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Abstract

Branching Processes in Random Environment (BPREs) (Zn : n ≥ 0) are the generalization

of Galton-Watson processes where in each generation the reproduction law is picked randomly

in an i.i.d. manner. In the supercritical case, the process survives with positive probability and

then almost surely grows geometrically. This paper focuses on rare events when the process

takes positive values, but lower than expected.

First, we consider small positive values the process may reach for large times and describe

the asymptotic behavior of P(1 ≤ Zn ≤ k) as n → ∞. If the reproduction laws are linear

fractional, two regimes appear for the rate of decrease of this probability.

Secondly, we are interested in the lower large deviations of Z and give the rate function

under some moment assumptions. This result generalizes the lower large deviation theorem

of Bansaye and Berestycki (2009) by considering processes where P1(Z1 = 0) > 0 but also

weaker moment assumptions.
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1 Introduction

A branching process in random environment (BPRE) is a discrete time and discrete size population

model going back to [38, 7]. In each generation, an o�spring distribution is picked at random,

independently from one generation to the other. We can think of a population of plants having

a one-year life-cycle. In each year, the outer conditions vary in a random fashion. Given these

conditions, all individuals reproduce independently according to the same mechanism. Thus, it

satis�es both the Markov and branching properties.

Recently, the problems of rare events and large deviations have attracted attention [32, 10, 13, 33,

11, 26]. In the Galton Watson case, large deviations problems are studied for a long time [6, 8]

and �ne results have been obtained, see [18, 19, 36, 37].

For the formal de�nition of a branching process Z in random environment, let Q be a random

variable taking values in ∆, the space of all probability measures on N0 = {0, 1, 2, . . .}. We denote
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by

mq =
∑
k≥0

kq({k})

the mean number of o�spings of q ∈ ∆. For simplicity of notation, we will shorten q({·}) to

q(·) throughout this paper. An in�nite sequence E = (Q1, Q2, . . .) of independent, identically

distributed (i.i.d.) copies of Q is called a random environment. Then the integer valued process

(Zn : n ≥ 0) is called a branching process in the random environment E if Z0 is independent of E
and it satis�es

L
(
Zn

∣∣ E , Z0, . . . , Zn−1

)
= Q∗Zn−1

n a.s. (1.1)

for every n ≥ 0, where q∗z is the z-fold convolution of the measure q. We introduce the probability

generating function (p.g.f) of Qn, which is denoted by fn and de�ned by

fn(s) :=
∞∑

k=0

skQn(k), (s ∈ [0, 1]) .

In the whole paper, we denote indi�erently the associated random environment by E = (f1, f2, ...)

and E = (Q1, Q2, ...). The characterization (1.1) of the law of Z becomes

E
[
sZn |E , Z0, . . . , Zn−1

]
= fn(s)Zn−1 a.s. (0 ≤ s ≤ 1).

Many properties of Z are mainly determined by the random walk associated with the

environment (Sn : n ∈ N0) which is de�ned by

S0 = 0, Sn − Sn−1 = Xn (n ≥ 1),

where

Xn := logmQn
= log f ′n(1)

are i.i.d. copies of the logarithm of the mean number of o�springs X := log(mQ) = log(f ′(1)).

Thus, one can check easily that

E[Zn|Q1, . . . , Qn, Z0 = 1] = eSn a.s. (1.2)

We have the following well-known classi�cation of BPRE [7]. In the subcritical case (E[X] < 0),

the population becomes extinct a.s. It also holds in the the critical case (E[X] = 0) if we exclude

the degenerated case when P1(Z1 = 1) = 1. In the supercritical case (E[X] > 0), the process

survives with positive probability under quite general assumptions on the o�spring distributions

(see [38]). Then E[Z1 log+(Z1)/f ′(1)] < ∞ ensures that the martingale e−SnZn has a positive

�nite limit on the non-extinction event:

lim
n→∞

e−SnZn = W, P(W > 0) = P(∀n ∈ N : Zn > 0) > 0.

The large deviations are related to the speed of convergence of exp(−Sn)Zn to W and the tail of

W . This latter is directly linked to the existence of moments and harmonic moments of W . In

the Galton Watson case, we refer to [6] and [37]. For BPRE, Hambly [25] gives the tail of W in 0,

whereas Huang & Liu [26, 27] obtain other various results in this direction.

In this paper, we consider the supercritical case and we are interested in the following asymptotic

probabilities

P(1 ≤ Zn ≤ kn), where kn = o(exp(Sn)).
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As Zn � exp(Sn) a.s. on the non-extinction event, this probability goes to 0 and we aim at

specifying its speed.

In particular a key role is played by the asymptotic probability to survive but stay bounded, which

corresponds to kn = k > 0 constant. For Galton Watson processes, the explicit equivalent of this

probability is well known (see e.g. [9] Chapter I, Section 11, Theorem 3) and we have

% := lim
n→∞

1
n

log P1(1 ≤ Zn ≤ k) = f ′(pe), where pe = P(∃n ∈ N : Zn = 0).

In Section 2, we characterize this quantity in the random environment framework. In the linear

fractional case we can specify the value of % and two regimes appear, similar to the regimes observed

for the survival probability in the subcritical case (see [14, 24, 23]). This result is stated as a part

of the PhD of one of the authors and can also be found in [12].

Then, in Section 3, we get an expression of the lower rate function for the large deviations of the

BPRE, i.e. we specify the exponential rate of decrease of P(1 ≤ Zn ≤ eθn) for 0 < θ < E[X]. In

the Galton Watson case, lower large deviations have been �nely studied, see e.g. [18, 19, 36]. In

the case of random environment, the rate function has been established in [10] when any individual

leaves at least one o�spring, i.e. P(Z1 = 0) = 0. This result is extended here to the situation where

P(Z1 = 0) > 0 and relax the moment assumptions.

In the rest of the paper, the proofs of these results are presented. Section 4 deals with a tree

construction due to Geiger, which is used in Section 5 to prove a characterization of ρ. Section 6 is

dedicated to the proof the second result of this paper : it gives a general upperbound of %, which

may be reached. In Section 7, we prove the results on large deviations given in Section 3. Finally,

in Section 8 the statements for the linear fractional case are proved by using the general results

obtained before, whereas in Section 9, we present some details on two examples.

We add that for the problem of upper large deviations, the rate function has been established in

[13, 11] and �ner results in the case of geometric o�spring distribution can be found in [32, 33].

Thus large deviations for BPRE become well understood, even if much work remains to get �ner

results, deal with weaker assumptions or consider the Bötcher case (P(Z1 ≥ 2) = 1).

2 Probability of staying bounded without extinction

The initial population size is denoted by k and the associated probability by Pk(·) := P(·|Z0 = k).

For convenience, we write P(·) when the initial population does not matter and can be taken equal

to 1. Let fi,n be the probability generating function of Zn started in generation i ≤ n :

fi,n := fi+1 ◦ fi+2,n ◦ · · · ◦ fn, fn,n = Id a.s.

We will now specify the asymptotic behavior of Pi(Zn = j) for i, j ≥ 1, which may depend both on

i and j. One can �rst observe that some integers j can not be reached by Z starting from i owing

to the support of the o�spring distribution. The �rst result below introduce the rate of decrease

% of this probability and gives a trajectorial interpretation of the associated rare event {Zn = j}.
The second one gives a general upperbound of this rate of decrease %, which may be reached. This

bound corresponds to the environmental stochasticity, which means that the rare event {Zn = j}
is explained by rare environments. The third one yields the explicit expression of the rate % in the

case of linear fractional o�spring distributions, where two supercritical regimes appear.
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Let us de�ne

I :=
{
j ≥ 1 : P(Q(j) > 0, Q(0) > 0) > 0

}
and introduce the set Cl(I) of integers which can be reached from I by the process Z. More

precisely,

Cl(I) :=
{
k ≥ 1 : ∃n ≥ 0 and j ∈ I with Pj(Zn = k) > 0

}
.

We observe that I ⊂ Cl(I) and if P(Q(0) +Q(1) < 1) > 0 and P(Q(0) > 0, Q(1) > 0) > 0, then s

Cl(I) = N.

We are interested in the event {Zn = j} for large n. Recall that we focus on the supercritical

case E[X] > 0 throughout this paper and thus, the trivial case P1(Z1 ≤ 1) = 1 is excluded. We

also exclude the case P1(Z1 = 0) = 0, which is easier and already handled in [10]. Then Z is also

nondecreasing and for k ≥ j ∈ N such that Pk(Zn = j) > 0 for some n ≥ 0, we have

lim
n→∞

1
n log Pk(Zn = j) = −k%.

So let us now focus on the supercrtical case, with possible extinction, which ensures that I is not

empty.

Theorem 2.1. We assume that E[X] > 0 and P(Z1 = 0) > 0. Then, the following limits exist

and coincide for all k, j ∈ Cl(I),

% := lim
n→∞

1
n log Pk(Zn = j) = lim

n→∞
1
n log E

[
Qn(z0)f0,n(0)z0−1Πn−1

i=1 f
′
i

(
fi,n(0)

)]
where z0 is the smallest element of I. The common limit % belongs to [0,∞).

The proof is given in Section 5 and the theorem results from Lemmas 5.1 and 5.2. The right-hand

side expression of % shows that the rare events {Zn = j} corresponds to a �spine structure�, i.e.

one individual survives until generation n and gives birth in the very last generations to the j

survivors, whereas the other subtrees become extinct (see forthcoming Lemma 4.2). Moreover,

this expression will be used to get some of the forthcoming results.

The proof is easy if we consider the limit of 1
n log P1(Zn = 1) as n → ∞. In this case, a direct

calculation of the �rst derivative of f0,n yields the claim. However, the proof for the general case

is more involved. Here, we use probabilistic arguments, which rely on a spine decomposition of the

tree via Geiger construction.

We also note that we need to focus on i, j ∈ Cl(I). Indeed, limn→∞
1
n log P1(Zn = i) and

limn→∞
1
n log P1(Zn = j) may both exist and be �nite for i 6= j, but have di�erent values. Moreover

the case lim supn→∞
1
n log Pi(Zn = i) < lim infn→∞

1
n log P1(Zn = i) with i > 1 is also possible.

These facts are illustrated by two examples in Section 9 at the end of this paper.

In the Galton Watson case, f is constant, for every i ≥ 0, fi = f a.s. and fi,n(0) → pe as n→∞.

We recover the classical result [9], which was given in the introduction : % = − log f ′(pe).

The results and remarks above could lead to the conjecture % = − log E[f ′(p(f))], where p(f) =

inf{s ∈ [0, 1] : f(s) = s}. Roughly speaking, it would correspond to integrate the value obtained

in the Galton Watson case with respect to the environment. The two following results show that

this is not true in general.
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First, we give an upperbound of % in terms of the rate function of the random walk S. In that

view, we assume that:

Assumption 1. There exists an s > 0 such that the moment generating function E[e−sX ] < ∞.

Moreover, the random walk S is non-lattice, i.e. for every r > 0, P(X ∈ rZ) < 1.

This assumption assures that a proper rate function Λ of the random walk (Sn : n ∈ N)

Λ(θ) := sup
λ≤0

{
λθ − log(E[exp(λX)])

}
(2.1)

exists. We note that the supremum is taken over λ ≤ 0 and not over all λ ∈ R. As we are only

interested in lower deviations here, this de�nition is more convenient as it implies Λ(θ) = 0 for

all θ ≥ E[X]. We are also using the following assumptions about the truncated moments of the

o�spring distributions.

Assumption 2. There exist ε > 0 and a ∈ N such that for every x > 0,

E
[
(log+ ξQ(a))

1
2+ε|X > −x

]
<∞ ,

where log+ x := log(max(x, 1)) and ξq(a) is the truncated standardized second moment

ξq(a) :=
∞∑

y=a

y2q(y)/m2
Q , a ∈ N, q ∈ ∆.

Proposition 2.2. Assume that P(X ≥ 0) = 1 or that both Assumptions 1 and 2 hold. Then

% ≤ Λ(0).

This bound is proved in Section 6 and used both for the proof of the next Corollary and Theorem

3.2. It can be reached and has a natural interpretation. Indeed, one way to keep the popula-

tion bounded but alive comes from a succession of "critical environments", which means Sn ≈ 0.

Then E[Zn | E ] = exp(Sn) is neither small nor large and one can expect that the population is

positive but bounded. The event {Sn ≈ 0} is a large deviation event whose probability decreases

exponentially with rate Λ(0). This bound is thus directly explained by environmental stochasticity.

Now, we focus on the linear fractional case and derive an explicit expression of %. We recall that

a probability generating function of a random variable R is linear fractional (LF) if there exist

positive real numbers m and b such that

f(s) = 1− 1− s

m−1 + bm−2(1− s)/2
,

where m = f ′(1) and b = f ′′(1). This family includes the probability generating function of

geometric distributions, with b = 2m2. Thus, LF distributions are geometric laws with a second

free parameter b which allows to change the probability of the event {R = 0}.

Corollary 2.3. If f is a.s. linear fractional and E[|X|] <∞, then

% =

{
− log E

[
e−X

]
, if E[Xe−X ] ≥ 0

Λ(0) , else
. (2.2)
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Thus, there are two regimes. For E[Xe−X ] < 0, the event {1 ≤ Zn ≤ k} is a typical event in a

suitable exceptional environment, say "critical". This rare event is then explained (only) by the

environmental stochasticity. For E[Xe−X ] ≥ 0, we recover a term analogous to the Galton-Watson

case, which is smaller than Λ(0) (and thus the probability is larger than exp(−Λ(0)n+o(n))). The

rare event is then more due to demographical stochasticity.

These two regimes seem to be analoguous to the two regimes in the subcritical case, which deal with

the asymtpotic behavior Zn > 0, see e.g. [14, 31, 23]. Thus, the processes may be called respectively

weakly supercritical and strongly supercritical. Such regimes for supercritical branching processes

have already been obeserved in [28] in the continuous framework (which essentially represents

linear fractional o�spring-distributions).

3 Lower large deviations

We now introduce the following new rate function de�ned for θ, x ≥ 0 and any nonnegative function

H

χ(θ, x,H) = inf
t∈[0,1)

{
tx+ (1− t)H(θ/(1− t))

}
.

To state the large deviation principle, we recall the de�nition of % and Λ from the previous section

and we need the following moment assumption:

Assumption 3. For every λ > 0,

E
[( f ′(1)

1− f(0)

)λ ]
<∞

We also denote kn
subexp−→ ∞ when kn →∞ but kn/ exp(θn) → 0 for every θ > 0, as n→∞.

Theorem 3.1. Under Assumption 3 and E[Z1 log+(Z1)] < ∞, the following assertions hold for

every θ ∈
(
0,E[X]

]
.

(i) If P1(Z1 = 0) > 0, then for every i ∈ Cl(I)

lim
n→∞

1
n log Pi(1 ≤ Zn ≤ eθn) = −χ(θ, %,Λ)

Moreover, kn
subexp−→ ∞ ensures that limn→∞

1
n log Pi(1 ≤ Zn ≤ kn) = −%.

(ii) If P1(Z1 = 0) = 0, then for every i ≥ 1,

lim
n→∞

1
n log Pi(1 ≤ Zn ≤ eθn) = −χ(θ,−i log E[Q(1)],Λ)

Moreover, kn
subexp−→ ∞ ensures that limn→∞

1
n log Pi(1 ≤ Zn ≤ kn) = i log E[Q(1)].

First, we note that (ii) generalizes Theorem 1 in [10], which required that both the mean and

the variance of the reproduction laws were bounded (uniformly with respect to the environment).

Moreover, (i) provides an expression of the rate function in the more challenging case which allows

extinction (P1(Z1 = 0) > 0).

We now try to extend this result and get rid of Assumption 3, before discussing its interpretation

and applying it to the linear fractional case. So we now work with a di�erent assumption, which

ensures that the tail of the reproduction laws have �nite variance.
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Assumption 4. There exists a constant 0 < d <∞ such that,

MQ ≤ d · [mQ + (mQ)2] a.s.,

where Mq =
∑

k≥0 k
2q(k) is the second order moment of the probability measure q. This condition

is equivalent to the fact that f ′′(1)/(f ′(1) + f ′(1)2) is bounded a.s.

This assumption does not require that E[f ′(1)λ] <∞ for every λ > 0, contrarily to Assumption 3.

But this assumption implies that the second moment of the o�spring distributions is a.s. �nite. It

is e.g. ful�lled for geometric o�spring distributions (see [13]). We focus on the case when subcritical

environments may occur with positive probability, i.e. P1(Z1 = 0) > 0.

Theorem 3.2. We assume that P(X < 0) > 0 and consider a sequence kn
subexp−→ ∞. Then, for

every i ∈ Cl(I),

lim
n→∞

1
n log Pi(1 ≤ Zn ≤ kn) = −%.

Under the additional Assumption 4 and E[Z1 log+(Z1)] <∞, for every θ ∈
(
0,E[X]

]
,

lim sup
n→∞

1
n log Pi(1 ≤ Zn ≤ eθn) = −χ(θ, %,Λ)

The proof of the upperbound of this result is very di�erent from that of the previous Theorem.

Let us now comment the large deviations results obtained by the two previous Theorems.

Figure 1: Most probable path for the event {1 ≤ Zn ≤ eθn} with 0 < θ < θ?.

We note that Λ (and thus χ) is a convex function which is continuous from below and thus has

at most one discontinuity. If % < Λ(0), there is a phase transition of second order (i.e. there is a

discontinuity of the second derivative of χ). In particular, it occurs if Λ(0) > − log E[Q(1)] since

we know from the previous section that % ≤ − log E[Q(1)]. In contrast to the upper deviations

[13, 11], there is no general description of this phase transition. It seems to heavily depend on the

�ne structure of the o�spring distributions. In the linear fractional case, we will be able to describe
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Figure 2: χ and Λ in the case θ? > 0.

the phase transition more in detail.

We can also explain the rate function χ and describe the large deviation event {1 ≤ Zn ≤ eθn} for
some 0 < θ < E[X] and n large. We observe then a population being much smaller than expected,

but still alive. A possible path that led to this event looks as follows (see Figure 1).

During a �rst period, until generation btnc (0 ≤ t ≤ 1), the population stays small but alive, despite

the fact that the process is supercritical. The probability of such an event is exponentially small

and of order exp(−%bntc+ o(n)). Later, the population grows in a supercritical environment but

less favorable than the typical one, i.e. {Sn−Sbntc ≤ θn}. This atypical environment sequence has

also exponentially small probability, of order exp(−Λ(θ/(1− t))bn(1− t)c+ o(n)). The probability

of the large deviation event then results from maximizing the product of these two probabilities.

We also have the following representation of the rate function, whose proof follows exactly Lemma

4 in [11] and is left to the reader. We let 0 ≤ θ∗ ≤ E[X] be such that

%− Λ(θ∗)
θ∗

= inf
0≤θ≤E[X]

%− Λ(θ)
θ

Then,

χ(θ, %,Λ) =
{ ρ

(
1− θ

θ∗

)
+ θ

θ∗Λ(θ∗) θ < θ∗

Λ(θ) θ ≥ θ∗
.

We recall that % is known in the LF case from Theorem 2.3, and we derive the following result,

which is proved in Section 8.

Corollary 3.3. Assume that f is a.s. linear fractional and either Assumption 3 or Assumption 4

is ful�lled. Then for all θ ∈ (0,E(X)] and j ≥ 1

lim
n→∞

1
n log Pj(1 ≤ Zn ≤ eθn) = χ(θ, %,Λ) = min

{
− θ − log E

[
e−X

]
,Λ(θ)

}
.
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More explicitly, θ∗ = E
[
X exp(−X)

]
/E[exp(−X)]. If θ < θ∗, then χ(θ, %,Λ) = −θ − log E

[
e−X

]
,

otherwise χ(θ, %,Λ) = Λ(θ).

Note that if the o�spring-distributions are geometric, Assumption 4 is automatically ful�lled (see

[13]). Moreover, except for the degenrated case P(Z1 = 0) = 1, we have P(Z1 = 1) > 0 in the

linear fractional case.

4 The Geiger construction for a branching process in varying

environment (BPVE)

In this section, we work in a quenched environment, which means that we �x the environment

e := (q1, q2, . . .). We consider a branching process in varying environment e and denote by P(·)
(resp. E) the associated probability (resp. expectation), i.e.

P(Z1 = k1, · · · , Zn = kn) = P(Z1 = k1, · · · , Zn = kn|E = e) .

Thus (f1, f2, . . .) is �xed and and the probability generating function of Z is given by

E
[
sZn , Z0 = k

]
= f0,n(s)k (0 ≤ s ≤ 1) .

We use a construction of Z conditioned on survival, which is due to [21][Proposition 2.1] and extends

the spine construction of Galton Watson processes [34]. In each generation, the individuals are

labeled by the integers i = 1, 2, · · · in a breadth-�rst manner ('from the left to the right'). We

follow then the `ancestral line' of the leftmost individual having a descendant in generation n. This

line is denoted by L. It means that in generation k, the descendance of the individual labeled Lk

survives until time n, whereas all the individuals whose label is less than Lk become extinct before

time n. The Geiger construction ensures that to the left of L, independent subtrees conditioned
on extinction in generation n are growing. To the right of L, independent unconditioned trees are

evolving. Moreover the joint distribution of Lk and the number of o�springs in generation k is

known (see e.g. [1]) and for every k ≥ 1,

P(Zk = z,Lk = l|Zk−1 = 1, Zn > 0) = qk(z)
P(Zn > 0 |Zk = 1)P(Zn = 0|Zk = 1)l−1

P(Zn > 0 |Zk−1 = 1)
. (4.1)

Note that in [1], L is de�ned as the number of trees to the left of L, and thus L = L− 1.

Let us now explain this construction in detail. We assume that the process starts with Z0 = z and

denote Pz(·) := P(·|Z0 = z). We de�ne for 0 ≤ k < n,

pk,n := P(Zn > 0 | Zk = 1) = 1− fk,n(0), pn,n := 1.

Let us specify the distribution of the number Yk of unconditioned trees founded by the ancestral

line in generation k. In generation 0, for 0 ≤ i ≤ z − 1,

Pz(Y0 = i|Zn > 0) = Pz(L0 = z − i | Zn > 0) =
P(Zn > 0 |Z0 = 1)P(Zn = 0|Z0 = 1)z−i−1

P(Zn > 0 |Z0 = z)

=
1− f0,n(0)
Pz(Zn > 0)

f0,n(0)z−i−1. (4.2)

9



Figure 3: Geiger construction with T (c) trees conditioned on extinction and T (u) unconditioned

trees.

More generally, for all 1 ≤ k ≤ n and i ≥ 0, (4.1) yields

P(Yk = i|Zn > 0) := P(Zk − Lk = i|Zn > 0, Zk−1 = 1)

=
∞∑

j=i+1

P(Zk = j,Lk = j − i|Zn > 0, Zk−1 = 1)

=
∞∑

j=i+1

qk(j)
pk,nfk,n(0)j−i−1

pk−1,n

=
pk,n

pk−1,n

∞∑
j=i+1

qk(j)fk,n(0)j−i−1. (4.3)

Finally, we note that fn,n(0) = 0, so for k = n, we have P(Yn = i|Zn > 0) = qn(i+1)
pn−1,n

.

Here, we do not require the full description of the conditioned tree since we are only interested in

the number of individuals at time n. Thus we do not have to consider the trees conditioned on

extinction, which grow to the left of L. Hence, we can construct the population alive in generation

n using the i.i.d random variables Ŷ0, Ŷ1, Ŷ2, . . . , Ŷn whose distribution is speci�ed by (4.2) and

(4.3) :

P(Ŷk) = P(Yk = i|Zn > 0)

Let (Ẑ(k)
j )j≥0 be independent branching processes in varying environment which are distributed

as Z for j > k and satisfy

Ẑ
(k)
j := 0 for j < k, Ẑ

(k)
k := Ŷk.
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More precisely, for all 0 ≤ k ≤ n and z0, · · · , zn ≥ 0,

P(Ẑ(k)
0 = 0, · · · , Ẑ(k)

k−1 = 0, Ẑ(k)
k = zk, Ẑ

(k)
k+1 = zk+1, · · · , Ẑ(k)

n = zn)

= P(Ŷk = zk)P(Zk+1 = zk+1, · · · , Zn = zn | Zk = zk).

The sizes of the independent subtrees generated by the ancestral line in generation k, which may

survive until generation n, are given by (Ẑ(k)
j )0≤j≤n, 0 ≤ k ≤ n− 1. In particular,

L(Zn|Zn > 0) = L(Ẑ(0)
n + . . .+ Ẑ(n−1)

n + Ŷn + 1) . (4.4)

Lemma 4.1. The probability that all subtrees emerging before generation n become extinct before

generation n is given for z ≥ 1 by

Pz(Ẑ(0)
n + . . .+ Ẑ(n−1)

n = 0) =
n−1∏
k=0

Pz(Ẑ(k)
n = 0) =

n−1∏
k=0

pk,n

pk−1,n
f ′k(fk,n(0)),

where we use the following convenient notation f0(s) := sz, p−1,n := pz
0,n.

Proof. First, we compute the probability that the subtree generated by the ancestral line in gen-

eration k does not survive until generation n, i.e. {Ẑ(k)
n = 0}. By (4.3), for k ≥ 1,

Pz(Ẑ(k)
n = 0) =

∞∑
i=0

Pz(Ŷk|Zn > 0)P(Zn = 0|Zk = i)

=
pk,n

pk−1,n

∞∑
i=0

∞∑
j=i+1

qk(j)fk,n(0)j−i−1 · fk,n(0)i

=
pk,n

pk−1,n

∞∑
i=0

∞∑
j=i+1

qk(j)fk,n(0)j−1

=
pk,n

pk−1,n

∞∑
j=1

jqk(j)fk,n(0)j−1

=
pk,n

pk−1,n
f ′k(fk,n(0)).

Similarly, we get from (4.2) that

Pz(Ẑ(0)
n = 0) =

z−1∑
i=0

Pz(Y0 = i|Zn > 0)P(Zn = 0|Z0 = i)

=
z−1∑
i=0

1− f0,n(0)
Pz(Zn > 0)

f0,n(0)z−i−1f0,n(0)i

= =
pk,n

pk−1,n
zfk,n(0)z−1 =

pk,n

pk−1,n
f ′k(fk,n(0)).

with the convention f0(s) := sz. Adding that the subtrees given by (Ẑ(k)
j )j≥0 are independent

yields the claim.

For the next lemma, we introduce the last generation before n when the environment allows

extinction :

κn := sup{1 ≤ k ≤ n : qk(0) > 0}, (sup ∅ = 0).

Lemma 4.2. Let z0 ∈ I be the smallest element in I. Then,

Pz0(Zn = z0) =
qκn(z0)
pκn−1,κn

×
κn−1∏
k=0

pk,κn

pk−1,κn

f ′k(fk,κn
(0))×

n∏
j=κn+1

qj(1)z0 ,

where we recall the following convenient notation f0(s) = sz, p−1,n = pz
0,n.
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Proof. Recall that by de�nition of I, q(0) > 0 implies q(k) = 0 for every 1 ≤ k < z0. We �rst deal

with the case κn > 0. Then

qκn(0) > 0, qκn(k) = 0 if 1 ≤ k < z0 ; qκn+1(0) = · · · = qn(0) = 0 .

In particular the number of individuals in generation κn is at least z0 times the number of individ-

uals in generation κn−1 who leave at least one o�spring in generation κn. Moreover, as extinction

is not possible after generation κn, it holds that Zκn ≤ Zκn+1 ≤ · · · ≤ Zn.

Let us consider the event Zn = z0 > 0. Then Zκn−1 > 0 and Zκn ≥ z0. Moreover Zκn = Zκn+1 =

· · · = Zn = z0 and only a single individual in generation κn − 1 leaves one o�spring (or more) in

generation κn. This individual lives on the ancestral line. Thus all the subtrees to the right of

the ancestral line which are born before generation κn have become extinct before generation κn,

i.e. Ẑ(0)
κn = . . . = Ẑ

(κn−1)
κn = 0. In generation κn − 1, the individual on the ancestral line has z0

o�springs. After generation κn, all individuals leave exactly one o�spring which is the only way to

keep the population constant until generation n, since qκn+1(0) = · · · = qn(0) = 0. Moreover (4.3)

simpli�es to P(Ŷκn = z0 − 1) = qκn(z0)/pκn−1,κn . Using the previous lemma, it can be written as

Figure 4: Illustration of the proof of Lemma 4.2.

follows

Pz0(Zn = z0)

= Pz0(Ẑ
(0)
κn

= . . . = Ẑ(κn−1)
κn

= 0)P(Ŷκn = z0 − 1)Pz0(Ẑ
(κn)
n + . . .+ Ẑ(n−1)

n + Yn + 1 = z0)

= Pz0(Ẑ
(0)
κn

= . . . = Ẑ(κn−1)
κn

= 0)
qκn(z0)
pκn−1,κn

Pz0(Ẑ
(κn)
n + . . .+ Ẑ(n−1)

n + Yn + 1 = z0)

=
qκn(z0)
pκn−1,κn

[
κn−1∏
k=0

pk,n

pk−1,n
f ′k(fk,κn(0))

]
Pz0(Ẑ

(κn)
n + . . .+ Ẑ(n−1)

n + Yn + 1 = z0)

=
qκn(z0)
pκn−1,κn

[
κn−1∏
k=0

pk,n

pk−1,n
f ′k(fk,κn(0))

]
n∏

j=κn+1

qj(1)z0 .

Recall that after generation κn, each individual has at least one o�spring and thus pj,n = pj,κn
for

any j < κn. This ends up the proof in the case κn > 0. The case when κn = 0 is easier. Indeed,

Pz0(Zn = z0) = Pz0(Z1 = · · · = Zn = z0) =
n∏

j=1

qj(1)z0

since qκn+1(0) = · · · = qn(0) = 0 and Z is nondecreasing until generation n.

12



5 Proof of Theorem 2.1 : the probability of staying positive

but bounded

In this section, we prove Theorem 2.1 with the help of two lemmas. The �rst lemma establishes

the existence of a proper 'common' limit.

Lemma 5.1. Assume that z ≥ 1 satis�es P(Q(0) > 0, Q(z) > 0) > 0. Then for all k, j ∈ Cl({z}),
the following limits exist in [0,∞) and coincide

lim
n→∞

1
n log Pk(Zn = j) = lim

n→∞
1
n log Pz(Zn = z).

Moreover, for every sequence kn = o(n),

lim
n→∞

1
n log Pz(Zn = z) = lim

n→∞
1
n log Pz(1 ≤ Zn ≤ kn).

Proof. Note that for every k ≥ 1, Pk(Z1 = z) > 0 since

Pk

(
Z1 = z | Q1

)
≥ Q1(0)k−1Q1(z), P(Q(0) > 0, Q(z) > 0) > 0.

We know that by Markov property, for all m,n ≥ 1,

Pz(Zn+m = z) ≥ Pz(Zn = z)Pz(Zm = z). (5.1)

Adding that Pz(Z1 = z) > 0, we obtain that the sequence (an)n∈N de�ned by an := − log Pz(Zn =

z) is �nite and subadditive. Then Fekete's lemma ensures that limn→∞ an/n exists and belongs to

[0,∞). Next, if j, k ∈ Cl({z}), there exist l,m ≥ 0 such that Pz(Zl = j) > 0 and Pz(Zm = k) > 0.

We get

Pk(Zn+l+1 = j) ≥ Pk(Z1 = z)Pz(Zn = z)Pz(Zl = j)

and

Pz(Zm+n+1 = z) ≥ Pz(Zm = k)Pk(Zn = j)Pj(Z1 = z).

Adding that Pj(Z1 = z) > 0 for j ∈ Cl({z}), we obtain

lim inf
n→∞

1
n log Pk(Zn = j) ≥ lim

n→∞
1
n log Pz(Zn = z) ≥ lim sup

n→∞
1
n log Pk(Zn = j),

which yields the �rst result.

For the second part of the lemma, we simply observe that Pz(Zn = z) ≤ Pz(1 ≤ Zn ≤ kn) for n

large enough. To prove the converse inequality, de�ne for ε > 0 the set

Aε := {q ∈ ∆|q(0) > ε, q(z) > ε} .

According to the de�nition of I and the assumption, P(Q ∈ Aε) > 0 if ε is chosen small enough.

Thus we get that

Pz(Zn = z) ≥ Pz(1 ≤ Zn−1 ≤ kn) min
1≤j≤kn

Pj(Z1 = z)

≥ Pz(1 ≤ Zn−1 ≤ kn)P(Q ∈ Aε) min
1≤j≤kn

E[P1(Z1 = z)P1(Z1 = 0|Q)j−1|Q ∈ Aε]

≥ Pz(1 ≤ Zn−1 ≤ kn)P(Q ∈ Aε) εkn .

13



Taking the logarithm yields

lim inf
n→∞

1
n log Pz(Zn = z) ≥ lim sup

n→∞

(
1
n log Pz(1 ≤ Zn−1 ≤ kn) + log(ε)kn

n

)
.

Adding that kn = o(n) by assumption gives the claim.

Next, we will prove a representation of the limit ρ in terms of generating functions. First we treat

the case P(Q(0) > 0) > 0 and then P(Q(0) = 0) = 1.

Lemma 5.2. Assume that P1(Z1 = 0) > 0. Then for all i, j ∈ Cl(I),

lim
n→∞

1
n log Pi(Zn = j) = lim

n→∞
1
n log E

[
Qn(z0)f0,n(0)z0−1

n−1∏
i=1

f ′i
(
fi,n(0)

)]
,

where z0 is the smallest element in I.

Note that P1(Z1 = 0) > 0 is equivalent to P(Q(0) > 0) > 0 and in view of Lemma 5.1, we only

have to prove the result for k = j = z0, where z0 is the smallest element in I. Di�erentiation of

the probability generating function of Zn yields the result for z0 = 1. The generalization of the

result for z0 6= 1 via higher order derivatives of generating functions appears to be complicated.

Instead, we use probabilistic arguments, involving the Geiger construction of the previous section.

Proof. First, the result is obvious when z0 = 1 ∈ I since

P(Zn = 1|E) =
d

ds
f0,n(s)

∣∣
s=0

= f ′n(0) ·
n−1∏
i=1

f ′i(fi,n(0)).

For the case z0 > 1, we start by proving the lowerbound. Using Lemma 4.1 and (4.2) with a

telescope argument and recalling that Pz0(Zn > 0|E) = p−1,n, we have

Pz0(Zn = z0) = E
[
Pz0(Zn = z0|Zn > 0, E)Pz0(Zn > 0|E)

]
= E

[
Pz0(Ẑ

(0)
n + · · ·+ Ẑ(n−1)

n + Ŷn + 1 = z0|E)Pz0(Zn > 0|E)
]

≥ E
[
Pz0(Ẑ

(0)
n + · · ·+ Ẑ(n−1)

n = 0, Ŷn = z0 − 1|E)Pz0(Zn > 0|E)
]

= E
[
Pz0(Zn > 0|E)

Qn(z0)
pn−1,n

n−1∏
i=0

pi,n

pi−1,n
f ′i(fi,n(0))

]
= E

[
Qn(z0)

n∏
i=0

f ′i
(
fi,n(0)

)]
. (5.2)

Recalling also that f ′0(s) = z0s
z0−1, we get

lim
n→∞

1
n log Pz0(Zn = z0) ≥ lim sup

n→∞
1
n log E

[
Qn(z0)fz0−1

0,n (0)
n∏

i=1

f ′i
(
fi,n(0)

)]
.

Let us now prove the converse inequality. Following the previous section, z0 is the smallest element

in I and κn is the (now random) last moment when there is a generation with Q(0) > 0. We

14



decompose the event {Zn = z0} according to κn and use Lemma 4.2 :

Pz0(Zn = z0) = E
[
Pz0(Zn = z0|E , Zn > 0)Pz0(Zn > 0|E)

]
=

n∑
k=0

E
[
Pz0(Zn = z0|E , Zn > 0)Pz0(Zn > 0|E);κn = k

]
=

n∑
k=0

E
[
Pz0(Zk > 0|E)

Qk(z0)
pk−1,k

k−1∏
i=0

pi,k

pi−1,k
f ′i(fi,k(0))

n∏
j=k+1

Qj(1)z0 ; κn = k
]

≤
n∑

k=0

E
[
Qk(z0)

k−1∏
i=0

f ′i(fi,k(0))
] n∏

j=k+1

E
[
Qj(1)z0

]
=

n∑
k=1

E
[
Qk(z0)

k−1∏
i=0

f ′i(fi,k(0))
]
E
[
Q(1)z0

]n−k−1 + E
[
Q(1)z0

]n
.

Let (an)n∈N be a sequence in R+ and b > 0. Then, by standard results on the exponential rate of

sums, it holds that

lim sup
n→∞

1
n log

∑
k

akb
n−k = max

{
lim sup

n→∞
1
n log an, log b

}
.

Adding that f ′0(f0,n(0)) = z0f
z0−1
0,n (0), we get

lim
n→∞

1
n log Pz0(Zn = z0)

≤ max
{

lim sup
n→∞

1
n log E

[
Qn(z0)f0,n(0)z0−1

n∏
i=1

f ′i(fi,n(0)
)]

; log E
[
Q(1)z0

]}
We now prove that the �rst term always realizes the maximum:

E
[
Qn(z0)f0,n(0)z0−1

n−1∏
i=1

f ′i
(
0
)]

= E
[
Qn(z0)P1(Zn = 0|E)z0−1

n−1∏
i=1

Qi(1)
]

≥ E
[
Qn(z0)

(
Qn(0)

n−1∏
i=1

Qi(1)
)z0−1 n−1∏

i=1

Qi(1)
]

≥ E
[
Qn(z0)Qn(0)z0−1]E

[
Q(1)z0

]n
,

where by de�nition of z0, E
[
Qn(z0)Qn(0)z0−1] > 0.

Finally, let us prove the existence of limn→∞
1
n log E

[
Qn(z0)f0,n(0)z0−1

∏n
i=1 f

′
i

(
fi,n(0)

)]
. We

follow (5.2) to see that

φn := z0E
[
Qn(z0)f0,n(0)z0−1

n∏
i=1

f ′i
(
fi,n(0)

)]
= Pz0(Ẑ

(0)
n + . . .+ Ẑ(n−1)

n = 0, Zn = z0).

Starting from Z0 = z0, it is, up to the factor z0, the probability of having z0-many individuals in

generation n, where all individuals in generation n have a common ancestor in generation n − 1.

By Markov property, for k = 1, . . . , n

Pz0(Ẑ
(0)
n + . . .+ Ẑ(n−1)

n = 0, Zn = z0)

≥ Pz0(Ẑ
(0)
k + . . .+ Ẑ

(k−1)
k = 0, Zk = z0)Pz0(Ẑ

(0)
n−k + . . .+ Ẑ

(n−k−1)
n−k = 0, Zn−k = z0).

The same subadditivity arguments as in the proof of Lemma 5.1 applied to φn yield existence of

the limit of 1
n log E

[
Qn(z0)f0,n(0)z0−1

∏n
i=1 f

′
i

(
fi,n(0)

)]
. This ends up the proof.
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6 Upperbound for % : proof of Proposition 2.2

Here, we prove Proposition 2.2, which ensures that % ≤ Λ(0). It means that small but positive

values can always be realized by a suitable exceptional environment, which is �critical�. We focus

on the nontrivial case when Λ(0) < ∞. The proof of Proposition 2.2 can be splitted into two

subcases, which correspond to the the two following Propositions.

Proposition 6.1. Under Assumptions 1 and 2, ρ ≤ Λ(0).

Proposition 6.2. Assume that P(X ≥ 0) = 1 and P(X = 0) > 0. Then

ρ ≤ − log P(X = 0) = Λ(0). (6.1)

Proof of Proposition 6.1. Let I be de�ned as in the introduction. For the proof, we use a standard

approximation argument (see e.g. [13]) and consider the event Ex,n := {mini=1,...,nXi > x} for

x < 0. Then, P(X > x) > 0 since we are in the supercritcal regime and for every s ≥ 0 it holds

that E
[
|X|e−sX |X > x

]
< ∞. As P(X < 0) > 0, E

[
|X|e−sX |X > x

]
< ∞ tends to in�nity as

s → ∞. By the preceding arguments, E[e−sX |X > x] is di�erentiable with respect to s for s > 0

and the expectation and the di�erentiation may be interchanged by the dominated convergence

theorem. Let us call s = νx a point where the minimum is reached, such that infs≥0 E[e−sX |X >

x] = E[e−νxX |X > −x] and d
dsE[e−sX |X > x]

∣∣
s=νx

= E[Xe−νxX |X > x] = 0 . Now, we follow the

arguments of the previous proofs. In view of the second part of Lemma 5.1, for every sequence

kn = o(n),

−ρ = lim
n→∞

1
n log Pz(Zn = z) = lim

n→∞
1
n log Pz(1 ≤ Zn ≤ kn).

Next we will change to the measure P, de�ned by

P(X ∈ dy) =
e−νxyP(X ∈ dy|Ex,n)

µ
(6.2)

where µ := E[e−νxX |X > x]. Under P, E[X] = 0 and S is a recurrent random walk.

Let c > 0 be so large such that P(Ln ≥ 0, Sn ≤ c) > 0 for every n. Then

Pz(1 ≤ Zn ≤ kn|Ex,n) = µnE
[
Pz(1 ≤ Zn ≤ kn|E)eνxSn

]
≥ µnE

[
Pz(1 ≤ Zn ≤ kn|E);Ln ≥ 0, Sn ≤ c

]
. (6.3)

Note that

Pz(1 ≤ Zn ≤ kn|E) = Pz(Zn > 0|E)− Pz(Zn > kn|E) a.s.

and by Markov inequality,

Pz(Zn > k|E) ≤ zeSn

k
a.s.

Using this, we get that

Pz(1 ≤ Zn ≤ kn|E) ≥ Pz(Zn > 0|E)− zeSn k−1
n a.s.

Plugging this into (6.3) and setting bn := P(Ln ≥ 0, Sn ≤ c), we get

Pz(1 ≤ Zn ≤ kn) ≥ Pz(1 ≤ Zn ≤ kn;Ex,n)

≥ µnEz

[
1l{Zn>0} − zec/kn ;Ln ≥ 0, Sn ≤ c

]
P(Ex,n)

= µnbn

(
P(Zn > 0|Ln ≥ 0, Sn ≤ c)− zec/kn

)
P(X > x)n . (6.4)
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Assumption 1 together with our construction of E implies Var(X) ≤ E[e−νxX ]−1E[X2e−νxX ] <∞.

Then from [2, Proposition 2.3], we have bn = O(n−3/2), and thus limn→∞
1
n log bn = 0. Next let

kn = n−1/2. As Assumption 2 holds under P (and then also under P), we can apply the forthcoming

Lemma 6.3 to get that

lim inf
n→∞

1
n log Pz(1 ≤ Zn ≤ kn) ≥ logµ+ log P(X > x)

= log E[e−νxX |X > x] + log P(X > x)

= − sup
s≤0

{
− log E[e−sX ;X > x]

}
.

By monotone convergence, we let x→ −∞ and

lim inf
n→∞

1
n log Pz(1 ≤ Zn ≤ kn) ≥ − sup

s≤0

{
− log E[e−sX ]

}
= −Λ(0).

As kn = o(n), we apply Lemma 5.1 to end up the proof.

For the proof above, we need the following lemma..

Lemma 6.3. Assume that E[X] = 0, Var(X) <∞, that for every n ≥ 0, P(Ln ≥ 0, Sn ≤ c) > 0

for some c > 0 and that Assumption 2 holds. Then

lim inf
n→∞

P(Zn > 0|Ln ≥ 0, Sn ≤ c) > 0 .

Proof. Let us brie�y explain why Assumption 2 implies E[(log+ ξQ(a))
1
2+ε] <∞ which is required

in [2]. By de�nition of E,

E
[
(log+ ξQ(a))

1
2+ε|X > −x

]
= µE

[
eνxX(log+ ξQ(a))

1
2+ε
]

≥ µE
[
e−νxx(log+ ξQ(a))

1
2+ε
]
,

as X > −x P-a.s.

The proof now follows essentially [2]. Here, we just present the main steps. From Propositions 2.1

and 2.3 in [2], for all θ, c > 0 large enough, there exists an d > 0 such that

E
[
e−θSn ;Ln ≥ 0

]
∼ d P(Ln ≥ 0, Sn ≤ c) (6.5)

as n→∞. Next, we recall the well-known estimate (see e.g. [5][Lemma 2])

P(Zn > 0 | E) ≥ 1
e−Sn +

∑n−1
i=0 ηi+1e−Si

a.s.,

where ηi :=
∑∞

y=1 y(y − 1)Qi(y)/m2
Qi
. Moreover, we rewrite the expectation above:

E
[ 1
e−Sn +

∑n−1
i=0 ηi+1e−Si

;Ln ≥ 0, Sn ≤ c
]

≥ E
[ 1

1 +
∑bn/2c

i=0 ηi+1e−Si + e−Sbn/2c
∑n−1

i=bn/2c+1 ηi+1e
Sbn/2c−Si

;Ln ≥ 0, Sn ≤ c
]

≥ E
[ (c− Sn)+ ∧ 1

1 +
∑bn/2c

i=0 ηi+1e−Si +
∑n−1

i=bn/2c+1 ηi+1e
Sbn/2c−Si

;Ln ≥ 0
]

= E
[
ϕ(Un, Ṽn, Sn);Ln ≥ 0

]
≥ e−c/2E

[
e−Sn/2ϕ(Un, Ṽn, Sn);Ln ≥ 0

]
,
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where Un :=
∑bn/2c

i=0 ηi+1e
−Si , Ṽn :=

∑n−1
i=bn/2c+1 ηi+1e

Sbn/2c−Si and ϕ(u, v, z) = (1 + u+ v)−1(c−
z)+ ∧ 1. Due to monotonicity and Lemma 3.1 in [2], the limits of U∞ = limn→∞ Un and V∞ =

limn→∞ Vn :=
∑bn/2c

i=0 ηie
Si exist and are �nite respectively under the probabilities P+-a.s. and

P−-a.s. de�ned in [2]. Thus all conditions of Proposition 2.5 in [2] are met. Applying this

proposition with θ = 1/2 and using (6.5), we get that for some measure ν1/2 on R+ that

lim inf
n→∞

P(Zn > 0|Ln ≥ 0, Sn ≤ c) ≥ d−1 lim
n→∞

e−c/2E
[
e−Sn/2ϕ(Un, Ṽn, Sn);Ln ≥ 0

]
E
[
e−Sn/2;Ln ≥ 0

]
=
∫

R3
+

ϕ(u, v,−z)P+(U∞ ∈ du)P−(V∞ ∈ dv)ν1/2(dz) > 0 .

Note that in the function ϕ, z is changed to −z for duality reasons (for details see [2]). As the

limits of Un and Vn are a.s. �nite with respect to the corresponding measures, this yields the

claim.

Remark. The results in [2] are only stated for non-lattice random walks. We expect that similar

results are true for the lattice case. The proofs in our paper work for the lattice case, if (6.5) and

[2][Proposition 2.5] also hold in the lattice case.

Proof of Proposition 6.2. As P(X ≥ 0) = 1, we have P(Sn = 0) = P(X = 0)n and Λ(0) =

− log P(X = 0).

If P(Q(1) = 1|X = 0) = 1, the proof is trivial. So let us assume that P(X = 0) > 0 and

P(Q(1) = 1|X = 0) < 1 and thus, for some suitable ε > 0, P(Q(0) ≥ ε|X = 0) > 0. By

conditioning on the environment, we get that for z ∈ I that

Pz(Zn = z) ≥ P(X = 0)n · Pz(Zn = z|X1 = 0, . . . , Xn = 0).

For simplicity, we de�ne a new measure P̄ on the space of all probability measures on N0 with

expectation 1 for every measurable A ⊂ ∆:

P̄(Q ∈ A) :=
P(Q ∈ A;mQ = 1)

P(mQ = 1)
=

P(Q ∈ A;mQ = 1)
P(X = 0)

.

Note that P̄(X = 0) = 1 and by de�nition, for every z ∈ I we have P(Q(z) > 0, Q(0) > 0) > 0. It

follows that there is a z ∈ I such that P̄
(
Q(z) > 0, Q(0) > 0

)
> 0. Applying Lemma 5.1, without

loss of generality, we may restrict us to such a z. With respect to P̄, (Zn : n ∈ N0) is still a

branching process in random environment and applying Lemma 5.2, there exists a ρ̄ ∈ [0,∞) such

that

−ρ̄ = lim
n→∞

1
n log Pz(Zn = z|X1 = 0, . . . , Xn = 0)

= lim
n→∞

1
n log E

[
Qn(z)fz−1

0,n (0)
n−1∏
i=1

f ′i
(
fi,n(0)

)∣∣∣X1 = 0, . . . , Xn = 0
]
.

In the following, we will use convexity arguments. First, for all i ≤ k and s ∈ [0, 1], fi,k(s) ≥
1− f ′i,k(1)(1− s). As with respect to P̄, f ′i,k(1) = 1 a.s., we get that

fi,k(s) ≥ s P̄− a.s. (6.6)
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By (6.6), we get that for every a ∈ N �xed and n ≥ a

lim inf
n→∞

1
n log E

[
Qn(z)fz−1

0,n (0)
n−1∏
i=1

f ′i
(
fi,n(0)

)∣∣∣X1 = 0, . . . , Xn = 0
]

≥ lim inf
n→∞

1
n log Ē

[
Ē
[
Qn(z)fz−1

n−a,n(0)
n−a∏
i=1

f ′i
(
fn−a,n(0)

) n−1∏
i=n−a+1

f ′i
(
fi,n(0)

)∣∣∣Q1, . . . , Qn−a

]]
.

Next, for ε > 0 �xed, we choose k = kε ∈ N large enough such that P(Q([1, k]) > ε|X = 0) ≥ 1− ε.
Then, conditionally on {Q([1, k]) > ε}, f ′(s) ≥

∑k
j=1Q(k)sk ≥ εsk a.s. for s ∈ [0, 1]. Using both

this inequality and (6.6), we have we get that

Ē
[
Qn(z)fz−1

n−a,n(0)
n−a∏
i=1

f ′i
(
fn−a,n(0)

) n−1∏
i=n−a+1

f ′i
(
fi,n(0)

)∣∣∣Q1, . . . , Qn−a

]
≥ Ē

[
Qn(z)Qn(0)z−1

n−a∏
i=1

f ′i
(
fn−a,n(0)

)
×

n−1∏
i=n−a+1

f ′i
(
Qn(0)

)
;Q1([1, k]) > ε, . . . , Qn−a([1, k]) > ε

∣∣∣Q1, . . . , Qn−a

]
≥ Ē

[
Qn(z)Qn(0)z−1

n−a∏
i=1

f ′i
(
fn−a,n−1(0)

)
×

n−1∏
i=n−a+1

εQn(0)k;Q1([1, k]) > ε, . . . , Qn−a([1, k]) > ε
∣∣∣Q1, . . . , Qn−a

]
≥ Ē

[ n−a∏
i=1

f ′i
(
fn−a,n−1(0)

)
;Q1([1, k]) > ε, . . . , Qn−a([1, k]) > ε

∣∣∣Q1, . . . , Qn−a

]
.Ē
[
εa−2Qn(z)Qn(0)z−1Qn(0)(a−2)k+1

]
,

where the second expectation is strictly positive as P̄(Q(z) > 0, Q(0) > 0) > 0. By a straight-

forward computation using that generating functions, as well as all their derivatives are convex,

nonnegative and nondrecreasing functions, we see that the product of two generating functions

(and thus the product of �nitely many) is again convex:

(fg)′′ = f ′′g + 2g′f ′ + fg′′ ≥ 0.

So the product of the derivatives of generating functions is again convex. For more details on the

product of nonnegative, convex and nondrecreasing functions, we refer to [35]. Applying Jensen's

inequality to the convex function Πn−a
i=1 f

′
i , the independence of the environments ensures that

Ē
[ n−a∏

i=1

f ′i
(
fn−a,n−1(0)

)∣∣∣Q1, . . . , Qn−a

]
≥

n−a∏
i=1

f ′i
(
Ē
[
fn−a,n−1(0)

∣∣Q1, . . . , Qn−a

])
=

n−a∏
i=1

f ′i
(
Ē
[
f0,a−1(0)

])
P̄ − a.s. Using this inequality multiplied by the indicator function of the event {Q1([1, k]) >
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ε, . . . , Qn−a([1, k]) > ε}, we get

lim inf
n→∞

1
n log E

[
fz−1
0,n (0)

n∏
i=1

f ′i
(
fi,n(0)

)∣∣∣X1 = 0, . . . , Xn = 0
]

≥ lim inf
n→∞

1
n log

(
Ē
[ n−a∏

i=1

f ′i
(
Ē
[
f0,a−1(0)

])
;Q1([1, k]) > ε, . . . , Qn−a([1, k]) > ε

]
Ē
[
εa−2Qn(z)Qn(0)z−1(0)Qn(0)(a−2)k+1

])

= lim inf
n→∞

1
n log Ē

[
f ′
(
Ē
[
f0,a−1(0)

])
;Q([1, k]) > ε

]n−a

= log Ē
[
f ′
(
Ē
[
f0,a−1(0)

])
;Q([1, k]) > ε

]
.

Finally, Z is a critical branching process in random environment under the probability P̄, and thus

P̄(Za−1 = 0|E) = f0,a−1(0) → 1 P̄-a.s. as a → ∞ (see e.g. [38]). Taking the limit a → ∞ and

ε→ 0 and applying dominated convergence yields as a→∞ and ε→ 0, kε →∞

log Ē
[
f ′
(
Ē
[
f0,a−1(0)

])
;Q([1, kε]) > ε

]
→ log Ē

[
f ′(1)

]
= 0

and thus

lim inf
n→∞

1
n log E

[
fz−1
0,n (0)

n−1∏
i=1

f ′i
(
fi,n(0)

)∣∣∣X1 = 0, . . . , Xn = 0
]
≥ 0 .

This yields the claim.

Remark. Note that the bound f ′(s) ≤ f ′(1) for s ∈ [0, 1] immediately yields that

lim supn→∞
1
n log Pz(Zn = z) ≤ log E[X]. In particular, we have proved that for a BPRE with

X = 0 a.s. that the probability of staying bounded is not exponentially small.

7 Proof of lower large deviations

First, we focus on the lower bound, which is easier and can be made under general assumptions

(satis�ed in both Theorems 3.1 and 3.2). We split then the proof of the upperbounds in two parts,

working with Assumption 3.1 in the �rst part, and then with P (X > 0) = 0 and Assumption 4.

Finally, we prove the Theorems combining these results.

7.1 Proof of the lower bound for Theorems 3.1 and 3.2

First we note that, if the associated random walk has exceptional values, the same is true for the

branching process Z. The estimation Zn ≈ E[Zn |E ] = exp(Sn) gives a lowerbound in the following

way. If E[Z1 log+(Z1)] <∞, we know from [7] that the limit of the martingale Zn exp(−Sn) is non

degenerated. Then a direct generalization of [10, Proposition 1], which relies on the same change

of measure :

P̃(Q ∈ dq) :=
m(q)λc

E(m(Q)λc)
P(Q ∈ dp),

ensures that

lim inf
n→∞

1
n log Pj(1 ≤ Zn ≤ eθn|Sn ≤ (θ + ε)n) = 0
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for all j ≥ 1 and ε > 0. As Λ is nonincreasing, continuous from below and convex and thus a

right-continuous function, Λ(θ + ε) → Λ(θ) as ε → 0. Then, for every 0 < θ < E[X] such that

Λ(θ) <∞, we have

lim inf
n→∞

1
n log Pj(1 ≤ Zn ≤ eθn|Sn ≤ θn) = 0. (7.1)

Now we can prove the following result

Lemma 7.1. Let z ≥ 1. We assume that E[Z1 log+(Z1)] <∞ and that

%z = − lim
n→∞

1
n log Pz(1 ≤ Zn ≤ b)

exists and does not depend on b large enough. Then for every θ ∈ (0,E(X)], we have

lim inf
n→∞

1
n log Pz(1 ≤ Zn ≤ eθn) ≥ −χ(θ, %z,Λ).

Proof. We decompose the probability following a time t ∈ [0, 1) when the process go beyond b.

Using the large deviations principle satis�ed by the random walk S, we have

Pz(1 ≤ Zn ≤ eθn)

≥ Pz(1 ≤ Zbtnc ≤ b) min
1≤k≤b

Pk(1 ≤ Zb(1−t)nc ≤ eθn;Sb(1−t)nc ≤ eθn)

≥ Pz(1 ≤ Zbtnc ≤ b)e−Λ(
θ

1−t )n(1−t)+o(n) min
1≤k≤b

Pk

(
1 ≤ Zb(1−t)nc ≤ e

θ
1−t n(1−t)

∣∣∣Sn ≤ e
θ

1−t n(1−t)
)
.

Note that the above inequality is trivially ful�lled if Λ(θ) = ∞. The de�nition of %z and (7.1) yield

with b large enough

lim inf
n→∞

1
n log Pz(1 ≤ Zn ≤ eθn) ≥ − inf

t∈[0,1)

{
tρz + (1− t)Λ

(
θ/(1− t)

)}
= −χ(θ, %z,Λ).

It completes the proof.

7.2 Proof of the upper bound for Theorem 3.1 (i) and (ii)

The next lemma ensures that a large population (under the assumption above) grows as its ex-

pectation and thus follows the random walk of the environment S. The start of the proof of this

proposition is in the same vein as [10], but the situation is much more complex since P1(Z1 = 0)

may be positive, f ′(1) may not be bounded a.s. and the variance of the reproduction laws may be

in�nite with positive probability.

Lemma 7.2. Under Assumption 3, for every ε > 0 and for every a > 0, there exist constants

c, b ≥ 1 such that for every n ∈ N

sup
z≥b

Pz(Zn ≤ eSn−nε;Z1 ≥ b, ..., Zn ≥ b) ≤ c e−an

Proof. Let us introduce the ratio of the successive sizes of the population

Ri := Zi/Zi−1, i ∈ {1, . . . , n}.

Recalling that log f ′i(1) = Xi, we can rewrite

eSn−nε

Zn
= Z−1

0

n∏
i=1

f ′i(1)
eεRi

.
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Then for every λ > 0, we can use the classical Markov inequality P(Y ≥ 1) ≤ E[Y λ] for any

nonnegative random variable Y and get for every z ≥ b

Pz(Zn ≤ eSn−nε;Z1 ≥ b, ..., Zn ≥ b)

≤ b−λE
[ n∏

i=1

(f ′i(1)/(eεRi))λ;Z1 ≥ b, ..., Zn ≥ b
]

= b−λE
[ n∏

i=1

(eεRi/f
′
i(1))−λ;Z1 ≥ b, ..., Zn ≥ b

]
.

Let us introduce the following random variable, only depending on the environment,

Mλ(b, g) := sup
k≥b

E
[(
eε

∑k
i=1N

g
i

kg′(1)

)−λ

;
k∑

i=1

Ng
i > 0

]
where Ng

i are i.i.d. random variables with p.g.f. g. Note that sup and E may be interchanged as

the random variables are nonnegative. As a consequence

Mλ(b, fi) = sup
k≥b

E
[(
eε Zi+1

Zif ′i(1)

)−λ

;Zi+1 > 0
∣∣∣ fi, Zi = k

]
= sup

k≥b
E
[(
eε Ri+1

f ′i(1)

)−λ

;Zi+1 > 0
∣∣∣ fi, Zi = k

]
.

Then, by conditioning on the successive sizes of the population, we obtain

Pb(Zn ≤ eSn−nε;Z1 ≥ b, ..., Zn ≥ b)

≤ b−λE
[ n−1∏

i=1

(eεRi/f
′
i(1))−λE

[
(eεRn/f

′
n(1))−λ;Zn ≥ b | fn, Zn−1

]
;Z1 ≥ b, ..., Zn−1 ≥ b

]

≤ b−λE
[ n∏

i=1

Mλ(b, fi)
]

= b−λE[Mλ(b, f)]n.

We now want to prove that for every α ∈ (0, 1), there exist λ, b > 0 such that E[Mλ(b, f)] ≤ α.

The idea is that for every g,
∑k

i=1N
g
i /k → g′(1) a.s. as k →∞ by the law of large numbers. Then

we will be able to derive that

E
[(
eε

∑k
i=1N

g
i

kg′(1)

)−λ

;
k∑

i=1

Ng
i > 0

]
→ e−λε

as k → ∞ and Mλ(b, f) → e−λε a.s. as b goes to in�nity. Under suitable conditions, we are then

able to prove that E[Mλ(b, f)] → e−λε. Finally, considering λ > 0 such that e−λε < e−a and b

large enough gives us the result.

Let us now present the details of the proof. First �x a p.g.f. g with E[Ng
1 ] = g′(1) <∞. Then the

law of large numbers ensures that

Yk :=
(
eε

∑k
i=1N

g
i

kg′(1)

)−λ k→∞−→ e−λε P � a.s.

Moreover
∑k

i=1N
g
i is stochastically larger than a random variable B(k, g) with binomial distribu-

tion of parameters (k, 1− g(0)). Applying the classical large deviations upperbound for Bernoulli

random variables (see e.g. [15, 16]) yields

P
(
Yk ≥ x;

k∑
i=1

Ng
i > 0

)
≤ P

(
kB(k, g) ≤ x−1/λg′(1)e−ε

)
≤ exp

(
− kψg(x−1/λg′(1)e−ε)

)
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where the function ψg(z) is zero if z ≥ 1− g(0) and positive for z < 1− g(0). It is speci�ed by the

Fenchel Legendre transform of a Bernoulli distribution, i.e.

ψg(z) = z log
(

z
1−g(0)

)
+ (1− z) log

(
1−z
g(0)

)
.

Moreover
∑k

i=1N
g
i > 0 implies Yk ≤ kλd with d = (g′(1)e−ε)λ. So

E
[
Yk1lYk≥x;

k∑
i=1

Ng
i > 0

]
≤ dkλP

(
Yk ≥ x;

k∑
i=1

Ng
i > 0

)
≤ 2dkλ exp

(
− kψg(x−1/λg′(1)e−ε)

)
.

Let us choose x large enough such that ψg(x−1/λg′(1)e−ε) > 0. Then letting k → ∞, the right-

hand side of the above equation converges to 0. Moreover we can apply the bounded convergence

theorem to Yk1lYk≤x,
Pk

i=1 Ng
i >0 to get

lim sup
k→∞

E
[
Yk;

k∑
i=1

Ng
i > 0

]
≤ e−λε

Recalling that Mλ(b, g) decreases with respect to b, we get for every g

lim
b→∞

Mλ(b, g) ≤ e−λε .

Second, we apply the bounded convergence theorem again and �nish the proof by integrating the

previous result with respect to the environment. To check that

E[Mλ(1, f)] <∞,

we de�ne for any p.g.f g (note that g(0) < 1 a.s.)

xg :=
(
e−ε 2g′(1)

1− g(0)

)λ

, yg := (ke−εg′(1))λ,

and note that x ≥ xg implies that x−1/λg′(1)e−ε ≤ (1− g(0))/2. Moreover,
∑k

i=1N
g
i > 0 implies

Yk ≤ yg, so

E
[
Yk;

k∑
i=1

Ng
i > 0

]
=
∫ yg

0

P
(
Yk ≥ x;

k∑
i=1

Ng
i > 0

)
dx

≤ xg +
∫ dkλ

xg

exp
(
− kψg(x−1/λg′(1)e−ε)

)
dx

≤ xg + dkλ exp
(
− kψg

( 1−g(0)
2

))
.

Now we maximize the right-hand side with respect to k ≥ 1. Using that for α > 0, x ≥ 0,

xλe−αx ≤ (λ/α)λe−λ and the de�nition of d, we get that

Mλ(1, g) ≤ xg + 1 + (e−εg′(1))λλλe−λψg

( 1−g(0)
2

)−λ
. (7.2)

Finally, we observe that ψg(z) is a nonnegative convex function which reaches 0 in 1− g(0). Thus

x ≤ y ≤ 1− g(0) implies ψg(x) ≥ (x− y)ψ′g(y) and in particular

ψg

( 1−g(0)
2

)
≥ −1−g(0)

4 ψ′g
( 1−g(0)

4

)
.

As ψ′g(z) = log( zg(0)
(1−z)(1−g(0))

)
and log(1− x) ≤ x for x > 0, we get that

ψg

( 1−g(0)
2

)
≥ −1−g(0)

4 log
(
1− 3

3+g(0)

)
≥ 3

4
1− g(0)
3 + g(0)

≥ 3(1− g(0))
16

. (7.3)
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Combining the inequalities (7.2) and (7.3) yields

Mλ(1, f) ≤ 1 + a(ε, λ)
(

f ′(1)
1− f(0)

)λ

a.s.,

where a(ε, λ) is a �nite constant, only depending on ε and λ. Thus the Assumption 3.1 ensures

that E[Mλ(1, f)] <∞. Applying the bounded convergence theorem, we get that

lim
b→∞

E
[
Mλ(b, f)

]
= E

[
lim

b→∞
Mλ(b, f)

]
≤ e−λε.

Then, choosing b large enough,

E
[
Mλ(b, f)

]
≤ 2e−λε.

Letting λ such that 2e−λε ≤ e−a ends up the proof.

Lemma 7.3. Let z ≥ 1 and assume that

%z = − lim
n→∞

1
n

log Pz(1 ≤ Zn ≤ b)

exists and does not depend on b large enough. Then, under Assumption 3, for every θ ∈ (0,E(X)],

lim sup
n→∞

1
n

log Pz

(
1 ≤ Zn ≤ exp(nθ)

)
≤ −χ(θ, %z,Λ).

Proof. We de�ne the last moment when the process is below b before time n :

σb = inf{i ∈ N : Zi+1 ≥ b, · · · , Zn ≥ b}, (inf ∅ = ∞)

Let θ > 0. Then summing over i leads to

Pz(1 ≤ Zn ≤ eθn)

≤
n−1∑
i=0

Pk(1 ≤ Zn(1−t) ≤ eθn, σb = i) + P(1 ≤ Zn ≤ b)

≤
n−1∑
i=0

Pz(1 ≤ Zi ≤ b) sup
j≥b

Pj(1 ≤ Zn−i−2 ≤ eθn, Z1 ≥ b, ..., Zn−i−2 ≥ b) + P(1 ≤ Zn ≤ b)

≤ P(1 ≤ Zn ≤ b) +
n−1∑
i=0

Pz(1 ≤ Zi−1 ≤ b)
[
P(Sn−i−2 ≤ θn+ nε)

+ sup
j≥b

Pj(Zn−i−2 ≤ eθn, Sn−i−2 > θn+ nε, Z1 ≥ b, ..., Zn−i−2 ≥ b)].

First, by assumption, we have for every t ∈ [0, 1],

lim
n→∞

1
n

log Pz(1 ≤ Zbtnc ≤ b) = −t%z.

For the second term, we use the classical large deviation inequality for the random walk S to get

for every t ∈ [0, 1] that

lim sup
n→∞

1
n log P(Sb(1−t)nc ≤ θn+ nε) = −(1− t)Λ

(
θ+ε
1−t

)
.

with the convention 0.∞ = 0. For the last term, we apply Lemma 7.2, which prevents a large

population form deviating from the random environment. More precisely, for every ε > 0, we can
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choose b large enough such that supj≥b Pj(Zn−i−2 ≤ eθn, Sn−i−2 ≥ θn+nε, Z1 ≥ b, ..., Zn−i−2 ≥ b)

decreases faster than exp(−ρz(n− i− 2)) as n goes to in�nity. Thus, for b large enough and every

t ∈ [0, 1],

lim sup
n→∞

1
n

log sup
j≥b

Pj(Zn(1−t) ≤ eθn, Sn(1−t) > θn+ nε, Z1 ≥ b, ..., Zn(1−t) ≥ b) ≤ −%z(1− t),

with the convention 0.x = 0 for any x ∈ [0,∞]. Combining these upperbounds yields,

lim sup
n→∞

1
n

log Pz

(
1 ≤ Zn ≤ exp(nθ)

)
≤ − sup

t∈[0,1]

{
t%z + (1− t)Λ

(
θ+ε
1−t

)}
Letting ε→ 0, the right-hand side goes to χ(θ) by right-continuity of Λ. It yields the result since

the supremum can be taken over [0, 1) with the convention 0 · ∞ = 0.

7.3 Proof of the upperbound for Theorem 3.2

We assume here that that subcritical environments occur with a positive probability. First, we

consider the probability of having less than exponentially many individuals in generation n. We

prove that decrease is still given by % and obtain the �rst part of Theorem 3.2. We derive the

upperbound of the second part of the Theorem using Assumption 3.1 and an additional lemma.

Lemma 7.4. If P(X < 0) > 0, then for every z ∈ Cl(I),

% = lim
n→∞

1
n log Pz(Zn = z) = lim

θ→0
lim

n→∞
1
n log Pz(1 ≤ Zn ≤ eθn).

Proof. As for every θ > 0, Pz(Zn = z) ≤ Pz(1 ≤ Zn ≤ eθn) for n large enough, we have

lim
n→∞

1
n log Pz(Zn = z) ≤ lim inf

θ→0
lim inf
n→∞

1
n log Pz(1 ≤ Zn ≤ eθn).

Let us prove the converse inequality. First, we observe that mq < 1 − ε implies q(0) > ε. Using

that P(mQ < 1) > 0 by assumption and z ∈ I, we choose ε > 0 and j1 ≥ 1 so that the sets

A := {q ∈ ∆ : q(0) > ε, q(z) > ε}, B := {q ∈ ∆ : mq < 1− ε, q(j1) > ε}

satisfy

P(Q1 ∈ A) > 0, P(Q1 ∈ B) > 0, B ⊂ {q ∈ ∆ : q(0) > ε, q(z) > ε}.

By Markov property, for every θ > 0,

Pz(Zn+b θ
ε nc = z) ≥

beθnc∑
k=1

Pz(Zn = k)Pk(Zb θ
ε nc = z)

≥ Pz(1 ≤ Zn ≤ eθn) min
1≤k≤eθn

Pk(Zb θ
ε nc = z)

≥ Pz(1 ≤ Zn ≤ eθn) min
1≤k≤eθn

E
[
Pk(Zb θ

ε nc = z|E);Q1, . . . , Qb θ
ε nc−1 ∈ B, Qb θ

ε nc ∈ A
]

≥ Pz(1 ≤ Zn ≤ eθn)×

min
1≤k≤eθn

E
[
Pk−1(Zb θ

ε nc−1 = 0|E)P1(Zb θ
ε nc = z|E);Q1, . . . , Qb θ

ε nc ∈ B, Qb θ
ε nc ∈ A

]
. (7.4)

Using again the Markov property and the de�nition of B and A, we estimate

P1(Zb θ
ε nc = z|Q1, . . . , Qb θ

ε nc−1 ∈ B, Qb θ
ε nc ∈ A)

≥ P1(Z1 = j1|Q1 ∈ B) · Pj1(Z1 = j1|Q1 ∈ B)b
θ
ε nc−2 · Pj1(Z1 = z|Q1 ∈ A)

≥ ε · εj1(b θ
ε nc−2) · εj1 = εj1(b θ

ε nc−1)+1 .
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Using the classical estimates P1(Zn > 0|E) ≤ exp(Ln), where

Ln := min
0≤k≤n

Sk, (7.5)

and log(1− x) ≤ −x, x ∈ [0, 1) yields for every k, n ∈ N

Pk(Zb θ
ε nc = 0|Q1 ∈ B, . . . , Qn ∈ B) ≥

(
1− eb

θ
ε nc log(1−ε)

)k ≥ (1− e−b
θ
ε ncε)k .

Inserting the two last inequalities into (7.4), we get that

Pz(Zn+b θ
ε nc = z)Pz(1 ≤ Zn ≤ eθn)−1

≥ min
1≤k≤eθn

{(
1− e−εb θ

ε n−1c)kεj1(b θ
ε nc−1)+1P(Q1 ∈ B, . . . , Qb θ

ε nc−1 ∈ B, Qb θ
ε nc ∈ A)

}
≥ (1− e−θn+o(1))eθn

εj1(b θ
ε nc−1)+1P(Q ∈ B)b

θ
ε nc−1P(Q ∈ A).

Taking the logarithm and using the fact that (1− 1/x)x is increasing for x ≥ 1 and bounded

lim inf
n→∞

1
n log Pz(Zn+b θ

ε nc = z)

≥ lim sup
n→∞

1
n log Pz(1 ≤ Zn ≤ eθn) + j1θ

ε log ε+ θ
ε log P(Q ∈ B) . (7.6)

Thus

lim sup
θ→0

lim inf
n→∞

1
n log Pz(Zn+b θ

ε nc = z) ≥ lim sup
θ→0

lim sup
n→∞

1
n log Pz(1 ≤ Zn ≤ eθn).

Using Lemma 5.1, we get

lim sup
θ→0

lim
n→∞

1
n log Pz(Zn+b θ

ε nc = z) = lim
n→∞

1
n log Pz(Zn = z),

which completes the proof.

Lemma 7.5. Under Assumption 4, for every b > 0, n ∈ N and r ∈ (0, 1), it holds that

Pb(Zn ≤ r eSn |E) ≤
(
1− (1− r)2 eLn

n+2

)b
a.s.

Proof. Note that E[Zn(Zn−1)|E ] = f ′′0,n(1). Let us now check brie�y that the result of Proposition

1 in [13] still hold, which means that we can replace Assumption 2 in [13] by our Assumption 4.

From f0,n = f0,n−1 ◦ fn, by chain rule for di�erentiation f ′0,n(1) = f ′0,n(1)f ′n(1) and f ′′0,n(1) =

f ′′0,n−1(1)(f ′n(1))2 + f ′0,n−1(1)f ′′n (1), we get that

f ′′0,n(1)
(f ′0,n(1))2

=
f ′′0,n−1(1)

(f ′0,n−1(1))2
+

f ′′n (1)
f ′0,n−1(1)(f ′n(1))2

.

Using Assumption 4 yields

f ′′n (1)
f ′0,n−1(1)(f ′n(1))2

≤ d(eSn−1 + e−Sn)

and by a recursion argument

E[Zn(Zn − 1)|Π]
E[Zn|Π]2

=
f ′′0,n(1)

(f ′0,n(1))2
≤ 2d

n∑
k=0

e−Sk a.s.
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Finally we get for every n ∈ N,

E1[Zn(Zn − 1)|E ] ≤ 2de2Sn

n∑
k=0

e−Sk ≤ 2d (n+ 2)eSneSn−Ln .

Combining this inequality with an inequality due to Paley and Zygmund, which ensures that for

any R+ valued random variable ξ with 0 < E(ξ) < ∞ and 0 < r < 1, we have P(ξ > rE(ξ)) ≥
(1− r)2E(ξ)2/E(ξ2) (see Lemma 4.1 in [30]), we have

P1(Zn ≥ r eSn |E) ≥ (1− r)2
E1[Zn|E ]2

E1[Z2
n|E ]

≥ (1− r)2
e2Sn

(n+ 1)eSneSn−Ln + eSn
=

(1− r)2

n+ 2
eLn .

Given E and starting with Z0 = b, b-many subtrees are developing independently. Each has the

above probability of being larger than reSn . Thus

Pb(Zn ≤ r eSn |E) ≤ P(Zn ≤ r eSn |E)b

≤
(
1− (1− r)2 eLn

n+2

)b
a.s.,

which is the claim of the lemma.

Lemma 7.6. If P(X < 0) > 0 and Assumption 4 holds, then for all z ∈ Cl(I), θ ∈ (0,E(X)],

lim sup
n→∞

1
n

log Pz(1 ≤ Zn ≤ exp(nθ)) ≤ −χ(θ, %,Λ).

Let z ∈ Cl(I). For the proof of the upper bound, we will decompose the probability at the �rst

moment when there are at least n3-many individuals for the rest of time. For this, let

σn := inf{1 ≤ i ≤ n : Zj ≥ n3, j = i, . . . , n}, (inf ∅ := n).

and

τn := inf
{
0 ≤ i ≤ n : Si ≤ min{S0, S1, . . . , Sn}

}
.

Let us �x 0 < θ < E[X]. Then by Markov property,

Pz(1 ≤ Zn ≤ eθ) =
n∑

i=1

Pz(σn = i, 1 ≤ Zn ≤ eθn)

≤
n∑

i=1

Pz(1 ≤ Zi−1 < n3) max
k≥n3

Pk(1 ≤ Zn−i ≤ eθn, ∀1 ≤ j ≤ n− i : Zj ≥ n3)

=
n∑

i=1

Pz(1 ≤ Zi−1 < n3)
n−i∑
j=0

max
k≥n3

Pk(1 ≤ Zn−i ≤ eθn; τn−i = j, ∀1 ≤ j ≤ n− i : Zj ≥ n3)

≤
n∑

i=1

Pz(1 ≤ Zi−1 < n3)
n−i∑
j=0

P(τj = j) max
k≥n3

Pk(1 ≤ Zn−i−j ≤ eθn;Ln−i−j ≥ 0) . (7.7)

We treat now the di�erent probabilities separately. First, by Lemma 7.4 for t, s ∈ (0, 1) with

s+ t ≤ 1,

lim
n→∞

1
n log P(1 ≤ Zb(1−t−s)nc−1 ≤ n3) = −(1− t− s)ρ.
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As to the second probability, as P(τn = n) ≤ P(Sn ≤ 0),

lim
n→∞

1
n log P(τbsnc = bsnc) ≤ −sΛ(0).

Next, for every ε > 0,

min
k≥n3

Pk(1 ≤ Zbtnc ≤ eθn;Lbtnc ≥ 0)

≤ min
k≥n3

E
[
Pk(1 ≤ Zbtnc ≤ eθn|E);Sbtnc ≥ (θ + ε)n,Lbtnc ≥ 0

]
+ P

(
Sbtnc ≤ (θ + ε)n

)
.

Using Lemma 7.5, for n large enough,

max
k≥n3

E
[
Pk(1 ≤ Zbtnc ≤ eθn|E);Sbtnc ≥ (θ + ε)n,Lbtnc ≥ 0

]
≤ max

k≥n3
E
[
Pk(1 ≤ Zn ≤ e−εneSbtnc |E);Sbtnc ≥ (θ + ε)n,Lbtnc ≥ 0

]
≤ max

k≥n3

(
1− (1− e−εn)2 1

btnc+2

)kP
(
Lbtnc ≥ 0, Sbtnc ≥ (θ + ε)n

)
≤
(
1− (1− 1

2 )2 1
btnc+2

)n3

.

Then, for every t > 0,

lim sup
n→∞

1
n log max

k≥n3
E
[
Pk(1 ≤ Zbtnc ≤ eθn|E);Sbtnc ≥ (θ + ε)n,Lbtnc ≥ 0

]
≤ lim sup

n→∞
n2 log

(
1− 1

4
1

btnc+2

)
= −∞.

Finally, recall that

lim
n→∞

1
n log P

(
Sbtnc ≤ (θ + ε)n

)
= −tΛ

(
(θ + ε)/t

)
.

Applying all this in (7.7) and letting ε→ 0 yields the upper bound, i.e.

lim sup
n→∞

1
n log P(1 ≤ Zn ≤ enθ) ≤ − inf

s,t∈[0,1];s+t≤1

{
(1− s− t)ρ+ sΛ(0) + tΛ((θ + ε)/t)

}
= − inf

t∈[0,1]
{(1− t)ρ+ tΛ(θ/t+)} = χ(θ, %, λ).

In the last step, we used that Proposition 3 guarantees Λ(0) ≥ ρ, Λ(0) ≥ Λ(x) for every x ≥ 0 and

right-continuity of Λ.

7.4 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1 (i). The second part of Lemma 5.1 ensures that for b large enough,

% = − lim
n→∞

1
n

log Pz(1 ≤ Zn ≤ b).

Then, under Assumption 3, Lemmas 7.1 and 7.3 yield

lim
n→∞

1
n log P(1 ≤ Zn ≤ enθ) = −χ(θ, %,Λ).

The right continuity of χ(θ, %,Λ) proves the last part of the result.

Proof of Theorem 3.1 (ii). We recall that the monotonicity of Z (see also [10]) ensures that for

every b ≥ z

lim
n→∞

1
n

log Pz(1 ≤ Zn ≤ b) = z log E(Q(1)).
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Then, under Assumption 3 and E(Z1 log+(Z1)) <∞, Lemmas 7.1 and 7.3 yield

lim
n→∞

1
n log Pz(1 ≤ Zn ≤ enθ) = −χ(θ,−z log E(Q(1)),Λ).

The right continuity of χ(θ, %,Λ) proves the last part of the result.

Proof of Theorem 3.2. The �rst part is given by Lemma 7.4 .

As we assume P(X < 0) > 0, we can use again Lemma 5.1, which ensures that for b large enough,

% = − lim
n→∞

1
n

log Pz(1 ≤ Zn ≤ b).

Then, under Assumption 4 and E(Z1 log+(Z1)) <∞, we can combine Lemmas 7.1 and 7.6 to get

lim
n→∞

1
n log P(1 ≤ Zn ≤ enθ) = −χ(θ, %,Λ).

It completes the proof.

8 The linear fractional case

In this section, we restrict ourselves to the case of o�spring distributions with generating function

of linear fractional form, i.e.

f(s) = 1− 1− s

m−1 + b m−2(1− s)/2
,

where m = f ′(1) and b = f ′′(1).

Under this assumption, direct calculations with generating functions are feasible, i.e. we can

explicitly calculate the generating function of Zn, conditioned on the environment. We de�ne

ηk = 1/2 bkm−2
k and recall that fj,n = fj+1 ◦ . . . ◦ fn. Then for all n ∈ N and s ∈ [0, 1] (see [32, p.

156])

fj,n(0) = 1− 1
e−(Sn−Sj) +

∑n
k=j+1 ηke−(Sk−1−Sj)

. (8.1)

Moreover

f ′j(s) =
e−Xj

(e−Xj + ηj(1− s))2
(8.2)

and we can now compute the value of %.

Proof of Corollary 2.3. By Proposition 6.1, ρ ≤ Λ(0). Then it remains to prove that ρ = − log E
[
e−X

]
if E[Xe−X ] ≥ 0 and ρ ≥ Λ(0) otherwise. For that purpose, we use the representation of ρ in terms

of generating functions. Combining (8.1) and (8.2) we get

f ′j
(
fj,n(0)

)
= e−Xj

(
e−Xj + ηj

e−(Sn−Sj)+
Pn

k=j+1 ηke−(Sk−1−Sj)

)−2

= e−Xj

( e−(Sn−Sj) +
∑n

k=j+1 ηke
−(Sk−1−Sj)

e−(Sn−Sj−1) + ηj +
∑n

k=j+1 ηke−(Sk−1−Sj−1)

)2

= e−Xj

( e−(Sn−Sj) +
∑n

k=j+1 ηke
−(Sk−1−Sj)

e−(Sn−Sj−1) +
∑n

k=j ηke−(Sk−1−Sj−1)

)2

= e−Xj

(P(Zn > 0|Zj−1 = 1, E)
P(Zn > 0|Zj = 1, E)

)2

.
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Thus, noting that P(Zn > 0|Zn = 1) = 1, we get that

E
[ n∏

j=1

f ′j
(
fj,n(0)

)]
= E

[ n∏
j=1

e−Xj
P(Zn > 0|Zj−1 = 1, E)2

P(Zn > 0|Zj = 1, E)2
]

= E
[
e−SnP(Zn > 0|E , Z0 = 1)2

]
. (8.3)

First, we consider the case E[Xe−X ] ≥ 0. Note that this condition implies E[e−X ] <∞. Bounding

the probability in (8.3) by 1 immediately yields

E
[ n∏

j=1

f ′j
(
fj,n(0)

)]
≤ E[e−Sn ],

so ρ ≥ − log E[e−X ]. To get the converse inequality, we change to the measure P̂, de�ned by

P̂(X ∈ dx) =
e−xP(X ∈ dx)

E[e−X ]
.

Then by Jensen's inequality

E
[
e−SnP(Zn > 0|E , Z0 = 1)2

]
= E

[
e−X

]nÊ
[
P(Zn > 0|E)2

]
≥ E[e−X ]n−1P̂(Zn > 0)2.

We observe that Ê[X] = E[Xe−X ] ≥ 0, thus under P̂, Sn is a random walk with nonnegative

drift. It ensures that the branching process is still critical or supercritical with respect to P̂, so
P̂(Zn > 0) > Cn−β for some β,C > 0 as n → ∞ (see e.g. [4] for the critical case, whereas

P(Zn > 0) has a positive limit in the supercritical case). Letting n→∞, we get

ρ = − lim
n→∞

1
n log E

[ n∏
j=1

f ′j
(
fj,n(0)

)]
≤ − log E[e−X ] .

Secondly, we consider E[Xe−X ] < 0. There exists a ν ∈ (0, 1] such that E[Xe−νX ] = 0 and we

change to the measure P de�ned in (6.2). Applying this change of measure and the well-known

estimate P(Zn > 0|E) ≤ eLn a.s., we get that

E
[
e−SnP(Zn > 0|E , Z0 = 1)2

]
≤ E[e−νX ]nE

[
e(−1+ν)Sn+2Ln

]
.

Note that Ln ≤ −Sn and ν ∈ (0, 1] imply that (−1 + ν)Sn + 2Ln ≤ 0, so

E
[
e−SnP(Zn > 0|E , Z0 = 1)2

]
≤ E[e−νX ]n ,

which yields ρ ≥ − log E[e−νX ] = Λ(0). The last line comes from Λ(0) = sups≤0{− log E[esX ]} and
the fact that the condition E[Xe−νX ] = 0 implies that the supremum is taken in s = −ν.

Then our theorem on lower large deviations immediately yields the lower rate function in the LF

case. If E[Xe−X ] < 0, χ(θ) = Λ(θ). Otherwise, for θ ≤ E[X],

χ(θ) = inf
t∈[0,1)

{
− t log

(
E
[
e−X

])
+ (1− t)Λ

(
θ/(1− t)

)}
.

Let us now prove the representation of χ from Corollary 3.3.

Proof of Corollary 3.3. Recall that s → E[esX ] is the moment generating function of X, which is

a convex function. The result of the corollary is trivial if ρ = Λ(0). Thus we only have to consider

the case ρ = E[e−X ] and by Corollary 2.3 and 0 < E[Xe−X ] <∞ and thus E[e−X ] <∞. We have

30



% = − log E[e−X ] ≤ sups<0{− log E[esX ]} = Λ(0). Note that Λ(0) = ∞ is possible.

Let us recall some details of Legendre transforms. It is well-known (see e.g. [16]) that

vθ(s) := −θs− log E
[
e−sX

]
is a convex function. The conditions E[e−X ] <∞ and 0 < E[Xe−X ] <∞ imply by the dominated

convergence theorem that v above is di�erentiable in s = 1 and

v′θ(1) := −θ − E
[
Xe−X

]
/E
[
e−X

]
.

Thus by de�nition of θ∗, the derivative of v′θ∗ vanishes for s = 1, i.e. v∗θ takes its minimum in

s = 1. Thus,

Λ(θ∗) := −θ∗ − log E
[
e−X

]
<∞

and by the theory of Legendre transforms, the tangent t on the graph of Λ in θ∗ is described by

t(θ) := −θ − log E
[
e−X

]
.

As Λ is convex and decreasing for θ < E[X], we have Λ(θ) ≥ t(θ) for θ < θ∗. This proves the

representation in Corollary 3.3.

9 Examples with two environments : dependence on the ini-

tial and �nal population.

In this section, we focus on the importance of the initial population.

Example 1 : the limits 1
n log P1(Zn = i) and 1

n log P1(Zn = j) may be both �nite but

di�erent Assume that the environment consists of two states q1 and q2 such that

r := P(Q1 = q1) = 1− P(Q1 = q2) > 0; q1(1) = 1; q2(0) = p, q2(2) = 1− p,

with p ∈ (0, 1). Then

1
n log P1(Zn = 1) = log r, 1

n log P1(Zn = 2) ≥ max
{

log r; log[(1− r)2(1− p)p]
}
.

where the term log r comes from a population which stays equal to 1 in the environment sequence

(q1, q1, q1, · · · ) and the last term comes from a population which stays equal to 2 in the environment

sequence (q2, q2, q2, · · · ). Thus if r is chosen small enough (i.e. r < 2(1−p)p
1+2(1−p)p ),

lim
n→∞

1
n log P1(Zn = 1) < lim

n→∞
1
n log P1(Zn = 2) .

Example 2 : the situation P1(Zn = k) � Pk(Zn = k), k > 1 is possible Again, we assume

that the environment consists of just two states q1 and q2 and now

r := P(Q1 = q1) = 1− P(Q1 = q2) > 0,

q1(1) = p , q1(a) = 1− p,

q2(0) = p , q2(2) = p , q2(a) = 1− 2p,
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with p ∈ (0, 1
2 ) and a > 2.

First, we note that lim infn→∞ log P1(Zn = 2) ≥ −rp, which comes from a population staying

equal to 1 in the environment sequence (q1, q1, . . .).

Next, let us estimate the extinction probability, given the environment. We �rst observe that

any BPVE whose environments are either q1 or q2 is stochastically larger that the Galton Watson

process with reproduction law (and unique environment) q2. As a consequence,

P1(Zn = 0|E) ≤ P1(Zn = 0|Q1 = . . . , Qn = q2) ≤ P(Z∞ = 0|Q1 = q2, Q2 = q2, . . .) =: se a.s.

It is well-known that se is given as the �xpoint < 1 of the generating function f2 of q2:

se = f2(se) = p+ ps2e + (1− 2p)sa
e .

Figure 5: Generating function of a distribution with q(0) > 0.

Let us now estimate se. For for s = 2p, we have 2p > f2(2p) = p + 4p3 + (1 − 2p)2apa if p < 1
4

and a is large enough. Then se ≤ 2p (see also Figure 5). We get for p < 1
4 , a large enough and all

i ≥ 1, k ≤ n,

P(Zn = 0|E , Zk = i) ≤ si
ext ≤ (2p)i.

Using this estimate and the explicit law of P(Zk+1 = . | Zk = 2, Qk = q1), we obtain

P2(Zn = 2|E , Qk = q1, Zk = 2)

= p2P(Zn = 2|E , Zk+1 = 2) + 2(1− p)pP(Zn = 2|E , Zk+1 = 1 + a)

+ (1− p)2P(Zn = 2|E , Zk+1 = 2a)

= P(Zn = 2|E , Zk+1 = 2)
(
p2 + 2(1− p)p

(
a+ 1

2

)
P(Zn = 0|E , Zk+1 = 1 + a− 2)

+ (1− p)2
(

2a
2

)
P(Zn = 0|E , Zk+1 = 2a− 2)

)
≤ P(Zn = 2|E , Zk+1 = 2)

(
p2 + 2(1− p)p

(
a+ 1

2

)(
2p
)a−1 + (1− p)2

(
2a
2

)(
2p
)2a−2

)
If p is small enough, we get

P2(Zn = 2|E , Qk = q1, Zk = 2) ≤ P(Zn = 2|E , Zk+1 = 2)3p2 .
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Analogously, if the environment q2 occurs in generation k, we get

P2(Zn = 2|E , Qk = q2, Zk = 2)

= 2p2P(Zn = 2|E , Zk+1 = 2) + p2P(Zn = 2|E , Zk+1 = 4) + 2p(1− 2p)P(Zn = 2|E , Zk+1 = a)

+ 2p(1− p)P(Zn = 2|E , Zk+1 = a+ 2) + (1− 2p)2P(Zn = 2|E , Zk+1 = 2a)

≤ P(Zn = 2|E , Zk+1 = 2)3p2 .

Next, note that the population starting from Z0 = 2 is either always ≥ 2 or extinct. Thus in

each generation, there are at least two individuals and we may apply the estimates above for the

subtrees emerging in generation k. Finally we get that

lim sup
n→∞

1
n log P2(Zn = 2) lim sup

n→∞
1
n log E

[
P2(Zn = 2|E)

]
≤ log(3p2).

If p is now chosen small enough, we get that 3p2 < rp and thus

lim sup
n→∞

1
n log P2(Zn = 2) < lim inf

n→∞
1
n log P1(Zn = 2).

Note that this example shows that, as in the the case without extinction in [10], the initial popu-

lation may be of importance for the asymptotic of the probability of staying small, but alive.
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