ≥ 0}, taking their values in thespae of Radon measures on R
d × {0, 1} equipped with the topology of vague onvergene andthe assoiated Borel σ-�eld. See [VW11℄ for a measure-valued formulation of the SLFV and fora proof of this equivalene.Remark 4. The quantity p2(t, x) impliitly depends on the dimension. Also, sine u and r are�xed, substituting in (7),

σ2 =
u

dVr

∫

Rd

dz |z|2Lr(z)

(

=
4ur3

3
when d = 1

)is �nite and proportional to u. Indeed, Lr(z) := Vol(B(0, r)∩B(0, z)) = (2r−|z|)+ in dimension
1 and, more generally, Lr(z) ≤ 1{|z|≤2r}Vr for any d ≥ 1.In ontrast to the ase of �xed radii, in Case B, in the limit as n → ∞ types are alwayssegregated, irrespetive of dimension.Theorem 5. (Case B) There exists a Ξ-valued proess {ρ(α)

t , t ≥ 0} suh that
ρn −→ ρ(α) as n→ ∞,in the sense of weak onvergene of the (temporal) �nite-dimensional distributions.Furthermore, there exists a symmetri α-stable proess Xα suh that if

pα(x, t) := Px

[

Xα
ut ∈ H

]

, t ≥ 0, x ∈ R
d,then for every t > 0 and a.e. x ∈ R

d, w(α)(t, x) is a Bernoulli random variable with parameter
pα(t, x). The orrelations between the values of the densities at di�erent sites (and at the sametime t) are again given by (15) (or (9)), where the proess ξ∞ is now the system of oalesing
α-stable proesses obtained in Proposition 10.Here again, one should notie that the speed of evolution of the limiting proess is proportionalto the parameter u.Comparing the results of Theorem 1 and Theorem 5, one an see that very large extintion-reolonisation events reate orrelations between loal geneti diversities over a muh largerspatial sale (n1/α ≫ √

n) than purely loal reprodution events. This is beause an anestrallineage an move a distane O(n1/α) over the ourse of n generations. One might initially guessthat, sine the motion of a single anestral lineage under our resaling onverges to a symmetristable proess, two distint anestral lineages would (asymptotially) only meet (and thus havea hane to oalese) in dimensions where the stable proess hits points. This is preisely what5



we see in Case A and, in that ase, lies behind the deterministi limit in d ≥ 2. However, this iswhere the dependene between anestral lineages in the SLFV proess (see �3.2) omes into play.The detailed analysis of the anestral proess for Case B (whih we present in �5) reveals that`very large' events are frequent enough to apture lineages that have moved to arbitrarily largeseparations. In partiular, Lemma 12 shows that, in Case B, any �nite sample of individualswill �nd its most reent ommon anestor in �nite time a.s. (see also Remark 13). The largeevents will, momentarily, reate extensive areas in whih the two geneti types oexist. Ouranalysis will also show that, under our resaling, `small' events then our su�iently quikly toinstantaneously restore the allele frequenies in eah in�nitesimal region to 0 or 1 (see also thesimulations presented in �2).The rest of the paper is laid out as follows. In �2, we present some simulations that illustratethe results and the mehanisms underlying them. In �3, we are expliit about the meaning of`weak onvergene of the (temporal) �nite-dimensional distributions' and we desribe the dualitybetween allele frequenies and anestral proesses that provides the main tool in our proofs. It isthen used to �nd onditions, expressed in terms of the genealogial trees relating individuals ina sample from the population, under whih w(α)(t, x) (at eah time t > 0 and a.e. point x ∈ R
d)takes the partiular forms seen in our main theorems (see Lemma 7). Theorems 1 and 5 are thenproved in �4 and �5 respetively. This last setion also ontains some results (Lemma 12 and theaompanying remark), of independent interest, on the system of oalesing (dependent) Lévyproesses that generates the genealogial trees relating a sample of individuals from the limitingpopulation.2 SimulationsOur results show that in the ases where the resaled density of type 1 individuals onverges toa random limit, at any �xed time that limit takes the form of the indiator funtion of a randomset. In one dimension, provided that either u = 1 or α = 2 (the radius of events is �xed), the settakes a simple form, but for α ∈ (1, 2) this is no longer the ase. In this setion we present somesimulations that illustrate the omplex geometry of the limiting random sets and the mehanismthat leads to their reation. We are extremely grateful to Jerome Kelleher from the Universityof Edinburgh for performing these simulations and produing the �gures.First suppose that we are in one spatial dimension. If u = 1, then at every stage of theresaling we will have wn(t, x) = 1In

t
(x) where In

t is a half-line with right endpoint Rt followinga random walk on R. Under our resaling, as n → ∞, the proess Rt will onverge to aBrownian motion if α = 2 and to a symmetri stable proess of index α for α ∈ (1, 2). If α = 2,and d = 1, then the same is true for u < 1. This an be understood via the dual proess ofanestral lineages. As we shall see, this onverges to a system of independent Brownian motionswhih oalese instantaneously on meeting. The type of an individual sampled at x at time t isdetermined by the type at time t before the present of the orresponding anestral lineage. Sinethe Brownian motions are ontinuous, and they oalese as soon as they meet, it is impossible fortwo lineages to `ross over'. Consequently, asymptotially, if a lineage started from x traes bakto a point to the left of the origin at time t before the present, then so must all lineages startedfrom points to the left of x. As a result, at time t, the density of type 1s will still be the indiatorfuntion of a half-line. The boundary, Rt, moves in the same way as a single anestral lineage,that is as a Brownian motion with a lok that runs at a rate proportional to u. Figure 1 showsthe results of a simulation of the proess of alleli types in this ase. In two dimensions, twoBrownian motions won't meet and so for α = 2, asymptotially, the anestral lineages will justlook like independent Brownian motions and forwards in time, asymptotially, allele frequenies6
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Figure 1: Fixed radius in d = 1 on a line of length 20. (a) initial onditions; (b) after 105 events;() after 107 events. The model parameters are u = 0.8, r = 0.033, n = 103.The ase α ∈ (1, 2) is muh more interesting. Now, even in the limit, anestral lineages evolvein a series of jumps and if u < 1 they an `ross over'. Thus although our results show that thelimiting allele frequenies always look like the indiator funtion of a random set, even in d = 1we an no longer expet that set to be onneted. Forwards in time what our results suggest, andsimulations on�rm, is that a large event an reate a region in whih allele frequenies are stritlybetween zero and one, but these frequenies are rapidly (and asymptotially instantaneously)`resolved' by `small' events so that the state is restored to being the indiator funtion of a set.Figure 2 shows how on the line this mehanism leads to allele frequenies that look like a seriesof `renellations'. Even in one spatial dimension, our methods are not powerful enough to allowus to apture detailed information about the random sets observed in the limit.Figure 3 illustrates the same mehanism in two spatial dimensions. To isolate the e�et inwhih we are interested, we suppose that a large event overs a previously unblemished portionof the interfae and observe the resolution of the resulting path of oexistene.3 Convergene and duality3.1 State-spae and form of onvergeneIn order to make the onvergene in Theorems 1 and 5 expliit, let us reall some fats aboutthe state spae of the SLFV from [BEV10℄. In �1.1, we desribed the proess as taking its valuesin the set Ξ̃ of all measurable funtions ρ : R
d → M1(K) (where the ompat type spae K isnow {0, 1}). In fat, we need to de�ne an equivalene relation on this spae by setting

ρ ∼ ρ′ ⇔ Vol
(

{x ∈ R
d : ρ(x) 6= ρ′(x)}

)

= 0.The state-spae Ξ of the SLFV is then de�ned as the quotient spae Ξ̃/ ∼ of equivalene lassesof ∼. 7
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Figure 2: Variable radius in d = 1 on a line of length 20. (a) initial onditions; (b) after 100events, full range; () after 100 events, zooming in; (d) after 106 events, full range; (e) after 106events, zooming in. The model parameters are u = 0.8, n = 104 and α = 1.3.

(a) (b) ()Figure 3: Model in d = 2 after (a) 105; (b) 106; and () 107 events. We have a square range ofedge 8, and the initial path is a irle of radius 4 with frequeny 0.8 (white is frequeny 1, blakis 0). The model parameters are u = 0.8, α = 1.3 and n = 103.8



The topology assoiated with Ξ (see �3 in [Eva97℄) an be shown to oinide with that of vagueonvergene if we identify eah equivalene lass ρ ∈ Ξ with the Radon measure dx ρ(x)(dk) on
R

d ×K (see [VW11℄). However, this identi�ation will not be required here, sine Lemma 4.1 in[BEV10℄ provides us with a family of funtions whih is dense in the set of ontinuous funtionson Ξ. To introdue this lass of funtions, for a spae E, let C(E) denote the set of all ontinuousfuntions on E and, for a measure ν, let L1(ν) be the set of all funtions whih are integrablewith respet to ν. For every j ∈ N, ψ ∈ C((Rd)j) ∩ L1(dx⊗j) and χ1, . . . , χj ∈ C(K), we de�nethe funtion Ij(· ; ψ, (χi)1≤i≤j) as follows. For every ρ ∈ Ξ,
Ij(ρ ; ψ, (χi)1≤i≤j) :=

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)

(

j
∏

i=1

〈

χi, ρ(xi)
〉

)

,where 〈f, ν〉 is the integral of the funtion f with respet to the measure ν.Sine in our setting K = {0, 1}, we have, for every χ,
〈χ, ρ(x)〉 = χ(1)w(x) + χ(0)(1 − w(x))

=
(

χ(1) − χ(0)
)

w(x) + χ(0),where, as before, w(x) := ρ(x)({1}) denotes the mass of 1's at site x. We an therefore restritour attention to the set of funtions Ij suh that χi = Id for every i ∈ {1, . . . , j}, that is
Ij(ρ ; ψ) =

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)

(

j
∏

i=1

w(xi)

)

. (4)Indeed, any Ij(· ; ψ, (χi)1≤i≤j) an be written as a �nite linear ombination of funtions of theform (4). The onvergene stated in Theorems 1 and 5 an now be expressed for a single time
t ≥ 0 as: for every j ∈ N and ψ ∈ C((Rd)j) ∩ L1(dx⊗j),

lim
n→∞

E
[

Ij
(

ρn
t ; ψ

)]

= E
[

Ij
(

ρ
(α)
t ; ψ

)]

. (5)The extension of this de�nition of onvergene to joint onvergene at several times t1, . . . , tk isstraightforward.3.2 Duality between the SLFV and its genealogiesThe proofs of Theorems 1 and 5 rely on a duality relation between the SLFV proess, and thesystem of oalesing jump proesses that we all the genealogial proess of a sample of individualsfrom the population. We reall this relation in the partiular form in whih we shall need it. Inpartiular we restrit our attention to K = {0, 1}. A more general statement (and proofs) anbe found in �4 of [BEV10℄.First suppose that we wish to trae the anestry of a single individual alive in the urrentpopulation. Let us, for now, work in a general setting as it will allow us to understand ondi-tion (1) a little better. Sine the model is translation invariant, without loss of generality wemay suppose that the individual is urrently at the origin in R
d. Traing bakwards in time,at the �rst time in the past when 0 is in the area B(x, r) a�eted by a reprodution event,our individual has probability u of being an o�spring of that event, in whih ase the anestrallineage jumps to the position of the parent (whih is uniformly distributed on B(x, r)). Sine the9



Poisson proess driving events is reversible, we see that the rate at whih our anestral lineageexperienes a jump is
∫

Rd

∫

(0,∞)×[0,1]
ζ(dr, du)dx 1{0∈B(x,r)}u =

∫

(0,∞)×[0,1]
ζ(dr, du) uVr.By translation invariane in time and spae of the law of Π, this tells us that the quantity in(1) is just the instantaneous jump rate of an anestral lineage (at any time and any loation),and we are requiring it to be �nite. We refer to �4 in [BEV10℄ for an explanation of why thisguarantees existene and uniqueness of the proess (ρt)t≥0.We will need to be more preise about the law of the ompound Poisson proess followedby an anestral lineage and so we now establish the rate at whih it jumps from 0 to z (or, bytranslation invariane, from y to y + z). In order for suh a jump to our, �rst 0 and z mustboth belong to the area hit by the event; seond our lineage at 0 must belong to the fration uof individuals replaed; and third the parent must be hosen from site z. The intensity measureof the jump proess is therefore equal to

m(dz) :=

∫

Rd

∫

(0,∞)×[0,1]
ζ(dr, du)dx1{x∈B(0,r)∩B(z,r)}u

dz

Vr

=

(

∫

(0,∞)×[0,1]
ζ(dr, du)

uLr(z)

Vr

)

dz, (6)where Lr(z) denotes the volume of the intersetion B(0, r)∩B(z, r). (To see this, note that for anevent of radius r to a�et both 0 and z, its entre, x, must lie in the region B(0, r)∩B(z, r) andthat sine the parent is hosen uniformly from the region, the fator 1/Vr arises as the density ofthe uniform distribution on B(x, r).) In partiular, by rotational symmetry, in the speial asewhere the variane of the displaement of a lineage over one unit of time is �nite, its ovarianematrix is of the form σ2Id, with
σ2 :=

∫

Rd

m(dz)
(

z(1)
)2

=
1

d

∫

Rd

m(dz) |z|2 (7)(here, z(1) denotes the �rst oordinate of z, and |z| its L2-norm).Muh of our analysis will rest upon understanding the anestry of (larger) samples fromthe population, and these an be established in muh the same way as the motion of a singleanestral lineage. If we sample k individuals (possibly from the same loation), the anestry isgiven by a system of (�nite-rate) jump proesses, whih are a priori orrelated, sine their jumpsare generated by the same Poisson point proess of events. Furthermore, if at least two of themare enompassed by the same event and lie within the fration of the loal population replaed,then these lineages trae bak to the same parent and thus merge into a single lineage during theevent. Traing further bak in time, that single lineage and all other remaining lineages ontinueto evolve in the same manner. Note that if u < 1, there may be other lineages in the ball wherethe event takes plae, but not in the sub-population replaed. Suh lineages neither jump noroalese during the event.Let (At)t≥0 be a system of �nitely many (the initial number will always be spei�ed expliitly)anestral lineages as desribed above. That is, eah lineage follows a �nite-rate jump proesswith jump intensity (6), and two or more lineages oalese whenever they are a�eted by thesame event. See Equation (24) in �5 for an expression for the generator of this proess, in thepartiular ase where u is �xed. For every t ≥ 0, let us write Nt for the number of distint10



lineages at time t, and ξ1t , . . . , ξNt
t ∈ R

d for their spatial loations at that time. The weak dualityrelation we shall use in the sequel is also based on the family of funtions in (4), and states thatfor every j ∈ N and ψ ∈ C((Rd)j) ∩ L1(dx⊗j), we have, for every t ≥ 0,
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj) E
[

w(t, x1) . . . w(t, xj)
∣

∣w(0, ·) = w0

] (8)
=

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj) E
[

w0(ξ
1
t ) · · ·w0

(

ξNt
t

)
∣

∣N0 = j, ξ10 = x1, . . . , ξ
j
0 = xj

]

.Sine (8) is valid for all funtions ψ as above, we also have for Lebesgue-a.e. (x1, . . . , xj),
E
[

w(t, x1) . . . w(t, xj)
∣

∣w(0, ·) = w0

]

= E
[

w0(ξ
1
t ) · · ·w0

(

ξNt
t

) ∣

∣N0 = j, ξ10 = x1, . . . , ξ
j
0 = xj

]

.(9)Remark 6. The weak duality in (9) is very similar to the duality between the Kimura steppingstone model and a system of oalesing random walks (see e.g. Chap.6 of [Eth11℄). Here, however,in ontrast to the disrete spae setting, we annot dedue an expression for the seond or higherorder moments of the w(t, x)'s sine (9) only holds for Lebesgue-a.e j-tuple (x1, . . . , xj) (andthe xi's are pairwise distint for Lebesgue-a.e. vetor). The problem stems from the fat theatual objet with whih we are dealing is the random measure w(t, x)dx and not the olletion
{w(t, x)}x∈Rd . The topology on Ξ is too weak to onsider the evolution of the density of 1'sat every single point, and we are obliged to haraterize this density through a loal averagingproedure, see (12).Thanks to (8), proving the onvergene of ρn

t ≡ {w(nt, n1/αx)}x∈Rd boils down to showingthat the genealogial proess relating a �nite sample of individuals onverges, and to transferringthe result to the forwards-in-time proess. In addition, these duality relations enable us to obtainan expliit desription of the loal densities w(α)(t, x). Indeed, (5) and (8) lead us to an impliitharaterisation of the limiting random �eld ρ(α) through the values of
E
[

Ij(ρ
(α)
t ; ψ)

]

= E

[
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)

( j
∏

i=1

w(α)(t, xj)

)]

.However, the following result gives us more information on the form of the w(α)(t, x)'s.Lemma 7. Suppose that (ρt)t≥0 is a Ξ-valued proess dual to an exhangeable and onsistentsystem of oalesing Markov proesses (At)t≥0 through the relations (8). Let (ξt)t≥0 denote theMarkov proess followed by a single lineage, and suppose that the initial ondition of ρ is suhthat for every t > 0, the map z 7→ Ez[w(0, ξt)] is ontinuous on R
d.(i) If for every ε > 0 we have

lim
|y−x|→0

P
[

lineages 1 and 2 have not coalesced by time ε
∣

∣ ξ10 = x, ξ20 = y
]

= 0, (10)where the onvergene is uniform with respet to x ∈ R
d, then for every t > 0 and a.e.

x ∈ R
d, w(t, x) is a Bernoulli random variable with parameter Ex[w(0, ξt)].(ii) If (At)t≥0 is a system of independent Markov proesses whih never oalese whenever theystart from distint loations, then for every t > 0 and a.e. x ∈ R

d, w(t, x) is deterministiand equal to Ex[w(0, ξt)]. 11



Here, by `exhangeable' we mean that the law of (At)t≥0 is invariant under relabelling of theinitial lineages; `onsistent' means that for every j ∈ N, if A starts with j+1 lineages but we onlyfollow the evolution of the �rst j of them, we obtain a system of oalesing Markov proessesthat has the same law as A started with only j lineages. In other words, the evolution of the
(j + 1)-st lineage does not in�uene that of the other j. It is not di�ult to see that the system
(At)t≥0 introdued at the beginning of this setion is indeed exhangeable and onsistent (sineeah lineage present in the area hit by an event is a�eted with probability u independently ofall others). The limiting genealogies we shall obtain will inherit these properties.Proof of Lemma 7. Let us �x t ≥ 0, and onsider the random measure ℓ(dx) on R

d de�nedby: for every nonnegative measurable funtion ψ,
∫

Rd

ℓ(dx) ψ(x) :=

∫

Rd

dx ψ(x)w(t, x). (11)Notie that, aording to the desription of Ξ given in �3.1, w(t, ·) := ρt(·)({1}) is in fat anequivalene lass of funtions of the form w̃ : R
d → [0, 1]. Two representatives of w(t, ·) di�eronly on a Lebesgue negligible subset of R

d. For the rest of this proof we assume that forevery ω in the probability spae (Ω,F ,P) on whih ρt is de�ned, we have �xed a representative
w̃(ω) : R

d → [0, 1] of w(ω, t, ·) and de�ne ℓ(ω, dx) as in (11), with w(ω, t, ·) replaed by w̃(ω, ·).Let (ϕm)m∈N be a sequene of ontinuous funtions on R
d suh that for every m, 0 ≤ ϕm ≤ 1,

ϕm ≡ 1 on B(0, 1/m) and ϕm ≡ 0 outside B(0, 2/m). Let us write ϕm(Rd) for the integral
∫

Rd dz ϕm(z). Sine w̃ is loally integrable (it has values in [0, 1]), the Lebesgue Di�erentiationTheorem guarantees that for every ω ∈ Ω, there exists a Lebesgue null set N (ω) suh that forevery x /∈ N (ω),
lim

m→∞
1

ϕm(Rd)

∫

Rd

ℓ(ω, dz) ϕm(x+ z) = w̃(ω, x). (12)Consequently, by Fubini's theorem there exists a Lebesgue null set O suh that for every x /∈ O,the onvergene in (12) ours with P(dω)-probability one. Evidently, if we an show that therandom variable w̃(x) is as in the statement of Lemma 7 for every x /∈ O, we shall obtain thedesired result for w(t, ·).Now �x x ∈ R
d \ O, so that (12) holds P-a.s. We show that w̃(x) is a Bernoulli randomvariable under the ondition stated in (i), and a deterministi onstant under the onditiongiven in (ii). Let j ∈ N. On the one hand, the Dominated Convergene Theorem yields that
lim

m→∞
E

[(

ϕm(Rd)−1

∫

Rd

ℓ(dz) ϕm(x+ z)

)j]

= E
[

w̃(x)j
]

. (13)On the other hand, by Fubini's theorem and (8), we have that for every m ∈ N

E

[(

ϕm(Rd)−1

∫

Rd

ℓ(dz) ϕm(x+ z)

)j]

= ϕm(Rd)−j

∫

(Rd)j

dz1 . . . dzj ϕm(x+ z1) · · ·ϕm(x+ zj) E
[

w(t, z1) . . . w(t, zj)
]

= ϕm(Rd)−j

∫

(Rd)j

dz1 . . . dzj E
[

w(0, ξ1t ) · · ·w
(

0, ξNt
t

)
∣

∣N0 = j, ξ10 = z1, . . . , ξ
j
0 = zj

]

×

ϕm(x+ z1) · · ·ϕm(x+ zj). (14)12



Sine the Lebesgue measure of the set of j-tuples with at least two idential oordinates is 0,under the ondition of (ii) the quantity in the right-hand side of (14) is equal to
∫

(Rd)j

dz1 . . . dzj

j
∏

i=1

{

ϕm(x+ zi)

ϕm(Rd)
Ezi [w(0, ξt)]

}

=

(
∫

Rd

dz
ϕm(x+ z)

ϕm(Rd)
Ez[w(0, ξt)]

)j

.By our ontinuity assumption, this quantity tends to Ex[w(0, ξt)]
j as m → ∞. Combined with(13), this gives us that w̃(x) is a.s. equal to the onstant Ex[w(0, ξt)] under the ondition statedin (ii).To see (i), onsider the ase j = 2 (i.e., A onsists of two anestral lineages) and let us write

τ for the time at whih they oalese, with the onvention that τ = ∞ if A always ontainstwo lineages. Sine ϕm(x+ ·) is onentrated on B(x, 2/m), using (10) we obtain that for every
ε > 0,

lim
m→∞

1

ϕm(Rd)2

∫

(Rd)2
dz1dz2 ϕm(x+ z1)ϕm(x+ z2)P

[

τ > ε |N0 = 2, ξ10 = z1, ξ
2
0 = z2

]

= 0.Hene, for j = 2 and ε < t, the quantity on the right-hand side of (14) an be written
∫

(Rd)2
dz1dz2 E

[

w(0, ξ1t )1{τ≤ε}
∣

∣N0 = 2, ξ10 = z1, ξ
2
0 = z2

]ϕm(x+ z1)ϕm(x+ z2)

ϕm(Rd)2
+ δ(ε,m),where δ(ε,m) → 0 as m→ ∞ for every �xed ε. By the same argument, we have

∫

(Rd)2
dz1dz2 E

[

w(0, ξ1t )1{τ≤ε}
∣

∣N0 = 2, ξ10 = z1, ξ
2
0 = z2

]ϕm(x+ z1)ϕm(x+ z2)

ϕm(Rd)2

=

∫

(Rd)2
dz1dz2 E

[

w(0, ξ1t )
∣

∣N0 = 2, ξ10 = z1, ξ
2
0 = z2

]ϕm(x+ z1)ϕm(x+ z2)

ϕm(Rd)2
+ δ′(ε,m)

=

∫

(Rd)2
dz1dz2 Ez1[w(0, ξt)]

ϕm(x+ z1)ϕm(x+ z2)

ϕm(Rd)2
+ δ′(ε,m)

=

∫

Rd

dz1 Ez1[w(0, ξt)]
ϕm(x+ z1)

ϕm(Rd)
+ δ′(ε,m),where δ′(ε,m) also tends to 0 as m → ∞ for every ε > 0, and the third line is justi�ed by theonsisteny of (At)t≥0. Using again our ontinuity assumption on z 7→ Ez[w(0, ξt)], we obtainthat under the ondition stated in (i), the quantity on the right-hand side of (14) onverges to

Ex[w(0, ξt)] as m→ ∞. Hene, oming bak to (13), we arrive at
E
[

w̃(x)2] = Ex[w(0, ξt)] = E
[

w̃(x)].Sine w̃(x) ∈ [0, 1] almost surely, we dedue that w̃(x) ∈ {0, 1} almost surely, whene w̃(x) is aBernoulli random variable. This ompletes the proof of Lemma 7 (i). �Note that (ii) orroborates a remark at the beginning of �5 in [Eva97℄. In Evans' onstrution,all the genealogial proesses used as duals are made up of independent Hunt proesses thatoalese instantaneously upon meeting. Evans points out that, in this ase, if ξ and ξ′ aretwo independent proesses having the same law as the motion of a single lineage, then theorresponding Ξ-valued proess evolves deterministially i�
Vol
({

(z1, z2) ∈ (Rd)2 : Pz1,z2

[

∃ t ≥ 0 : ξt = ξ′t
]

> 0
})

= 0.13



That is, if the set of pairs of starting points (z1, z2) suh that ξ and ξ′ have a positive haneto meet in �nite time is negligible with respet to Lebesgue measure, then for every t > 0, ρt isa deterministi funtion of its initial value (and so is w(t, ·)). Our proof of Lemma 7 gives analternative proof of Evans's remark when the type-spae K is {0, 1}.4 Proof of Theorem 1Let us start by proving the onvergene stated in Theorem 1 for a single time t ≥ 0. Sine westart from w(0, ·) = 1H(·) (where H ⊂ R
d is the half-spae of all points whose �rst oordinate isnon-positive), for every n ∈ N we have w(0, ·√n) = 1H(·). Hene, we need only prove the resultfor t > 0.From our de�nition of onvergene (see (5)), our aim is to show that for every j ∈ N and

ψ ∈ C((Rd)j) ∩ L1(dx⊗j),
lim

n→∞
E

[
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)w(tn, x1

√
n) · · ·w(tn, xj

√
n)

]

= E

[
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)w
(2)(t, x1) · · ·w(2)(t, xj)

]

.As we explained in �3.2, this question boils down to establishing the asymptoti behaviourof
∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

w(0, ξ1tn) · · ·w(0, ξNtn
tn )

∣

∣N0 = j, ξ10 = x1

√
n, . . . , ξj

0 = xj

√
n
]

.This will be ahieved in Lemmas 8 and 9 below, but �rst we need some notation. Reall that ξrepresents the motion of a single anestral lineage, that is ξ is a ompound Poisson proess inwhih jumps from x to x+ z have intensity
m(dz) =

uLr(z)

Vr
dz.Observe in passing that this intensity is 0 whenever |z| ≥ 2r (sine the start and end points ofa jump must belong to the same ball of radius r and so the size of this jump is bounded by 2r).For every n ∈ N, let ξn be the proess on R

d de�ned by
ξn
t :=

1√
n
ξtn, t ≥ 0,and let An be the orresponding resaling of A in whih time is multiplied by n and spatialloations are saled down by √

n.Lemma 8. If d = 1, for every j ∈ N and x1, . . . , xj ∈ R
d, the proess An starting from j lineagesat loations x1, . . . , xj onverges, in the sense of �nite-dimensional distributions, to a system A∞of independent Brownian motions with lok speed σ2 that oalese instantaneously upon meeting.More generally, let k ∈ N and 0 < t1 < . . . < tk. Suppose that we start An with j0 lineages atdistint loations x0,1, . . . , x0,j0, let the proess evolve until time t1, add to the surviving lineages

j1 lineages at distint loations x1,1, . . . , x1,j1 , let all resulting lineages evolve until time t2 whenwe add j2 further lineages, and so on. Call the orresponding proess Ân. De�ne Â∞ analogously.Then for any t ≥ 0, the law of Ân
t onverges to that of Â∞

t as n tends to in�nity.14



Lemma 9. If d ≥ 2, for every j ∈ N and distint x1, . . . , xj ∈ R
d, the proess An starting from

j lineages at loations x1, . . . , xj onverges to a system of independent Brownian motions withspeed σ2. In partiular, the limiting lineages never oalese.More generally, de�ne Ân and Â∞ as in Lemma 8. Then for any t ≥ 0, the law of Ân
tonverges to that of Â∞

t as n tends to in�nity.We postpone the proofs of Lemmas 8 and 9 until the end of this setion.Sine the frontier of H has zero Lebesgue measure, Portmanteau's Lemma and the �rst partof Lemma 8 give us that if d = 1, (using the obvious generalisation to A∞ of our previousnotation)
lim

n→∞

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

1H(ξ1tn) · · · 1H

(

ξNtn
tn

) ∣

∣N0 = j, ξ10 = x1

√
n, . . . , ξj

0 = xj

√
n
]

= lim
n→∞

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

1H(ξn,1
t ) · · · 1H

(

ξ
n,Nn

t
t

)∣

∣Nn
0 = j, ξn,1

0 = x1, . . . , ξ
n,j
0 = xj

]

=

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

1H(ξ∞,1
t ) · · · 1H

(

ξ
∞,N∞

t
t

) ∣

∣N∞
0 = j, ξ∞,1

0 = x1, . . . , ξ
∞,j
0 = xj

]

.Now, Theorem 4.1 in [Eva97℄ guarantees that there exists a unique Ξ-valued Markov proessstarting from (the equivalene lass of) 1H(x) and dual to A∞ through the relations (8). Let usall this proess ρ(2). Using the more ompat notation of �3.1, we obtain that for every j ∈ Nand ψ ∈ C((Rd)j) ∩ L1(dx⊗j),
lim

n→∞
E
[

Ij(ρ
n
t ; ψ)

]

= E
[

Ij(ρ
(2)
t ; ψ)

]

.Sine this family of test funtions in dense in C(Ξ) (.f. �3.1), we an onlude that ρn
t

L→ ρ
(2)
tas n → ∞. It is then straightforward to hek that the onditions of Lemma 7 (i) are satis�ed,and so for a.e. x ∈ R

d, w(2)(t, x) is a Bernoulli random variable with parameter
Px

[

ξ∞t ∈ H
]

= Px

[

Xσ2t ∈ H
]

= p2(t, x).Moreover, by Lemma 8 and (9), the orrelations between the values of w(2)(t, ·) at di�erent sitesan be desribed as follows. For every j ∈ N and Lebesgue-a.e. (x1, . . . , xj),
E
[

w(2) (t, x1) . . . w
(2)(t, xj)

]

= E

[

w(2)(0, ξ∞,1
t ) · · ·w(2)

(

0, ξ
∞,N∞

t
t

)

∣

∣

∣
N∞

0 = j, ξ∞,1
0 = x1, . . . , ξ

∞,j
0 = xj

]

= P

[

ξ∞,i
t ∈ H, ∀i ∈ {1, . . . ,N∞

t }
∣

∣

∣
N∞

0 = j, ξ∞,1
0 = x1, . . . , ξ

∞,j
0 = xj

]

. (15)Sine we are dealing with Bernoulli random variables, equation (15) ompletely haraterizesthese orrelations.If d ≥ 2, by the same hain of arguments (using this time Lemma 9), we obtain
lim

n→∞

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)E
[

1H(ξ1tn) · · · 1H(ξNtn
tn )

∣

∣N0 = j, ξ10 = x1

√
n, . . . , ξj

0 = xj

√
n
]

=

∫

(Rd)j

dx1 . . . dxj ψ(x1, . . . , xj)Px1

[

ξ∞,1
t ∈ H

]

· · ·Pxj

[

ξ∞,j
t ∈ H

]

.Here again, these equalities guarantee the onvergene in law of ρn
t towards the value at time tof the unique Ξ-valued Markov proess ρ(2) starting from 1H(x) and dual to the system A∞ of15



independent Brownian motions whih never oalese. Lemma 7 (ii) then applies and gives usthat for a.e. x ∈ R
d, w(2)(t, x) is the deterministi onstant p2(t, x).So far, we have obtained the desired onvergene at a given time t > 0, and the form of theloal densities of 1's in the limit. It remains to show that the onvergene holds true for �nitelymany times 0 ≤ t1 ≤ · · · ≤ tk. Beause funtions of the form Ij(· ; ψ) are dense in C(Ξ), we needonly show that for every j1, . . . , jk and ψ1, . . . , ψk,

lim
n→∞

E

[ k
∏

i=1

Iji

(

ρn
ti ; ψi

)

]

= E

[ k
∏

i=1

Iji

(

ρ
(2)
ti

; ψi

)

]

. (16)Therefore, let us �x j1, . . . , jk and ψ1, . . . , ψk suh that ψi ∈ C((Rd)ji) ∩ L1(dx⊗ji). To simplifynotation, we write xi for the vetor (xi
1, . . . , x

i
ji
) and W n

i (xi) for the produt ∏ji

l=1 w
n(ti, x

i
l).Our strategy is to use duality again, but now with the genealogial proess desribed in theseond part of Lemmas 8 and 9. One again, to simplify our notation, let us denote the law of

An (resp., An
t ) starting from j lineages at loations x = (x1, . . . , xj) by P

n
x (resp., P

n
x,t). Usingthe Markov property of w at time tk−1n and the duality property (8), we an write

E

[ k
∏

i=1

Iji

(

ρn
ti ; ψi

)

]

=

∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)

×E

[{ k−1
∏

i=1

W n
i

(

xi
)

}

P
n
xk

[

wn
(

tk−1, ξ
n,1
tk−tk−1

)

· · · wn
(

tk−1, ξ
n,Nn

tk−tk−1
tk−tk−1

)]

]

=

∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)

∫

dPn
xk,tk−tk−1

(

mk−1, y
k−1
1 , . . . , yk−1

mk−1

)

E

[{ k−2
∏

i=1

W n
i

(

xi
)

}

wn
(

tk−1, x
k−1
1

)

· · ·wn
(

tk−1, x
k−1
jk−1

)

wn
(

tk−1, y
k−1
1

)

· · · wn
(

tk−1, y
k−1
mk−1

)

]

.Sine the law of the loations at time tk − tk−1 of the Nn
tk−tk−1

lineages is absolutely ontinuouswith respet to Lebesgue measure, we an arry on the reursion and use the Markov property(this time at time tk−2) and duality to write the quantity above as
∫

. . .

∫

dx1 · · · dxk ψ1(x
1) · · ·ψk(x

k)
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. (17)Now, reall the family of proesses Ân introdued in the seond part of Lemmas 8 and 9. Letus denote the times of appearane and the loations of the additional lineages in the form16



(τ1, z
1), . . . , (τk, z

k). Using (reursively) the Markov property of Ân, we obtain that the quantityon the right-hand side of (17) is equal to
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]

.Let us now onlude when d = 1 (the reasoning is exatly the same when d ≥ 2). Reall that forevery n ∈ N, wn(0, ·) = 1H(·) = w(2)(0, ·). By the seond part of Lemma 8 and the DominatedConvergene Theorem (and the fat that the frontier of H has zero Lebesgue measure), we obtainthat
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.Analogous alulations using the duality between A∞ and ρ(2) lead to (16). This ompletes theproof of Theorem 1. �It remains to prove Lemmas 8 and 9. Let us start with the latter, whih is somewhat simpler,but ontains the main ingredients of both proofs.Proof of Lemma 9. Let x1, . . . , xk be k distint points of R
d. Suppose that An starts from

k lineages at loations x1
√
n, . . . , xk

√
n. First, sine a single lineage ξ follows a �nite-ratehomogeneous jump proess whose jumps are uniformly bounded by 2r, standard argumentsguarantee that ξn = (n−1/2ξtn)t≥0 onverges in distribution to Brownian motion with lokspeed σ2 given in (7).Seond, observe that two lineages an be hit by the same event (and possibly oalese) onlyif they lie at distane at most 2r of eah other. Consequently, as long as they are at distanegreater than 2r they evolve independently, aording to the law of the motion of a single lineage.Hene, let us de�ne nτn to be the �rst time at whih at least two of the k initial lineages arewithin distane at most 2r of one another. Equivalently, τn is the �rst time at whih at leasttwo lineages of An are at separation at most 2r/

√
n. We wish to show that for any t ≥ 0,

P
n
x[τn ≤ t] → 0 as n→ ∞.To this end, note that until time τn, the motions of the resaled lineages ξn,1, . . . , ξn,k anbe embedded in the paths of independent standard Brownian motions X1, . . . ,Xk starting from
x1, . . . , xk (we use the same Brownian motions for all n). Indeed, for eah path i we proeed asfollows (this onstrution is in the spirit of the one-dimensional Skorokhod Embedding Theorem,see e.g. [Bil95℄). Let (Rn,i

j )j≥1 be a sequene of i.i.d. random variables (independent of Xi)distributed aording to the law of the radius of a typial jump of ξn, and let us de�ne asequene {sn
i,j, j ≥ 0} of random times, reursively, by1. sn

i,0 := 0,2. for every j ≥ 1, sn
i,j is the �rst time greater than sn

i,j−1 at whih Xi exits the ball
B
(

Xi
sn
i,j−1

, Rn,i
j

). 17



By rotational symmetry of the law of a jump of ξn,i, onditional on its radius being γ theloation of ξn,i just after the jump is uniformly distributed over the sphere ∂B(ξn,i
t− , γ). Likewise,onditional on the variable Rn,i

j being equal to γ, the loation of Xi
sn
i,j

is uniformly distributedover ∂B(Xi
sn
i,j−1

, γ). Consequently, by omparing their jump rates and their jump distributions,one an show that for every i ∈ {1, . . . , k} the proesses (ξn,i
t )t≥0 and (Xi

sn
i,j(n,i,t)

)

t≥0
have thesame laws, where (j(n, i, t))t≥0 is a Poisson proess with intensity nuVr (reall from (1) that

uVr is the jump rate of an unresaled lineage under the onditions of Case A, where Vr is thevolume of a ball of radius r). Sine the lineages ξn,1, . . . , ξn,j evolve independently until time τn,we an ask that the Poisson proesses {j(n, 1, ·), . . . , j(n, k, ·)} should be independent and theembedding holds for all i ∈ {1, . . . , k} simultaneously until the �rst time t suh that
∣

∣Xi
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−Xm
sn
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∣

∣ ≤ 2r/
√
n for some i 6= m.Now, eah resaled lineage makes jumps of size at most 2rn−1/2 at rate O(n). Hene, eahdi�erene sn

i,j − sn
i,j−1 is the exit time of Brownian motion from a ball of radius O(n−1/2), and

sn
i,j(n,i,t∧τn) is the sum of (morally) O(n) suh quantities, all independent of one another. Moreformally, if we write R for the (random) radius of a typial jump of an unresaled lineage andif we notie that the exit time of Brownian motion starting at 0 from a ball B(0, γ) is boundedby the �rst time that one of its oordinates leaves the interval [−γ, γ], then for all n ∈ N and all

1 ≤ i ≤ k we an write
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n
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≤ 4dr2

n
,where the �rst inequality uses the property that the exit time from [−γ, γ] of one-dimensionalBrownian motion starting at 0 has expetation γ2. By the independene of Xi and the Poissonproesses, this yields that for all n and i,

E
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i,j(n,i,t∧τn)

]

= E
[

j(n, i, t ∧ τn)
]

.E
[

sn
i,1

]

≤ 4duVrr
2.To onlude our proof, let us observe that P

n
x[τn ≤ t] is bounded by the probability thatat least two of the k independent Brownian motions X1, . . . ,Xk ome within distane 2rn−1/2before time min{sn

i,j(n,i,t), 1 ≤ i ≤ k}. But if τ̃n denotes the �rst time at whih two independentBrownian motions starting at x1 6= x2 ome within distane 2rn−1/2, for every T ≥ 0 we have
lim

n→∞
Px1,x2

[

τ̃n ≤ T
]

= 0.Hene, the probability that at least two out of k independent Brownian motions ome withindistane 2rn−1/2 before any given time T also tends to 0, and thanks to the uniform boundon the expetation of sn
i,j(n,i,t∧τn) (together with the Markov inequality), it is straightforward toobtain that for any t ≥ 0

lim
n→∞

P
n
x

[

τn ≤ t
]

= 0.We have thus shown that with probability growing to 1 as n→ ∞, until a given time t ≥ 0 the kanestral lineages evolve as if they were independent. Sine the law of eah ξn,i onverges to thatof Brownian motion with lok speed σ2, the onvergene of the one-dimensional distributionsof An to those of a olletion of k independent Brownian motions is proved.The proofs of the onvergene of the �nite-dimensional distributions and that of the seondpart of Lemma 9 follow the same lines, using the Markov property of eah An at suitable times.Details are left to the reader. �18



Proof of Lemma 8. One again we start with the one-dimensional distributions, and proeedby reursion on the number m of lineages of An. As in the proof of Lemma 9, before resalingeah lineage follows a homogeneous symmetri (�nite rate) jump proess, whose jumps havelength at most 2r, and so ξn = (n−1/2ξnt)t≥0 onverges in distribution to Brownian motion withlok speed σ2 as n tends to in�nity.Let us onsider the ase m = 2. As we saw in the proof of Lemma 9, the two resaledlineages evolve independently until they ome within distane 2rn−1/2 of one another. Let us �rstshow that this `meeting' time onverges to the meeting time (at distane 0) of two independentBrownian motions starting at x1 and x2 and with lok speed σ2, and seondly that oaleseneis quasi-instantaneous one the lineages are gathered at this distane.For the �rst laim, let us write τn for the time at whih ξn,1 and ξn,2 �rst ome withindistane at most 4rn−1/2 of one another (note the onstant 4 instead of 2, whih we shall needlater for purely tehnial reasons). Beause the motion of a single lineage is a symmetri jumpproess, until τn the law of the di�erene ξn,1 − ξn,2 is the same as that of the motion of asingle resaled lineage, run at speed 2. Let X be a standard one-dimensional Brownian motion,starting from x1 − x2 and independent of all ξn's. Using anew the onstrution introdued inthe proof of Lemma 9, for every n we an �nd a sequene of random times {sn
j , j ≥ 0} suh that

(ξn,1
t − ξn,2

t )t≥0 has the same law as (Xsn
j(n,t)

)t≥0, where j(n, ·) is a Poisson proess, independentof X and with intensity 4nru (that is, twie the jump rate of a single resaled lineage). Reallfrom the proof of Lemma 9 that for every n ∈ N, the random variables sn
j − sn

j−1, j ≥ 1, arei.i.d and if R is distributed like the radius of a typial jump of ξ, we have E[nsn
1 ] = E[R2] <∞.Let t ≥ 0, and, as a �rst step, let us show that sn

j(n,t) onverges in probability towards 2σ2tas n grows to in�nity. The seond step will then onsist of proving that, for every t ≥ 0, theprobability that τn > t tends to the probability that the hitting time of 0 by X is greater than
2σ2t. This will give us the desired result.By de�nition, j(n, t) is a Poisson random variable with parameter (4nur)t. By the CentralLimit Theorem, we therefore have that

n−1/2
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) (d)−→ N (0, 4urt). (18)Now, realling the properties of the sn
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i−1's expounded above, by the Strong Law of LargeNumbers we have
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) a.s.−→ 4urt× E[R2] as n→ ∞, (19)where ⌊z⌋ denotes the integer part of z. But σ2 is de�ned in (7) as the variane of the displaementat time 1 of a single unresaled lineage, and so
σ2 = 2urE[R2],whih shows that the limit in (19) is equal to 2σ2t. To onlude the �rst step, observe that
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As n → ∞, the �rst term on the right-hand side tends to 0 by (18), while Markov's inequalitygives us that
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εn1/4
−→ 0.Sine this is true for any ε > 0, sn

j(n,t) − sn
⌊4nurt⌋ onverges in probability to 0. But we haveshown that sn

⌊4nurt⌋ onverges a.s. to 2σ2t, and so we obtain that sn
j(n,t) onverges in probabilityto 2σ2t, as required.As explained above, we an now use this result to show that τn onverges in distribution tothe hitting time of 0 by (X2σ2t)t≥0. Indeed, by onstrution of the random times sn

i and the fatthat the resaled jumps of a lineage are bounded by 2r/
√
n, for any i ≥ 1 the Brownian motion

X annot move to a distane greater than 2r/
√
n from Xsn

i−1
before time sn

i . Thus, if τ0 denotesthe hitting time of 0 by X, we have
Px1−x2[τn > t] ≤ Px1−x2

[
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j(n,t)

]

.But we showed that sn
j(n,t) onverges in probability towards 2σ2t as n→ ∞, and so
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]

. (20)On the other hand, for every ε ∈ (0, |x1 − x2|/2) and every n large enough, we an write
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]
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]

.Again, we an dedue from the onvergene in probability of sn
j(n,t) to 2σ2t that

lim inf
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Px1−x2[τn > t] ≥ Px1−x2
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X does not enter B(0, ε) before 2σ2t
]

.This inequality holds for every small ε > 0, and by the point reurrene of one-dimensionalBrownian motion, we an onlude that
lim inf
n→∞

Px1−x2[τn > t] ≥ Px1−x2
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τ0 > 2σ2t
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. (21)Together with (20), we obtain that for every t > 0
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Px1−x2[τn > t] = Px1−x2

[

τ0 > 2σ2t
]

, (22)from whih we an onlude that the `meeting time at distane 4r/
√
n' of two resaled lineagesstarting at x1 and x2 onverges in distribution to the hitting time of 0 by Brownian motion withlok speed 2σ2, or equivalently to the meeting time of 2 independent Brownian motions eah oflok speed σ2.Let us now prove our seond laim; that is, let us show that one at distane at most

4r/
√
n, the additional time the two lineages need to merge beomes negligible as n tends toin�nity. Beause the proof is highly reminisent of that of Proposition 6.4(b) in [BEV10℄, weonly outline the main steps here. Let us work with the unresaled lineages, and suppose theystart at distane at most 4r of eah other. First, it is not di�ult to onvine oneself that the20



�rst time at whih the two lineages are at separation less than 2r is of order O(1), `uniformly'over all initial loations whih are at separation at most 4r. One lose together, they beomeorrelated, beause they an be hit by the same reprodution event. But for the same reason,they have a positive probability of being a�eted by the same event and of oalesing beforeseparating again to distane at least 2r. If they do oalese, the additional time they had towait for this event is also of order O(1). If they separate rather than oalesing, then again thetime they need to ome bak to separation less than 2r is of order O(1), and one `gathered'they have a positive hane to oalese before separating, and so on. In the end, the number ofexursions of ξ1− ξ2 out of B(0, 2r) before the two lineages merge an be stohastially boundedby a geometri random variable, and eah of the �nitely many exursions and inursions lasts atime of order O(1). This tells us that for every ε > 0, one an �nd T (ε) > 0 suh that
sup

|y1−y2|≤4r
P(y1,y2)

[

ξ1 and ξ2 do not coalesce before T (ε)
]

≤ ε.Rephrasing the above inequality in terms of the resaled lineages, we obtain that, for every n ≥ 1,
sup

|z1−z2|≤4r/
√

n

P(z1,z2)

[

ξn,1 and ξn,2 do not coalesce before T (ε)/n
]

≤ ε. (23)Finally, if τ c
n denotes the oalesene time of ξn,1 and ξn,2, using the strong Markov property of

(ξn,1, ξn,2) at time τn, we have, for every t > 0,
P(x1,x2)[τ

c
n − τn > t] = E(x1,x2)

[

1{τn<∞}P(ξn,1
τn ,ξn,2

τn )
[τ c

n > t]
]

.By (23), the probability inside the expetation tends to 0 as n → ∞, and so does the quantityon the left-hand side (by dominated onvergene). Hene, τ c
n − τn onverges to 0 in probability.This onludes the proof of the �rst part of Lemma 8 when m = 2: in the limit, the two lineagesfollow independent Brownian motions run at lok speed σ2 until the �rst time at whih theymeet, whih is also the time at whih they oalese by the onvergene of τ c

n − τn to 0.We now proeed by indution. Suppose we know that the result of Lemma 8 holds true fora system of m − 1 lineages. Let x1 < . . . < xm be m distint points of R and suppose that mlineages start from these loations. Beause the lineages `hoose' to take part in an event thatenompasses them independently of one another, the law of the restrition of the system startedfrom m lineages to that started from m − 1 lineages at x1, . . . , xm−1 is the same as that of the
(m− 1)-system starting from x1, . . . , xm−1. (This is the `onsisteny' of the genealogial proessdesribed below Lemma 7). Hene, our indutive hypothesis tells us that the restrited proessonverges to a system of (initially) m−1 independent Brownian motions with lok speed σ2, thatoalese instantaneously upon meeting. Now, as we explained several times already, the motionof the m-th lineage, starting at the right-most loation xm, is independent of that of the othersuntil the �rst time, τn, at whih it omes to within distane 2r/

√
n of another lineage. But withprobability tending to 1, the right-most lineage among those that started from x1, . . . , xm−1 is thelineage anestral to the individual sampled in xm−1. Indeed, our indutive hypothesis guaranteesthat the probability that the lineage starting from xm−1 jumps over a lineage on its left withoutoalesing with it tends to 0 as n tends to in�nity. Again by onsisteny of the genealogialproess, when singled out, the motion of lineage m− 1 has the same law as the proess ξn (thatis, a typial single lineage), and so we an fous on the two right-most lineages and use theresults obtained for m = 2 to onlude: their meeting time at distane at most 4r/

√
n onvergesin distribution to the meeting time of two independent Brownian motions run at lok speed σ2,and in the limit this meeting time is also the oalesene time of the two lineages. But this is21



preisely the evolution of a system of (initially) m independent Brownian motions whih oaleseinstantaneously when they meet, and so the desired onvergene also holds for a system startingwith m lineages.As in the proof of Lemma 9, the other points of Lemma 8 are obtained by using the onver-gene of the one-dimensional distributions and the Markov property at suitable times. �5 Heavy-tailed aseIn this setion, we prove Theorem 5 and give some properties of the limiting genealogial proess,whih are of independent interest. Reall that the fration of individuals a�eted by an eventis set onstant, equal to u ∈ (0, 1], and the radii of the events are sampled aording to theintensity measure
µ(dr) = r−α−d−1

1{r≥1} dr,where d is the dimension of the geographial spae.As in the proof of Theorem 1, due to the duality relations (8) we need only establish theasymptoti behaviour of the resaled genealogial proess (An
t )t≥0 of a �nite sample of individ-uals, de�ned in our previous notation by

An
t ≡

(

ξn,1
t , . . . , ξ

n,Nn
t

t

)

:=
(

n−1/αξ1nt, . . . , n
−1/αξNnt

nt

)

.In words, we speed up time by a fator n and sale down the spatial loations of the lineages by
n1/α. Indeed, if we an show that the �nite-dimensional distributions of An onverge to thoseof a system of oalesing proesses A∞ that has su�iently nie properties (i.e., whih an beused to onstrut a dual Ξ-valued proess ρ(α) using the tehnique of [Eva97℄), then the samearguments as those used in the proof of Theorem 1 will grant us the onvergene of the �nite-dimensional distributions of ρn to those of ρ(α). Then it will remain to show that A∞ satis�esthe onditions of Lemma 7(i) to obtain the desired form for the loal densities of 1's, w(α)(t, x),and to use (9) to haraterize the orrelations between these Bernoulli random variables. Hene,the ruial step is to prove the following proposition.Proposition 10. There exists a system A∞ of oalesing symmetri α-stable Lévy proessessuh that

An → A∞, as n→ ∞,in the sense of weak onvergene of the �nite-dimensional distributions. Moreover, if we de�nethe proess Ân and Â∞ in an analogous way to the orresponding proesses in Lemmas 8 and 9,we also have onvergene of the one-dimensional distributions of Ân to those of Â∞.Proof of Proposition 10. Our aim is to write down the generator Gn of An, and to show thatit onverges to the generator of a system of oalesing symmetri α-stable proesses. Up to now,we were able to be rather vague about the preise representation of the anestral lineages, butin order to write down a sensible generator we now need to be more preise. Suppose we startwith k lineages. The system at any time t ≥ 0 is represented by a marked partition of {1, . . . , k}.Eah blok of An
t ontains the labels of all individuals in the initial sample whih have the sameanestor at time t in the past (that is, whose anestral lineages merged before t), and the markassoiated to the blok gives the spatial loation of this anestor at time t.Sine only the lineages present in the area hit by an event an be a�eted by this event, forevery y ∈ R

d, r > 0 and every marked partition A let us write J(y, r,A) for the set of indies oflineages (bloks) of A whose mark belongs to B(y, r) (to index the bloks of A, we rank them in22



inreasing order of the smallest label that eah ontains). For onveniene, we shall also use thenotation Jn(y, r,A) := J(n−1/αy, n−1/αr,A). Next, if A ontains m bloks and I ⊂ {1, . . . ,m},then for every z ∈ R
d we write ΦI(A, z) for the marked partition obtained by merging all bloksof A indexed by i ∈ I and by assigning the mark z to this new blok (the other bloks andmarks remain unhanged). For instane, if A = {({1, 5}, x1), ({2, 3}, x2), ({4, 6}, x3), ({7}, x4)}and I = {1, 4}, then

ΦI(A, z) =
{

({1, 5, 7}, z), ({2, 3}, x2 ), ({4, 6}, x3)
}

.Finally, we write |I| for the ardinality of the set I, and we reall that Vr denotes the volume ofa ball of radius r.Beause lineages jump and merge at �nite rate, the generator G of the system of unresaledlineages (At)t≥0 an be expressed as follows. For every bounded measurable funtion f and everymarked partition A (of some �nite set {1, . . . , k}),
Gf(A) =

∫

Rd

dy

∫ ∞

0
µ(dr)

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A)

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

. (24)Indeed, if an event ours in B(y, r) and the parent is hosen at loation z, then every lineagepresent in this area is a�eted by the event with probability u, independently of eah other, andall lineages that are a�eted merge and jump onto the loation z of their parent.Mutiplying time by n and marks by n−1/α, we obtain from the expression in (24) that thegenerator of An is given, for every f and A as above, by
Gnf(A) = n

∫

Rd

dy

∫ ∞

0
µ(dr)

∫

B(y,r)

dz
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∑

I⊂Jn(y,r,A)

u|I|(1 − u)|J\I|
[

f(ΦI(A,n
−1/αz)) − f(A)

]

.To see where the sum omes from, observe that an unresaled mark belongs to B(y, r) i� itsresaled version belongs to B(n−αy, n−1/αr), and that the a�eted (resaled) lineages jumponto n−1/αz when their unresaled ounterparts jump to z. Making the hange of variables
z′ = n−1/αz, and then y′ = n−1/αy and r′ = n−1/αr, we obtain that Gn(A) is equal to
n1+ d

α

∫

Rd

dy

∫ ∞

1

dr

rα+d+1

∫

B(n−1/αy,n−1/αr)

dz

Vr

∑

I⊂Jn(y,r,A)

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

=

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A)

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

=

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A),|I|≥2

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

+

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

i∈J(y,r,A)

u(1 − u)|J |−1
[

f(Φ{i}(A, z)) − f(A)
]

. (25)Let us de�ne δ(A) as half of the minimal pairwise distane between marks in A (δ(A) := +∞if A ontains only one blok), and let us show that for every A suh that δ(A) > 0 and every fompatly supported and of lass C2 with respet to the marks, Gnf(A) onverges as n → ∞
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towards the quantity Gαf(A) de�ned by
Gαf(A)

:=

∫

Rd

dy

∫ ∞

0

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A),|I|≥2

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

+ u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

×
∫

B(y,r)

dz

Vr

[

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉1{|z−xi|≤1}
]

+ u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr
〈z − xi,∇if(A)〉1{|z−xi|≤1},(26)where |A| denotes the number of bloks of A, xi is the mark of the i-th blok, ∇if is the gradientof f with respet to xi and 〈·, ·〉 is the salar produt in R

d.We shall omment on the di�erent terms of Gαf(A) later. For now, let us show the desiredonvergene, as well as the �niteness of Gαf(A). Let us start with the �rst term on the right-hand side of (25). By de�nition of δ(A), a ball of radius r < δ(A) annot ontain more than 1lineage (mark), so that the integral over r runs in fat from n−1/α ∨ δ(A) to +∞. For n largeenough, this �rst term is thus equal to
∫

Rd

dy

∫ ∞

δ(A)

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A),|I|≥2

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

,and so is the �rst term of Gαf(A). Sine u ∈ (0, 1], f is bounded, the sum over I is �nite and sineany event loation B(y, r) must interset the ompat support of f to have a nonzero ontributionto the generator (so that we may restrit the integral over y to some ball B(0, r + ∆(f)) with
∆(f) depending only on f), there exists a onstant C(f) > 0, independent of A, suh that theabsolute value of the �rst term of Gαf(A) is bounded by

C(f) 2|A|
∫ ∞

δ(A)

dr

rα+d+1
rd <∞. (27)Now onsider the seond term on the right-hand side of (25). Let us split it one again into

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

i∈J(y,r,A)

u(1 − u)|J |−1

×
[

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉1{|z−xi|≤1}
] (28)

+

∫

Rd

dy

∫ ∞

n−1/α

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

i∈J(y,r,A)

u(1 − u)|J |−1〈z − xi,∇if(A)〉1{|z−xi|≤1}. (29)We rewrite ∑i∈J(y,r,A) as ∑|A|
i=1 1{xi∈B(y,r)}, and, for n large enough, we split the integral over

r ∈ [n−1/α,∞] in (29) into the integral over [n−1/α, δ(A)) and that over [δ(A),∞). The seondintegral is �nite for the same reasons as in (27). On the other hand, if r < δ(A) then J(y, r,A) ≤ 124



for every y, and so the �rst integral is equal to
u

|A|
∑

i=1

∫

Rd

dy

∫ δ(A)

n−1/α

dr

rα+d+1
1{xi∈B(y,r)}

∫

B(y,r)

dz

Vr
〈z − xi,∇if(A)〉1{|z−xi|≤1}

= u

|A|
∑

i=1

∫ δ(A)

n−1/α

dr

Vrrα+d+1

∫

B(xi,1)
dz

∫

Rd

dy 1{|xi−y|≤r}1{|z−y|≤r}〈z − xi,∇if(A)〉

= u

|A|
∑

i=1

∫ δ(A)

n−1/α

dr

Vrrα+d+1

∫

B(xi,1)
dz
(

Vol
(

B(xi, r) ∩B(z, r)
)

)

〈z − xi,∇if(A)〉,and, by symmetry, the integral over z is equal to 0 for every r. The integral in (29) is thus equalto
u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

δ(A)

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr
〈z − xi,∇if(A)〉1{|z−xi|≤1},and if we deompose the range (0,∞) over whih we integrate r in the third term of Gαf(A) into

(0, δ(A)) and [δ(A),∞), we �nd that the integral over the latter is equal to the quantity above.Finally, let us show that (28) onverges to the seond term of Gαf(A). This time, we split(28) into
u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

n−1/α

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr

(

f(Φ{i}(A, z)) − f(A)
)

1{|z−xi|>1}

+u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

n−1/α

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

×
∫

B(y,r)

dz

Vr

(

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉
)

1{|z−xi|≤1}.The �rst term is �nite for the same reasons as in (27), sine for the parent to be at distanegreater than 1 from the a�eted lineage, one must have r > 1/2. Now, using the same steps asabove, we obtain that the seond term is equal to
u

|A|
∑

i=1

∫

B(xi,1)
dz

∫ ∞

n−1/α∨ |z−xi|

2

dr

Vrrα+d+1

∫

B(z,r)∩B(xi,r)
dy (1 − u)|J(y,r,A)|−1

×
(

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉
)

. (30)But f is of lass C2 and has ompat support, and so we an �nd a onstant C̃(f) > 0, inde-pendent of A, suh that for every i and every z ∈ B(xi, 1),
∣

∣f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉
∣

∣ ≤ C̃(f)|z − xi|2.
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As a onsequene, the absolute value of the quantity in (30) is bounded by
uC̃

|A|
∑

i=1

∫

B(xi,1)
dz

∫ ∞

n−1/α∨ |z−xi|

2

dr

rα+d+1

Vol
(

B(z, r) ∩B(xi, r)
)

Vr
|z − xi|2

≤ uC ′|A|
∫

B(0,1)
dz |z|2

(

n−1/α ∨ (|z|/2)
)−α−d

= uC ′|A|
{

n1+ d
α

∫

B(0,2n−1/α)
dz |z|2 + 2α+d

∫

B(0,1)\B(0,2n−1/α)
dz |z|2−α−d

}

≤ C ′′|A|
{

n−
2−α

α + C ′′′(1 − n−
2−α

α
)}

, (31)where all the onstants appearing in this bound depend on f , d and α, but not on A. Sine
α < 2, (30) remains bounded as n→ ∞ and (28) onverges to
u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr

[

f(Φ{i}(A, z)) − f(A)

− 〈z − xi,∇if(A)〉1{|z−xi|≤1}
]

,whih is preisely the seond term of Gαf(A) (and is �nite aording to the analysis above).Traing bak our alulations, we see that for n large enough (suh that n−1/α < δ(A)) thedi�erene between Gnf(A) and Gαf(A) is equal to the di�erene between the quantity in (30)and its ounterpart in Gαf(A) (that is, the seond term of Gαf(A) in whih y is only integratedover B(xi, 1)). Hene, aording to (31), for every n > δ(A)−α

∣

∣Gnf(A) − Gαf(A)
∣

∣ ≤ cf (2|A| + |A|)n− 2−α
α ,where the onstant cf is again independent of A. Consequently, for every f whih is ompatlysupported and of lass C2 with respet to the marks, the funtion Gαf is bounded and theonvergene

lim
n→∞

sup
δ(A)>ε,|A|≤k

∣

∣Gnf(A) − Gαf(A)
∣

∣ = 0 (32)holds for any hoie of ε > 0 and k ∈ N.To onlude the proof of Proposition 10, let us use the following result, whose proof wepostpone for the sake of larity. For every ε > 0, let tε be the �rst time at whih at least twolineages lie at distane less than ε > 0 without having oalesed.Lemma 11. For every initial value A0 suh that δ(A0) > 0, we have
lim
ε→0

PA0[tε <∞] = 0. (33)As a onsequene, the martingale problem assoiated to (Gα, A0) has a unique solution (withàdlàg paths) for any initial value A0 satisfying δ(A0) > 0. Let us denote this solution by A∞.Then A∞ is a onsistent system of oalesing symmetri α-stable proesses.Let us suppose that Lemma 11 has been established, and verify that the onditions of The-orem 4.8.2(b) of [EK86℄ are then ful�lled. First, one an hek that the set of funtions fonsidered above is dense in the set of all bounded ontinuous funtions on marked partitions.We an thus restrit our attention to these partiular funtions. Seond, (33) enables us to use26



(32) and dominated onvergene to obtain that Condition (8.7) of Theorem 4.8.2(b) of [EK86℄is satis�ed, and onsequently that the �nite-dimensional distributions of An onverge weakly tothose of A∞ as n tends to in�nity. The arguments for the onvergene of the one-dimensionaldistributions of Ân are the same as in the ase with �xed radii, and so the proof of Proposition 10is now omplete. �Before proving Lemma 11, let us study some of properties of the `genealogial' proess A∞.Indeed, in order to use Lemma 7(a), we need to show that (10) holds. In fat we an be morepreise about the way oalesene ours.Lemma 12. Sample two individuals at separation x, and onsider their anestral lineages (Xt, t ≥
0), (Yt, t ≥ 0). Let

τ = inf{t ≥ 0 : Xs = Ys for all s ≥ t}be their oalesene time. Then τ < ∞ almost surely, and moreover, there exists a randomvariable Z, a.s. �nite and independent of x, suh that
τ � xαZ, (34)where � stands for stohasti domination.Proof of Lemma 12. In essene, the strategy of the proof onsists of showing that if the twolineages start at distane a > 0, they have some positive hane (independent of a) of oalesingbefore they either separate to a distane greater than 2a or ome within distane less than a/2 ofeah other. The dependene on xα in the lemma then omes from the fat that the time neededto oalese, or separate, or get loser by a fator of 2, is of the order of xα when the initialseparation is x.By translation invariane, we may assume without loss of generality that the origin of R

d sitsat the midpoint between X0 and Y0. Let T (x) be the �rst time that any point in B := B(0, x)is touhed by an event whose radius r is greater than x/4. Then T (x) is an exponential randomvariable whose rate λ(x) is given for every x > 0 by
λ(x) =

∫ ∞

x/4

dℓ

ℓd+1+α
Vol(B(0, x + ℓ)). (35)Indeed, reall the intensity measure (3) we introdued before resaling the proess. In the originalunits of time and spae, the rate at whih any point of the losed ball B(0, x) (x ≥ 4) is hit byan event of radius greater than x/4 is given by

∫

Rd

dz

∫ ∞

x/4

dℓ

ℓd+1+α
1{B(0,x)∩B(z,ℓ)6=∅} =

∫ ∞

x/4

dℓ

ℓd+1+α
Vol(B(0, x+ ℓ)).Multiplying this rate by n and looking at distanes of the form xn1/α, a simple hange of variablesgives us that for every x ≥ 4n−1/α, the resaled rate of interest is also equal to the expressionabove, independently of n. Passing to the limit n→ ∞ yields (35).Now, setting ℓ = rx we an write

λ(x) = x−d−α

∫ ∞

1/4

dr

rd+1+α
Vol(B(0, x+ rx))

= x−α

∫ ∞

1/4

dr

rd+1+α
Vol(B(0, 1 + r)) = Cx−α, (36)27



where the onstant C is independent of x.On the other hand, similar alulations enable us to see that the rate at whih B is entirelyontained within the area B(z, r) of an event is given by
∫

Rd

dz

∫ ∞

|z|+x

dℓ

ℓd+1+α
=

∫ ∞

x

dℓ

ℓd+1+α

∫

Rd

dz 1{|z|≤r−x}

= x−α

∫ ∞

1

dr

rd+1+α
Vol(B(0, r − 1)) = C ′x−α,where we used the same hange of variable as before and C ′ > 0 is again independent of x. Asa onsequene, with probability p0 := C ′/C independent of x, the �rst event of radius greaterthan x/4 that hits at least one point of B atually overs the whole ball. Moreover, (36) alsoimplies that for arbitrary q ≥ 1/4, the radius R(x) of the event ourring at time T (x) satis�es

P(R(x) > qx) ≤ cq−α, (37)for some onstant c whih does not depend on x or q.Let X̃, Ỹ be the motion of the lineages as governed by all the events exept those that a�etsome point in B and whose radius is greater than x/4. Then by the Poisson point proessformulation of the reprodution events, T (x) is independent from X̃, Ỹ and (Xt, Yt, t < T (x))oinides with (X̃t, Ỹt, t < T (x)). Let S(x) := inf{t ≥ 0 : D̃t ≤ x/2 or X̃t /∈ B or Ỹt /∈ B}, where
Dt = |X̃t − Ỹt|. Fix δ > 0, and de�ne the following events:

E := {T (x) ≤ δxα}, F := {S(x) ≥ δxα}.Then E and F are independent, and by (36) there exists p(δ) > 0 suh that P(E) = p(δ) forall x > 0. A similar property holds for F . Indeed, note �rst that up until the time S(x), thetrajetories X̃ and Ỹ are independent, sine the trajetories an only move as a result of eventsourring in neessarily disjoint regions of spae. Moreover, using e.g. the generator (40) withradii trunated at x/4, it is easy to hek that
(1

x
X̃txα∧S(x),

1

x
Ỹtxα∧S(x)

)

t≥0has the same distribution as the pair (X̃t∧S(1), Ỹt∧S(1))t≥0 obtained by taking x = 1: bothoordinates of this proess perform independent stable Lévy proesses where eah jump greaterthan 1/4 ourring in B(0, 1) is removed, and the proess is stopped when either oordinateleaves B(0, 1) or they ome within distane 1/2 of one another. Hene for all x > 0, P(S(x) ≥
δxα) = P(S(1) ≥ δ) =: q(δ), and q(δ) > 0 whenever δ is hosen small enough.Let us denote the entre, radius and impat parameter of the event taking plae at time T (x)by (Z(x), R(x), u). We shall say that a suess ours if both E and F our, and if(a) B(0, x) ⊂ B(Z(x), R(x)),(b) both XT (x), YT (x) are both a�eted by the event ourring at time T (x) (this is possiblesine under these assumptions, XT (x) and YT (x) are still both in B(0, x) whih is entirelyovered by the event.)Note that by the above disussion,

℘ := P( suess ) = p(δ)q(δ)p0u
2, (38)28



independently of x > 0.If a suess did not our, we say that a failure has ourred. Sine the suess probabilityis independent of x and the waiting time between two attempts is always stohastially boundedby an exponential random variable of the form T (y) (whih is a.s. �nite), we dedue that aftera Geometri(℘) number N of attempts, suess is guaranteed, hene τ < ∞ almost surely.Moreover, in the ase of failure, onsider the mutual distane DT (x)∧S(x) between the two lineagesat time T (x) ∧ S(x). Then DT (x)∧S(x) ≤ 2x+R(x). From (37) we an dedue that there existsa random variable R, independent of x and a.s. �nite, suh that 2 +R(x)/x � R in the sense ofstohasti domination. Let R1, R2, . . . be a sequene of i.i.d. random variables with distribution
R. The strong Markov property and (36) then show that

τ � xα
{

E [C] + E
[

CR−α
1

]

+ . . .+ E
[

C(R1 · · ·RN )−α
]

}

,where E [y] stands for an exponential random variable with parameter y and all the above expo-nential random variables are onditionally independent given their arguments. De�ne Z as therandom variable within the urly brakets to onlude. �Remark 13. The system A∞ inherits the onsisteny property from its onstrution as thelimit of An (this property an also be shown diretly from the generator of A∞). Hene, anotable onsequene of Lemma 12 is that any �nite sample of lineages �nds its most reentommon anestor in �nite time with probability one. The same kind of behaviour, as well as theonvergene of the forwards-in-time proess to a �eld of orrelated Bernoulli random variables,was already observed by Evans in the ase where the genealogial proess of his ontinuous sitesstepping-stone model is a system of one-dimensional independent α-stable motions oalesinginstantly upon meeting. See �5 in [Eva97℄ for a full desription of his results. However, theunderlying mehanisms are quite di�erent here. Not only does Lemma 12 hold for any α ∈ (1, 2)and any dimension, whih annot be the ase in Evans' framework sine two independent stableproesses may not meet, but even in dimension 1 the way lineages oalese is di�erent: the limitin (33) shows that two lineages of A∞ have no hane to meet, but their oalesene is due tothe fat that large events of the appropriate size are just frequent enough to ath them evenwhen they are very far from eah other. As a last onsequene, it is then possible to see multiplemergers during the evolution of A∞, whih is not the ase when the α-stable proesses moveindependently of eah other and oalese only when they meet.Let us now �nish with the proof of Lemma 11 and of Theorem 5. Reall that for any markedpartition A, δ(A) stands for half the minimum distane between two marks in A (δ(A) = +∞ if
A has only one blok).Proof of Lemma 11. Beause most of the ideas and omputations we shall use to establish(33) are developed in detail in the proof of Lemma 12, we only present an outline here and referto that proof for more preise arguments. Sine we always deal with partitions of some �nite set,it is su�ient to show the result when A0 onsists of just two bloks starting at some positiveseparation.If x > 0 denotes the initial distane between our two lineages, let us all T (x) the �rst timeat whih any of the lineages is in the geographial area of an event of radius greater than x/4,and let us all S(x) the �rst time at whih the distane between the two lineages is greaterthan 2x, or less than x/2. Notie that the lineages evolve independently until the random time
T (x)∧S(x), sine they are hit by events that are neessarily disjoint until that time. Moreover,they both move aording to the law of a symmetri α-stable proess whose large jumps havebeen trunated (see (40) below). Hene it is not di�ult to show that S(x) is of the order of29



xα, and so is T (x), while the oalesene rate of two lineages at distane x is ommensuratewith x−α. Using the more areful analysis performed in the proof of Lemma 12, we an in fatonlude that the probability p0 that the two lineages oalese before their distane doubles oris divided by two is not only positive, but also independent of x. Together with the fat that
T (y) ∧ S(y) is a.s. �nite for every y > 0 (for reasons expounded in Lemma 12), the number ofattempts before sueeding to oalese is a geometri random variable with parameter p0, whihwe shall denote by N .As a seond step, suppose that the lineages fail to oalese at time T (x) ∧ S(x). The newloation of the lineage whih jumps at that time (at most one of them jumps, otherwise theywould oalese) is uniformly distributed over the area of the event, and sine the lineages are atdistane at least x/2 from eah other just before T (x)∧S(x) a small alulation using the salingproperties of the evolution mehanism shows that the probability π(η) that their new distaneat that time is less than ηx satis�es(a) π(η) is independent of x,(b) limη→0 π(η) = 0.As a onsequene, if η ∈ (0, 1/10) and k ∈ N, we an write

PA0

[oal. before distane dereases by ηk
]

≥ E
[

(1 − π(η))N−1
1{N<k}

]

. (39)Note in passing that, by monotoniity, the same inequality holds if we replae ηk by any ε ≤ ηk.Let us now draw some onlusions from these observations. We �x c > 0, and hoose k(c)and η(c) suh that for every k ≥ k(c) and η ≤ η(c),
P[N ≥ k] ≤ c

2
and E

[

(1 − π(η))N−1
]

≥ 1 − c

2
.Then, using the fat that the event desribed in the left-hand side of (39) implies tε = +∞ forevery ε ≤ ηkx, we have that, for every suh ε,

PA0[tε = ∞] ≥ 1 − c

2
− c

2
= 1 − c.Sine c was arbitrary, (33) follows.As regards the seond part of Lemma 11, reall from (26) that the operator Gα is de�ned,for every funtion f of lass C2 with ompat support and every marked partition A satisfying

δ(A) > 0, by
Gαf(A) =

∫

Rd

dy

∫ ∞

δ(A)

dr

rα+d+1

∫

B(y,r)

dz

Vr

∑

I⊂J(y,r,A),|I|≥2

u|I|(1 − u)|J\I|
[

f(ΦI(A, z)) − f(A)
]

+ u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

×
∫

B(y,r)

dz

Vr

[

f(Φ{i}(A, z)) − f(A) − 〈z − xi,∇if(A)〉1{|z−xi|≤1}
]

+u

|A|
∑

i=1

∫

Rd

dy

∫ ∞

0

1{xi∈B(y,r)}dr

rα+d+1
(1 − u)|J(y,r,A)|−1

∫

B(y,r)

dz

Vr
〈z − xi,∇if(A)〉1{|z−xi|≤1}.30



In partiular, if A = {(b1, x1)} ontains only one blok and if f is a funtion of its mark only,then Gαf(A) is equal to
u

∫

Rd

dy

∫ ∞

0

1{x1∈B(y,r)}dr

rα+d+1

∫

B(y,r)

dz

Vr

[

f(z) − f(x1) − 〈z − x1,∇f(x1)〉1{|z−x1|≤1}
]

+ u

∫

Rd

dy

∫ ∞

0

1{x1∈B(y,r)}dr

rα+d+1

∫

B(y,r)

dz

Vr
〈z − x1,∇f(x1)〉1{|z−x1|≤1}

= u

∫

Rd

dz

(

∫ ∞

0

dr

rα+d+1

Vol
(

B(z, r) ∩B(x1, r)
)

Vr

)

[

f(z) − f(x1) − 〈z − x1,∇f(x1)〉1{|z−x1|≤1}
]

+ u

∫

Rd

dz

(

∫ ∞

0

dr

rα+d+1

Vol
(

B(z, r) ∩B(x1, r)
)

Vr

)

〈z − x1,∇f(x1)〉1{|z−x1|≤1}.Beause the intensity ι(z) assoiated to z ∈ R
d depends only on |z|, the seond term is zero (bysymmetry) and

Gαf(A) =

∫

Rd

dz ι(z)
(

f(z) − f(x1)
)

. (40)Now, one an hek that for any k > 0

k ι(zk−1/α) d(zk−1/α) = ι(z) dzand so the motion of a single lineage is a symmetri α-stable Lévy proess.When there are at least two bloks, as long as δ(A∞
t ) > 0 the �rst term of Gαf(A∞

t ) is �niteand learly represents the merger and jump at �nite rate of several bloks of A∞. However, theoalesene rate of two lineages at distane ε is equal to
u2

∫

Rd

dy

∫ ∞

ε/2

dr

rα+d+1
1{x1,x2∈B(y,r)} = u2

∫ ∞

ε/2

dr

rα+d+1
Vol
(

B(x1, r) ∩B(x2, r)
)

∝ ε−αas ε→ 0, and so one an prove the existene of the proess A∞ only up to tε, for any ε > 0. Yet(33) is atually more than what is required to invoke Theorem 4.6.3 in [EK86℄ and omplete theproof of existene of A∞. �Proof of Theorem 5. There is nothing else to do. Duality and the onvergene of An give usthe onvergene of ρn exatly as in the proof of Theorem 1. Lemma 12 is su�ient to show that(10) holds and so the limiting densities w(α)(t, x) are Bernoulli random variables as stated. �Referenes[BEV10℄ N.H. Barton, A.M. Etheridge and A. Véber (2010). A new model for evolution in aspatial ontinuum. Eletron. J. Probab., 15:162�216.[BKE10℄ N. H. Barton, J. Kelleher and A. M. Etheridge (2010). A new model for large-salepopulation dynamis: quantifying phylogeography. Evolution, 64:2701�2715.[BLG03℄ Bertoin, J. and Le Gall, J.-F. (2003). Stohasti �ows assoiated to oalesent proesses.Probab. Theory Related Fields, 126:261�288.[Bil95℄ P. Billingsley (1995). Probability and Measure. Wiley.31
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