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Abstract

We investigate the relaxation of internal temperature and the concept of volume viscosity in
nonequilibrium gas models derived from the kinetic theory. We first investigate a nonequilibrium
gas model with two temperatures—translational and internal—where the volume viscosity is ab-
sent. We establish that, in a relaxation regime, the temperature difference becomes proportional
to the divergence of the velocity fields and define a nonequilibrium, multitemperature, volume vis-
cosity coefficient. We next analyze the convergence of the two temperature model towards the one
temperature model when the relaxation is fast. We then investigate a nonequilibrium two temper-
ature gas model with a fast and a slow internal energy mode. We establish that, in a relaxation
regime, there are four contributions to the volume viscosity, namely the fast internal mode volume
viscosity, the slow internal mode volume viscosity, the relaxation pressure and the perturbed source
term. In the thermodynamic equilibrium limit, the sum of these four terms converges toward the
one-temperature two-mode volume viscosity. We finally perform Monte Carlo simulations of spon-
taneous fluctuations near thermodynamic equilibrium. The numerical results obtained from the
Boltzmann equation are compared to the predictions of the one and two temperature fluid models
and the agreement between theory and calculations is complete.

1 Introduction

We investigate in this paper the relaxation of internal and translational temperatures as well as the
concept of volume viscosity in nonequilibrium gas models derived from the kinetic theory.

We first study a two-temperature kinetic model where elastic and resonant collisions are fast but
collisions exchanging energy between the translational and the internal modes are slow. In such a
framework, the translational and internal temperatures are macroscopic quantities associated with
collisional invariants of the fast collision operator and there is no volume viscosity term in the viscous
tensor unlike with one-temperature polyatomic models [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In order to investigate
this point, we introduce a relaxation regime where the temperature difference becomes proportional
to the divergence of the velocity field and define a new volume viscosity coefficient involving the two
temperatures as well as nonlinear effects associated with the kinetics of relaxation. We further discuss
higher order effects associated with heat conductivity, viscous dissipation and perturbed source terms,
and we evaluate the translational and internal entropies per unit volume and the corresponding Gibbs
relations. In the limiting situation of fast relaxation, we recover the classical one-temperature model
including the volume viscosity coefficient. Theoretical models as well as experimental measurements
of the volume viscosity have confirmed that this coefficient is of the order of the shear viscosity for
polyatomic gases [11, 12, 13, 14, 15] and the impact of volume viscosity in fluid mechanics—especially
for fast flows—has been established [16, 17, 18, 19, 20].

We then investigate a two-temperature kinetic model with two internal energy modes, one with a
slow exchange rate and one with a fast exchange rate. In this situation, there is a volume viscosity
due to the fast internal energy mode as in classical one-temperature models. However, part of the
thermodynamic equilibrium volume viscosity is still hidden in the slow internal modes. A detailed
analysis yields that, in a relaxation regime, there are four contributions to the effective volume viscosity,
namely the fast internal mode volume viscosity, the slow internal mode volume viscosity, the relaxation
pressure and the perturbed source term. In the thermodynamic equilibrium limit, the sum of these
four contributions coincide with the one-temperature two-mode volume viscosity.

We finally perform Monte Carlo simulations of spontaneous fluctuations near thermodynamic equi-
librium to investigate the transport properties of a model polyatomic gas [21, 22]. We integrate the
full Boltzmann transport equation with a Monte Carlo method [23, 24, 25, 26, 27] for a model gas
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with internal degrees of freedom. The results obtained from the numerical solution of the Boltzmann
equation are compared to the predictions of the one and two temperature fluid models.

When the characteristic time of internal energy relaxation is larger than the flow characteristic
time, the two temperature model gives an accurate description of the system and the one temperature
model fails. On the other hand, when the characteristic time of internal energy relaxation is smaller
than the flow time, both the two temperature model and the one temperature model including the
volume viscosity are adequate to describe the fluid. The agreement between theory and calculations is
complete and these calculations also confirm the importance of the volume viscosity coefficient.

The nonequilibrium two-temperature model is considered in Section 2 and the two-temperature
two-mode nonequilibrium model in Section 3. The numerical method and the numerical results are
finally presented in Section 4.

2 A Two-Temperature Kinetic Model

We investigate in this section a nonequilibrium kinetic model for a polyatomic gas with a slow energy
exchange rate between the translational and internal degrees of freedom. In such a two-temperature
kinetic model, the macroscopic temperatures are defined with the kinetic energy and internal energy
collisional invariants. The corresponding viscous tensor then does not contain any volume viscosity
term. In order to recover such an effect, we introduce a relaxation equation of the temperature difference
and define a new volume viscosity coefficient involving the two temperatures as well as nonlinear effects
associated with the kinetics of relaxation. In the limiting situation of fast relaxation, we recover the
one temperature model.

2.1 A multi-temperature kinetic framework

Thermodynamic nonequilibrium is of fundamental importance in reentry problems, laboratory and
atmospheric plasmas, as well as discharges. The most general thermodynamic nonequilibrium model
is the state to state model where each internal state of a molecule is independent and considered as
a separate species [28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. When there are partial equilibria between
some of these states, species internal energy temperatures can be defined and the complexity of the
model is correspondingly reduced [30, 31, 32, 33, 34, 35, 36, 37]. Another example is that of electron
temperature in plasmas [38, 39, 40, 41, 42, 43, 44]. The next reduction step then consists in equating
some of the species internal temperatures [35] and it yields the two temperature models investigated
in this paper.

We consider a kinetic framework for a single polyatomic gas with the Boltzmann equation written
in the form

∂tf + c ·∇f =
1

ε
J rap + J sl, (2.1)

where t denotes time, ∂t the time derivative operator, x the spatial coordinate, ∇ the space derivative
operator, c the particle velocity, f(t,x, c, i) the distribution function, i the index of the quantum energy
state, J rap the rapid collision operator, J sl the slow collision operator, and ε the formal parameter
associated with the Chapman-Enskog procedure. We assume for the sake of simplicity that the particles
are not influenced by an external force field.

The complete collision operator J = J rap + J sl is in the form

J (f) =
∑
j,i′,j′

∫(
f(c′, i′)f(c̃′, j′)

aiaj
ai′aj′

− f(c, i)f(c̃, j)
)
gσiji′j′dc̃de′, (2.2)

where in a direct collision i and j denote the indices of the quantum energy states before collision, i′

and j′ the corresponding numbers after collision, c̃ the velocity of the colliding partner, c′ and c̃′ the
velocities after collision, ai the degeneracy of the ith quantum energy state, σiji′j′ the collision cross
section, g the absolute value of the relative velocity c − c̃ of the incoming particles and e′ the unit
vector in the direction of the relative velocity c′ − c̃′ after collision. Conversely, for inverse collisions,
the primed quantities denote the state before collision and the unprimed quantities after collision. Only
binary collisions are considered since the system is dilute and the cross sections satisfy the reciprocity
relations [3, 7]

aiajgσ
iji′j′dc dc̃de′ = a′ia

′
jg
′σi′j′ijdc′dc̃′de. (2.3)
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Denoting by W iji′j′ the transition probability for collisions, we also have the identity gσiji′j′de′ =
W iji′j′dc′dc̃′ so that the collision terms may equivalently be written in terms of transition probabilities
[7].

Denoting by Ei the internal energy of the particle in the ith state, the rapid collisions are either
elastic without any change of internal energy levels Ei′ = Ei and Ej′ = Ej, or resonant with Ei +
Ej = Ei′ + Ej′ where Ei′ 6= Ei and Ej′ 6= Ej, whereas the slow collisions are such that ∆E =
Ei′ + Ej′ − Ei − Ej 6= 0. We denote by J tr−tr the operator associated with elastic collision, J int−int

the operator associated with resonant collisions, and J tr−int the operator associated with collisions
such that ∆E 6= 0. These operators J tr−tr, J int−int, and J tr−int, are in the form (2.2) with the
summation restricted to elastic, resonant, and non elastic non resonant collisions, respectively, and the
fast and slow collision operators are then J rap = J tr−tr + J int−int and J sl = J tr−int. The collisional
invariants of the fast collision operator are now associated with particle number ψ1 = 1, momentum
ψ1+ν = mcν , ν ∈ {1, 2, 3}, as well as kinetic energy ψ5 = ψtr and internal energy ψ6 = ψint, where
ψtr = 1

2m(c− v)·(c− v) and ψint = Ei.

The Enskog expansion is in the form f = f (0)
(
1 + εφ + O(ε2)

)
where f (0) is the Maxwellian

distribution. This Maxwellian distribution involves two temperatures and is in the form

f (0) =
( m

2πkBT tr

) 3
2 nai
Z int

exp
(
−m(c− v)·(c− v)

2kBT tr
− Ei

kBT int

)
, (2.4)

where T tr is the translational temperature, T int the temperature associated with the internal energy
modes, and Z int the partition function Z int =

∑
i ai exp

(
−Ei/kBT

int
)

which only depends on T int.

2.2 Fluid equations

The equations for conservation of mass, momentum and internal energies are obtained by taking the
scalar product of the Boltzmann equation (2.1) with the collisional invariants of the fast collision
operator. The scalar product 〈〈ξ, ζ〉〉 between two tensorial quantities ξ(t,x, c, i) and ζ(t,x, c, i) is
defined by

〈〈ξ, ζ〉〉 =
∑
i

∫
ξ�ζ dc,

where ξ�ζ is the contracted product. The fluid variables are the particle number density n =
〈〈ψ1, f〉〉 = 〈〈ψ1, f (0)〉〉 or equivalently the mass density ρ = mn, the mass averaged velocity v such
that ρv = 〈〈mc, f〉〉 = 〈〈mc, f (0)〉〉, and the translation and internal temperatures T tr and T int de-
fined by Etr(T tr) = 〈〈f, ψtr〉〉 = 〈〈f (0), ψtr〉〉 and E int(T int) = 〈〈f, ψint〉〉 = 〈〈f (0), ψint〉〉. Note that the
dependence on n is left implicit to simplify notation. Following the Chapman-Enskog procedure, the
equations for conservation of mass, momentum, and internal energies are found in the form [35]

∂tρ+ ∇·(ρv) = 0, (2.5)

∂t(ρv) + ∇·(ρv⊗v + pI) + ∇·Π = 0, (2.6)

∂tEtr + ∇·(vEtr) + ∇·Qtr = −p∇·v −Π :∇v − ωint
1 , (2.7)

∂tE int + ∇·(vE int) + ∇·Qint = ωint
1 , (2.8)

where Etr denotes the internal energy per unit volume of translational origin, E int the internal energy
per unit volume of internal origin, Qtr and Qint the corresponding heat fluxes and ωint

1 the exchange
term in the Navier-Stokes regime. These equations may be added in order to recover a conservation
equation for the the total internal energy Etr + E int in the form

∂t(Etr + E int) + ∇·
(
v(Etr + E int)

)
+ ∇·(Qtr + Qint) = −p∇·v −Π :∇v. (2.9)

The state law and the internal energies are in the form

p = nkBT
tr, Etr = n 3

2kBT
tr, E int = nE, (2.10)

where E denotes the average internal energy per particle E =
∑

i
aiEi

Zint exp
(
− Ei

kBT int

)
. The transport

fluxes, on the other hand, are found in the form

Π =− η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (2.11)

Qtr =− λtr,tr∇T tr − λtr,int∇T int, (2.12)

Qint =− λint,tr∇T tr − λint,int∇T int, (2.13)
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where η denotes the shear viscosity, and λtr,tr, λtr,int, λint,tr, and λint,int the thermal conductivities.
The full source term ωint may be written

ωint = 〈〈ψint,J sl〉〉 = 〈〈ψint,J 〉〉, (2.14)

since 〈〈ψint,J rap〉〉 = 0 and may be expanded into ωint = ωint
0 + εδωint

1 +O(ε2). The source term ωint
1

is then given by
ωint

1 = ωint
0 + εδωint

1 , (2.15)

where ωint
0 denotes the source term evaluated from the Maxwellian distribution f (0) and δωint

1 the
correction associated with the Navier-Stokes perturbation f (0)φ.

Finally, defining the pressure tensor as P = pI + Π we have

P = nkBT
trI − η

(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (2.16)

which does not contain a volume viscosity contribution unlike with usual one-temperature polyatomic
gas models [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

2.3 Translational and internal entropies

The two-temperature fluid entropy per unit volume is directly evaluated from

S = −kB
∑
i

∫
f (0)

(
log(f (0)βi)− 1

)
dc,

where βi = h3
P/(aim

3) and hP is the Planck constant. After some algebra, the entropy S is found in
the form

S = Str + S int, (2.17)

where the translational entropy per unit volume Str and the translational partition function Ztr are
given by

Str = nkB

(5

2
− log

n

Ztr

)
, Ztr =

(2πmkBT
tr

h2
P

) 3
2

, (2.18)

whereas the internal entropy per unit volume S int is given by

S int = nkB

( E

kBT int
− log

1

Z int

)
. (2.19)

Defining the translational and internal Gibbs functions Gtr and Gint per particle by

Gtr = kBT
tr log

n

Ztr
, Gint = kBT

int log
1

Z int
, (2.20)

the translational and internal Gibbs’ relations are in the form

T trdStr = dEtr −Gtrdn, T intdS int = dE int −Gintdn, (2.21)

and we obtain that

dS =
nctr

T tr
dT tr +

ncint

T int
dT int +

(3

2
kB +

E

T int
− kB log

n

ZtrZ int

)
dn, (2.22)

where ctr = 3
2kB and cint =

∑
i
kBai
Zint

(
Ei−E
kBT int

)2
exp
(
− Ei

kBT int

)
.

From the differential of entropy (2.22), after some lengthy algebra, the following entropy governing
equation is obtained

∂tS + ∇·(vS) + ∇·
(Qtr

T tr
+

Qint

T int

)
= −Qtr·∇T tr

T tr2 − Qint·∇T int

T int2 − Π :∇v

T tr
+
ωint

1 (T tr − T int)

T trT int
. (2.23)
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2.4 The thermodynamic equilibrium temperature

We define the equilibrium temperature as the unique scalar T such that

Etr(T ) + E int(T ) = Etr(T tr) + E int(T int), (2.24)

keeping in mind that Etr(T ) +E int(T ) is an increasing function of T since ctr and cint are positive. The
function E int is generally nonlinear but may be written

E int(T )− E int(T int) =

∫ T

T int

cint(T ′) dT ′ = c̃int(T − T int), (2.25)

where we have introduced c̃int(T, T int) =
∫ 1

0
cint
(
T int +s(T−T int)

)
ds. The relation Etr(T tr)−Etr(T ) =

E int(T )− E int(T int) may then be recast in the form

ctr(T tr − T ) = c̃int(T − T int). (2.26)

Finally, a governing equation for T may easily be obtained from (2.24) and (2.9).

2.5 Relaxation and volume viscosity

From the equations governing the internal energies we deduce at the zeroth approximation the system
∂tT

tr + v·∇T tr = −p∇·v
nctr

− ωint
0

nctr
,

∂tT
int + v·∇T int =

ωint
0

ncint
.

(2.27)

A direct evaluation of the source term ωint
0 yields that

ωint
0 = −2n2

[[
(∆E)

(
exp
(

∆E
kBT tr − ∆E

kBT int

)
− 1
)]]
, (2.28)

where [[ ]] denotes the averaging operator

[[α]] =
1

8n2

∑
i,j,i′,j′

∫
αiji′j′f

(0)f̃ (0)gσiji′j′dcdc̃de′. (2.29)

Defining the nonequilibrium correction factor ζ as

ζ =

∫ 1

0

exp
((

∆E
kBT tr − ∆E

kBT int

)
s
)
ds,

the source term ωint
0 is recast in the convenient form

ωint
0 = 2n2 [[(∆E)2ζ]]

kBT trT int
(T tr − T int), (2.30)

Defining naturally the nonequilibrium relaxation time by τ int = cintkBT
trT int/(2n[[(∆E)2ζ]]), we finally

obtain that

ωint
0 =

ncint

τ int
(T tr − T int). (2.31)

The resulting equation for T tr − T int is now

∂t(T
tr − T int) + v·∇(T tr − T int) = −p∇·v

nctr
− cv
ctr

T tr − T int

τ int
, (2.32)

where we have defined cv = ctr +cint(T int). This is a typical relaxation equation and the corresponding
relaxation approximation yields

T tr − T int = −τ
int

ncv
p∇·v. (2.33)

This is the only approximation made in this section in order to recover a volume viscosity effect and
it neither requires τ int being small nor T tr and T int being close. This relaxation approximation is
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valid when the flow characteristic time is greater than τ int. We now define the nonequilibrium volume
viscosity by κ = pkBc̃

intτ int/(cvc̃v) where c̃v = ctr + c̃int(T, T int). From the expression of τ int, this
nonequilibrium volume viscosity may be written

κ =
cintc̃int

cv c̃v

k3
B (T tr)2T int

2[[(∆E)2ζ]]
, (2.34)

and we emphasize that this coefficient differs in many aspects from its thermodynamic equilibrium limit

κeq =
(
cint

cv

)2
(kBT )3/2[[(∆E)2]] obtained independently from the Chapman-Enskog method [45, 46].

Thanks to the nonlinear relation c̃vT = ctrT tr + c̃intT int we further obtain in the relaxation regime

nkBT
tr = nkBT − κ∇·v, (2.35)

as well as nkBT
int = nkBT + ctrκ∇·v/cint. The relation (2.35) is now similar to classical estimates of

temperature deviations and we have recovered a volume viscosity effect in the relaxation regime by
using the equilibrium temperature T .

Finally, close to thermodynamic equilibrium, T tr and T int are close to T , so that c̃v tends to cv, c̃int

tends to cint, ζ tends to one, and the nonequilibrium κ tends to the corresponding one-temperature
formula κeq. Many authors have discussed the near thermodynamic equilibrium situation, where the
internal temperature and the translational temperature are close, notably Kholer [1], Hirschfelder
Curtiss and Bird [2], Waldmann [3], Chapman and Cowling [4], Ferziger and Kapper [5], McCourt et
al. [6], de Groot and Mazur [9], Keizer [10], Zhdanov [33], Nagnibeda and Kustova [35], and Brun [36].
Second order effects are notably discussed by Hirschfelder Curtiss and Bird [2] and Zhdanov [33].

2.6 Higher order effects

We further investigate in this section the relaxation process in the Navier-Stokes regime. From the
governing equations we deduce, in the Navier-Stokes regime, the system

∂tT
tr + v·∇T tr = −p∇·v

nctr
− ∇·Qtr

nctr
− Π :∇v

nctr
− ωint

1

nctr
,

∂tT
int + v·∇T int = −∇·Qint

ncint
+

ωint
1

ncint
,

(2.36)

and we have to investigate the first order source term ωint
1 .

The perturbed distribution function φ is such that Irap(φ) = ψ and 〈〈f (0)φ, ψj〉〉 = 0 for 1 6
j 6 6, where Irap denotes the linearized Boltzmann rapid collision operator, ψ the functional ψ =

−∂(0)
t log f (0) − c ·∇ log f (0) + J sl,(0)/f0), and ψj , 1 6 j 6 6, the collisional invariants of the fast

collision operator. The functional ψ = −∂(0)
t log f (0) − c ·∇ log f (0) + J sl,(0)/f (0) may be evaluated in

the form

ψ = −ψη :∇v − ψλ
tr

·∇
( 1

kBT tr

)
− ψλ

int

·∇
( 1

kBT int

)
+ ψωωint

0 ,

where ψη is a symmetric traceless tensor, ψλ
tr

and ψλ
int

are vectors, and ψω is a scalar

ψη =
m

kBT tr

(
(c− v)⊗(c− v)− 1

3 (c− v)·(c− v)
)
, (2.37)

ψλ
tr

=
(

5
2kBT

tr − 1
2m(c− v)·(c− v)

)
(c− v), (2.38)

ψλ
int

= (E − Ei)
)
(c− v), (2.39)

ψω =
J̃ sl,(0)

f (0)
−

3
2kBT

tr − 1
2m(c− v)·(c− v)

nkBctrT tr2 +
E − Ei

nkBcintT int2 . (2.40)

The source term evaluated from the Maxwellian distribution J sl,(0) has been decomposed in the form
J sl,(0) = ωint

0 J̃ sl,(0) where

J̃ sl,(0) =
1

2n2[[(∆E)2ζ]]

∑
j,i′,j′

∫
f (0)f̃ (0)(∆E)ζgσiji′j′dc̃ de′, (2.41)
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and we have 〈〈ψint, J̃ sl,(0)〉〉 = 1 as well as 〈〈ψtr, J̃ sl,(0)〉〉 = −1 and 〈〈1, J̃ sl,(0)〉〉 = 0 in such a way that
ψω is orthogonal to the collisional invariants of the fast collision operator. Thanks to linearity φ may
be written in the form

φ = −φη:∇v − φλ
tr

·∇
( 1

kBT tr

)
− φλ

int

·∇
( 1

kBT int

)
+ φωωint

0 ,

where φη is a symmetric traceless tensor, φλ
tr

and φλ
int

are vectors and φω is a scalar [35]. These
coefficients satisfy for µ ∈ {η, λtr, λint, sl} the linearized Boltzmann equations Irap(φµ) = ψµ with the
constraints 〈〈f (0)φµ, ψj〉〉 = 0 for 1 6 j 6 6.

The shear viscosity may be written η = 1
10kBT [[φη, φη]], the translational thermal conductivities

in the form λtr,tr = 1
3 [[φλ

tr

, φλ
tr

]]/kB(T tr)2, λtr,int = 1
3 [[φλ

tr

, φλ
int

]]/kB(T int)2, and the internal thermal

conductivities in the form λint,tr = 1
3 [[φλ

int

, φλ
tr

]]/kB(T tr)2, λint,int = 1
3 [[φλ

int

, φλ
int

]]/kB(T int)2.
The source term ωint

1 can next be written

ωint
1 = ωint

0 + δωint
1 , (2.42)

where the perturbed source term δωint
1 is given by

δωint
1 =

∑
i,j,i′,j′

Ei

∫(
f (0)′ f̃ (0)′ aiaj

ai′aj′
(φ′ + φ̃′)− f (0)f̃ (0)(φ+ φ̃)

)
gσiji′j′dcdc̃ de′. (2.43)

Upon defining W int =
∑

j,i′,j′(∆E)
∫
f̃ (0)gσiji′j′dc̃ de′ it is shown that δωint

1 = 〈〈f (0)φ,W int〉〉. Using

now the Curie principle, we have δωint
1 = ωint

0 〈〈f (0)φω,W int〉〉 and we may define

wint
1 = 〈〈f (0)φω,W int〉〉, (2.44)

in such a way that δωint
1 may be written in the form

δωint
1 = ωint

0 wint
1 . (2.45)

In the Navier-Stokes regime, the relaxation approximation then yields that

nkBT
tr − nkBT = −κ(1− wint

1 )∇·v − κ

p

(
Π :∇v + ∇·Qtr − ctr

cint
∇·Qint

)
. (2.46)

The correction terms in (2.46) either involve the product of κ by another transport coefficient or
the perturbed source term wint

1 . Near thermodynamic equilibrium, all terms involving the product
of two transport coefficients must be discarded as pertaining to the Burnett regime, and only the
term −κ(1 − wint

1 )∇·v may play a rôle. We note, however, that the perturbed term φω vanishes in
a first approximation and thus the perturbation wint

1 also vanishes. Indeed, the standard Galerkin
variational approximation space for scalar functions is spanned by φ0010 = 3

2 −
1
2
m
kBT

(c − v)·(c − v)

and φ0001 = (E − Ei)/kBT
int, which are both collisional invariants of the rapid collision operator, and

are therefore in the nullspace of Irap.

2.7 The thermodynamic equilibrium asymptotic limit

We investigate more closely in this section the asymptotic convergence of the two-temperature model
towards the one-temperature model when the characteristic time for energy exchange becomes of the
order of magnitude of the elastic collision time, that is, when τ int = O(ε). It is fundamental to observe
here that the one temperature model is only valid under the condition τ int = O(ε) as confirmed by the
results of the numerical experiments of Section 4.

When τ int = O(ε) we are certainly in the relaxation regime and we further deduce from nkB(T tr −
T ) = −κ∇·v that T tr − T = O(ε) and T int − T = O(ε) since then κ = O(ε). Denoting by κeq =
(cint/cv)2(kBT )3/2[[(∆E)2]] the limiting one-temperature value of the volume viscosity κ, we also have
κeq = O(ε) and κ − κeq = O(ε2), so that nkBT

tr = nkBT − κeq∇·v + O(ε2) and nkBT
int = nkBT +

ctrκeq∇·v/cint +O(ε2).
Considering first the momentum equation, only the pressure term nkBT

tr need to be rewritten into
nkBT − κeq∇·v and the resulting pressure tensor at thermodynamic equilibrium is in the form

Peq =
(
nkBT − κeq(∇·v)

)
I − ηeq

(
∇v + (∇v)t − 2

3 (∇·v)I
)
. (2.47)
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This is in agreement with the one-temperature model where the state law reads peq = nkBT and the
viscous tensor is Π eq = −κeq(∇·v)I−ηeq

(
∇v+(∇v)t− 2

3 (∇·v)I
)
. The two-temperature momentum

equation thus coincide with the one-temperature momentum equation up to Burnett type O(ε2) temrs.
Similarly, in the total internal energy conservation equation (2.9), we may replace Etr(T tr) +

E int(T int) by Etr(T ) + E int(T ) by definition of T , and we may also replace T tr and T int by T in
the fluxes since all thermal conductivities are O(ε) perturbations and since O(ε2) terms must be dis-
carded in the Navier-Stokes regime. This yields in particular Qeq = Qtr + Qint = −λeq∇T with
λeq = λtr,tr + λtr,int + λint,tr + λint,int. The only left term is the pressure term p∇·v = nkBT

tr∇·v
which must be rewritten in into nkBT∇·v − κeq(∇·v)2. The term −κeq(∇·v)2 then completes the
friction term associated with the shear viscosity to form the full viscous dissipation term. We have
then recovered the classical one-temperature energy equation

∂tE + ∇·(Ev) + ∇·Qeq = −peq∇·v −Π eq:∇v. (2.48)

where E(T ) = Etr(T ) + E int(T ) and thus the full set of one-temperature Navier-Stokes conservation
equations discarding Burnett type O(ε2) terms.

We further investigate the entropy per unit volume as well as the entropy conservation equation.
From the differential (2.22) and the energy constraint E(T ) = Etr(T tr) +E int(T int), it is easily deduced
that when τ int = O(ε) then

Seq(T ) = Str(T tr) + S int(T int) +O(ε2),

where Seq(T ) denotes the equilibrium one-temperature entropy [7]. Furthermore, the chemical term
involving ωint

1 in the entropy conservation equation (2.23) is such that

ωint
1 (T tr − T int)

T trT int
=
κeq

T
(∇·v)2 +O(ε2),

since ωint
1 = ωint

0 + O(ε), so that the two-temperature entropy governing equation finally converges
term by term towards the one-temperature entropy governing equation discarding Burnett type O(ε2)
terms.

Finally, we note that theoretical models as well as experimental measurements of the volume vis-
cosity have confirmed that this coefficient is of the order of the shear viscosity for polyatomic gases
[11, 12, 13, 14, 15] and the impact of volume viscosity in fluid mechanics—especially for fast flows—has
been established [16, 17, 18, 19, 20]. More generally, recent numerical investigations have brought
further support for the importance of accurate transport property in various multicomponent reactive
flows calculations [47, 48, 49, 50, 51, 52, 53].

3 A Two-temperature Two-Mode Kinetic Model

We investigate in this section a kinetic model with two internal energy modes. A first mode has a rapid
exchange rate with the translational degrees of freedom whereas the other one has a slow exchange rate.
In this situation, there is a volume viscosity due to the rapid internal energy mode as in one-temperature
models. Nevertheless, part of the equilibrium viscosity is still hidden in the slow internal energy mode.
In a relaxation regime, there are indeed four contributions to the effective volume viscosity, namely the
fast energy mode volume viscosity, the slow energy mode volume viscosity, the relaxation pressure and
the perturbed source term. In the near equilibrium limit, the sum of these four contributions coincides
with the one-temperature two-mode volume viscosity.

3.1 A multi-temperature multi-mode kinetic framework

We consider a kinetic framework of a single polyatomic gas with two independent internal energy
modes. The internal energy in the ith quantum state is decomposed into

Ei = Erap
irap + Esl

isl , (3.1)

where i denotes the composed index i = (irap, isl), irap the index of the quantum energy state of
the rapid mode, isl the index of the quantum energy state of the slow mode, Erap

irap the rapid mode
internal energy, and Esl

isl the slow mode internal energy. We will often denote for short Erap
i for Erap

irap

and Esl
i for Esl

isl so that Ei = Erap
i + Esl

i . We assume that the rapid collisions are all the collisions
such that ∆Esl = Esl

i′ + Esl
j′ − Esl

i − Esl
j = 0, either only involving the translational energy and rapid
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mode internal energy or resonant with respect to the slow internal energy mode. The corresponding
Boltzmann equation is in the form

∂tf + c·∇xf =
1

ε
J rap + J sl (3.2)

where f(t,x, c, i) denotes the distribution function, J rap = J (tr+rap)−(tr+rap)+J sl−sl the rapid collision
operator, and J sl = J (tr+rap)−sl the slow collision operator. We have denoted by J (tr+rap)−(tr+rap)

the collision operator involving solely the translational and fast internal degrees of freedom, J sl−sl the
operator for resonant collision with respect to Esl, and J (tr+rap)−sl the operator for collisions such
that ∆Esl 6= 0. The collisional invariants of the fast collision operator are now associated with particle
number ψ1 = 1, momentum ψ1+ν = mcν , ν ∈ {1, 2, 3}, the energy associated with translational and
fast internal degrees of freedom ψ5 = ψtr + ψrap and the slow internal energy mode ψ6 = ψsl, where
ψtr = 1

2m(c− v)·(c− v), ψrap = Erap
i , and ψsl = Esl

i .

The Enskog expansion is in the form f = f (0)
(
1 + εφ + O(ε2)

)
where f (0) is the Maxwellian

distribution. This Maxwellian distribution is found in the form

f (0) =
( m

2πkBT

) 3
2 nai
Z int

exp
(
−m(c− v)·(c− v)

2kBT
− Erap

i

kBT
− Esl

i

kBT sl

)
, (3.3)

where the degeneracy ai is given by ai = arap
irapa

sl
isl and

Z int =
∑
i

ai exp
(
−E

rap
i

kBT
− Esl

i

kBT sl

)
, Z int = ZrapZsl, (3.4)

Zrap =
∑
irap

arap
irap exp

(
−E

rap
irap

kBT

)
, Zsl =

∑
isl

asl
isl exp

(
−
Esl

isl

kBT sl

)
, (3.5)

T is the thermodynamic partial equilibrium temperature between the translational and fast internal
degrees of freedom, and T sl the temperature associated with the slow internal energy modes.

3.2 Fluid equations

The equations for conservation of mass, momentum and internal energies are classically obtained by
taking scalar products of the Boltzmann equation with the collisional invariants of the fast collision
operator. The extra fluid variables to consider, in addition to the particle number density n and the
mass averaged velocity v, are now the partial equilibrium temperature between the translational and
fast internal degrees of freedom T and the slow mode internal temperature T sl defined by Etr+rap(T ) =
〈〈f, ψtr + ψrap〉〉 = 〈〈f (0), ψtr + ψrap〉〉 and Esl(T sl) = 〈〈f, ψsl〉〉 = 〈〈f (0), ψsl〉〉. The corresponding mass
and momentum conservation equations are similar to (2.5) and (2.6) and are not repeated. On the
other hand, the equations for conservation of internal energies are in the form

∂tEtr+rap + ∇·(vEtr+rap) + ∇·Qtr+rap = −p∇·v −Π :∇v − ωsl
1 , (3.6)

∂tEsl + ∇·(vEsl) + ∇·Qsl = ωsl
1 , (3.7)

where Etr+rap = Etr(T ) + Erap(T ) denotes the internal energy per unit volume of translational and fast
internal mode origin with Etr(T ) = 〈〈f (0), ψtr〉〉 and Erap(T ) = 〈〈f (0), ψrap〉〉, Esl the internal energy per
unit volume of slow internal mode origin, Qtr+rap and Qsl the corresponding heat fluxes, and ωsl

1 the
exchange term in the Navier-Stokes regime.

The state law and the internal energies are in the form

p = nkBT , Etr+rap = n( 3
2kBT + E

rap
), Esl = nE

sl
, (3.8)

where E
rap

and E
sl

denote the average fast and slow mode internal energy per particle E
rap

=∑
irap

arap
irap

Erap
i

Zrap exp
(
−E

rap
i

kBT

)
and E

sl
=
∑

isl
asl
isl
Esl

i

Zsl exp
(
− Esl

i

kBT sl

)
. The transport fluxes, on the other

hand, are found in the form

Π = prel − κrap∇·vI − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (3.9)

Qtr+rap = −λtr+rap,tr+rap∇T − λtr+rap,sl∇T sl, (3.10)

Qsl = −λsl,tr+rap∇T − λsl,sl∇T sl, (3.11)
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where prel denotes the relaxation pressure, κrap the volume viscosity associated with the fast internal
energy modes, η the shear viscosity, and λtr+rap,tr+rap, λtr+rap,sl, λsl,tr+rap, and λsl,sl the thermal
conductivities. The full source term ωsl may be written

ωsl = 〈〈ψsl,J sl〉〉 = 〈〈ψsl,J 〉〉, (3.12)

since 〈〈ψsl,J rap〉〉 = 0 and may be expanded into ωsl = ωsl
0 + εδωsl

1 +O(ε2). The source term ωsl
1 is then

given by
ωsl

1 = ωsl
0 + εδωsl

1 , (3.13)

where ωsl
0 denotes the source term evaluated from the Maxwellian distribution f (0) and δωsl

1 the cor-
rection associated with the Navier-Stokes perturbation f (0)φ.

Finally, defining the pressure tensor as P = pI + Π , we have

P = (nkBT + prel − κrap∇·v)I − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (3.14)

with a pressure term nkBTI, a volume viscosity contribution associated with the fast internal modes
κrap∇·vI, and a relaxation pressure term prelI.

3.3 The thermodynamic equilibrium temperature

We define the equilibrium temperature as the unique scalar T such that

Etr(T ) + Erap(T ) + Esl(T ) = Etr(T ) + Erap(T ) + Esl(T sl), (3.15)

keeping in mind that Etr(T ) + Erap(T ) + Esl(T ) is an increasing function of T since since ctr = 3
2kB,

crap =
∑

irap
kBa

rap
irap

Zrap

(Erap
irap
−Erap

kBT

)2
exp
(
−E

rap
irap

kBT

)
, and csl =

∑
isl

kBa
sl

isl

Zsl

(Esl

isl
−Esl

kBT

)2
exp
(
−Esl

isl

kBT

)
are positive.

The function Esl is generally nonlinear but may be written

Esl(T )− Esl(T sl) =

∫ T

T sl

csl(T ′) dT ′ = c̃sl(T − T sl), (3.16)

where we have introduced c̃sl(T, T sl) =
∫ 1

0
csl
(
T sl + s(T − T sl)

)
ds. Similarly, we write the nonlinear

function Erap in the form

Erap(T )− Erap(T ) =

∫ T

T

crap(T ′) dT ′ = c̃rap(T − T ), (3.17)

where c̃rap(T, T ) =
∫ 1

0
crap

(
T + s(T − T )

)
ds. The relation Etr+rap(T )− Etr+rap(T ) = Esl(T )− Esl(T sl)

may then be recast in the form

(ctr + c̃rap)(T − T ) = c̃sl(T − T sl). (3.18)

Finally, a governing equation for T may easily be obtained from (3.15) and by adding (3.6) and (3.7).

3.4 Relaxation and the slow mode volume viscosity

From the equations governing the internal energies we deduce at the zeroth order the system
∂tT + v·∇T = − p∇·v

n(ctr + crap)
− ωsl

0

n(ctr + crap)

∂tT
sl + v·∇T sl =

ωsl
0

ncsl
,

(3.19)

and a direct evaluation of the source term ωsl
0 also yields that

ωsl
0 = −2n2

[[
(∆Esl)

(
exp
(

∆Esl

kBT
− ∆Esl

kBT sl

)
− 1
)]]
. (3.20)

Defining the nonequilibrium correction factor ζsl as in the previous section

ζsl =

∫ 1

0

exp
((

∆Esl

kBT
− ∆Esl

kBT sl

)
s
)
ds,
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the source term ωsl
0 is recast in the convenient form

ωsl
0 = 2n2 [[(∆Esl)2ζsl]]

kBTT sl
(T − T sl). (3.21)

Defining naturally the nonequilibrium relaxation time by τ sl = cslkBTT
sl/(2n[[(∆Esl)2ζsl]]), we finally

obtain that

ωsl
0 =

ncsl

τ sl
(T − T sl). (3.22)

The resulting equation for T − T sl is then

∂t(T − T sl) + v·∇(T − T sl) = − p∇·v
n(ctr + crap)

− cv
(ctr + crap)

T − T sl

τ sl
, (3.23)

where we have defined cv = ctr + crap(T ) + csl(T sl). This is a typical relaxation equation and the
corresponding relaxation approximation yields at the zeroth order

T − T sl = − τ sl

ncv
p∇·v. (3.24)

This approximation neither require τ sl to be small nor T and T sl to be close and is indeed valid when
the flow characteristic time is greater than τ sl. We next define the slow mode nonequilibrium volume
viscosity by κsl = pkBc̃

slτ sl/(cvc̃v), where c̃v = ctr + c̃rap(T, T ) + c̃sl(T, T sl) and κsl may also be written

κsl =
cslc̃sl

cv c̃v

k3
BT

2
T sl

2[[(∆Esl)2ζsl]]
. (3.25)

Thanks to the nonlinear relation c̃vT = (ctr + crap)T + c̃slT sl we further obtain—after some algebra—
that at zeroth order

nkBT = nkBT − κsl∇·v. (3.26)

3.5 First order corrections

Since we will need to add the slow mode volume viscosity κsl, which is O(τ sl), to the volume viscosity
κrap, associated with the fast energy mode in the Navier-Stokes regime, which is O(ε), we eventually
need to take into account first order corrections to the temperature difference T − T sl. From the
governing equations we deduce in the Navier-Stokes regime the conservation equations

∂tT + v·∇T = − p∇·v
n(ctr + crap)

− ∇·Qtr+rap

n(ctr + crap)
− Π :∇v

n(ctr + crap)
− ωsl

1

n(ctr + crap)
,

∂tT
sl + v·∇T sl = −∇·Qsl

ncsl
+

ωsl
1

ncsl
,

(3.27)

and we thus have to investigate the structure of the first order source term ωsl
1 = ωsl

0 + δωsl
1 .

The perturbed distribution function φ is such that Irap(φ) = ψ and 〈〈f (0)φ, ψj〉〉 = 0 for 1 6
j 6 6, where Irap denotes the linearized Boltzmann rapid collision operator, and ψ the functional

ψ = −∂(0)
t log f (0) − c ·∇ log f (0) + J sl,(0)/f0), and ψj , 1 6 j 6 6, the collisional invariants of the fast

collision operator. The functional ψ = −∂(0)
t log f (0) − c ·∇ log f (0) + J sl,(0)/f (0) may be evaluated in

the form

ψ = −ψη:∇v − ψλ
tr+rap

·∇
( 1

kBT

)
− ψλ

sl

·∇
( 1

kBT sl

)
− 1

3ψ
κ∇·v + ψωωsl

0 ,

where ψη is a symmetric traceless tensor, ψλ
tr+rap

and ψλ
sl

are vectors, ψκ and ψω are scalars given by
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[35]

ψη =
m

kBT

(
(c− v)⊗(c− v)− 1

3 (c− v)·(c− v)
)
, (3.28)

ψλ
tr+rap

=
(

5
2kBT −

1
2m(c− v)·(c− v)

)
(c− v), (3.29)

ψλ
sl

= (E
sl − Esl

i )
)
(c− v), (3.30)

ψκ = − 2crap

ctr + crap

(
3
2 −

m(c− v)·(c− v)

2kBT

)
+

2ctr

ctr + crap

(
E

rap − Erap
i

)
kBT

, (3.31)

ψω =
J̃ sl,(0)

f (0)
−

3
2kBT −

1
2m(c− v)·(c− v)

nkB(ctr + crap)T
2 − E

rap − Erap
i

nkB(ctr + crap)T
2 +

E
sl − Esl

i

nkBcslT sl2
. (3.32)

The source term J sl,(0) has been written J sl,(0) = ωsl
0 J̃ sl,(0) where

J̃ sl,(0) =
1

2n2[[(∆Esl)2ζsl]]

∑
j,i′,j′

∫
f (0)f̃ (0)(∆Esl)ζslgσiji′j′dc̃de′, (3.33)

and we have 〈〈ψsl, J̃ sl,(0)〉〉 = 1, 〈〈ψtr + ψrap, J̃ sl,(0)〉〉 = −1, and 〈〈1, J̃ sl,(0)〉〉 = 0 in such a way that ψω

is orthogonal to the collisional invariants of the fast collision operator. Thanks to linearity φ may be
expanded in the form

φ = −φη:∇v − φλ
tr+rap

·∇
( 1

kBT

)
− φλ

sl

·∇
( 1

kBT sl

)
− 1

3φ
κ∇·v + φωωsl

0 ,

where φη is a symmetric traceless tensor, φλ
tr+rap

and φλ
sl

are vectors, φκ and φω are scalars. These
coefficients φµ, µ ∈ {η, λtr+rap, λsl, κ, sl}, satisfy the linearized Boltzmann equations Irap(φµ) = ψµ

with the constraints 〈〈f (0)φµ, ψj〉〉 = 0, 1 6 j 6 6.
The shear viscosity may be written η = 1

10kBT [[φη, φη]], the translational and fast mode thermal con-

ductivities in the form λtr+rap,tr+rap = 1
3 [[φλ

tr+rap

, φλ
tr+rap

]]/kBT
2
, λtr+rap,sl = 1

3 [[φλ
tr+rap

, φλ
sl

]]/kBT
sl2,

and the slow mode thermal conductivities in the form λsl,tr+rap = 1
3 [[φλ

sl

, φλ
tr+rap

]]/kBT
2
, λsl,sl =

1
3 [[φλ

sl

, φλ
sl

]]/kBT
sl2. In addition, the relaxation pressure prel and the reduced relaxation pressure p̃rel

are given by
prel = p̃relωsl

0 , p̃rel = 1
3kBT 〈〈f

(0)φω, ψκ〉〉 = 1
3kBT 〈〈f

(0)φκ, ψω〉〉, (3.34)

The source term ωsl
1 can be written

ωsl
1 = ωsl

0 + δωsl
1 , (3.35)

where the perturbed source term δωsl
1 is given by

δωsl
1 =

∑
i,j,i′,j′

Esl
i

∫(
f (0)′ f̃ (0)′ aiaj

ai′aj′
(φ′ + φ̃′)− f (0)f̃ (0)(φ+ φ̃)

)
gσiji′j′dcdc̃ de′, (3.36)

and upon defining Wsl =
∑

j,i′,j′(∆E
sl)
∫
f̃ (0)gσiji′j′dc̃de′ it is shown that

δωsl
1 = 〈〈f (0)φ,Wsl〉〉. (3.37)

Using now the Curie principle, we have δωsl
1 = − 1

3 〈〈f
(0)φκ,Wsl〉〉∇·v + 〈〈f (0)φω,Wsl〉〉ωsl

0 and we may
define

wκ1 = − 1
3 〈〈f

(0)φκ,Wsl〉〉, wsl
1 = 〈〈f (0)φω,Wsl〉〉, (3.38)

in such a way that
δωsl

1 = wκ1 ∇·v + wsl
1 ω

sl
0 . (3.39)

Furthermore, in the relaxation approximation, and in the Navier-Stokes regime, we may replace
ωsl

0 by its zeroth order approximation ωsl
0 ≈ −cslp∇·v/cv in the first order term δωsl

1 . The resulting
effective first order correction in the relaxation regime is therefore

δωsl
1 =

(
wκ1 −

pcsl

cv
wsl

1

)
∇·v. (3.40)
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After some algebra, the first order relaxation approximation then yields that

nkBT − nkBT = −κsl ∇·v
(

1− wsl
1 +

cvw
κ
1

cslp

)
− κsl

p

(
Π :∇v + ∇·Qtr+rap − ctr + crap

csl
∇·Qsl

)
. (3.41)

The new terms in (3.41) involve either the product of κsl by another transport coefficient or the
perturbed source term wκ1 and wsl

1 . Near equilibrium only the term −κsl ∇·v
(
1 − wsl

1 + cvw
κ/pcsl

)
plays a rôle since all terms involving the product of two transport coefficients are associated with the
Burnett regime.

3.6 Kinetic definition of the translational and rapid mode temperatures

The thermodynamic partial equilibrium temperature T between the translational and the fast internal
energy modes is defined from Etr(T ) + Erap(T ) = 〈〈f (0), ψtr + ψrap〉〉 = 〈〈f, ψtr + ψrap〉〉 and it is a
macroscopic quantity since ψtr + ψrap is the a collisional invariant. The translational T tr and the fast
mode internal temperature T rap are now defined from

Etr(T tr) = 〈〈f, ψtr〉〉 Erap(T rap) = 〈〈f, ψrap〉〉. (3.42)

Since neither ψtr nor ψrap is a collision invariant of the fast collision operator, these temperatures
cannot solely be expressed in terms of zeroth order quantities and have to be expanded in the form

T tr = T tr
0 + ε δT tr

1 +O(ε2), T rap = T rap
0 + ε δT rap

1 +O(ε2), (3.43)

where T tr
0 and T rap

0 are the zeroth order terms and δT tr
1 and δT rap

1 the first order correctors associated
with the Navier-Stokes regime.

From the definition (3.42) and the expansions (3.43) we deduce that at the zeroth order we have
Etr(T tr

0 ) = 〈〈f (0), ψtr〉〉 and Erap(T rap
0 ) = 〈〈f (0), ψrap〉〉, so that Etr(T tr

0 ) = Etr(T ), and Erap(T rap
0 ) =

Erap(T ) in such a way that at the zeroth order

T tr
0 = T rap

0 = T , (3.44)

in agreement with the fast mode assumption.
We introduce for convenience the notation

T tr
1 = T tr

0 + ε δT tr
1 , T rap

1 = T rap
0 + ε δT rap

1 , (3.45)

in such a way that T tr = T tr
1 + O(ε2) and T rap = T rap

1 + O(ε2). In other words T tr and T tr
1 coincide

in the Navier-Stokes regime as well as T rap and T rap
1 . From the general relations

Etr(T tr)− Etr(T ) = 〈〈f − f (0), ψtr〉〉, Erap(T rap)− Erap(T ) = 〈〈f − f (0), ψrap〉〉,

we next obtain the linearized expressions

nctr(T tr
1 − T ) = 〈〈f (0)φ, ψtr〉〉, ncrap(T rap

1 − T ) = 〈〈f (0)φ, ψrap〉〉. (3.46)

Note that crap may be evaluated at T since T tr and T rap are deviations from T in the Navier-Stokes
regime. We also know that ψtr + ψrap is a collisional invariant so that 〈〈f (0)φ, ψtr + ψrap〉〉 = 0 and

(ctr + crap)T = ctrT tr
1 + crapT rap

1 . (3.47)

In the next section, we evaluate the first order perturbations T tr
1 − T and T rap

1 − T in terms of the
divergence of the velocity field and the relaxation pressure.

Note that relations similar to (3.46) may be obtained for one-temperature polyatomic gas models.
In a one-temperature kinetic framework, starting from the thermodynamic equilibrium temperature
T , one may reconstruct approximations T int

1 and T tr
1 of the internal and translational temperatures in

the Navier-Stokes regime as in (3.46).

3.7 The rapid mode volume viscosity and the relaxation pressure

Since ψtr and ψrap are scalars, from the Curie principle, only the scalar part of φ yields nonzero
contribution in the products 〈〈f (0)φ, ψtr〉〉 and 〈〈f (0)φ, ψrap〉〉, in such a way that

nctr(T tr
1 − T ) = − 1

3 〈〈f
(0)φκ, ψtr〉〉∇·v + 〈〈f (0)φω, ψtr〉〉ωsl

0 , (3.48)

ncrap(T rap
1 − T ) = − 1

3 〈〈f
(0)φκ, ψrap〉〉∇·v + 〈〈f (0)φω, ψrap〉〉ωsl

0 . (3.49)
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Since ψtr +ψrap is a collisional invariant, the scalar products 〈〈f (0)φκ, ψtr〉〉 and 〈〈f (0)φκ, ψrap〉〉 are such
that 〈〈f (0)φκ, ψtr〉〉+〈〈f (0)φκ, ψrap〉〉 = 0. Similarly, the scalar products 〈〈f (0)φω, ψtr〉〉 and 〈〈f (0)φω, ψrap〉〉
are such that 〈〈f (0)φω, ψtr〉〉 + 〈〈f (0)φω, ψrap〉〉 = 0. On the other hand, we have the expression of the
volume viscosity κrap

κrap = 1
9kBT 〈〈f

(0)φκ, ψκ〉〉 = 1
9kBT [φκ, φκ].

Noting that ψκ − 2crap

(ctr+crap)kBT
ψtr + 2ctr

(ctr+crap)kBT
ψrap is a collisional invariant, we obtain upon taking

the scalar product with f (0)φκ a second relation between 〈〈f (0)φκ, ψtr〉〉 and 〈〈f (0)φκ, ψrap〉〉 which are
thus expressed in terms of κrap after some algebra. Similarly, we know that

p̃rel = 1
3kBT 〈〈f

(0)φω, ψκ〉〉,

and upon expressing ψκ in terms of ψtr, ψrap and a collisional invariant, and taking the scalar product
with f (0)φω, we obtain a second relation between 〈〈f (0)φω, ψtr〉〉 and 〈〈f (0)φω, ψrap〉〉 which are then
evaluated in terms of p̃rel. After some algebra, it is obtained that

nkBT
tr
1 = nkBT − κrap∇·v + p̃relωsl

0 , (3.50)

nkBT
rap
1 = nkBT −

ctr

crap

(
−κ∇·v + p̃relωsl

0

)
. (3.51)

We notably deduce that the expression nkBT − κrap∇·v + prel appearing in the pressure tensor may
be written nkBT

tr
1 in the Navier-Stokes regime. The volume viscosity term −κrap∇·v and the relax-

ation pressure prel = p̃relωsl
0 modify the partial equilibrium temperature pressure term nkBT into a

translational temperature pressure term nkBT
tr
1 .

The fast mode volume viscosity is obtained as in classical one-temperature models [45, 46] and
found to be

κrap =
( crap

ctr + crap

)2 (kBT )3

2[[(∆Erap)2]]
. (3.52)

Note that in principle, we should write the bracket in the form [[(∆Erap)2]]
rap

since we have to evaluate
the average as in the definition (2.29) but summing only over the fast reactions. However, thanks to
the scaling in the Boltzmann equations, the relative difference between [[(∆Erap)2]]

rap
and the complete

bracket [[(∆Erap)2]] obtained by summing over the fast and the slow collisions is O(ε) and thus may be
neglected.

In order to evaluate the reduced relaxation pressure p̃rel we use the expression

p̃rel = 1
3kBT 〈〈f

(0)φκ, ψω〉〉 = 1
3kBT 〈〈φ

κ, J̃ sl,(0)〉〉,

and we have first to evaluate the perturbed function φκ. The corresponding standard Galerkin
variational approximation space is the space spanned by φ0010 = 3

2 −
1
2
m
kBT

(c − v)·(c − v) and

φ0001rap = (E
rap−Erap

i )/kBT . The function φ0001sl = (E
sl−Esl

i )/kBT
sl is indeed a collisional invariant

of the rapid collision operator and must be discarded. We also discard higher degree polynomials in a
first approximation. The transport linear system associated with this Galerkin variational approxima-
tion space is similar to the system investigated in References [45, 46] and, after some lengthy algebra,
it is found that

φκ = −3

p

crap

(ctr + crap)2

(kBT )3

2[[(∆Erap)2]]
(crap φ0010 − ctr φ0001rap). (3.53)

The scalar products 〈〈φ0010, J̃ sl,(0)〉〉 and 〈〈φ0001rap, J̃ sl,(0)〉〉 are next evaluated in the form

〈〈φ0010, J̃ sl,(0)〉〉 =
[[(∆Erap + ∆Esl)(∆Esl)ζsl]]

[[(∆Esl)2ζsl]]kBT
, (3.54)

〈〈φ0001rap, J̃ sl,(0)〉〉 = − [[(∆Erap)(∆Esl)ζsl]]

[[(∆Esl)2ζsl]]kBT
. (3.55)

The resulting rescaled relaxation pressure p̃rel is then given by

p̃rel = − (kBT )3crap

2p(ctr + crap)2

crap[[(∆Esl)2ζsl]] + (ctr + crap)[[(∆Erap)(∆Esl)ζsl]]

2[[(∆Erap)2ζsl]][[(∆Esl)2ζsl]]
. (3.56)
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Furthermore, in the relaxation regime, we may express the zeroth order source term ωsl
0 in term of

∇·v in the expression of prel = ωsl
0 p̃

rel and we finally obtain that

prel = p̂rel∇·v, (3.57)

where

p̂rel =
(kBT )3cslcrap

(ctr + crap)2cv

crap[[(∆Esl)2ζsl]] + (ctr + crap)[[(∆Erap)(∆Esl)ζsl]]

2[[(∆Erap)2ζsl]][[(∆Esl)2ζsl]]
, (3.58)

and the relaxation pressure finally adds a contribution to the effective volume viscosity.

3.8 The perturbed source term

We further have to evaluate the perturbed source term δωsl
1 or equivalently the scalar products wκ1 =

− 1
3 〈〈f

(0)φκ,Wsl〉〉 and wsl
1 = 〈〈f (0)φω,Wsl〉〉, and next δωsl

1 = wκ1 ∇·v +wsl
1 ω

sl
0 . We first investigate the

product wκ1 and then the product wsl
1 .

The perturbed distribution function φκ has already been evaluated in terms of φ0010 and φ0001rap

and we are left with the calculation of 〈〈f (0)φ0010,Wsl〉〉 and 〈〈f (0)φ0001rap,Wsl〉〉 in order to evaluate
wκ1 . After lenghty calculations, these scalar products may be expressed in the form

〈〈f (0)φ0010,Wsl〉〉 =− 2n2

kBT

(
[[(∆Esl)(∆Esl + ∆rap)]] + 2[[(∆Esl)2φ0010ζsl]]

T − T sl

T sl

)
, (3.59)

〈〈f (0)φ0010,Wsl〉〉 =
2n2

kBT

(
[[(∆Esl)(∆rap)]]− 2[[(∆Esl)2φ0001rapζsl]]

T − T sl

T sl

)
. (3.60)

On the other hand, we may also evaluate the difference between [[(∆Esl)(∆Esl + ∆Erap)]] and [[(∆Esl)(∆Esl + ∆Erap)ζsl]]
and the difference between [[(∆Esl)2]] and [[(∆Esl)2ζsl]] in the form

[[(∆Esl)(∆Erap)]] = [[(∆Esl)(∆Erap)ζsl]] + [[(∆Esl)2(∆Erap)ζ̂sl]]
T − T sl

kBTT sl
,

[[(∆Esl)2]] = [[(∆Esl)2ζsl]] + [[(∆Esl)3ζ̂sl]]
T − T sl

kBTT sl

where

ζ̂sl =

∫ 1

0

∫ s

0

exp
((

∆Esl

kBT
− ∆Esl

kBT sl

)
r
)

dr ds. (3.61)

In the relaxation approximation and in the Navier-Stokes regime, we have to discard gradients terms
squared associated with the Burnett regime, and we are left with the approximations

〈〈f (0)φ0010,Wsl〉〉 ≈ − 2n2

kBT
[[(∆Esl)(∆Esl + ∆rap)ζsl]], (3.62)

〈〈f (0)φ0001rap,Wsl〉〉 ≈ 2n2

kBT
[[(∆Esl)(∆rap)ζsl]]. (3.63)

The resulting perturbed source term is then in the form

wκ1 = −
( crap

ctr + crap

)2 p[[(∆Esl)2ζsl]]

[[(∆Erap)2]]
− pcrap

ctr + crap

[[(∆Esl)(∆Erap)ζsl]]

[[(∆Erap)2]]
(3.64)

On the other hand, in order to evaluate the scalar perturbed distribution function φω, we may
use the same orthogonal polynomials as for the scalar function φκ. The transport linear system is
easily evaluated following the Galerkin variational approximation procedure and the classical formulas
associated with the transport linear systems [45]. Upon expanding φω in the form

φω = −3

p

(
α10φ0010 + α01rapφ0001rap

)
, (3.65)

we obtain a linear system Kα = β where K is similar to the matrix presented in References [45, 46]
but now at temperature T . The nullspace of K is the vector (1, 1)t and we have the constraint
ctrα10 + crapα01rap = 0. The right hand side is evaluated from [45]

β10 = − 1

3n
〈〈f (0)φ0010, ψω〉〉, β01rap = − 1

3n
〈〈f (0)φ0001rap, ψω〉〉, (3.66)
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and after some algebra, it is found that

β10 =
1

3p

(
− [[(∆Esl)(∆Esl + ∆Erap)ζsl]]

[[(∆Esl)2ζsl]]
+

ctr

ctr + crap

)
, (3.67)

β01rap =
1

3p

( [[(∆Esl)(∆Erap)ζsl]]

[[(∆Esl)2ζsl]]
+

crap

ctr + crap

)
. (3.68)

The linear system is easily solved and it is found that

φω = − 1

p2

1

ctr + crap

(kBT )3

2[[(∆Erap)2]]

( [[(∆Esl)(∆Erap)ζsl]]

[[(∆Esl)2ζsl]]
+

crap

ctr + crap

)
(crap φ0010 − ctr φ0001rap). (3.69)

Using the expressions (3.62) and (3.63) the perturbed source term wsl
1 is first obtained in the form

wsl
1 = − 1

(ctr + crap)2

(
(ctr + crap)[[(∆Esl)(∆Erap)ζsl]] + crap[[(∆Esl)2ζsl]]

)2
[[(∆Erap)2]][[(∆Esl)2ζsl]]

. (3.70)

However, we have already assumed that the coupling between the modes is weak in such a way that

the square [[(∆Esl)(∆Erap)ζsl]]
2

may be neglected and this yields

wsl
1 = −

( crap

ctr + crap

)2 [[(∆Esl)2ζsl]]

[[(∆Erap)2]]
− 1

ctr + crap

[[(∆Esl)(∆Erap)ζsl]]

[[(∆Erap)2]][[(∆Esl)2ζsl]]
. (3.71)

Note that the approximate expressions (3.62) and (3.63), as well as the relaxation approximation
are used since we are interested in volume viscosity effects and in recovering the equilibrium volume
viscosity. However, the full nonequilibrium model may still be evaluated from the expressions (3.59)
and (3.60).

3.9 The effective volume viscosity

The general expression of the effective volume viscosity in the Navier-Stokes regime and in the relaxation
approximation is in the form

κ = κrap − p̂rel + κsl − κslwsl
1 + κslcvw

κ
1/c

slp, (3.72)

where we have written for convenience prel = p̂rel∇·v. Collecting from the previous sections the
expressions of κrap, p̂rel, κsl and of the perturbed source terms, wκ1 and wsl

1 , it is found that

κ =
( crap

ctr + crap

)2 (kBT )3

2[[(∆Erap)2]]

− csl

cv

( crap

ctr + crap

)2 (kBT )3cslcrap

2[[(∆Erap)2]]
− crapcsl

(ctr + crap)cv

(kBT )3[[(∆Erap)(∆Esl)ζsl]]

2[[(∆Erap)2ζsl]][[(∆Esl)2ζsl]]

+
cslc̃sl

cvc̃v

kB
3(T )2T sl

2[[∆Esl)2ζsl]]

− c̃sl

c̃v

( crap

ctr + crap

)2 k3
BT

2
T sl

2[[(∆Erap)2]]
− crapc̃sl

(ctr + crap)c̃v

k3
BT

2
T sl[[(∆Esl)(∆Erap)]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]

+
cslc̃sl

cvc̃v

( crap

ctr + crap

)2 k3
BT

2
T sl

2[[(∆Erap)2]]
+ 2

crapcslc̃sl

(ctr + crap)cvc̃v

k3
BT

2
T sl[[(∆Esl)(∆Erap)]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]
. (3.73)

Now a close examination of the nonequilibrium effective volume viscosity (3.73) reveals that its asymp-
totic limit at thermodynamic equilibrium is exactly the one-temperature two-mode volume viscosity
derived from the Chapman-Enskog method in the Appendix and given by

κ =
(crap

cv

)2 (kBT )3

2[[(∆Erap)2]]
− crapcsl

c2v

(kBT )3[[(∆Erap)(∆Esl)]]

[[(∆Erap)2]][[(∆Esl)2]]
+
(csl
cv

)2 (kBT )3

2[[(∆Esl)2]]
. (3.74)

More specifically, the first, second, fifth and seventh terms of (3.73) converge toward the first term of
(3.74), the third, sixth and eighth terms of (3.73) converge toward the second term of (3.74), and the
fourth terms of (3.73) converge toward the third term of (3.74).
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4 Numerical experiments

The results derived in the preceding sections are assessed against numerical experiments for a poly-
atomic gas with a single internal mode. Results are obtained by solving the appropriate Boltzmann
transport equation via a Monte Carlo method. The transport properties of the model system are
investigated by looking at the spontaneous fluctuations at thermal equilibrium [54, 22, 55, 56].

We first establish that the two temperature model of Section 2.2 gives an accurate description of the
system transport properties as compared to direct solutions of the Boltzmann equation, in particular
when the relaxation time is large as compared to the characteristic flow timescale. The one temperature
model, instead, fails to describe the system behavior even in conditions of thermal equilibrium. The
reason is that the one temperature model is the limit of the two temperature model when T tr and T int

are equal (or close) and a relaxation approximation is valid, as discussed in Section 2.7.
We next verify that, when the relaxation time is small enough as compared to the characteristic

flow timescale, both the two temperature model—with no volume viscosity—and the one temperature
model—which includes a volume viscosity—are adequate to describe the properties of the system. In
this limit, the two temperature model thus reduces to the one temperature model.

Interestingly, the dynamics of spontaneous fluctuations can actually be probed by light scattering
experiments [56, 57, 58].

Before showing the results, we introduce the quantities used to describe the thermal fluctuations
(Section 4.1) and the theoretical fluctuation spectra predicted by the one temperature (Section 4.2)
and two temperature (Section 4.3) models, respectively. We then describe the Monte Carlo method
used to solve the Boltzmann transport equation (Section 4.4). In Section 4.5 the physical model used
for the calculations is described and, finally, Section 4.6 presents the results.

4.1 Kinetic theory of spontaneous fluctuations

The dynamics of the fluctuations of a variable A(r, t) is discussed by introducing the space-time cor-
relation function

δA2(r, t; r′, t′) =< δA(r, t)δA(r′, t′) >, (4.1)

where < ... > means ensemble average and δA(r, t) = A(r, t)− < A(r, t) > is the fluctuation of the
dynamic variable. For an isotropic system in thermodynamic equilibrium the correlation function
depends only on the space-time distance

δA2(r, t; r′, t′) = δA2(|r− r′|, t− t′). (4.2)

In particular, the quantity actually measured in light (or neutron) scattering experiments is the Laplace-
Fourier transform of the correlation function of density fluctuations, the spectral density (or power
spectrum) of these fluctuations [56]

δn2(k, ω) =

∫
ei(k·r−ωt)δn2(r, t)drdt. (4.3)

Since the equilibrium fluctuations of the fluid variables are small compared to the average values,
their dynamics is governed by the same equations that govern the dynamics of the system, but lin-
earized around the equilibrium solution. These linearized equations are then doubly Laplace-Fourier

transformed to the (k, ω) space and are solved for δ̃ρk(s = ε+ iω). The latter is used to construct the

space time correlation function < δρ∗k(0)δ̃ρk(s) >.
Finally, this correlation function may be connected with the density fluctuation power spectrum

S(k, ω) that is a quantity experimentally measurable in light scattering experiments

S(k, ω)

S(k)
= 2Re lim

ε→0

< δρ∗k(0)δ̃ρk(s) >

< δρ∗k(0)δρk(0) >
. (4.4)

For thermal fluctuations in gases, the ratio of the fluctuation wavelength to the mean free path
defines the flow regime (from high to low ratios: hydrodynamic, kinetic, collisionless). Different regimes
are described by different values of the following parameter

y =
8

3
√

2π

ρ0

√
kBT/m

ηk
, (4.5)
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where ρ0 is the equilibrium density, η is the shear viscosity and k is the fluctuation wavenumber. The
collisionless limit corresponds to y → 0, whereas the hydrodynamic limit (k → 0) is approached for
y > 5. In the following we derive the thermal fluctuation power spectra in the hydrodynamic regime
as obtained by the one temperature model (eqs. (2.5), (2.6), (2.48)) and the two temperature model
(eqs. (2.5), (2.6), (2.7), (2.8)) fluid equations.

4.2 Fluctuation power spectrum from the one-temperature model

The fluctuation power spectrum for a fluid described by the (1T) Navier Stokes equations is reported
in the book by J.P. Boon and S. Yip [54]

δρ2(k, ω) =
γ − 1

γ

2χk2

ω2 + (χk2)2
+

1

γ

[
Γk2

(ω + c0k)2 + (Γk2)2
+

Γk2

(ω − c0k)2 + (Γk2)2

]
+

1

γ
[Γ + (γ − 1)χ]

k

c0

[
ω + c0k

(ω + c0k)2 + (Γk2)2
− ω − c0k

(ω − c0k)2 + (Γk2)2

]
, (4.6)

where γ is the specific heat ratio, c0 the speed of sound, χ the thermal diffusivity and

Γ =
1

2

( 4
3η + κ

ρ0
+ (γ − 1)χ

)
,

is the sound absorption coefficient.
The spectrum of the density autocorrelation function gives information on thermodynamic and

transport properties of the fluid. The position of the Brillouin peaks is a measure of the speed of
sound. The width of the Rayleigh peak is a measure of the thermal diffusivity, the width of the
Brillouin peaks a measure of the sound absorption coefficient, the Rayleigh-to-Brillouin peak area ratio
a measure of the specific heat ratio (Landau-Placzek ratio).

4.3 Fluctuation power spectrum from the two-temperature model

Since the fluctuation power spectrum has not been explicitly reported in the literature we sketch here
the main steps required for its calculation. We start from the fluid equations (eqs. (2.5), (2.6), (2.7),
(2.8)) that we rewrite here for convenience

∂tρ+ ∇·(ρv) = 0, (4.7)

∂t(ρv) + ∇·(ρv⊗v + pI) + ∇·Π = 0, (4.8)

∂tEtr + ∇·(vEtr) + ∇·Qtr = −p∇·v −Π :∇v − ωint
1 , (4.9)

∂tE int + ∇·(vE int) + ∇·Qint = ωint
1 . (4.10)

Taking into account the Navier-Stokes expression for the pressure tensor, eq. (2.11), we rewrite
eq. (4.8) as

∂tv + v·∇v +
kBT

tr

m

∇ρ

ρ
+
kB
m

∇T tr − η

ρ

[
∇2v +

1

3
∇(∇·v)

]
= 0. (4.11)

Analogously, making use of expressions (2.12), (2.13), we rewrite eqs. (4.9), (4.10) as

∂tT
tr + v·∇T tr +

p

nctr
∇·v − λtr,tr

nctr
∇2T tr

− λtr,int

nctr
∇2T int − 2

η

nctr
(∇v)s0 : ∇v +

1

nctr
ωint

1 = 0, (4.12)

∂tT
int + v·∇T int − λint,int

ncint
∇2T int − λint,tr

ncint
∇2T tr − 1

ncint
ωint

1 = 0, (4.13)

where (∇v)s0 = 1
2 [∇v + (∇v)t]− 2

3 (∇·v)I. Note that the transport coefficients are considered as fixed
parameters.

We now linearize eqs. (4.7), (4.11), (4.12), (4.13) around the equilibrium solution. Introducing the
fluctuations

δρ = ρ− ρ0, δv = v, δT tr = T tr − T0, δT int = T int − T0. (4.14)
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where the subscript denotes the equilibrium average value, into the equations, one obtains, to the first
order in the fluctuations, the following set of linearized equations

∂tδρ+ ρ0∇·v = 0, (4.15)[
∂t −

η

ρ0
(∇2 +

1

3
∇∇·)

]
v +

kBT0

m

1

ρ0
∇δρ+

kB
m

∇δT tr = 0, (4.16)[
∂t −

λtr,tr

nctr
∇2 +

cint

ctr
1

τ1

]
δT tr +

p

nctr
∇·v −

[
λtr,int

nctr
∇2 +

cint

ctr
1

τ1

]
δT int = 0, (4.17)[

∂t −
λint,int

ncint
∇2 +

1

τ1

]
δT int −

[
λint,tr

ncint
∇2 +

1

τ1

]
δT tr = 0, (4.18)

where we have formally introduced the internal energy relaxation time as

ωint
1 =

ncint

τ1
(T tr − T int). (4.19)

Denoting the spatial Fourier transform by

δAk(t) =

∫
dreik·rδA(r, t), (4.20)

and the Laplace transform by

δ̃Ak(s = ε+ iω) =

∫
dte−stδAk(t), (4.21)

where i2 = −1 and k2 = k·k, we now perform a double Laplace-Fourier transformation of the linearized
equations

sδ̃ρk(s) + ik·j̃k(s) = δρk(0), (4.22)(
s+

4

3

η

ρ0
k2
)
j̃k(s) +

kB
m

ik
(
T0δ̃ρk(s) + g̃k(s)

)
= jk(0), (4.23)

(
s+

λtr,tr

nctr
k2 +

cint

ctr
1

τ1

)
g̃k(s) +

kBT0

ctr
ik·j̃k(s) +

(λtr,int

nctr
k2 − cint

ctr
1

τ1

)
h̃k(s) = gk(0), (4.24)

(
s+

λint,int

ncint
k2 +

1

τ1

)
h̃k(s) +

(λint,tr

ncint
k2 − 1

τ1

)
g̃k(s) = hk(0), (4.25)

where j̃k(s), g̃k(s), h̃k(s) are the Fourier transforms of ρ0v, ρ0δT
tr, ρ0δT

int, respectively.

We now solve this linear system for δ̃ρk(s) with the Kramer rule and then construct the correlation

function < δρ∗k(0)δ̃ρk(s) >

< δρ∗k(0)δ̃ρk(s) >=
N(k, s)

M(k, s)
< δρ∗k(0)δρk(0) > . (4.26)

where M(k, s) is the determinant of the coefficient matrix for the linear system and N(k, s) is obtained
from M(k, s) by deleting the first row and the first column, keeping in mind that the macroscopic
variables are statistically independent variables so that cross-correlation terms vanish. The functions
M(k, s) and N(k, s) are therefore polynomials in s of degree 4 and 3, respectively, and, by taking the
limit ε→ 0, we can then write

N(k, ω) = −iω3 − b1(k)ω2 + ib2(k)ω + b3(k), (4.27)

M(k, ω) = ω4 − ib1(k)ω3 − b4(k)ω2 + ib5(k)ω + b6(k), (4.28)

where the expressions for the polynomials bj(k), 1 6 j 6 6, are easily evaluated. We have now all
ingredients to compute the fluctuation power spectrum from eq. (4.4).
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4.4 Simulation of spontaneuos fluctuations in a dilute gas

Thermodynamic fluctuations in gases, provided the density is low enough that only bimolecular colli-
sions are effective, are described by the Boltzmann equation. We then aim to compare the theoretical
results derived in Sections 4.2, 4.3 with those of a numerical experiment where a Monte Carlo method
is applied to the solution of the Boltzmann transport equation. In the case of the Boltzmann equation,
the system is described in terms of the one-particle distribution function. By linearizing the equation
around the equilibrium distribution a integro-differential equation for the space-time correlator of the
fluctuations of the distribution function is obtained [59]. The density fluctuations are then readily
obtained by integration over the velocity space.

For the simulation of the spontaneous fluctuations in a gas in thermodynamic equilibrium we use the
Direct Simulation Monte Carlo method (DSMC)[23]. DSMC is a particle simulation method that solves
the nonlinear Boltzmann equation. As such, it can simulate flows in the rarefied and/or hypersonic
regime that cannot be dealt with in the framework of a fluid-dynamic treatment. Besides, it can
handle situations of strong thermal nonequilibrium where a clear hierarchy of relaxation times cannot
be established and rate equation methods fail [27]. The principle of the method is the decoupling, over
a small timestep, of the processes of free flight and of collisional relaxation. A number of simulated
particles are moved in the simulation domain according to their velocities and to prescribed boundary
conditions. In the collision step, particles are made to collide inside spatially homogeneous cells. A
Monte Carlo method is used to realize collision events with the appropriate frequency. The details
of the molecular processes occurring in the gas system are specified by assigning the appropriate set
of collision cross sections. The viscosity and diffusion coefficients of the gas can be modeled by the
Variable Soft Sphere model of Koura[60].

The power spectrum of the fluctuations of the dynamic variable n(r, t) is evaluated as follows.
The variable fluctuations at all sampled space-time points, δnij = nij − n0, are recorded during the
simulation, n0 being the equilibrium value. This discrete set is then Fourier transformed and squared to
get the discrete power spectrum. For an isotropic medium, it is sufficient to simulate a one-dimensional
spatial domain. Also, for obvious reasons, the number of simulated particles is much less than the
number of real particles present in the physical volume. The ratio of real to simulated particle number
is called the weight w of the simulated particle and it is a constant throughout the simulation. Now,
since the density fluctuations are proportional to the gas density[61], i.e., given the volume, to the
number of particles, the simulated fluctuations are equal to the real fluctuations to within a factor
w. Therefore, the spectrum sampled by the simulation is exactly equivalent, to within normalization
factors, to the spectrum measured in light scattering experiments. In order to reduce the statistical
scatter inherent in the particle simulation method ensemble averaging of the results is performed by
averaging the results of many independent runs.

This procedure allows also to estimate the variance of the results with respect to the statistical
scatter. It is worth mentioning that this procedure is amenable to implementation on a computational
grid. The GRID infrastructure allows hundreds of runs to be performed simultaneously, thus reducing
drastically the global computational time. The simulations of this work, in particular, have been done
under the Compchem Virtual Organisation.

When setting up a simulation, appropriate simulation and sampling requirements have to be spec-
ified. Provided the typical requirements of DSMC simulations are met (timestep, cell size, number
of simulated particles per cell) results are not very sensitive to the particular values chosen for the
simulation parameters. In this study the following values have been employed throughout

• Cell width to mean free path ratio: 0.3

• Timestep to mean free time ratio: 0.05

• Average number of simulated particles per cell: 20

Also, we mention that implementing periodic boundary conditions can introduce spurious correla-
tions due to the finite size of the simulation sample. Therefore the simulation domain is kept in contact
with an infinite reservoir of the gas at the specified equilibrium conditions. Care must be taken, in this
case, to sample accurately the statistics of the incoming particles[62].

The details on how the data are sampled, instead, have a big impact on the simulated spectra.
First, given a minimum wavelength to be sampled, fluctuation data are averaged over the appropriate
number of cells so that shorter wavelengths do not contribute. The same is done in the time domain.

The maximum sampled frequency should be chosen carefully so that all significant frequencies
are sampled correctly. Neglected frequencies spuriously contribute to the sampled spectrum with a
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phenomenon known as aliasing. We choose to sample up to the 16th harmonic, both in the space and
time domains.

A number of wavelengths must be simulated in order to increase the signal-to-noise ratio. A
compromise must be sought, obviously, between quality of the results and computational cost. For
each spectrum we sample 4096 time points and 64 wavelengths (corresponding to 2048 spatial points).
With these parameters we obtain a signal-to-noise ratio of 10−3, i.e., the high frequency background
noise lies 3 orders of magnitude below the maximum value.

The use of Monte Carlo particle methods for the study of hydrodynamic fluctuations in gases has
been demonstrated many years ago by M. Mansour and coworkers [21] who studied with DSMC a
nonequilibrium gas subject to a fixed heat flux; also, one of the authors has applied DSMC to the
simulation of the fluctuation power spectra in a monoatomic gas (Argon) showing that DSMC gives
correct results both in hydrodynamic and rarefied regimes [22].

In the present case we apply the method to the simulation of the spontaneous fluctuations of a
model gas with internal degrees of freedom. We then turn to a discussion of the properties of the
model system under study.

4.5 Physical system

A single gas of Hard Spheres is considered with mass = 28.9641 amu, σ = 7.2 · 10−19 m2. The gas has
two internal energy levels with degeneracies and energies given by

a0 = 1, E0 = 0 J, (4.29)

a1 = 9, E1 = kB · 1000 J. (4.30)

Molecules exchange internal energy in collision according to the simplest single-quantum, line-of-centers
model

p(0← 1) = p0, (4.31)

p(1← 0) =

{
0 εk < E1

a1p0(1− E1

εk
) εk ≥ E1

(4.32)

where εk = 1
2µg

2 is the kinetic energy in collision.
For this simple model all thermodynamic and transport properties can be calculated explicitly. In

particular, in thermal equilibrium (T tr ≈ T int ≈ T0)

τc =
1√
2

1

σn

1√
kBT0/m

, (4.33)

cint = kB
( E1

kBT0

)2n1

n

n0

n
, (4.34)

τ−1
0 = nK0

1 (1 + a1e
− E1

kBT0 ), (4.35)

K0
1 = 4p0σ

√
kBT0

πm
(4.36)

where τc denotes the mean collision time. Note that in the calculation of the fluctuation power spectrum
for the two temperature model the zero-order approximation, τ0 has been used in place of τ1 since we
have seen in Section 2.6 that the term wint

1 is small.
As for the transport coefficients, the contribution of inelastic processes to the collision integrals

cannot be neglected in the case of fast relaxation.
The shear and volume viscosities have been evaluated from the following expressions

η =
5

16

√
πmkBT0

σ
, (4.37)

κ =
kBp

c2v
cintτ int

0 . (4.38)

The thermal conductivities have been evaluated from [45]
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λtr,tr =
m

6T
< atr, btr >, λtr,int =

m

6T
< atr, bint >, (4.39)

λint,tr =
m

6T
< aint, btr >, λint,int =

m

6T
< aint, bint > . (4.40)

where atr and aint are solutions of the linear systems A · atr = btr and A · aint = bint, where

btr =

(
3 5

2
kB
mT0

0

)
, bint =

(
0

3 c
int

m T0

)
. (4.41)

The matrix elements are those described in Ferziger’s book [5], eqs. (11.3-57); for the present model
they read

A11 = 4Ω(2,2) +
cint

kB

1

nτ int
0

8 + 8
3x+ 11

4 x
2

x2
, (4.42)

A12 = A21 = −5

4

cint

kB

1

nτ int
0

, (4.43)

A22 = 4

√
kBT0

πm

cint

kB
Ω(1,1) +

cint

kB

1

nτ int
0

(
7

4
+
n1

n

x

2
). (4.44)

where x = E1

kBT0
.

The resulting expressions for the thermal conductivity coefficients reduce to the eqs. (11.3-60) of
Ferziger’s book [5] only in the limit A12

A11
<< 1 and A12

A22
<< 1. When the relaxation is slow, the cross

terms λtr,int and λint,tr are not very important. For p0 = 0.01 for instance, we have λtr,tr = 1.08 10−2,
λtr,int = 1.36 10−4, λint,tr = 1.36 10−4, and λint,int = 7.22 10−3.

On the other hand, these cross contributions are important when relaxation is fast. For p0 = 0.1, for
instance, we have λtr,tr = 7.46 10−3, λtr,int = 7.07 10−4, λint,tr = 7.07 10−4, and λint,int = 5.49 10−3.
In this situation, the differences are noticeable, and comparison with the DSMC results shows that
inclusion of the cross contributions are important.

4.6 Results and discussion

Simulations are conducted for the model gas described in the preceding section, in the following con-
ditions

Temperature T = 285.71 K

Density n = 2.4 · 1021 m−3

The fluctuation spectra are sampled at the wavelength 2π/k = 0.02 m that gives y = 5.97 so that the
probed fluctuations fall into the hydrodynamic regime.

Two situations are analyzed. In the first case, we have chosen p0 = 0.01, that gives for the relaxation
time τ0 ≈ 7.0 · 10−5 s (Z ≡ τ0

τc
= 49). Figure 1 shows the fluctuation power spectra for this case. The

spectra are normalized to unit maximum value. In this case, the relaxation is slow enough that a
relaxation approximation does not hold and the one-temperature model fails to describe the transport
properties of the system correctly.

The two-temperature model, instead, gives an adequate description of the system behaviour and the
agreement with the DSMC simulations is satisfactory. Also reported for comparison is the spectrum
predicted for the same gas when the internal energy relaxation is forbidden (frozen relaxation).

Next, we analyse a situation where relaxation of internal energy is fast enough as compared to
the flow characteristic time (as determined by the speed of sound). In these conditions we expect the
one-temperature model to be accurate and that the two-temperature model reduce to the former. We
have chosen p0 = 0.1 that gives for the relaxation time τ0 = 7.0 · 10−6 s (Z ≡ τ0

τc
= 4.9).

Figure 2 shows the fluctuation power spectra as obtained from DSMC simulations and from the
one-temperature and two-temperature models, respectively. Also shown for comparison are the spectra
predicted for the same gas when the bulk viscosity contribution is neglected (i.e., κ = 0). We see that,
in this case, both models describe the DSMC results accurately. Comparison with the κ = 0 case also
shows that this agreement is not trivial since there is an important contribution of the bulk viscosity to
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Figure 1: Fluctuation power spectra for the slow relaxation case (p0 = 0.01). The spectra are normal-
ized to unit maximum value. Full line: 1T model; dotted line: frozen; dashed line: 2T model; symbols:
DSMC.

the spectrum with κ
η ≈ 1. Note, however, that the one-temperature model cannot describe the (small)

change in the speed of sound that is a consequence of the finite relaxation time for internal energy.
The statistical error in the simulation results is around 4% for the slow relaxation and 12% for the

fast relaxation case, respectively. We conclude that multi-temperature hydrodynamic equations, as
derived from the Boltzmann transport equation, provide an adequate description of internal energy re-
laxation for all values of the relaxation time. Therefore there is no need to invoke frequency dependent
transport coefficients that introduce unnecessary complications. Further, the results support the con-
clusion, obtained by kinetic theoretical arguments in the previous sections, that the multi-temperature
model reduces to the one-temperature model when the relaxation time is small enough and that only
in this case a bulk viscosity formalism is adequate.

These results are also relevant in view of the renewed interest in Rayleigh-Brillouin scattering
in gases made possible by the use of nonlinear optical techniques[63]. Coherent Rayleigh-Brillouin
scattering is a technique capable of making localized and high signal-to-noise ratio measurements of
gases from the collisionless limit to the hydrodynamic regime. CRBS data are therefore expected to
become a valuable source for the study of kinetic processes in molecular gases.

5 Conclusions

We have investigated the relaxation of internal temperature and the concept of volume viscosity in
nonequilibrium gas models derived from the kinetic theory. When the rate for internal energy exchange
is slow, the relaxation approximation leads to the definition of a multitemperature volume viscosity
coefficient. In the near thermodynamic equilibrium limit, the full classical one-temperature polyatomic
gas model including the volume viscosity is recovered.

The Monte Carlo simulations of spontaneous fluctuations near thermal equilibrium obtained by
solving the Boltzmann equation fully agree with these theoretical results. When the characteristic
time of internal energy relaxation is larger than the flow characteristic time, the two temperature
model gives an accurate description of the system and the one temperature model fails. On the other
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Figure 2: Fluctuation power spectra for the fast relaxation case (p0 = 0.1). The spectra are normalized
to unit maximum value. Full line: 1T model; dotted line: 1T model without bulk viscosity; dashed
line: 2T model; symbols: DSMC.

hand, when the characteristic time of internal energy relaxation is smaller than the flow time, both the
two temperature model and the one temperature model including the volume viscosity are adequate to
describe the fluid.

Finally, when there is a fast and a slow internal energy mode, there are four contributions to the
volume viscosity in the relaxation regime and, in the thermodynamic equilibrium limit, the sum of these
four terms converge towards the one-temperature two-mode volume viscosity obtained independently
from the Chapman-Enskog method. Future work should consider numerical simulations with multiple
internal energy modes and more generally states far from thermodynamic equilibrium.
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A The one-temperature two-mode volume viscosity

We investigate in this section the volume viscosity associated with a one-temperature two-mode poly-
atomic gas. The standard linear system associated with the evaluation of the two-mode volume viscosity
is obtained with the Galerkin variational approximation space spanned by the orthogonal polynomials

φ0010 = 3
2−

1
2
m
kBT

(c−v)·(c−v), φ0001rap = (E
rap−Erap

i )/kBT , and φ0001sl = (E
sl−Esl

i )/kBT . Note that
the general solution of the Transport Linear Systems as well as their mathematical structure has been
investigated [45, 46, 64, 65, 66, 67]. Of course, the modes are termed ‘rapid’ and ‘slow’ for notational
consistency with the nonequilibrium framework, but in the thermodynamic equilibrium framework they
are all fast. The corresponding linear system of size 3 is in the form [46]{

Kα = β,
〈K, α〉 = 0,

(A.1)
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where K denotes the system matrix, K the constraint vector, α = (α10, α01rap, α01sl)t the unknown
vector, β = (β10, β01rap, β01sl)t the right hand side vector, and the volume viscosity is finally given
by κ = α10β10 + α01rapβ01rap + α01slβ01sl. The matrix K is positive semi-definite with nullspace
N(K) = RV where V = (1, 1, 1)t, the constraint vector is given by K = (ctr, crap, csl)t, and the right
hand side vector by β = (crap + csl,−crap,−csl)t/cv.

We deduce from the constraint 〈K, α〉 = 0 that ctrα10 + crapα01rap + cslα01sl = 0 and κ =
−(crapα01rap +cslα01sl)/ctr. We may thus recast the singular linear system of size 3 into a regular linear
system of size 2 involving only the unknowns α01rap and α01sl. Thanks to the vector relation KV = 0,
the coefficients of this linear system may also be expressed solely in terms of Krap,rap, Krap,sl, and Ksl,sl.
We also have the relations Krap,rap = 2[[(∆Erap)2]]/(kBT )3, Krap,sl = 2[[(∆Erap)(∆Esl)]]/(kBT )3, and
Ksl,sl = 2[[(∆Esl)2]]/(kBT )3, where ∆Erap = Erap

i′ +Erap
j′ −E

rap
i −Erap

j and ∆Esl = Esl
i′ +Esl

j′−Esl
i −Esl

j .
After some lengthy algebra, using the reduced linear system of size 2, it is obtained that

κ =
1

c2v

(crap)2Ksl,sl − 2crapcslKrap,sl + (csl)2Krap,rap

Krap,rapKsl,sl −Krap,slKrap,sl
. (A.2)

Since we have to investigate the equilibrium limit of a two temperature model where one mode is
fast and another one slow, we deduce that the coefficient Krap,rap is large and that the cross terms
Krap,sl = Ksl,rap are also small. We therefore neglect the square term Ksl,rapKrap,sl in the previous
expression and the limiting value of the effective nonequilibrium volume viscosity should thus be

κ =
(crap

cv

)2 (kBT )3

2[[(∆Erap)2]]
− crapcsl

c2v

(kBT )3[[(∆Erap)(∆Esl)]]

[[(∆Erap)2]][[(∆Esl)2]]
+
(csl
cv

)2 (kBT )3

2[[(∆Esl)2]]
. (A.3)
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