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CENTRE DE MATHÉMATIQUES APPLIQUÉES
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Faddeev eigenfunctions for point potentials in
two dimensions ∗

P.G. Grinevich † R.G.Novikov‡

Abstract

We present explicit formulas for the Faddeev eigenfunctions and
related generalized scattering data for point (delta-type) potentials in
two dimensions. In particular, we obtain the first explicit examples of
such eigenfunctions with contour singularity in spectral parameter at
a fixed real energy.

1 Introduction

Consider the two-dimensional Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ R2, (1)

where v(x) is a real-valued sufficiently regular function on R2 with sufficient
decay at infinity.

For (1) we consider the classical scattering eigenfunctions ψ+ specified by

ψ+ = eikx − iπ
√

2πe−
iπ
4 f

(
k, |k| x

|x|

)
ei|k||x|√
|k||x|

+ o

(
1√
|x|

)
, as |x| → ∞,

(2)
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k ∈ R2, k2 = E > 0, where a priori unknown function f(k, l), k, l ∈ R2,
k2 = l2 = E, arising in (2), is the classical scattering amplitude for (1). In
addition, we consider the Faddeev eigenfunctions ψ for (1) (see [7], [13], [9]),
specified by

ψ = eikx (1 + o(1)) as |x| → ∞, (3)

k ∈ C2, Im k 6= 0, k2 = E. The generalized scattering data arise in more
precise version of the expansion (3) (see also formulas (7)-(12)). The Faddeev
eigenfunctions are quite important for inverse scattering (see, for example,
[8], [12], [9]).

In addition, as regards basic results on inverse scattering at fixed energy
in two dimensions see [10], [5], [11], [13], [14], [9] and references therein. In
addition, as regards potentials, for which direct and inverse scattering at
fixed energy in two dimensions is exactly solvable see [9], [15] and references
therein.

However, modern monochromatic 2D inverse scattering is well-developed
under the assumption, that the Faddeev eigenfunctions has no singularities
in spectral parameter at fixed energy in complex domain. Due to [11] this
condition is restrictive. In particular, in [11] it was shown, that at a negative
energy E above the ground state one can expect contour singularities in the
complex plane of spectral parameter λ, in typical situation. But the theory
of generalized analytic functions, used for monochromatic inverse scattering
(see equations (17)-(19) on Faddeev eigenfunctions) is not developed for such
singularities.

In addition, no example of potential, for which direct and inverse scat-
tering in two dimensions is explicitly solvable for each energy from some
non-empty open interval, was given in literature. Besides, no example of
potential, for which the Faddeev eigenfunctions at a fixed energy in two di-
mensions are calculated explicitly and have the aforementioned contour sin-
gularities, was given in literature. May be the latter example for zero energy
can be extracted from [15] (private communication by I.A. Taimanov).

In the present article we consider equation (1), where v(x) is the 2-
dimensional analog of the 3-dimensional point potential of Zeldovich [16]
and Berezin-Faddeev [4]. Following [4] we will write

v(x) = εδ(x), (4)

but the precise sense of this potential will be specified below (see Section 3),
and strictly speaking, δ(x) is not the standard Dirac delta-function. We show,
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that this potential can be considered as an explicitly solvable model for direct
and inverse scattering for (1) at each real energy E. In particular, we obtain
explicit formulas for related Faddeev eigenfunctions. These eigenfunctions
have the aforementioned contour singularities in spectral parameter λ if |E|
is sufficiently small. We hope, that this example will help to find correct
formulation of monochromatic inverse scattering in two dimensions in the
presence of spectral contour singularities.

Generalizations of the results of the present article for a sum of several
point potentials in 2D and in 3D will be given elsewhere.

2 Some preliminaries

It is convenient to write
ψ = eikxµ, (5)

where ψ solves (3) and µ solves

−∆µ− 2ik∇µ+ v(x)µ = 0, k ∈ C2, k2 = E. (6)

In addition, to relate eigenfunctions and scattering data it is convenient
to use the following presentations, used, for example, in [14] for regular po-
tentials:

µ+(x, k) = 1−
∫
R2

eiξxF (k,−ξ)
ξ2 + 2(k + i0k)ξ

dξ, k ∈ R2\0, (7)

µ±(x, k) = 1−
∫
R2

eiξxH±(k,−ξ)
ξ2 + 2(k ± i0k⊥)ξ

dξ, k ∈ R2\0, (8)

where k⊥ = (−k2, k1) for k = (k1, k2),

µ(x, k) = 1−
∫
R2

eiξxH(k,−ξ)
ξ2 + 2kξ

dξ, k ∈ C2, Im k 6= 0, (9)

where ψ+ = eikxµ+ are the eigenfunctions, specified by (2), ψ = eikxµ are
the eigenfunctions, specified by (3), µ±(x, k) = µ(x, k ± i0k⊥), k ∈ R2\0.

The following formulas holds:

f(k, l) = F (k, k − l), k, l ∈ R2, k2 = l2 = E > 0, (10)
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h±(k, l) = H±(k, k − l), k, l ∈ R2, k2 = l2 = E > 0, (11)

a(k) = H(k, 0), b(k) = H(k, 2 Re k), k ∈ C2\R2, k2 = E ∈ R, (12)

where f(k, l) is the classical scattering amplitude (2), h±(k, l), a(k), b(k) are
Faddeev generalized scattering data.

Let us recall, that the fixed energy surface ΣE = {k ∈ C2 : k2 = E} can
be parametrized as follows:

Σ0 = Σ+
0 ∪ Σ−

0 , Σ±
0 = {k±0 (λ) = (λ,±iλ) : λ ∈ C}, (13)

ΣE =

{
kE(λ) =

((
1

λ
+ λ

) √
E

2
,

(
1

λ
− λ

)
i
√
E

2

)
: λ ∈ C

}
, E 6= 0. (14)

In addition:
|Re k±0 (λ)|+ | Im k±0 (λ)| = 2|λ|, (15)

|Re kE(λ)|+ | Im kE(λ)| =

{√
|E||λ|, |λ| ≥ 1,√
|E||λ|−1, |λ| < 1,

E 6= 0. (16)

Note, that for regular real-valued potentials the following formulas hold
(at least outside the singularities of Faddeev functions in spectral parameter):

∂

∂λ̄
ψ(x, kE(λ)) =

π sign(λλ̄− 1)

λ̄
b(kE(λ))ψ(x, kE(λ)), E < 0 λ ∈ C, (17)

∂

∂λ̄
ψ(x, k±0 (λ)) =

π

λ̄
b(k±0 (λ))ψ(x, k±0 (λ)), λ ∈ C\0, (18)

∂

∂λ̄
ψ(x, kE(λ)) =

π sign(λλ̄− 1)

λ̄
b(kE(λ))ψ(x, kE(λ)), E > 0, λ ∈ C, |λ| 6= 1,

(19)

ψ±(x, kE(λ)) = ψ+(x, kE(λ)) + πi

∫
|λ′|=1

h±(kE(λ), kE(λ′))×

× χ+

(
±i
(
λ

λ′
− λ′

λ

))
ψ+(x, kE(λ′))|dλ′|, E > 0, λ, λ′ ∈ C, |λ| = 1,

(20)

6



h±(kE(λ), kE(λ′))− πi

∫
|λ′′|=1

h±(kE(λ), kE(λ′′))χ+

(
±i
(
λ

λ′′
− λ′′

λ

))
×

× f(kE(λ′′), kE(λ′))|dλ′′| = f(kE(λ), kE(λ′)), (21)

E > 0, λ, λ′, λ′′ ∈ C, |λ| = |λ′| = 1,

µ(x, kE(λ)) → 1 for λ→∞, E ∈ R, (22)

where
χ+(s) = 1 for s > 0, χ+(s) = 0 for s ≤ 0,

and µ is related with ψ as in (5); see [10], [5], [11], [13], [9] and references
therein. In particular, formulas of the type (20), (21) go back to [8], formulas
of the type (17)-(19) go back to [1], [3] . In addition, let us recall that formulas
(17)-(22) give a basis for monochromatic inverse scattering for regular real-
valued potentials in two dimensions.

3 Main results

By analogy with [4] we understand the point-like potential v(x) from (4) as
a limit for N → +∞ of non-local potentials VN(x, x′) = ε(N)uN(x)uN(x′)
where,

(VNµ)(x) = ε(N)

∫
R2

uN(x)uN(x′)µ(x′)dx′, (23)

uN(x) =

(
1

2π

)2 ∫
R2

ûN(ξ)eiξxdξ, ûN(ξ) =

{
1 |ξ| ≤ N,

0 |ξ| > N,
(24)

ε(N) is normalizing constant specified by (29).
For v = VN equation (6) has the following explicit solutions:

µN(x, k) = 1 +

(
1

2π

)2 ∫
R2

µ̃N(ξ, k)eiξxdξ, (25)

µ̃N(ξ, k) = − ε(N)uN(0)uN(ξ)

1 + ε(N)
(

1
2π

)2 ∫
R2

uN (−ζ)uN (ζ)
ζ2+2kζ

dζ
· 1

ξ2 + 2kξ
, (26)
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where x ∈ R2, ξ ∈ R2, k ∈ C2, Im k 6= 0. In addition, equation (6) has the
following classical scattering solutions:

µ+
N(x, k) = µN(x, k + i0k), x ∈ R2, k ∈ R2\0, (27)

arising from

µ̃+
N(ξ, k) = µ̃N(ξ, k + i0k), ξ ∈ R2, k ∈ R2\0. (28)

Theorem 1 Let
ε(N) =

α

1− α
2π

ln(N)
, α ∈ R. (29)

Then:

1. The limiting eigenfunctions

ψ(x, k) = eikx lim
N→+∞

µN(x, k), ψ+(x, k) = eikx lim
N→+∞

µ+
N(x, k) (30)

are well-defined for x ∈ R2 and k as indicated for (2), (3).

2. The following formulas hold:

ψ(x, k) = eikx

[
1 +

α

1− α
2π

ln(|Re k|+ | Im k|)
· g(x, k)

]
, (31)

g(x, k) = −
(

1

2π

)2 ∫
R2

eiξx

ξ2 + 2kξ
dξ, k ∈ C2, Im k 6= 0, k2 = E ∈ R;

(32)

ψ+(x, k) = eikx

[
1 +

α

1 + α
4π

(πi− 2 ln |k|)
· g+(x, k)

]
, (33)

g+(x, k) = −
(

1

2π

)2 ∫
R2

eiξx

ξ2 + 2(k + i0k)ξ
dξ, k ∈ R2, k 6= 0; (34)

ψ±(x, k) = ψ(x, k ± i0k⊥) = eikx

[
1 +

α

1− α
2π

ln |k|
· g±(x, k)

]
, (35)

g±(x, k) = −
(

1

2π

)2 ∫
R2

eiξx

ξ2 + 2(k ± i0k⊥)ξ
dξ, k ∈ R2, k 6= 0. (36)
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3. The scattering data for the limiting potential v = lim
N→+∞

VN , associated

with the limiting eigenfunctions ψ+(x, k), ψ±(x, k), ψ(x, k) are given
by:

f(k, l) =

(
1

2π

)2
α

1 + α
4π

(πi− 2 ln |k|)
, (37)

h±(k, l) =

(
1

2π

)2
α

1− α
2π

ln(|k|)
, (38)

where k, l ∈ R2, k2 = l2 = E > 0;

a(k) = b(k) =

(
1

2π

)2
α

1− α
2π

ln(|Re k|+ | Im k|)
, (39)

where k ∈ C2, Im k 6= 0, k2 = E ∈ R.

Remark 1 Relations between the absolute value of the scattering amplitude
f and its phase for a two-dimensional point-like scatterer was given earlier
in [6], see also [2] for further development. To our knowledge no exact for-
mulas for the Faddeev eigenfunctions ψ and related scattering data a(k), b(k)
associated with 2D point potentials were given in the literature.

Proposition 1 Formulas (17)-(22) are fulfilled for functions ψ = eikxµ,
ψ+ = eikxµ+, ψ± = eikxµ±, a, b, f , h± of Theorem 1, at least for x 6= 0.

In addition, quite interesting properties of these functions for α 6= 0 can be
summarized as the following statement:

Statement 1 Let α 6= 0, E1 = − exp
(

4π
α

)
, x 6= 0. Then:

1. If E < E1, then the functions µ(x, kE(λ)), a(kE(λ)), b(kE(λ)) are con-
tinuous in λ ∈ (C ∪∞).

2. If E = E1, then the functions µ(x, kE(λ)), a(kE(λ)), b(kE(λ)) are sin-
gular in λ on the contour

CE1,α = T = {λ ∈ C : |λ| = 1}

and are continuous in λ ∈ (C ∪ ∞)\T . In addition, this energy level
E1 is discrete eigenvalue with eigenfunction

ψ1(x) = −
(

1

2π

)2 ∫
R2

eiξx

ξ2 − E1

dξ. (40)
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3. If E1 < E < 0, then the functions µ(x, kE(λ)), a(kE(λ)), b(kE(λ)) have
simple singularities in λ on the contours

CE,α =
{
λ ∈ C : |λ| =

√
|E/E1|

}
∪
{
λ ∈ C : |λ| =

√
|E1/E|

}
and are continuous in λ ∈ (C ∪∞)\CE,α.

4. At zero energy E = 0 the functions µ(x, k±0 (λ)), a(k±0 (λ)), b(k±0 (λ))
have simple singularities in λ on the contour

C0,α =

{
λ ∈ C : |λ| = 1

2

√
|E1|

}
and are continuous in λ ∈ C\(C0,α ∪ 0) on both components Σ+

0 , Σ−
0 .

5. If 0 < E < |E1|, then the functions µ(x, kE(λ)), a(kE(λ)), b(kE(λ))
have simple singularities in λ on the contours

CE,α =
{
λ ∈ C : |λ| =

√
|E/E1|

}
∪
{
λ ∈ C : |λ| =

√
|E1/E|

}
and are continuous in λ ∈ (C ∪∞)\(CE,α ∪ T ).

In addition, µ(x, kE(λ(1∓ 0)) = µ±(x, kE(λ)) for λ ∈ T , where µ± are
continuous in λ ∈ T (whereas a(kE(λ)), b(kE(λ)) are continuous in a
neighborhood of T ).

6. If E = |E1|, then the functions µ(x, kE(λ)), a(kE(λ)), b(kE(λ)) are
singular in λ on the contour

T = {λ ∈ C : |λ| = 1} ,

and are continuous in λ ∈ (C ∪ ∞)\T . In addition, µ±, h± are not
well-defined in this case; for this energy we have real exceptional points
for the Faddeev eigenfunctions.

7. If E > |E1|, then the functions µ(x, kE(λ)), a(kE(λ)), b(kE(λ)) are
continuous in λ ∈ (C ∪∞)\T .

In addition, µ(x, kE(λ(1∓ 0)) = µ±(x, kE(λ)) for λ ∈ T , where µ± are
continuous in λ ∈ T (whereas a(kE(λ)), b(kE(λ)) are continuous in a
neighborhood of T ).
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4 Sketch of proofs

The proof of items 1 and 2 of Theorem 1 follows from direct calculations
using the following formulas:∫

ξ∈R2, |ξ|≤N

eiξx

ξ2 + 2kξ − i0
dξ =

∫
ξ∈R2, |ξ|≤N

eiξx

ξ2 + 2|k|ξ1 − i0
dξ = 2π lnN+

+ π2i− 4

π/2∫
0

ln (2s cosφ) dφ+O(N−1), k ∈ R2\0, N → +∞, (41)

∫
ξ∈R2, |ξ|≤N

eiξx

ξ2 + 2kξ
dξ =

∫
ξ∈R2, |ξ|≤N

eiξx

ξ2 + 2|Re k|ξ1 + 2i| Im k|ξ2
dξ =

= 2π lnN − 4

π/2∫
0

ln

(
2
√
|Re k|2 cos2 φ+ | Im k|2 sin2 φ

)
dφ+O(N−1),

(42)

k ∈ C2\R2, k2 = E ∈ R, N → +∞,

where ξ = (ξ1, ξ2);
π/2∫
0

ln (cosφ) dφ = −π
2

ln 2; (43)

π/2∫
0

ln
(
a2 cos2 φ+ b2 sin2 φ

)
dφ = π ln

|a|+ |b|
2

, a, b ∈ R\0. (44)

To prove item 3 of Theorem 1 we use, in addition, formulas (7)-(12).
Proposition 1 and Statement 1 can be proved by direct calculations pro-

ceeding from Theorem 1 and the well-known properties of the Faddeev Green
function G = eikxg (see, for example, [5], [13]).
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