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Abstract

We study sexual populations structured by a phenotypic trait and a space variable, in

a non-homogeneous environment. Departing from a structured population equation we per-

form a hydrodynamic-type limit to derive a model close to an existing model of theoretical

biology. We then perform a further simplification to obtain a model depending on only one

parameter that indicates how fast the environment is changing. We show that depending

on this parameter, there exist either propagating waves, where the population invades the

entire environment, or steady-states where the population survives but remains in a limited

range. The corresponding propagating fronts connect an unstable steady point to a singu-

lar point. Existence of steady states with limited range distinguishes the dynamics of the

sexual populations from asexual populations, where the populations whether gets extinct or

propagates to the whole environment.

Numerical simulations show that the derived simplified model is a good approximation of

the initial structured population model.

Key-words: Sexual populations, Structured populations, Hydrodynamic limit, Propagating
fronts, gene flow

1 Introduction

In this paper, we are interested in sexual populations that are structured by a continuous phe-
notypic trait v ∈ R and a continuous space variable x ∈ R, living in a non-homogeneous envi-
ronment: we will consider a phenotypic trait of best adaptation θ(·) that depends on the space
variable. This type of population has been studied in [21, 15, 22, 3], using mostly numerical
simulations.

This type of model can in particular be used to study the distribution of a species along
an environmental gradient (such as the north-south gradient of temperature in the northern
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hemisphere). To study the range of the species and its local adaptation, one should consider
both evolution and spatial dynamics (see [14, 15, 23, 4]). These models are also useful to study
the impact of an environmental change (e.g. global warming) on a population (see [21, 15, 23]).

Our work is largely based on [15], and related articles [12, 21, 15, 22, 23]. In [15], a partial
differential equation model describing the spatial and evolutionary dynamics of a population is
introduced:

{
∂tN(t, x)−∆xN(t, x) =

(
1− 1

2(Z(t, x)−Bx)2 −N(t, x)
)
N(t, x),

∂tZ(t, x)−∆xZ(t, x) = 2∂x(logN(t, x))∂xZ(t, x) +A(Bx− Z(t, x)).
(1)

Here N(t, x) is the population density at time t and location x, and Z(t, x) is the population’s
mean phenotypic trait. The parameter A can be interpreted as the potential for adaptation to
the local optimal trait and the parameter B indicates how fast the environment is changing.
Numerical simulations where run for this model, and they showed that depending on A and B,
three biological scenarios were possible:

• if B is large (the environment changes rapidly in space), the population goes extinct,

• for intermediate values of B, the population survives, but remains in a limited area,

• if B is small, the population invades the whole space.

In this paper, we show how (1) (indeed, the closely related equations (14)) can be derived
through a hydrodynamic-type limit from a structured population model in the case of sexual
populations, but is not appropriate to model asexual populations. We also introduce a sim-
plification of the model (14) when A is small, which allows us to investigate the existence of
propagating fronts and steady states, which correspond respectively to the cases where the pop-
ulation invades the whole space, or remains confined in a limited area.

The fact that populations can remain confined in a limited area, distinguishes the behavior
of sexual population from that of asexual populations. With an equivalent model in the case of
asexual populations, the population either gets extinct or it propagates to the whole space (see
[20]). An origin of this difference is the phenomenon of gene flow that appears in the case of
sexual populations; the traits of the individuals that are on low density areas of the domain are
very influenced by the traits of the individuals in high density areas. Therefore the traits of the
individuals that are on the edge of the populated area, where the population is less dense, are
far from optimal (see [15]).

In Section 2, we introduce a structured population model for the evolution of sexual popula-
tions structured by both a phenotypic trait and a space variable. To construct this model, we
add a spatial variable to a well established spatially homogeneous selection-mutation equation
(similarly to many kinetic models in physics or chemistry, see [25]). This structured popula-
tion equation can also be seen as a continuous version of the discrete model introduced in [22].
After a rescalling, three parameters appear: A, B, C. The interpretation of A and B is as
above. We assume next that C is large, which means that many generations are necessary to
obtain a significant growth of the population. This assumption allows us to perform formally a
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hydrodynamic-type limit of the structured population model (10) to obtain a model very close
to (1). We explain in Remark 2 why we could not obtain exactly the system (1).

Finally, we simplify (14) further through another formal limit, assuming that A is small. This
assumption is compatible with the values of A considered in [15]. With this assumption, we
obtain a simpler equation on Z(t, x) only:

∂tZ(t, x)−∆xZ(t, x) = −4
(∂xZ(t, x)−B/

√
2)(Z(t, x)− (B/

√
2)x)

1− (Z(t, x)− (B/
√
2)x)2

∂xZ(t, x)

+((B/
√
2)x− Z(t, x)). (2)

In Section 3, we analyze the model (2) derived in Section 2. Unfortunately, this equation has
singularities that are obstacles to have a well-defined problem: we show that viscosity solutions
exist, but are not unique. However, the singularities are fundamental to produce propagating
fronts. We indeed prove the existence of propagating fronts, which connect an unstable steady
state to a singular point. Thereby, this simple model allows us to describe two of the three
possible scenarios from [15]: invasion fronts, and populations remaining in a limited area. The
extinction phenomena cannot be observed here because of our assumption that A is small, as we
explain in Remark 5.

We illustrate the results with numerical simulations that are presented in Section 4.

2 Structured population model

2.1 Model

We start from a classical model describing the evolution of a population structured by a pheno-
typic trait only (see e.g. [6, 11, 19], and [10, 9, 16] for mathematical properties of this kind of
models). Let n(t, v) be the density of the population of phenotypic trait v ∈ R at time t ≥ 0. We
assume that the fitness depends on the square of distance between v and an optimal adaptation
trait θ, and is altered by the population size. If we do not take into account the effect of sexual
reproduction, under the latter assumptions, the fitness s[n(t, ·)](v) of an individual of phenotypic
trait v, living among a resident population n(t, ·), is given by:

s[n(t, ·)](v) = rmax −
1

2Vs
(v − θ)2 − rmax

K

∫
n(t, w) dw, (3)

Here rmax > 0 denotes the maximal growth rate of the population, Vs measures the strength of
the selection toward the optimal trait θ, and K is the carrying capacity of the environment.

The fitness is well-defined in the case of asexual populations: it is the rate of births of offsprings
of trait x minus the rate of deaths. In the case of sexual populations however, the situation is
more complicated, since reproduction requires two parents, of traits v∗ and v′∗, that give birth
to an offspring of trait v, usually different from v∗ or v′∗. This has two consequences (see [5]):

• We need to define Q(·, v∗, v′∗), the distribution function of the trait of the offspring. We
will analyze briefly the properties of Q in Subsection 2.2.

• We have to define the birth rate and the death rate separately. We will assume in this
article that the birth rate is a constant, denoted by γ > rmax.
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In this model, we do not distinguish between males and females (for instance because they have
the same distribution) and assume that mating is random and uniform among the population.
We also assume that the number of offsprings is proportional to the population density, the idea
being that the number of births is proportional to the number of females. Then the evolution of
the population, structured by a phenotypic trait only, is described by (see [11]):

∂tn(t, v) =

[
−(γ − rmax)−

Is
2

− 1

2Vs
(v − θ)2 − rmax

K

∫
n(t, w) dw

]
n(t, v)

+γ

∫ ∫
n(t, v∗)n(t, v

′
∗)∫

n(t, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗. (4)

Here γ is the birth rate (γ > rmax), that we assume constant within the population, (the selection
occurs in the death term), and Is

2 is the additional death rate due to lethal mutations (see [15]).

We next consider populations that are structured by a phenotypic trait v as above, but also by
a space variable x ∈ R. The density is then denoted by n(t, x, v). We assume that the selection-
mutation process described above occurs locally in space, but that individuals move randomly
in space. We model this random movement by a diffusion of rate σx. We additionally assume
that the trait of optimal adaptation changes linearly in space:

θ(x) = bx. (5)

We finally obtain the following model for sexual populations (close to the model used in [12]):

∂tn(t, x, v)− σ2
x∆xn(t, x, v)

=

[
−(γ − rmax)−

Is
2

− 1

2Vs
(v − bx)2 − rmax

K

∫
n(t, x, w) dw

]
n(t, x, v)

+ γ

∫ ∫
n(t, x, v∗)n(t, x, v

′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗. (6)

For an existence theory for (6), we refer to [24].

2.2 Properties of the sexual reproduction kernel Q

In Subsection 2.3, we rescale (6) to show that it indeed only depends on three parameters. To
be able to do so, we first need to define more precisely the reproduction kernel Q, and analyze
its properties.

The sexual reproduction has two opposite effects on the repartition of the population over the
phenotypic traits:

• For each set of two chromosomes, one comes from the parent of phenotypic trait v∗, and
one from the parent of trait v′∗. This process tends to give the offspring a trait between v∗
and v′∗. The effect of this phenomenon is to concentrate the population traits.

• On the contrary, a variability is maintained in the population by mutations and recom-
binations. Recombination is the process, occurring by the crossing-over of chromosomes
during meiosis, in which DNA is exchanged between a pair of chromosomes (notice that
the effect of recombinations is typically much larger than the effect of mutations, see [6]).
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A reasonable assumption is that in absence of selection, a sexual population phenotypic distri-
bution converges to a given profile that only depends on Q. To make this assumption precise, we
consider the homogeneous sexual reproduction model (4) without selection, and with a constant
population size, that is

{
∂tn(t, v) =

∫ ∫
Q(v, v∗, v

′
∗)n(t, v∗)n(t, v

′
∗) dv∗ dv

′
∗ − n(t, v)

n(0, v) = n0(v) ∈ L1(R), with
∫
n0(v) dv = 1.

(7)

We also assume that the long-time dynamics of this model is simple in the sense that:

Condition 1:

• For any v∗, v
′
∗ ∈ R, we have

∫
Q(v, v∗, v

′
∗) dv = 1,

• For any v∗, v
′
∗ ∈ R, we have

∫
v Q(v, v∗, v

′
∗) dv = v∗+v′∗

2 ,

• There exists G (from the genetic variance, see [15]) such that for any initial population n0,
the phenotypic variance of the population converges to G:

∫ (
v −

∫
w n0(w) dw

)2

n(t, v) dv → G2, as t → ∞,

• For any initial population n0, the third moment of the phenotypic distribution of the
population converges to 0:

∫ (
v −

∫
wn0(w) dw

)3

n(t, v) dv → 0, as t → ∞.

We notice that Condition 1 implies that the two first moments of n are conserved:

∀t ≥ 0,

∫
n(t, v)dv = 1,

∫
vn(t, v)dv =

∫
vn0(v)dv. (8)

The reproduction kernel that is typically used in structured population models for sexual
populations (see [5, 11]) is:

Q(v, v∗, v
′
∗) :=

1

γ
√
2π

e
−

(

v−
v∗+v′∗

2

)2

2γ2 . (9)

We show that Condition 1 is satisfied for this particular reproduction kernel:

Proposition 1 Condition 1 is satisfied by the reproduction kernel defined in (9), with G =
√
2γ.

Remark 1 This condition is indeed hold true for a more general reproduction kernel Q(v, v∗, v
′
∗) =(

Γ̃ ∗ Q̃(·, v∗, v′∗)
)
(v), where Γ̃ is symmetrical with a positive variance, Q̃(v∗+v′∗

2 + v, v∗, v
′
∗) =

Q̃(v∗+v′∗
2 − v, v∗, v

′
∗) for any v, v∗, v

′
∗ ∈ R, and

∫ (
v − v∗ + v′∗

2

)2

Q̃(v, v∗, v
′
∗) dv = C

(v∗ − v′∗)
2

4
,

with C < 1. For this and more on this type of problem, we refer to [13, 17].
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Proof of Proposition 1: The two first parts of Condition 1 can be easily checked. We only
prove the third and the fourth.

We assume, without loss of generality, that
∫
v n0(v) = 0. Therefore according to (8) we have

∫
v n(t, v) dv = 0.

We multiply equation (7) by v2 and integrate to obtain

d

dt

∫
v2n(t, v) dv =

∫ ∫ (∫
v2Q(v, v∗, v

′
∗) dv

)
n(t, v′∗)n(t, v∗) dv∗ dv

′
∗ −

∫
v2n(t, v)dv

=

∫ ∫ (
γ2 +

(
v∗ + v′∗

2

)2
)
n(t, v′∗)n(t, v∗) dv∗ dv

′
∗ −

∫
v2n(t, v)dv

= γ2 − 1

2

∫
v2n(t, v)dv.

We deduce that the variance of n converges exponentially fast to G =
√
2γ for any initial

condition n0: ∫
v2n(t, v) dv → G2 = 2γ2, as t → ∞.

Similarly we have

d

dt

∫
v3n(t, v) dv =

∫ ∫ (∫
v3Q(v, v∗, v

′
∗) dv

)
n(t, v∗)n(t, v

′
∗) dv∗ dv

′
∗ −

∫
v3n(t, v)dv

=

∫ ∫ (
v∗ + v′∗

2

)3

n(t, v∗)n(t, v
′
∗) dv∗ dv

′
∗ −

∫
v3n(t, v)dv

= −3

4

∫
v3n(t, v)dv.

It follows that
∫
v3n(t, v) → 0 as t → ∞.

�

2.3 Rescaling of the structured population model

To simplify (6), we perform the following rescaling:

a1 =

(
rmax −

G2

2Vs
− Is

2

)
, a2 =

1

σx

(
rmax −

G2

2Vs
− Is

2

) 1
2

, a3 =
1

G
,

ñ(t̃, x̃, ṽ) =
rmaxG

K

(
rmax −

G2

2Vs
− Is

2

)−1

n

(
t̃

a1
,
x̃

a2
,
ṽ

a3

)
,

Q̃(v, v∗, v
′
∗) := GQ

(
Gv,Gv∗, Gv′∗

)
,

where G is given by Condition 1. We notice that the rescaled reproduction kernel Q̃ satisfies
Condition 1 with G̃ = 1. With the above rescaling, (6) becomes:

∂tn(t, x, v)−∆xn(t, x, v) = −
[
(C − A

2 ) +
A
2 (v −Bx)2 +

∫
n(t, x, w) dw

]
n(t, x, v)

+(C + 1)
∫ ∫ n(t,x,v∗)n(t,x,v′∗)∫

n(t,x,w)dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗, (10)
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with

A :=
G2

Vs

(
rmax −

G2

2Vs
− Is

2

)−1

, B :=
bσx
G

(
rmax −

G2

2Vs
− Is

2

)− 1
2

,

C := γ

(
rmax −

G2

2Vs
− Is

2

)−1

− 1.

Here the parameter A can be interpreted as the potential for adaptation to the local optimal
trait. The parameter B indicates how fast the environment is changing along x. The parameter
C measures the ratio between the birth rate and the maximal growth rate of the total population.

Remark 2 This is not the only possible rescaling for this equation. As we will see in Subsection
2.4, this particular scaling will allow us to obtain (14) as a formal limit of (10) when C is large.
In [15], the authors perform another renormalization of (1) and they obtain only two parameters
A and B. The corresponding parameters are defined as:

A =
G

2Vs

(
rmax −

Is
2

)−1

, B =
bσx√
2Vs

(
rmax −

Is
2

)
.

The scaling they use does not work here, because they assume that the rescaling in the variable v
does not modify G, the typical phenotypic variance of the phenotypic distribution of the popula-
tion. While with (6), G is necessarily affected by a scaling in the v variable (see Condition 1).
This is also why we could not obtain exactly (1), but the slightly different model (14).

2.4 Formal limit of the structured population model

We denote by N, Z, V the following moments of the distribution n(t, x, ·):

N(t, x) :=

∫
n(t, x, v) dv, Z(t, x) :=

∫
v
n(t, x, v)

N(t, x)
dv,

V (t, x) :=

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv.

We show that N and Z satisfy the following unclosed equations:

Proposition 2 If n is a solution of (10), then the moments of the phenotypic distribution of n
satisfy:

∂tN(t, x)−∆xN(t, x) =

[
1 +

A

2
(1− V (t, x))− A

2
(Z(t, x)−Bx)2 −N(t, x)

]
N(t, x). (11)

∂tZ(t, x)−∆xZ(t, x) = 2∂x(logN(t, x))∂xZ(t, x) +A(Bx− Z(t, x))V (t, x)

−
∫

(v − Z)3
n(t, x, v)

N(t, x)
dv. (12)
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Proof of Proposition 2: To obtain (11), we integrate (10) along v:

∂tN(t, x)−∆xN(t, x) =

∫
∂tn(t, x, v) −∆xn(t, x, v) dv

=

[
1 +

A

2
−N(t, x)

]
N(t, x)− A

2

∫
(v −Bx)2n(t, x, v) dv

=

[
1 +

A

2
(1− V (t, x))− A

2
(Z(t, x)−Bx)2 −N(t, x)

]
N(t, x).

The second equation, (12), is obtained as follows:

∂tZ(t, x)−∆xZ(t, x) = ∂t

∫
v
n(t, x, v)

N(t, x)
dv −∆x

∫
v
n(t, x, v)

N(t, x)
dv

=

∫
v

N(t, x)
(∂tn(t, x, v)−∆xn(t, x, v)) dv

− (∂tN(t, x)−∆xN(t, x))
Z(t, x)

N(t, x)

+ 2∂x(logN(t, x))∂xZ(t, x),

and thus,

∂tZ(t, x)−∆xZ(t, x)

= −
∫

v

N(t, x)

((
C − A

2

)
+

A

2
(v −Bx)2 +

∫
n(t, w) dw

)
n(t, x, v) dv

+ (C + 1)

∫
v

N(t, x)

(∫ ∫
n(t, x, v∗)n(t, x, v

′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗

)
dv

−
(
1− A

2
(Z(t, x)−Bx)2 −N +

A

2
(1− V (t, x))

)
N(t, x)

Z(t, x)

N(t, x)

+ 2∂x(logN(t, x))∂xZ(t, x)

= 2∂x(logN(t, x))∂xZ(t, x) +A(Bx− Z(t, x))V (t, x)

−
∫
(v − Z)3

n(t, x, v)

N(t, x)
dv.

Here we use the fact that the reproduction kernel does not affect the mean phenotypic trait:∫
vQ(v, v′, v′∗) dv = v′+v′∗

2 .

�

Remark 3 The term 2∂x(logN)∂xZ is referred to, by biologists, as the "gene flow" term (see
[18] and [21, 15, 23]). This term models the fact that the mean phenotype of low density areas
are greatly influenced by the phenotypes of neighboring high density areas. It is interesting to
notice that this term does not come from the sexual reproduction term, but from the diffusion
term:

∆Z(t, x) =

∫
v
∆xn(t, x, v)

N(t, x)
dv − Z(t, x)

N(t, x)
∆N(t, x) + 2∂x(logN(t, x))∂xZ(t, x).
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To close the equations on N and Z obtained in Proposition 2, we notice that (10) can be
written:

∂tn(t, x, v) −∆xn(t, x, v) = C

[∫ ∫
n(t, x, v∗)n(t, x, v

′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗ − n(t, x, v)

]

+

[
A

2
− A

2
(v −Bx)2 −

∫
n(t, x, w) dw

]
n(t, x, v)

+

∫ ∫
n(t, x, v∗)n(t, x, v

′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗.

Therefore if C is very large, the first term dominates the dynamics of the population. Since this
first term corresponds to the "pure" sexual reproduction equation (7), and since the reproduction
kernel Q satisfies Condition 1, it is natural to assume that at all time t > 0 and all locations
x ∈ R,

V (t, x) =

∫
(v − Z(t, x))2

n(t, x, v)

N(t, x)
dv ∼ G = 1,

∫
(v − Z(t, x))3

n(t, x, v)

N(t, x)
dv ∼ 0. (13)

We notice that here, thanks to the rescaling performed in the previous subsection, G = 1.

Using the latter properties to close the system of equations on N and Z obtained in Proposition
2, we obtain the following model:

{
∂tN(t, x)−∆xN(t, x) =

(
1− A

2 (Z(t, x)−Bx)2 −N(t, x)
)
N(t, x),

∂tZ(t, x)−∆xZ(t, x) = 2∂x(logN(t, x))∂xZ(t, x) +A(Bx− Z(t, x)).
(14)

This model is very close to the model (1) from [21, 15]. The model (1) was built directly, without
the intermediate step of a structured population model, and the limits of its applications were
unclear (see [22]). Our derivation shows that the model (14) is valid (in the sense that it is the
formal limit of (6)) if:

• The reproduction is sexual,

• The reproduction kernel satisfies Condition 1,

• C is large.

Remark 4 C = γ
(
rmax − G2

2Vs
− Is

2

)−1
− 1 is large if the birth rate is large compared to the

maximal growth rate of the total population. In other words, many generations are necessary to
obtain a significant growth of the population, which seems reasonable in many biological situations.

Notice also that in the framework of Proposition 1, the convergence criteria in Condition 1 hold
true exponentially fast. Therefore the simplification (13) might be accurate even if C is not very
large. The numerical simulations in Subsection 4.3 show that, the simplified model (2) (which is
a further simplification of (14), see Subsection 2.5) seems accurate even if C = 1 (see Figure 8).

The model (14) may hold in other situations, justifying the closure assumption (13) with other
arguments. However, in [20], it is shown that (14) cannot hold for asexual populations for the
whole range of parameters A and B.
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2.5 Derivation of a simplified model

To simplify (14), we first apply the following change of variable:

Ñ
(
t̃, x̃
)
:= N

(
t̃

A
,

x̃√
A

)
, Z̃

(
t̃, x̃
)
:=

√
A

2
Z

(
t̃

A
,

x̃√
A

)
.

To simplify the notations, we omit the tilde in the new unknown functions. The rescaled model
becomes

{
∂tN(t, x) −∆xN(t, x) = 1

A

(
1− (Z(t, x)− (B/

√
2)x)2 −N(t, x)

)
N(t, x),

∂tZ(t, x)−∆xZ(t, x) = 2∂x(logN(t, x))∂xZ(t, x) + ((B/
√
2)x− Z(t, x)).

(15)

Now, if we assume that A is very small, N and Z are related by the simple relation:

N(t, x) ∼ 1− (Z(t, x)− (B/
√
2)x)2. (16)

Therefore we obtain the simpler model (2), on Z only:

∂tZ(t, x)−∆xZ(t, x) = −4
(∂xZ(t, x)−B/

√
2)(Z(t, x)− (B/

√
2)x)

1− (Z(t, x)− (B/
√
2)x)2

∂xZ(t, x)

+((B/
√
2)x− Z(t, x)).

In Section 4, we will show that the information given by this simple model on the dynamics
of the population (see Section 3) is close to the results of numerical simulations obtained for the
original structured population model (10).

Remark 5 As we can see in (15), the limit A small corresponds to an infinitly fast reaction
term. In consequence, this model is not adequate to capture the extinction phenomenon that
occurs at the kinetic level (see Section 4). The latter is however able to capture the two other
possible behaviors of the population: propagation to the entire environment, or survival in a
limited range.

In [15], the range of A that has been considered was A ∈ [0.001, 1]. Thus our approximation,
assuming that A is small, seems reasonable.

Remark 6 Another simplification had been proposed in [15], where the equation on N was re-
placed by

N := k exp
(
γ
(
1−A(Z −Bx)2

))
. (17)

With this ansatz, the model (1) simplifies considerably:

∂tZ(t, x)−∆xZ(t, x) = A(Bx− Z(t, x)) [1− 4γ∂xZ(t, x)(B − ∂xZ(t, x))] .

However, the simplification (17) seems independent of (1). Our simplification has the advantage
to rely on a clearer assumption: (2) is the formal limit of (14) when A is small.
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3 Dynamics of the population

3.1 Well-posedness of the model

We introduce W = Z − (B/
√
2)x in (2) to obtain the following equation

∂tW −∆xW = −4
∂xWW

1−W 2
(∂xW +B/

√
2)−W, (18)

with −1 ≤ W ≤ 1. This equation has a singularity for W = ±1. The existence of singularities
is an obstacle to have a well-defined problem. However, as we will see in Subsection 3.2, the
singularities are fundamental to produce propagating fronts. In most of the cases in the classical
study of propagating fronts, one proves the existence of propagating fronts that connect two
steady states. Here the situation is different. The propagating fronts connect the unstable
steady state W = 0 to the singular point W = −1. While the presence of singularities is
crucial to observe propagating fronts, it is an obstacle to prove uniqueness or a comparison
principle. Nevertheless we are able to introduce an approached model where the uniqueness and
the comparison principle hold.

Since (18) is singular, we approximate it by the following model

∂tWδ −∆xWδ = −4
∂xWδWδ

1−W 2
δ + δ

(∂xWδ +B/
√
2)− (1−W 2

δ )Wδ

1−W 2
δ + δ

, (19)

with
Wδ(t = 0, ·) = W 0

δ (·).

With this choice of approximation we avoid the singularities and transform the singularity in −1
into a stable steady state (the stability is for the ODE formulation presented in Subsection 3.2).

Under the assumption
−1 ≤ W 0

δ ≤ 1, (20)

equation (19) has a smooth solution that stays between −1 and 1 by the maximum principle. We
prove a regularizing effect for equation (19) and we deduce that the Wδ’s converge to a viscosity
solution of a variant of equation (18) (see [8, 1] for general introduction to the theory of viscosity
solutions).

Theorem 1 Under assumption (20), Wδ the solution of (19) verifies, for all (t, x) ∈ R
+ × R,

−1 ≤ Wδ(t, x) ≤ 1, |∂xWδ(t, x)| ≤ min(L2 ,
1

2
√
t
+ L1), (21)

with

L2 = max ( sup
x∈R

|∂xWδ(x, 0)| , L1) ∈ R
+ ∪+∞,

and L1 a positive constant independent of δ. Moreover, after extraction of a subsequence, the
Wδ’s converge to a continuous function W that is a viscosity solution of

(1−W 2)∂tW − (1−W 2)∆xW = −4∂xWW (∂xW +B/
√
2)− (1−W 2)W. (22)

11



We notice that equation (22) is the original model (18) multiplied by 1−W 2. Furthermore, the
second inequality (21) shows that equation (19) has a regularizing effect and the Wδ’s become
uniformly Lipschitz, for all t > t0 > 0, even if they are not uniformly Lipschitz initially.

Proof of Theorem 1: We differentiate equation (18) with respect to x and obtain

∂t∂xWδ −∆x∂xWδ = −4 Wδ

1−W 2
δ +δ

(2∂xWδ +B/
√
2)∂x(∂xWδ)

−4∂xW
2
δ (∂xWδ +B/

√
2)

1+W 2
δ +δ

(1−W 2
δ +δ)2

−∂xWδ

(
1− δ

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
,

(23)

where the last term comes from

∂x

(
Wδ(1−W 2

δ )

1−W 2
δ + δ

)
= ∂x

(
Wδ −

δWδ

1−W 2
δ + δ

)
= ∂xWδ

(
1− δ

1 −W 2
δ + δ + 2W 2

δ

(1−W 2
δ + δ)2

)
.

We multiply (23) by ∂xWδ and divide by |∂xWδ| and obtain

∂t|∂xWδ| −∆x|∂xWδ| ≤ −4 Wδ

1−W 2
δ +δ

(2∂xWδ +B/
√
2)∂x(|∂xWδ|)

−4∂xW
2
δ (∂xWδ +B/

√
2)
(

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
sgn(∂xWδ)

−
(
1− δ

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
|∂xWδ|.

It follows that, for δ < 1,

∂t|∂xWδ| −∆x|∂xWδ| ≤ α(t, x)∂x|∂xWδ|+
(

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
·

(
−4|∂xWδ|3 + 2

√
2B|∂xWδ|2 + |∂xWδ|

)
,

with

α(t, x) = −4
Wδ

1−W 2
δ + δ

(2∂xWδ +B/
√
2).

Therefore for L1 large enough and for δ < 1, we have that |∂xWδ| is a subsolution of the following
equation

∂tg −∆xg = α(t, x)∂xg − 4
(

1+W 2
δ +δ

(1−W 2
δ +δ)2

)
(g − L1)

3, (24)

One can easily verify that, for δ < 1, the functions g1(t, x) := L2 and g2(t, x) :=
1

2
√
t
+ L1 are

supersolutions to equation (24) and they satisfy

|∂xWδ(0, x)| ≤ g1(0, x), |∂xWδ(0, x)| ≤ g2(0, x).

It follows that, for δ < 1,
|∂xWδ(t, x)| ≤ min(g1(t, x), g2(t, x)),

and thus (21).
Now we define

Tδ := F (Wδ) = (1 + δ)Wδ −
W 3

δ

3
.

12



We first consider the case with L2 < +∞. From (21), we deduce that the Tδ’s are uniformly
bounded and Lipschitz in [0,+∞) × R. Moreover we have

∂tTδ −∆Tδ = (1−W 2
δ + δ)∂tWδ − (1−W 2

δ + δ)∆Wδ + 2Wδ|∇Wδ|2.

From the latter equation, (19) and (21) we deduce that ∂tTδ − ∆Tδ is uniformly bounded in
[0,+∞) × R. It follows that the Tδ’s are uniformly continuous in time in [0,+∞) × R (see [2]).
Using the Arzela Ascoli Theorem we conclude that, after extraction of a subsequence, the Tδ’s
converge locally uniformly to a continuous function T in [0,+∞)× R.

In the case with L2 = +∞, following the arguments above we obtain that the Tδ’s are uniformly
bounded and locally uniformly Lipschitz in (0,+∞)×R. The locally uniform convergence of the
Tδ’s, along subsequences, is also hold in (0,+∞) × R.

Finally from the fact that

F ′(Wδ) = 1 + δ −W 2
δ > 0, for − 1 ≤ Wδ ≤ 1,

we obtain that F is an invertible function. We write

Wδ = F−1(Tδ),

with F−1 continuous. Therefore the Wδ’s converge locally uniformly to the continuous function
W = F−1(T ) along subsequences. The convergence takes place in [0,+∞)×R, if L2 < +∞ and
in (0,+∞) × R if L2 = +∞.

By the stability of viscosity solutions (see [8, 1]), we conclude that W is a viscosity solution
of (22).

�

We proved that the equation (22) has a solution in the viscosity sense. Unfortunately the
viscosity criterion is not enough to select a unique solution. We give a counter-example below:

Example. Non-uniqueness for equation (22): We have the two following solutions to
equation (22):

W1(t, x) = −1, for all (t, x) ∈ R
+ ×R,

W2(t, x) = −e−t, for all (t, x) ∈ R
+ × R.

Here the biological solution is the first one. Because W = −1 corresponds to N = 0. Therefore,
if initially W (0, x) = −1 for all x ∈ R, we expect that W (t, ·) ≡ −1, for all t ∈ R

+. Otherwise
a population is created out of nowhere. We can easily verify that if Wδ(t = 0, ·) ≡ −1, we have
Wδ(t, ·) ≡ −1 for all t > 0. Therefore our approximation chooses the biological solution.

In Subsection 3.2 we study the propagating fronts for this model. To be able to compare the
solutions with the propagating fronts and to show the propagation of the density in space, we
need a comparison principle. Unfortunately as we saw above, the equation (22) does not have
a unique viscosity solution and therefore it does not admit a comparison principle. However we
can prove a comparison principle for the approached model. We first recall its definition:

13



Definition 1 Comparison principle: Equation L(D2u,Du, u, x, t) = 0 verifies a comparison
principle, if for any subsolution w1 and supersolution w2 of L such that w1(0, x) ≤ w2(0, x), we
have

w1(t, x) ≤ w2(t, x), for all (t, x) ∈ R
+ × R.

We prove that there is a comparison property for (19). In particular (19) has a unique solution.

Proposition 3 Equation (19) admits a comparison principle in the set of solutions {−1 ≤ W ≤
1}.

Proof of Proposition 3: We suppose that W1 and W2 are respectively subsolution and super-
solution of (19) and

W1(t = 0, ·) ≤ W2(t = 0, ·).
We prove that W1 ≤ W2 for all (t, x) ∈ R

+ × R. Let (t̄, x̄) be a maximum point of W1 − W2.
Since it is a maximum point we have ∂xW1(t̄, x̄) = ∂xW2(t̄, x̄) = p. Therefore we have

∂t(W1 −W2)(t̄, x̄)−∆(W1 −W2)(t̄, x̄)

≤ −4p (p +B/
√
2)

(1 +W1W2 + δ)

(1−W 2
1 + δ)(1 −W 2

2 + δ)
(W1 −W2)(t̄, x̄)

− (1 + δ)(1 −W 2
1 −W1W2 −W 2

2 ) +W1W2 +W 2
1W

2
2

(1−W 2
1 + δ)(1 −W 2

2 + δ)
(W1 −W2)(t̄, x̄).

In the previous section we proved that |∂xW | is bounded. Thus p(p + B/
√
2) is bounded.

Moreover W1 and W2 are bounded and

1−W 2
i + δ ≥ δ, for i = 1, 2.

Therefore the coefficient of W1 −W2 is bounded. Following the classical maximum principle we
deduce that equation (19) admits a comparison principle.

�

3.2 Existence of propagating fronts and steady populations

In this section, we study the existence of propagating fronts and steady states for equation (2).
Since the optimal trait at the point x of space is (B/

√
2)x, we expect that a propagating front

Z, with Z a solution of (2), to be of the following form

Z(t, x) = (B/
√
2)x+ U(x− νt).

Using the above notation, the equation (2) becomes

−νU ′ − U ′′ = −4
U ′U

1− U2
(U ′ +B/

√
2)− U.

If we denote by V := U ′ the derivative of U , finding a propagating front is equivalent to finding
a solution defined on R to the ODE given by the vector field

{
FU (U, V ) = V,

FV (U, V ) = −νV + 4 UV
1−U2 (V +B/

√
2) + U.

(25)

To have a meaning with respect to (18), those solutions must satisfy U(·) ∈ [−1, 1].
We prove that propagating fronts exist for any positive constant B > 0 (see Figure 1).

14



Theorem 2 For any positive constant B > 0, there exists νB ∈ R such that (18) has a propa-
gating front of speed ν, Z(t, x) = (B/

√
2)x+ U(x− νt), satisfying

U(x) → 0 as x → −∞, U(x) → −1 as x → +∞,

if and only if ν > νB.

The propagating front with speed ν is unique (up to a translation), and νB is a decreasing
function of B.
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Figure 1: On the left, we represent solutions of the ODE defined by the vector field (25) for
B := 0.5 and ν = 3.75, 4.75, 5.75 (the vector field represented corresponds to ν = 4.75). A
propagating front exists for those two last values of ν only, which we represent on the right.

The above Theorem claims that for each B > 0, there exists a one-parameter family of prop-
agating fronts. By analogy to the KPP-Fisher equation, one can expect that there is only one
stable propagating front, the one with the least speed. In Section 4, numerical simulations show
that the speed of propagating waves for the structured population model (10) are close to νB
(when A is small and C is large), confirming the idea that the minimal speed νB is the natural
speed to consider here. Since the model does not admit a comparison principle, we cannot use the
usual methods from the study of the KPP-Fisher equation to study the stability of propagating
fronts rigorously.

The propagating waves with minimal speed would be invasive fronts if νB > 0, and extinction
fronts if νB < 0. In Theorem 3 we prove that steady populations exist in this second case only.

Theorem 3 The equation (2) has a non-trivial steady-state if and only if νB < 0. Steady-states
Z(t, x) = (B/

√
2)x+ U(x) satisfy

U(x) → 1 as x → −∞, U(x) → −1 as x → +∞.

As one can see in the proof, if νB < 0, there exists indeed a whole family of steady-states. If
we assume that U(0) = 0 (to avoid the translation invariance of the problem), then the family
of steady-states can be parameterized by V (0) = U ′(0) ∈ (−KB , 0), for some KB > 0.

To prove the above Theorems, we will use the two following Lemma:
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Figure 2: On the left, we represent solutions of the ODE defined by the vector field (25) for
B := 1.5 and ν = 0. Two of the three solutions represented define steady-states of (18), which
we represent on the right.

Lemma 1 Let ν ∈ R. There exist only two, up to a shift in the t variable, solutions (u, v) to
the ODE defined by the vector field (25) such that (u, v)(t) → (0, 0) as t → −∞. At most one of
them is globally defined, which satisfies:

(u, v)(t) ∼ −C−e

√
ν2+4−ν

2
t(1,

√
ν2 + 4− ν

2
).

Moreover, for this solution, u is strictly decreasing.

Lemma 2 Let ν1 ≤ ν2, and (uν1 , vν1), (uν1 , vν1) be the corresponding solutions given by Lemma
1. If for t1, t2 ∈ R, {

uν1(t1) = uν2(t2)
vν1(t1) ≤ vν2(t2),

(26)

then, for any t′1 > t1, t′2 > t2 such that uν1(t
′
1) = uν2(t

′
2), we have vν1(t

′
1) ≤ vν2(t

′
2), and this

inequality is strict if ν1 < ν2.

Proof of Lemma 1: The Differential of the vector field F in (0, 0) is

DF(0,0) =

(
0 1
1 −ν

)
.

Therefore (0, 0) is a hyperbolic equilibrium point (detDF(0,0) < 0). The Hartman-Grobman The-
orem applies, and thus there exist only two (non-trivial) solutions (u, v) satisfying (u, v)(t) →t→−∞

(0, 0). Since the eigenvector associated to the positive eigenvalue of DF(0,0) is (1,
√
ν2+4−ν

2 ), the
corresponding solutions are equivalent to

(u, v)(t) ∼t→−∞ ±C± e

√
ν2+4−ν

2
t

(
1,

√
ν2 + 4− ν

2

)
,

for some C−, C+ > 0.
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The solution such that (u, v)(t) ∼t→−∞ C+e

√
ν2+4−ν

2
t
(
1,

√
ν2+4−ν

2

)
satisfies u(t̄) > 0, v(t̄) > 0

for some t̄. Since FU (u(t̄), V ) > 0 for V ≥ v(t̄) and FV (U, v(t̄)) ≥ FV (u(t̄), v(t̄)) > 0 for
U ∈ [u(t̄), 1), the solution cannot escape [u(t̄), 1) × [v(t̄),∞). In particular, for t ≥ t̄, u′(t) =
v(t) ≥ v(t̄) > 0 and since the vector field is not defined for U = 1, the solution cannot be global.

The other solution satisfies u(t̄) < 0, v(t̄) < 0 for some t̄ arbitrarily small. Since FU (0, V ) ≤ 0
for V ≤ 0 and FV (U, 0) ≤ 0 for U ≤ 0, the solution cannot escape R

2
−. In particular, we have

u′(t) = v(t) ≤ 0, which shows that u is strictly decreasing with respect to t.

�

Proof of Lemma 2: Since uν is strictly decreasing, we can define the graph of (uν1 , vν1).
We assume that t̄1, t̄2 are the smallest points respectively in (t1,∞) and in (t2,∞) such that

(uν2 , vν2)(t̄2) = (uν1 , vν1)(t̄1). We have,

v′ν1(t̄1) = −ν1vν1(t̄1) + 4
uν1(t̄1)vν1(t̄1)

1− uν1(t̄1)
2

(
vν1(t̄1) +B/

√
2
)
+ uν1(t̄1)

= v′ν2(t̄2) + (ν2 − ν1)vν1(t̄1)

≤ v′ν2(t̄2),

this inequality being strict if ν1 < ν2. It follows that
v′ν1 (t̄1)

u′
ν1

(t̄1)
>

v′ν2 (t̄2)

u′
ν2

(t̄2)
. The graph of (uν2 , vν2)

can thus only cross the graph of (uν1 , vν1) from below to above, when t increases. This is enough
to conclude that vν1(t

′
1) ≤ vν2(t

′
2), for all t′1 > t1 and t′2 > t2. Moreover, the latter inequality is

strict if ν1 < ν2. This completes the proof of Lemma 2.

�

Proof of Theorem 2: Step 1: We show that the solution (u, v) given by Lemma 1 satisfies
either v(t̄) = −B/

√
2 for some t̄, or (u, v)(t) → (−1, 0) as t → +∞. Moreover, the solution is

global in this last case only.

Since u is strictly decreasing and FV (−1, V ) = +∞ for V ∈ (−B/
√
2, 0), only two situations

are possible: either v(t̄) = −B/
√
2 for some t̄ < +∞, or (u, v)(t) → (−1, 0) as t → t̄ ∈ R∪{+∞}.

If v(t̄) = −B/
√
2, then v(t) < −B/

√
2 for all t ≥ t̄. This is because

FV (U,−B/
√
2) = νB/

√
2 + U ≤ FV (u(t̄),−B/

√
2) ≤ 0

for U ∈ (−1, u(t̄)) and since u is decreasing. Therefore, u′(t) = v(t) ≤ −B/
√
2 for all t ≥ t̄.

From the latter, together with FV (−1, V ) = −∞ for V < −B/
√
2, we obtain that the solution

cannot be globally defined.

Now let (u, v)(t) → (−1, 0) as t → t̄ ∈ R ∪ {∞}. We prove that t̄ = ∞. For (U, V ) close to
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(−1, 0), we have FV (U, V ) ∼ −2B√
2

V
1+U − 1. We deduce that,

d

dt

(
v

1 + u

)
(t) =

FV (u(t), v(t))(1 + u(t))− v(t)FU (u(t), v(t))

(1 + u(t))2

∼ 1

(1 + u(t))2

[(−2B√
2

v(t)

1 + u(t)
− 1

)
(1 + u(t))− v(t)2

]

∼ 1

(1 + u(t))2

[−2B√
2
v(t)− v(t)2 − (1 + u(t))

]

≥ 0,

if v(t) ≤ −
√
2

3B (1 + u(t)) and (u(t), v(t)) is close to (−1, 0).

We assume that t̃ is such that (u, v)(t) is close to (−1, 0) for t ≥ t̃. We then have, v(t)
1+u(t) ≥

min
(

v(t̃)

1+u(t̃)
, −

√
2

3B

)
for all t ≥ t̃. It follows that u′(t) = v(t) ≥ −C(u(t) + 1), which implies the

estimate
u(t) ≥ −1 + (u(t̃ ) + 1)e−C(t−t̃ ).

Since (u, v)(t) → (−1, 0) as t → t̄, we deduce that t̄ = +∞, and (u, v) is indeed globally defined.

Step 2: We next prove that there exists a constant νB such that, there exists a propagating
front if and only if ν > νB.

If ν >
√
2

B , we have FV (U,−B/
√
2) = νB/

√
2−U > 0 for U ∈ (−1, 1). Therefore, the solution

given by Lemma 1 cannot cross the line V = −B/
√
2, and thus it defines a propagating front

thanks to Step 1. We deduce that, there exists a propagating front if ν is large enough.

In [−1/
√
2, 0]× [−B/

√
2, 0] and for ν ≤ −5B, we have

FV (U, V ) ≤ −νV − 4
√
2V (V +B/

√
2) ≤ BV ≤ B FU (U, V ).

It follows that the solution given by Lemma 1 necessarily crosses the line V = −B, and thus it
does not define a propagating front according to Step 1. We deduce that the model does not
admit a propagating front if −ν is large enough.

We consider a solution (uν1 , vν1)(t) given by Lemma 1 for some ν1, that converges to (−1, 0)

as t → +∞, and ν2 > ν1. Since
√
ν2+4−ν

2 is a decreasing function of ν and

(uνi , vνi)(t) ∼ −C−e

√
ν2νi

+4−ννi
2


1,

√
ν2νi + 4− ννi

2


 ,

the graph of (uν1 , vν1)(t) is below the graph of (uν2 , vν2)(t) for t << 0. Thanks to Lemma 2, this
implies that the whole graph of (uν1 , vν1) is below the graph of (uν2 , vν2). Using the latter and
Step 1 we obtain that (uν2 , vν2) defines a propagating front.

Finally, we show that νB is a decreasing function of B. Firstly we notice that, for B1 ≤ B2, we
have FB1

U = FB2
U , and FB1

V ≤ FB2
V in (−1, 0]×R−. We deduce that, using Step 1, if the solution

given by Lemma 1 for B1 converges to (−1, 0) as t → ∞, so does the one associated to B2. This
proves that νB is a decreasing function of B.
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�

Proof of Theorem 3: We assume that νB < 0. Then, for ν = νB
2 , the solution (uνB/2, vνB/2)

given by Lemma 1, is globally defined, and it satisfies (uνB/2, vνB/2)(t) → (−1, 0) as t → +∞.
Moreover we have

(uνB/2, vνB/2)(t) ∼t→−∞ −C−e

√
(νB/2)2+4−νB/2

2
t

(
1,

√
(νB/2)2 + 4− νB/2

2

)
,

and
√

(νB/2)2+4−νB/2

2 > 1.

Consider now the vector field (25) for ν = 0. Since (u0, v0)(t) ∼t→−∞ −C ′
−e

t(1, 1), for t̄ small
enough, (u0, v0)(t̄ ) is strictly above the graph of (uνB/2, vνB/2). Let ṽ be such that (u0(t̄), ṽ ) is
strictly between (u0, v0)(t̄ ) and the graph of (uνB/2, vνB/2). We define (ū, v̄) to be the solution
of the ODE given by the vector fields (25) such that (ū, v̄)(0) = (u0(t̄ ), ṽ) and ν = 0. Then,
according to Lemma 2, (ū, v̄ ) is defined in R+. Moreover, since (u0, v0)(t) → (0, 0) as t → −∞
and (0, 0) is a hyperbolic equilibrium point, there exists t̃ > 0 such that ū(t̃ ) = 0.

By symmetry, we have (ū, v̄)(t̃+t) = (−ū, v̄)(t̃−t). Thus, (ū, v̄) is globally defined and satisfies
(ū, v̄)(t) → (±1, 0) as t → ±∞. This completes the proof of Theorem 3.

�

4 Numerical simulations

In this section, we analyze numerically the dynamics of the structured population model (10),
and compare it with the propagating fronts and steady-states obtained from the simplified model
(2).

4.1 Numerical scheme

The difficulty for the simulation of (10) is that a direct discretization of the birth term leads to a
very slow algorithm (of order n3, where n is the number of nodes in the v variable). Fortunately,
with the classical sexual reproduction kernel (9), we can write the reproduction term as a double
convolution:
∫ ∫

n(t, x, v∗)n(t, x, v
′
∗)∫

n(t, x, w) dw
Q(v, v∗, v

′
∗) dv∗ dv

′
∗ =

1∫
n(t, x, w) dw

(
Q̃ ∗v f(t, x, ·) ∗v f(t, x, ·)

)
(2v),

where Q is defined by (9) with γ = 1, and Q̃(v) := 1√
2π
e−

v2

8 . This formula allows us to use a
spectral method to compute the reproduction term, and the computational cost of the birth term
then becomes of the order of a Fast Fourier Transform, that is n log n. Coupled to a classical
finite difference scheme for the rest of the equation, this produces an algorithm reasonably fast.

For the simplified model (2), we can use the phase plane (U, V ) described in Subsection 3.2
to compute numerically the steady-states and propagating fronts of (2). We can in particular
estimate numerically νB (see Theorem 2), and obtain a numerical approximation of the corre-
sponding front.
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4.2 Dynamics of the population

By performing a numerical simulation of (10), we can observe the three possible behaviors de-
scribed in [15]: For given A and C, we observe extinction if B is large (see Figure 3), propagation
if B is small (see Figure 4), and convergence to a steady-state for intermediate values of B (see
Figure 5). Moreover we observe that at any position x of space the population, if it has reached
the latter point, tends to concentrates on the line v = Bx that is the optimal trait.
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t=2.5
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Figure 3: Extinction for A = 0.01, B = 13, C = 40. The graph represents the total population
x 7→ N =

∫
n(t, x, v) dv for four successive times.

Given that C is a large constant (here C = 40), in Figure 6 we represent graphically dynamics
of populations depending on A and B. The dots come from the simulation of (10) and they
determine the limit between the zones where populations propagate, remain in a limited range
or get extinct. We can also use the simplified model (2) to determine the border between the
zones where populations succeed to propagate (if B < Bcrit), and where populations remain in
a limited range (if B > Bcrit). This border corresponds to the horizontal line in Figure 6. We
notice that this line is close to the dots coming from the simulation of (10).

As explained in Remark 5, the simplified model (2) is too simple to describe the extinction
phenomena. However, we can still obtain formally the border between the zones of extinction,
and limited range. Indeed, numerically we observe that when a steady population is small, it
tends to have a constant mean trait, that is Z is constant. Using this purely formal ansatz, we
can use (14) to get a criterion for extinction or survival of populations: it depends on the sign
of the principal eigenvalue of the linear operator

L(N)(x) = ∆N(x) +

(
1− AB2

2
x2
)
N(x),

that is the sign of 1 − B
√

A/2 (the corresponding eigenfunction being N(x) = e
−

√
ABx2√

8 ). Fol-
lowing this formal argument, extinction would occur if AB2 > 2. In Figure 6 we also represent
the line AB2 = 2, that appears to be close to the border, which we had obtained earlier using
(10), between the zones of extinction and survival.
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Figure 4: Propagation for A = 0.01, B = 1, C = 40. The three graphs represent respectively
the population density (x, v) 7→ n(t, x, v), the total population x 7→ N =

∫
n(t, x, v) dv, and the

mean phenotypic trait of the population, x 7→ N =
∫
v n(t,x,v)

N(t,x) dv.

4.3 Comparison between the structured population model (10) and the sim-

plified model (2)

As presented in Section 2, the structured population model (10) converges formally to the simpli-
fied model (2) while C is large and A is small. In Section 3, we have described the steady-states
and traveling waves of the simplified model (2) using a phase plane. As it is presented in Figure
(7), numerical simulations show that the latter results for the simplified model (2) give a good
approximation of the dynamics of the structured population model (10).

Indeed, the dependence of the structured population model (10) in the parameter C does not
seem to be strong (see Remark 4). We observe in Figure 8 that the propagating fronts obtained
numerically for C = 1 and C = 40 are similar.

A biologically important property for this type of population is the speed of their propagating
fronts. We can compute numerically this speed for both models. As we can see in Figure 9,
the speed νB obtained from the simplified model seems a good approximation of the speed
of propagating fronts from the structured population model (10). Moreover, we observe that
when A becomes small and C becomes large, the speed of propagating fronts of the structured
population model (10) converges to νB (see Figure 10).
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Figure 5: Limited range, for A = 0.01, B = 3, C = 40. The three graphs represent respectively
the population density (x, v) 7→ n(t, x, v), the total population x 7→ N =

∫
n(t, x, v) dv, and the

mean phenotypic trait of the population, x 7→ N =
∫
v n(t,x,v)

N(t,x) dv.

Figure 6: Dynamics of the structured population model (10). The dots come from the simulations
of (10) with C = 40. The continuous lines come from the approximations presented in Subsection
4.2.
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Figure 7: Comparison of propagating wave profiles of the structured population model (10) with
the propagating wave of minimal speed νB for the simplified model (2). We depict the total
population N for both models (left) and the mean phenotypic trait Z for both models (right),
using the following parameters: A = 0.01, B = 1, and C = 20.
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Figure 8: Comparison of propagating wave profiles of the structured population model (10) for
C = 1 and C = 40. The other parameters are A = 0.01, B = 1, and the speeds of propagation
are respectively 1.32 and 1.12. We depict the total population N (left) and the mean phenotypic
trait Z (right).
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