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SHARP ASYMPTOTICS OF METASTABLE TRANSITION TIMES FORONE DIMENSIONAL SPDESFLORENT BARRETAbstract. We consider a class of parabolic semi-linear stochastic partial di�erentialequations driven by space-time white noise on a compact space interval. Our aim is toobtain precise asymptotics of the transition times between metastable states. A versionof the so-called Eyring-Kramers Formula is proven in an in�nite dimensional setting.The proof is based on a spatial �nite di�erence discretization of the stochastic partialdi�erential equation. The expected transition time is computed for the �nite dimensionalapproximation and controlled uniformly in the dimension.1. IntroductionMetastability is a phenomenon which concerns systems with several stable states. Dueto perturbations (either deterministic or stochastic) the system undergoes a shift of regimeand reaches a new stable state (see e.g. [15] by Cassandro, Galves, Olivieri and Vares, thebook [36] by Olivieri and Vares and the lecture notes [6] by Bovier). Typical examples ofmetastable behavior can be found in chemistry, physics (for models of phase transition)and ecology.In this article, our aim is to understand metastability for a class of stochastic partialdi�erential equations. We consider the Allen-Cahn (or Ginzburg-Landau) model whichrepresents the behavior of an elastic string in a viscous stochastic environment submittedto a potential (see e.g. Funaki [27]). This model has other interpretations in quantum �eldtheory (see [21, 16] and the references therein) and in statistical mechanics as a reactiondi�usion equation modeling phase transitions and evolution of interfaces (see Brassescoand Buttà [12, 13]).More precisely, we deal with the following equation, for (x, t) ∈ [0, 1]× R
+

∂tu(x, t) = γ∂xxu(x, t)− V ′(u(x, t)) +
√
2εW (1.1)where γ > 0. W is a space-time white noise on [0, 1]× R

+ in the sense of Walsh [40] and
ε > 0 is the intensity of the noise. V is a smooth real valued function on R called a localpotential. We consider two boundary conditions: Dirichlet boundary conditions (for all
t ∈ R

+, u(0, t) = u(1, t) = 0) and Neumann boundary conditions (∂xu(0, t) = ∂xu(1, t) =
0). The initial condition is given by a continuous function u0 which satis�es the givenDate: January 20, 2012.2010 Mathematics Subject Classi�cation. 82C44; 60H15, 35K57.Key words and phrases. Metastability, metastable transition time, parabolic stochastic partial di�eren-tial equations, reaction-di�usion equations, stochastic Allen-Cahn equations, Eyring-Kramers formula.1



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 2boundary conditions. Existence and uniqueness of an Hölder-continuous solution in themild sense have been proved by Gyöngy and Pardoux in [29].Faris and Jona-Lasinio in [21] are among the �rst ones to analyze Equation (1.1) for adouble well potential
V (x) =

x4

4
− x2

2
. (1.2)In this case, V has only two minima which are+1 and−1. One expects that the model (1.1)has several stable states and that a metastable behavior occurs. The authors introduceda functional potential S and interpreted (1.1) as the stochastic perturbation of an in�nitedimensional gradient system:

∂tu = −δS
δφ

+
√
2εW (1.3)where for φ a di�erentiable function,

S(φ) =

∫ 1

0

γ

2
|φ′(x)|2 + V (φ(x))dx. (1.4)

S represents the free energy. δS
δφ

is the Fréchet derivative of S i.e. the in�nite dimensionalgradient of S.For more general functions V (real valued C3 functions), we can de�ne a similar potential
S as in (1.4) which determines a potential landscape. Under the stochastic perturbation,this potential landscape is explored by the process u de�ned in (1.1). While the systemwithout noise (i.e. ε = 0) has several stable �xpoints (which are the minima of S), for
ε > 0 transitions between these �xpoints will occur at a suitable timescale. The transitionpaths go through the lowest saddle points. Thus, minima and saddle points of S have akey role to understand metastability but it is often a hard task, given a potential V (andthus S), to completely compute and comprehend the geometrical structure of the energylandscape. However, some elegant method exists (see e.g. [22, 41]).The model (1.3) is an in�nite dimensional generalization of the �nite dimensional systemsinvestigated by Freidlin and Wentzell [25] and by Bovier, Eckho�, Gayrard and Kleinin [9, 10]. Moreover, we will see that (1.1) is rigorously the limit of a gradient �nitedimensional system (via a spatial �nite di�erence approximation).Our aim is to derive precise asymptotics of the expected transition time i.e. the timeneeded, starting from a minimum φ0 of S, to hit a set of lower minima. We de�ne thehitting time τε(B) by τε(B) = inf {t > 0, u(t) ∈ B} where B is a disjoint union of small ballaround some minima of S lower than φ0. We prove that the expected time, Eφ0 [τε(B)], hasa very distinctive form known as the Arrhenius equation (Theorem 2.6). This expectationreads

Eφ0 [τε(B)] = AeE/ε(1 +O(
√
ε |ln(ε)|3/2)) (ε → 0) (1.5)where E is the activation energy and A is the prefactor. E has been computed by Faris andJona-Lasinio for the double well potential (1.2) using a large deviation approach (Theorem1.1 [21]). E is exactly the minimum height of potential that a pathway has to overcometo reach B starting from φ0. The prefactor A is a constant (for our set of hypotheses)and depends only on the local geometry of the potential S near the minimum φ0 and near



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 3the passes (or saddle points) from φ0 to the set B. The order O(√ε |ln(ε)|3/2) of the errorterm comes directly from the local approximation of the potential S by its quadratic part.For the double well potential (1.2) with Neumann boundary conditions, Faris and Jona-Lasinio proved that S has only two global minima, denoted m and −m (correspond-ing roughly to the constant functions 1 and −1 resp.). For some γ, this model has aunique saddle point σ = 0 (the constant function 0). We deduce from Theorem 2.6 that
E−m[τε(B

+)], for a small ball B+ in the suitable norm around m, takes the form (1.5) with
E = S(σ)− S(−m) and

A =
2π

|λ−(σ)|

√√√√
+∞∏

k=1

|λk(σ)|
|λk(−m)| (1.6)where (λk(φ))k>1 are the eigenvalues of the second Fréchet derivative of the potential Sat a point φ and λ−(σ) is the unique negative eigenvalue at the saddle point σ. Usingasymptotic expansion of the eigenvalues, we prove that the in�nite product converges. Itis exactly the equivalent for an operator of the classical determinant of a matrix. We alsomention the fact that this in�nite product has a nice expression in terms of solutions oflinear di�erential equations (see e.g. Levit and Smilansky [32]).Eyring in [20] and particularly Kramers in [31] investigate the case of a one dimensionaldi�usion as a model for chemical reaction rates and express rates instead of expectations.Their formula is known as the Eyring-Kramers Formula. It takes the form (1.5) with theprefactor given by a formula similar to (1.6) but with a single factor in the product (thereis only one eigenvalue).Similar Eyring-Kramers Formulas exist through a wide range of reversible Markovianmodels from Markov chains, stochastic di�erential equations. For �nite dimensional dif-fusions, Freidlin and Wentzell in [25], proving that these systems obey a large deviationprinciple, obtained the activation energy in terms of the rate function. In recent years, thepotential theory approach initiated by Bovier, Eckho�, Gayrard and Klein in [9, 10] hasallowed to give very precise results and led to a proof of the Eyring-Kramers Formula forgradient drift di�usions in �nite dimension. Moreover, the potential approach originatefrom Markov chains (see [7, 8, 6]) and have been re�ned to obtain metastable transitiontimes for speci�c models (see e.g. [5, 11]).Formula (1.6) is then the extension of the Eyring-Kramers Formula to a class of one-dimensional SPDEs (1.1). Maier and Stein in [33] obtained heuristically this formula andVanden-Eijnden and Westdickenberg in [39] used it to compute nucleation probability.Speci�cally, the system (1.1) and its metastable behavior have been studied for at leastthirty years using mainly large deviation principle and comparison estimates between thedeterministic process ((1.1) with ε = 0) and the stochastic process de�ned by (1.1). Cas-sandro, Olivieri, Picco [16] obtained similar asymptotics as Faris and Jona-Lasinio [21]when the size of the space interval is not �xed and goes to in�nity as ε goes to 0 su�-ciently slowly. These results �rst prove the existence of a suitable exponential timescale inwhich the process undergoes a transition.



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 4In the same case as (1.2), Martinelli, Olivieri and Scoppola [34] obtain the asymptoticexponentiality of the transition times (Theorem 4.1 [34]). Also, Brassesco [12] proves thatthe trajectories of this system exhibit characteristics of a metastable behavior: the escapefrom the basin of attraction of the minimum −m occurs through the lowest saddle points(Theorem 2.1 [12]) and the process starting from −m spends most of its time before thetransition near −m (Theorem 2.2 [12]).In this paper, we consider a local potential V (satisfying Assumptions 2.1 and 2.4) andwe rigorously prove an in�nite dimensional version of the Eyring-Kramers Formula. Ourmethod relies on a spatial �nite di�erence approximation of Equation (1.1) introduced byBerglund, Fernandez and Gentz in [3, 4] as a model of coupled particles submitted to apotential. The computation of the expected transition time for the approximated systemgives us the prefactor, the activation energy and some error terms. We need to controlthe behavior of these error terms as the step of discretization goes to 0 (or equivalently asthe dimension N of the approximated system goes to +∞). To this aim, we adapt resultsfrom [2] by Bovier, Méléard and the author.As proved by Funaki [27] and Gyöngy [28], the solution of the approximated systemconverges to the solution of the SPDE. By combining di�erent results from SPDE theory,large deviation theory (from Chenal and Millet [17]) and Sturm-Liouville theory we areable to take the limit of the �nite dimensional model in order to retrieve the SPDE (1.1).We also need to adapt estimates on the loss of the memory of the initial condition (fromMartinelli, Scoppola and Sbano [34, 35]) uniformly in the dimension.The use of spatial �nite di�erence approximation is quite natural since we considerour SPDEs in the sense of Walsh [40], limited to the case of space-time white noise.Other approximations could be possible, notably the Galerkin approximation should leadto similar results for a di�erent class of SPDEs in the framework of Da Prato and Zabczyk(see the book [19]).The article is organized as follows. In Section 2, we present the equation, the assump-tions, the main theorem (Theorem 2.6) and a sketch of its proof. Then in Section 3, weadapt the convergence of the approximations and prove convergence of the approximatedtransition times. In Section 4, we state large deviations estimates by Chenal and Millet[17], contraction results by Martinelli, Olivieri, Scoppola and Sbano [34, 35] and provea uniform control in the initial condition uniformly in the dimension. In Section 5, werecall results about eigenvalues and eigenvectors of Sturm-Liouville problems and provethe convergence of the prefactor. In the last section, we compute the expected transitiontimes uniformly in the dimension.We will use the following notations henceforth. For a functional space C, equipped witha norm ‖·‖C, we denote by Cbc the closed subspace in the C topology of the functions in Csatisfying the suitable boundary conditions (Dirichlet or Neumann). For f ∈ L∞([0, 1]×
[0, T ]) we set the norm of this space ‖f‖∞,T or simply ‖f‖∞ when T = +∞.Acknowledgments. I am very grateful to Anton Bovier and Sylvie Méléard for the greatinsights and advices they gave me and for introducing me to this very interesting topic.They supported me in the writing of this paper and helped me to clarify this work. I am



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 5indebted to the Hausdor� Center for Mathematics for the multiple visits I made in Bonnand the ANR MANEGE program for �nancial support. Part of the work in this paper hasbeen realized at the Technion in Haifa at the invitation of Dima Io�e whom I thank forhis kind hospitality. 2. Results2.1. The Equation. The assumptions are of two kinds: some on the local potential V ,others on the functional potential S. We �rst start with the hypotheses on V .Assumptions 2.1. We suppose that:
• V is C3 on R.
• V is convex at in�nity: there exist R, c > 0 such that for |u| > R

V ′′(u) > c > 0. (2.1)
• V grows at in�nity at most polynomially: there exist p, C > 0 such that

V (u) < C(1 + |u|p). (2.2)These hypotheses are made to avoid complications for the de�nition of the solution u of(1.1) and to allow the computations of the derivatives of S.Let (Ω,F ,P) be a probability space on which we de�ne a space-time white noise W asde�ned in [40] equipped with a �ltration (Ft)t>0 with the usual properties. The integrableprocesses for the white noise are the predictable measurable processes in L2(Ω×R+×[0, 1]).We denote by gt(x, y) the density of the semi-group generated by γ∂xx on [0, 1] with thesuitable boundary conditions.Let us recall that a random �eld u is a mild solution of (1.1) if(1) u is almost surely continuous on [0, 1]× R
+ and predictable(2) for all (x, t) ∈ [0, 1]× R

+

u(x, t) =

∫ 1

0

gt(x, y)u0(y)dy −
∫ t

0

∫ 1

0

gt−s(x, y)V
′(u(y, s))dyds

+
√
2ε

∫ t

0

∫ 1

0

gt−s(x, y)W (dy, ds). (2.3)We state from [29] the following result on the existence, uniqueness and regularity ofthe solution.Proposition 2.2 ([29]). For every initial condition u0 ∈ Cbc([0, 1]), the stochastic partialdi�erential equation (1.1) has a unique mild solution. Moreover for all T > 0 and p > 1,
E

[
sup

[0,T ]×[0,1]

|u(x, t)|p
]
6 C(T, p). (2.4)The random �eld u is essentially 1

2
-Hölder in space and 1

4
-Hölder in time.



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 6The only complication comes from the fact that V ′ is not globally Lipschitz but preventsthe process to go to in�nity. From Assumptions 2.1, we have
− xV ′(x) < C. (2.5)The proof of Proposition 2.2 is standard and uses mainly estimates on the density gt(x, y).Remark 1. The de�nition of the stochastic convolution (the last expression of the right-hand side of (2.3)) requires the density of the semi-group to be in L2([0, 1] × [0, T ]) forevery T > 0. Unfortunately, that is only true in dimension one. For higher dimensions, thestochastic convolution does not de�ne a classical function but a distribution in a Sobolevspace of negative index [40].2.2. Stationary Points. As for the �nite dimensional case, the minima and saddle pointsof S play a crucial role. To this end, we �rst specify what is the "gradient" (or the Fréchetderivative) of the functional S. Let us recall that S is de�ned, for φ ∈ H1

bc, by
S(φ) =

∫ 1

0

γ

2
|φ′(x)|2 + V (φ(x))dx. (2.6)For φ, h in C2

bc([0, 1]) we have a Taylor expansion of S at the second order in h
S(φ+ h) = S(φ) +DφS(h) +

1

2
D2
φS(h, h) +O(‖h‖2C2) (2.7)where ‖h‖C2 = ‖h‖∞+‖h′‖∞+‖h′′‖∞. By integration by parts we compute the di�erentials

DφS and D2
φS. The �rst order di�erential is a linear functional which takes the form

DφS(h) =

∫ 1

0

[−γφ′′(x) + V ′(φ(x))]h(x)dx. (2.8)The Fréchet derivative is δS
δφ

= −γφ′′(x) + V ′(φ(x)). The second order derivative (theHessian operator) takes the form
D2
φS(h, h) =

∫ 1

0

h(x)[−γh′′(x) + V ′′(φ(x))h(x)]dx. (2.9)We denote by HφS the Hessian operator at φ:
HφSh(x) = −γh′′(x) + V ′′(φ(x))h(x). (2.10)The Hessian operator is a Sturm-Liouville operator.We say that φ is a stationary point of S if φ is solution of the non-linear di�erentialequation

δS

δφ
= −γφ′′ + V ′(φ) = 0. (2.11)Let us now �x two points φ, ψ ∈ Cbc([0, 1]) and de�ne some quantities.

Γ(φ → ψ) = {f, f(0) = φ, f(1) = ψ, f ∈ C([0, 1], Cbc([0, 1]))} (2.12)



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 7is the set of continuous paths from φ to ψ. For f ∈ Γ(φ→ ψ), f̂ denotes the set of maximaof the path f ,
f̂ =

{
f(t0), t0 ∈ argmax

t∈[0,1]
S(f(t))

}
. (2.13)The saddle points are passes from a valley to another one. The de�nition uses this idea.De�nition 2.3 (Saddles). For any φ, ψ ∈ Cbc([0, 1]), we de�ne Ŝ(φ, ψ), the minimumheight needed to go from φ to ψ

Ŝ(φ, ψ) = Ŝ(ψ, φ) = inf
{
S(φ), φ ∈ f̂ , f ∈ Γ(φ→ ψ)

}
. (2.14)For φ, ψ such that Ŝ(φ, ψ) < ∞, we denote S (φ, ψ) the set of admissible saddles: thepoints which realize the maximum along a minimal pathway

S (φ, ψ) =
{
σ ∈ Cbc([0, 1]), S(σ) = Ŝ(φ, ψ), ∃f ∈ Γ(φ→ ψ), σ ∈ f̂

}
. (2.15)The set of admissible saddle points is very important to compute the prefactor of themean transition times. Near these points the process spends the most crucial time as itpasses from a basin of attraction to another one.We now present the assumptions on S.Assumptions 2.4. We suppose that:

• S has a �nite number of minima and saddle points.
• All the minima and saddle points of S are non-degenerate (i.e. hyperbolic): at eachpoint, the Hessian operator has non-zero eigenvalues.Assumptions 2.4 are structural. The �nite number of stationary points provides a sim-ple generalization of the case where there is only one saddle point. The non-degeneracycondition is necessary in order to approximate locally at the minima and saddle pointsthe potential by its quadratic part. If this is not the case the prefactor in (1.5) is not aconstant but should have a dependence in ε.Connections between Assumptions 2.1 and 2.4 are not straightforward. Proving that agiven potential S satis�es Assumption 2.4 is not easy, a precise analysis is often needed.Moreover if we want to investigate the dependence of the potential S on the parameter γ,bifurcations can occur and the landscape do not satisfy Assumption 2.4 for some criticalvalues of γ. See Berglund, Fernandez and Gentz [3, 4] for the �nite and in�nite dimensionalcases for the double well potential. However, results exist (see [1] and references therein)on the generality of Assumption 2.4.In addition, under Assumptions 2.4 and 2.1, the deterministic dynamical system (i.e.(1.1) without the white noise) satis�es a Morse-Smale structure (see [14, 22] and thereferences therein). This means that the attractor of the dynamical system consists ofequilibria and heteroclinic orbits connecting these equilibria. Methods has been developedby Fiedler and Rocha in [22], by Wolfrum in [41] to compute the global attractor of thedeterministic system.



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 8Remark 2. H1 is the convenient functional space for the process since S(φ) < +∞ if andonly if φ is in H1([0, 1]). In fact from the upper bound (2.2) and lower bound (2.1) on Vwe get
C1(‖φ‖2H1 − 1) 6 S(φ) 6 C ′

1(‖φ‖2H1 + ‖φ‖pH1 + 1). (2.16)Each function in H1([0, 1]) is continuous and even α-Hölder continuous (for 0 < α < 1
2
).For each φ ∈ C([0, 1]), we de�ne the quantity Det(HφS):

• for Dirichlet boundary conditions, let f be the solution on [0, 1] of
HφSf = 0 f(0) = 1 f ′(0) = 0 (2.17)then Det(HφS) = f(1)

• for Neumann boundary conditions, let f be the solution on [0, 1] of
HφSf = 0 f(0) = 0 f ′(0) = 1 (2.18)then Det(HφS) = f ′(1).Let us recall that, as a regular Sturm-Liouville operator, HφS has a countable numberof eigenvalues, all of them real. We denote by (λk(φ))k>1 the sequence of these eigenvaluesin the increasing order. The de�nition of Det(HφS) is justi�ed by the following lemma.Lemma 2.5 ([32]). For any φ and ψ with non-degenerate Hessian operator, the in�niteproduct ∏∞

k=1
λk(φ)
λk(ψ)

is convergent and we have
∞∏

k=1

λk(φ)

λk(ψ)
=

Det(HφS)

Det(HψS)
. (2.19)This lemma relates the in�nite product of the ratio of eigenvalues to a ratio of terminalvalues of solutions. We �nd an elementary proof in [32] by Levit and Smilansky which relieson two di�erent expressions of the Green function associated to the problem HφSf = 0satisfying the boundary conditions. In fact, the Green function could either be expressedusing the spectral decomposition of HφS or expressed as a linear combination of two well-chosen fundamental solutions (of the second order linear di�erential equation).2.3. Main results. Before stating the main result, we describe the set of minima andsaddle points. In fact, the prefactor depends greatly on the geometry of a graph connectingthe minima to each other through the saddle points (so-called the 1-skeleton connectiongraph by Fiedler and Rocha in [23]). We de�ne this graph and express the prefactor partlyas an equivalent conductance on this graph.We denote by M the set of minima of S. Since by Assumption 2.4, there is a �nitenumber of stationary points, we order the minima by increasing energy. We denote by

φ1, φ2, . . . , φm, m = |M|, the di�erent minima indexed by increasing energy
S(φ1) 6 S(φ2) 6 . . . 6 S(φm). (2.20)We denote by Ml, the subset of minima Ml = {φ1, φ2, . . . , φl} for 1 6 l 6 m.We consider the transitions from a minimum φl0 to Ml for l < l0. These are the onlyvisible metastable transitions. We will see from large deviations estimates, that to go from



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 9a minimum φ to another ψ, it requires a time of order exp (Ŝ(φ, ψ)− S(φ)/ε
). The timerequired to make the reverse transition is also of order exp (Ŝ(ψ, φ)− S(ψ)/ε
). Thereforeif S(ψ) > S(φ), we get

Ŝ(φ, ψ)− S(φ) > Ŝ(ψ, φ)− S(ψ) (2.21)and the time required to go from φ to ψ is much larger than for the reverse transition. Sowe cannot see the reverse transitions since there are absorbed by the direct ones. If someminima have the same potential, we can suitably order them to consider a transition fromone minimum to another one at a same height.Let us now construct the weighted graph of paths from φl0 to Ml. We denote Ŝ =

Ŝ(φl0 ,Ml) the common potential of the saddles. The minima M are the vertices of thegraph, the saddle points in S (φl0 ,Ml) are the edges. We connect an edge σ̂ between twovertices φ, ψ ∈ M if the saddle σ̂ is a pass between the valleys of φ and ψ: there exists
f ∈ Γ(φ → ψ) such that f̂ has a unique element and f̂ = σ̂. Existence of this graph isensured by Assumptions 2.4 (see [23] and references therein).Each saddle point in S (φl0 ,Ml) has a unique negative eigenvalue from the Morse-Smaleproperty and the hyperbolicity of the stationary points. The weight associated to an edge
σ̂ is de�ned as

w(σ̂) =
|λ−(σ̂)|√
|DetHσ̂S|

(2.22)where λ−(σ̂) is the unique negative eigenvalue of Hσ̂S.
σ̂+ and σ̂− denote the two minima connected by a given edge σ̂. Let us recall that wehave m minima in M. For a real valued vector a ∈ R

m indexed by the minima in M, weconsider the following quadratic form
Q(a) =

∑

σ̂∈S (φl0 ,Ml)

w(σ̂)(a(σ̂+)− a(σ̂−))2. (2.23)We de�ne C∗(φl0,Ml) the equivalent conductance of the graph between φl0 and Ml as
C∗(φl0,Ml) = inf {Q(a), a ∈ R

m, a(φl0) = 1, a(φ) = 0, φ ∈ Ml} . (2.24)This conductance is an approximation of the capacity between a neighborhood of φl0 and
Ml. In some sense, we replace the continuous landscape de�ned by S by a graph containingthe relevant geometric structure of the landscape.Let us denote by Bρ(φ), for φ ∈ H1

bc[0, 1], the ball of center φ and radius ρ in H1
bc

Bρ(φ) =
{
σ ∈ H1

bc, ‖σ − φ‖L2 6 ρ, ‖σ‖H1 < A1

} (2.25)where A1 is a su�ciently large constant. We also de�ne Bρ(Ml) = ∪φ∈Ml
Bρ(φ). Wechoose this kind of neighborhood because in the following we need to control the norm inthe uniform norm and in the α-Hölder norm (for α < 1

2
).We now state our main result describing the dependence in ε of the mean of the hittingtime of a union of balls around the points of Ml starting from φl0.



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 10Theorem 2.6. Under the assumptions 2.1, 2.4, for any minimum φl0, and a set of minima
Ml with l0 > l, there exists ρ0 such that for any ρ0 > ρ > 0

Eφl0
[τε(Bρ(Ml))] =

2πeŜ(φl0 ,Ml)/ε

C∗(φl0 ,Ml)
√
DetHφl0

S
(1 + Ψ(ε)) (2.26)where the error term satis�es Ψ(ε) = O(

√
ε |ln(ε)|3/2).For the simple case where we have only three stationary points, two minima and onesaddle (e.g. the case of the double well potential (1.2) with Neumann boundary conditions,for γ > 1/π2), we have the following corollary.Corollary 2.7. Let φ+ and φ− be the two minima with S(φ−) > S(φ+) and σ̂ the uniquesaddle point. There exists ρ0 such that for any ρ0 > ρ > 0

Eφ− [τε(Bρ(φ+))] =
2π

|λ−(σ̂)|

√
|DetHσ̂S|
DetHφ−S

e(S(σ̂)−S(φ
−))/ε(1 + Ψ(ε)) (2.27)where the error term is Ψ(ε) = O(

√
ε |ln(ε)|3/2).2.4. Sketch of proof of Theorem 2.6. We �rst introduce the discretization we consider.The �nite dimensional approximation of the SPDE is constructed as in the work of Funaki[27] and the work of Gyöngy[28]. The approximation is de�ned via a spatial �nite di�erenceapproximation of Equation (1.1).We denote by SN the discretized potential, for y ∈ R

N+2

SN(y) = hN

N∑

i=0

γ

2h2N
(yi+1 − yi)

2 + V (yi) (2.28)where hN > 0 is the step of discretization. We set X i
0 = u0(xi) where u0 ∈ Cbc([0, 1]) is theinitial condition and the xi are the discretization points on [0, 1]. Let us denote by xi−1/2the middle point of [xi−1, xi]. We construct a N-dimensional Brownian motion B from thewhite noise W . Doing so we will be able to prove the convergence of uN to u in Lp andalmost surely. Thus we de�ne, for 1 6 i 6 N

Bi
t =

1√
hN

W
([
xi−1/2, xi+1/2

]
× [0, t]

)
. (2.29)The properties of the white noise imply that (Bi) are independent Brownian motions.The N-dimensional process (Xt)t is the solution of

dX i
t = − 1

hN
∇SN(Xt)

idt +

√
2ε

hN
dBi

t for i = 1..N. (2.30)
X0 and XN+1 are de�ned by the boundary conditions

• for Dirichlet boundary conditions:
X0
t = XN+1

t = 0, ∀t > 0 (2.31)
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• for Neumann boundary conditions:

X0
t = X1

t and XN+1
t = XN

t , ∀t > 0. (2.32)The discretized system uN is the linear interpolation between the points (xi, X
i). Tosimplify, it is easier to adapt the parameters to the boundary conditions.

• For Dirichlet boundary conditions, we choose
hN =

1

N + 1
, xi =

i

N + 1
, ∀0 6 i 6 N + 1. (2.33)

• For Neumann boundary conditions, we choose
hN =

1

N
, xi =

i

N
− 1

2N
, ∀0 6 i 6 N + 1. (2.34)We set τNε (B) the hitting time of a set B for the discretized system

τNε (B) = inf
{
t > 0, uN(N−1t) ∈ B

}
. (2.35)We decompose the proof of Theorem 2.6 in several steps:(1) for a given ε and a sequence of initial conditions φNl0 , each being a minimumof SN , converging to φl0 (see Proposition 5.6), we prove that the expectation of

τNε (Bρ(Ml)) converges to the expectation of the hitting time for the SPDE:
lim
N→∞

EφNl0
[τNε (Bρ(Ml))] = Eφl0

[τε(Bρ(Ml))]. (2.36)To this aim, we use the convergence of uN to the solution u. This is done in Section3.(2) For a �xed N , we compute the asymptotics of the transition time uniformly on thedimension. We get a prefactor aN (ε) such that
∣∣∣∣

1

aN(ε)
EφNl0

[τNε (Bρ(Ml))]− 1

∣∣∣∣ = ψ(ε,N) < Ψ(ε) = O(
√
ε |ln(ε)|3/2) (2.37)where the error term Ψ(ε) does not depend on N . This step is the main estimateand is detailed below.(3) The limit N → ∞ of aN(ε) gives us the correct asymptotics for the transition timein the in�nite dimensional case:

a(ε) = lim
N→∞

aN (ε). (2.38)This is done in Section 5.The estimate (2.37) is proved in two steps.(i) First we start from a probability measure (the equilibrium probability: νN) on theboundary of a chosen neighborhood of the minimum φNl0 , which allows us to do thecomputation of aN(ε):∣∣∣∣
1

aN(ε)
EνN [τε(Bρ(M0))]− 1

∣∣∣∣ = ψ1(ε,N) < Ψ1(ε) = O(
√
ε |ln(ε)|3/2). (2.39)This is done in Section 6.



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 12(ii) Then we have to control the error made by starting on the boundary of the minimumand not precisely at the minimum:
1

aN (ε)

∣∣∣EνN [τε(Bρ(M0))]− EφNl0
[τNε (Bρ(M0))]

∣∣∣ = ψ2(ε,N) < Ψ2(ε) (2.40)with Ψ2(ε) = O(
√
ε |ln(ε)|3/2). This result comes from the loss of memory of theinitial condition adapted from Martinelli in [34]. This is exposed in Section 4.3. DiscretizationIn this section, we present the convergence of the discretization uN to the solution ofthe SPDE and prove the convergence of the hitting times.3.1. Finite Dimensional Model. We write the discretized system uN in a mild form.We de�ne a function κN , with bxc the integer part of x,

κN (x) =

⌊
(N + 1)x+ 1

2

⌋

N + 1
, for Dirichlet boundary conditions, (3.1)

κN (x) =
bNxc + 1

N
− 1

2N
, for Neumann boundary conditions. (3.2)We de�ne gN the semi-group associated with the discretized Laplacian. The discretizedLaplacian is a N dimensional matrix, denoted by ∆N

d for Dirichlet boundary conditionsand by ∆N
n for Neumann boundary conditions:

∆N
d =

1

h2N




−2 1 0 . . . 0

1 −2
. . . . . . ...

0
. . . . . . . . . 0... . . . . . . . . . 1

0 . . . 0 1 −2




∆N
n =

1

h2N




−1 1 0 . . . 0

1 −2
. . . . . . ...

0
. . . . . . . . . 0... . . . . . . . . . 1

0 . . . 0 1 −1



. (3.3)We consider the matrix pN(t) = h−1

N etγ∆
N . Therefore pN(t)i,j is the solution of





d

dt
pN (t)i,j = (γ∆NpN (t))i,j

pN(0)i,j =
1

hN
δij .

(3.4)The semi-group gN is the linear interpolation of pN(t) on [0, 1]× [0, 1] along the discretiza-tion points.Let us now prove the convergence of the solution of (3.8) to the solution of Equation(1.1).Theorem 3.1. For all initial condition u0 ∈ C3
bc([0, 1]), T > 0, and p > 1, we get theconvergence

uN −−−→
N→∞

u on [0, 1]× [0, T ] (3.5)in the following senses:
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• in Lp(Ω, C([0, 1]× [0, T ])), i.e. E [∥∥uN − u

∥∥p
∞,T

] 1
p −−−→

N→∞
0

• almost surely in C([0, 1]× [0, T ]), i.e. for every η ∈]0, 1
2
[, there exists Ξ a randomvariable almost surely �nite such that

∥∥uN − u
∥∥
∞,T

6
Ξ

Nη
. (3.6)Remark 3. Let us denote

‖u‖q,T = sup
t∈[0,T ]

[∫ 1

0

|u(x, t)|q dx
] 1

q

= sup
t∈[0,T ]

‖u(t)‖Lq . (3.7)We have ‖u‖q,T 6 ‖u‖∞,T . As a consequence we get convergence in Theorem 3.1 in the Lqnorm instead of the uniform norm.The convergence of the �nite discretization is proved in [28] if V ′ is globally Lipschitz. Weproved that the result holds in the case that V ′ satis�es (2.5) via a localization argument.The idea, notably used by Funaki in [27], is to rewrite the �nite dimensional system uNin a "mild form" and prove the convergence of this �nite dimensional mild form to thein�nite dimensional mild form (2.3).Lemma 3.2. For every u0 ∈ Cbc([0, 1]) and N > 0, the function uN de�ned on [0, 1]×R
+satis�es the equation

uN(x, t) =

∫ 1

0

gNt (x, κN(y))u0(κN(y))dy −
∫ t

0

∫ 1

0

gNt−s(x, κN(y))V
′(uN(κN(y), s))dyds

+
√
2ε

∫ t

0

∫ 1

0

gNt−s(x, κN(y))W (dy, ds). (3.8)For all p > 1 and T > 0, we have
sup
N

E

[
sup

[0,T ]×[0,1]

∣∣uN(x, t)
∣∣p
]
6 C(T, p). (3.9)Proof. This lemma is just a reformulation of the system of stochastic di�erential equations.We use the variation of the constant to integrate the linear part and then interpolatelinearly the system to obtain a mild formulation of the function uN (see [27, 28]). Toobtain the uniform moment bound, we proceed classically using a truncation procedure.We de�ne uNR and uR solutions of equations (3.8) and (2.3) in which we have replaced thefunction V ′ by bR de�ned, for R > 0 by

bR(u) = V ′(u)1[−R,R] + V ′(R)1]R,+∞[ + V ′(−R)1]−∞,−R[. (3.10)
bR is continuous, bounded and globally Lipschitz. Firstly, using the uniform estimates ofthe semi-group and the boundedness of bR, we prove that for all T , all p > 1, there exists
C(p, T, R) independent of N such that

sup
[0,1]×[0,T ]

E
[∣∣uNR (x, t)

∣∣p] 6 C(p, T, R) < +∞. (3.11)
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sup
N

E

[
sup

[0,1]×[0,T ]

∣∣uNR (x, t)
∣∣p
]
6 C(p, T, R) < +∞. (3.12)We use regularity of the solution (Kolmogorov's theorem) to prove (3.12). Thirdly, we usea comparison theorem to obtain uniform bounds on uN from bounds on uNR0

where R0 is�xed and su�ciently large. �We use the convergence of uNR to uR proved in [28].Proposition 3.3. [[28]] For all R > 0, T > 0 and 0 < η < 1
2
and u0 in C3

bc[0, 1], thereexists a random variable ξR almost surely �nite such that
∥∥uNR − uR

∥∥
∞,T

6
ξR
Nη

. (3.13)Proof of Theorem 3.1. Let R > 0, we de�ne the stopping times
τR = inf{t, ‖uR(t)‖∞ > R} = inf{t, ∃x ∈ [0, 1], |uR(x, t)| > R} (3.14)
τNR = inf{t,

∥∥uNR (t)
∥∥
∞ > R} = inf{t, ∃x ∈ [0, 1],

∣∣uNR (x, t)
∣∣ > R}. (3.15)Let us choose 0 < δ < 1. For R > 1, we de�ne

ΩR = {τR−δ > T and lim inf
N→∞

τNR > T}. (3.16)First we show that P[ΩR] −−−→
R→∞

1. Let M > 0. For ω ∈ {ξR < M} ∩ {τR−δ > T}, byProposition 3.3, for N su�ciently large,
∥∥uNR

∥∥
∞,T

(ω) < ‖uR‖∞,T (ω) + δ < R (3.17)which means that lim infN→∞ τNR (ω) > T . Then by taking the complement relatively to
{ξR < M} we get

P[lim inf
N→∞

τNR < T ; ξR < M ] 6 P[τR−δ < T ; ξR < M ] 6 P[τR−δ < T ]. (3.18)By de�nition of the time τR−δ, we have by the Markov inequality for p > 1 and fromEquation (2.4)
P[lim inf

N→∞
τNR < T ; ξR < M ] 6 P[τR−δ 6 T ] 6 P

[
‖u‖∞,T > R− δ

]
6

E

[
‖u‖p∞,T

]

(R− δ)p
. (3.19)Finally we get

P[ΩcR] = P[τR−δ 6 T or lim inf
N→∞

τNR 6 T ]

6 P[τR−δ 6 T ] + P[lim inf
N→∞

τNR < T ; ξR < M ] + P[ξR >M ]

6
2E[‖u‖p∞,T ]

(R− δ)p
+ P[ξR >M ]. (3.20)Since ξR is �nite almost surely, we take �rst the limit M → +∞ then R→ +∞.



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 15Let us de�ne Ω̃R = ΩR ∩ {ξR < ∞}. Since τR and τNR are increasing in R ∈ N, the sets
ΩR are also increasing in R. Then we have

P[∪∞
R>1Ω̃R] = P[∪R∈NΩR] = lim

R→∞
P[ΩR] = 1. (3.21)Let ω ∈ Ω̃R. By de�nition of τNR , there exists N0(ω) such that for all N > N0(ω),

τNR (ω) > T and τR−δ(ω) > T . By using the proposition 3.3, for all N > N0(ω),
∥∥uN − u

∥∥
∞,T

(ω) =
∥∥uNR − uR

∥∥
∞,T

(ω) 6 ξR(ω)N
−η. (3.22)We de�ne ξ′R(ω) by

ξ′R(ω) = sup
N6N0(ω)

Nη
∥∥uNR − uR

∥∥
∞,T

(ω) + ξR(ω). (3.23)
ξ′R(ω) is �nite on Ω̃R and is such that ∥∥uN − u

∥∥
∞,T

6 ξ′RN
−η. Let us de�ne the randomvariable Ξ by

Ξ(ω) = ξ′R(ω) on Ω̃R \ Ω̃R−1 for R > 2

Ξ(ω) = ξ′1(ω) on Ω̃1. (3.24)Then on ∪R>1Ω̃R, set of probability 1, Ξ is almost surely �nite and ∥∥uN − u
∥∥
∞,T

6 ΞN−ηwhich �nishes the proof of the almost sure convergence.To conclude, we show that E [∥∥uN − u
∥∥p
∞,T

] converges to 0. Since ∥∥uN∥∥∞,T
has uniformmoments in N (Lemma 3.2), we de�ne

ΩR,N0 = ∩N>N0{τR−δ > T and τNR > T}. (3.25)We have ΩR = ∪N0ΩR,N0 . For all N > N0, we get by de�nition
∥∥uN − u

∥∥p
∞,T

= 1ΩR,N0

∥∥uNR − uR
∥∥p
∞,T

+ 1Ωc
R,N0

∥∥uN − u
∥∥p
∞,T

. (3.26)Thus using Cauchy-Schwarz inequality and the bound (3.9), we get
E

[∥∥uN − u
∥∥p
∞,T

]
6 E

[∥∥uNR − uR
∥∥p
∞,T

]
+ P[ΩcR,N0

]
1
2C(2p, T )

1
2 . (3.27)Using the convergence of uNR to uR (Proposition 3.3), we obtain

lim sup
N→∞

E

[∥∥uN − u
∥∥p
∞,T

]
6 C(2p, T )1/2P[ΩcR,N0

]
1
2 . (3.28)Let us �x η > 0. Since P[ΩR] tends to 1 and ΩR is increasing, we choose R such that

P[ΩcR] 6 η. Similarly, ΩR,N0 is increasing in N0, thus P[ΩcR] = limN0→∞ P[ΩcR,N0
] 6 η.Let us choose N0 such that P[ΩcR,N0

] 6 2η. Inserting this bound in (3.28), we obtain theresult. �



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 163.2. Convergence of the Transition Times. We conclude this section by proving theconvergence of the transition times.Let us denote by u0 the initial condition of the solution of Equation (1.1) and φ acontinuous function. We de�ne the hitting times: for ρ > 0

τε(ρ) = inf {t > 0, ‖u(t)− φ‖∞ < ρ} (3.29)
τNε (ρ) = inf

{
t > 0,

∥∥uN(t)− φN
∥∥
∞ < ρ

} (3.30)where φN is the linear approximation of φ.Proposition 3.4. Suppose that ∥∥φN − φ
∥∥
∞ converges to 0 and that there exists ρ0 suchthat for every ρ0 > ρ > 0,

Eu0 [τε(ρ)] <∞. (3.31)Then for almost every ρ > 0,
τNε (ρ) −−−→

N→∞
τε(ρ) a.s. and EuN0

[τNε (ρ)] −−−→
N→∞

Eu0 [τε(ρ)]. (3.32)Proof. For the sake of simplicity we omit ε in the proof. First we prove that for all δ > 0,
T > 0, we have

τ(ρ+ δ) ∧ T 6 lim inf
N→∞

τN(ρ) ∧ T 6 lim sup
N→∞

τN (ρ) ∧ T 6 τ(ρ− δ) ∧ T a.s. (3.33)From Theorem 3.1, ∥∥uN − u
∥∥
∞,T

converges to 0 almost surely. Therefore with proba-bility 1, there exists N0(ω) such that for all N > N0(ω)

sup
t∈[0,T ]

∥∥uN(t)− u(t)
∥∥
∞ (ω) <

δ

2
and ∥∥φN − φ

∥∥
∞ <

δ

2
. (3.34)Then for t 6 τ(ρ+ δ) ∧ T and N > N0(ω), using the triangle inequality we get

ρ+ δ 6 ‖u(t)− φ‖∞ 6
∥∥u(t)− uN(t)

∥∥
∞ +

∥∥uN(t)− φN
∥∥
∞ +

∥∥uNf − φ
∥∥
∞

6 δ +
∥∥uN(t)− φN

∥∥
∞ (3.35)which means that t 6 τN (ρ) ∧ T . Thus, we obtain τ(ρ + δ) ∧ T 6 lim infN→∞[τN(ρ) ∧ T ]almost surely. By the same arguments for t 6 τN (ρ) ∧ T and N > N0(ω), we get

ρ 6
∥∥uN(t)− φN

∥∥
∞ 6 δ + ‖u(t)− φ‖∞ . (3.36)Therefore lim supN→∞[τN (ρ) ∧ T ] 6 τ(ρ− δ) ∧ T which proves the inequality (3.29).From the de�nitions of τ(ρ) and τN(ρ), the functions ρ 7→ τ(ρ) and ρ 7→ τN (ρ) are leftcontinuous and have right limits. Then using the fact that τ(ρ) is �nite almost surely, weget

τ(ρ+) 6 lim inf
N→∞

τN(ρ) 6 lim sup
N→∞

τN (ρ) 6 τ(ρ) < +∞ a.s. (3.37)where τ(ρ+) = limδ→0+ τ(ρ+ δ).At a point of continuity of ρ 7→ τ(ρ), we obtain τ(ρ) = limN→∞ τN (ρ). Let us �x ρ1 > 0.There exists N ⊂ Ω a null set such that for ω /∈ N , ρ 7→ τ(ρ)(ω) is bounded, decreasing,left continuous on [ρ1,+∞[. We de�ne the set of discontinuities, P:
P =

{
(ω, ρ) ∈ N

c × [ρ1,+∞[, τ(ρ+)(ω) 6= τ(ρ)(ω)
}
⊂ Ω× R. (3.38)
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ω from Ω× R on R along {ω} × R. For ω ∈ N c wede�ne
D(ω) = ΠR

ω(P) =
{
ρ ∈ [ρ1,+∞[, τ(ρ+)(ω) 6= τ(ρ)(ω)

}
⊂ R. (3.39)

D(ω) is at most countable since ρ 7→ τ(ρ)(ω) is a bounded decreasing function.We de�ne N (ρ) = ΠΩ
ρ (P) with ΠΩ

ρ the projection from Ω×R on Ω along Ω×{ρ}. N (ρ)is the set of Ω for which τ(ρ) is not continuous at ρ. Therefore, we have
P = ∪ω∈Ω {ω} × D(ω) = ∪ρ>ρ1N (ρ)× {ρ} . (3.40)Then, using Fubini-Tonelli Theorem

∫ +∞

ρ1

P[N (ρ)]dρ =

∫

Ω

∫ +∞

ρ1

1P(ω, ρ)dρdP(ω) =

∫

Ω

∫ +∞

ρ1

1D(ω)(ρ)dρdP(ω) = 0. (3.41)We get a null set E(ρ1) on [ρ1,+∞[ such that P[N (ρ)] = 0 for all ρ ∈ E(ρ1) i.e. theconvergence is almost sure. To conclude, we consider a sequence (ρn)n>0 converging to 0,then E = ∪n>0E(ρn) is a null set of R on which the convergence is almost sure.By using dominated convergence, we obtain the convergence of the expectations. �4. Initial condition4.1. Large Deviation Control. For 0 < α < 1, we set Cα([0, 1]) the set of α-Höldercontinuous functions on [0, 1] equipped with the norm ‖·‖Cα

‖f‖Cα = ‖f‖∞ + sup
x,y

|f(x)− f(y)|
|x− y|α . (4.1)We also de�ne Dα([0, 1]) the separable subset of this Hölder space which is the closure of

C∞ in Cα.Let 0 < α < 1
2
and ρ > 0, we consider the neighborhood Bα

ρ (φ) of φ ∈ Dα
bc([0, 1])

Bα
ρ (φ) = {ψ ∈ Dα

bc([0, 1]), ‖φ− ψ‖Cα < ρ} . (4.2)We also have Bα
ρ (Ml) = ∪φ∈Ml

Bα
ρ (φ).With this large deviation principle, Chenal and Millet [17] derive exponential asymptoticestimates for the exit time of domains with a unique stable stationary point. Using theirevaluations and the procedure developed by Freidlin-Wentzell [25] in the �nite dimensionalcase, we have the following result.Lemma 4.1 ([17]). For 0 < α < 1

2
, there exists ρ0 such that for all ρ < ρ0, we have forall φ ∈ Bα

ρ (φl0) and η > 0

lim
ε→0

Pφ

[
exp

(
ε−1(Ŝ + η)

)
> τε(B

α
ρ (Ml)) > exp

(
ε−1(Ŝ − η)

)]
= 1, (4.3)where Ŝ = Ŝ(φl0 ,Ml). Let τε = τε(B

α
ρ (Ml)). Then

τε
Eφ [τε]

L−−→
ε→0

E (4.4)



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 18where E is an exponential variable of parameter 1. Moreover for all φ ∈ Bα
ρ (φl0)

lim
ε→0

ε logEφ [τε] = Ŝ and lim
ε→0

ε logEφ
[
τ 2ε
]
= 2Ŝ. (4.5)These estimates are the in�nite dimensional version of the Freidlin-Wentzell theory.4.2. Exponential Contractivity. For a given ψN = (ψ1, · · · , ψN) ∈ R
N , we considerequivalently the point in R

N and the function in C([0, 1]) obtained by the linear inter-polation between the points (xi, ψi). Reciprocally, for ψ ∈ Cbc([0, 1]), we let ψ̂N be thelinear interpolation of ψ along the discretization. ψ̂N is the linear interpolation betweenthe points (xi, ψ(xi)).We set
B∞
ρ (φ) = {ψ ∈ Cbc([0, 1]), ‖ψ − φ‖∞ < ρ} . (4.6)We adapt trajectorial results of contractivity for the localized process fromMartinelli andScoppola [34]. We denote u(φ), uR(φ) the solutions of Equation (1.1) with respectively V ′and bR, starting from φ. Accordingly, we denote uN(φN), uNR (φN) the solutions of Equation(3.8) with V ′ and bR, starting from φN ∈ R

N .Lemma 4.2. Let φ be a minimum of S and R > R0. There exists m,CR > 0 and
ε0, ρ0 > 0, such that for all ρ < ρ0 and every ψ ∈ B∞

ρ (φ) we have, for all ε0 > ε > 0

P

[
sup
N>N0

∥∥∥uNR (ψ̂N)(t)− uNR (φ̂
N)(t)

∥∥∥
∞

6 e−mt ‖ψ − φ‖∞ , ∀t > 0

]
> 1− e−

CR
ε . (4.7)This result can be proved via an adaptation of the arguments of [35] and [34]. Lemma4.2 describes that the solutions of Equation (1.1) and (3.8) depend slightly on the initialcondition. Moreover, the solutions starting from two functions are exponentially closeuniformly in the dimension. Martinelli and Scoppola called that the loss of memory of theinitial condition because the speci�c initial condition is not relevant for the evolution ofthe process.4.3. Uniformity in the initial condition. Let us recall that φl0 is a minimum and Mlis a set of lower minima. We denote

τNε (φl0) = τNε (Bα
ρ (φl0)) = inf

{
t, uN(t) ∈ Bα

ρ (φl0)
}

τNε (Ml) = τNε (Bα
ρ (Ml)) = inf

{
t, uN(t) ∈ Bα

ρ (Ml)
}
. (4.8)Similarly, we denote by τN,Rε the hitting time associated with the localized process uNR .Proposition 4.3. For all ρ0 > ρ > 0, there exists η > 0 such that for a sequence φNl0 ofminima of SN , converging to φl0 in L2,

sup
N>N0

sup
‖φN−φNl0‖∞

<ρ

∣∣∣EφN
[
τNε (Ml)

]
− EφNl0

[
τNε (Ml)

]∣∣∣ 6 e
Ŝ−η
ε . (4.9)For any sequence φNi ∈ H1 of minima of SN converging to φi ∈ H1 in L2, we also have

sup
N>N0

sup
‖φNi −φN‖

∞
<ρ

∣∣∣PφNi
[
τNε (φl0) < τNε (Ml)

]
− PφN

[
τNε (φl0) < τNε (Ml)

]∣∣∣ 6 e−
η
ε . (4.10)



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 19The proof comes from a comparison between the deterministic process (i.e. ε = 0) andthe stochastic process starting from the moment of the hitting time .Proof. Since the minima are not degenerate, we can assume ρ small enough to get
〈
δS

δφ
φ, φ− φi

〉

L2

6 −b ‖φ− φi‖2L2 . (4.11)for some b > 0, all 1 < i < l, and all φ ∈ B2ρ(φi).First, let us prove similar estimates on the expectations of transition times for thelocalized process uNR . We denote by σN(φN) the hitting time τN,Rε (Ml) for the process uNRstarting from φN . We set
ΩR =

{
sup
N>N0

sup
‖u0−φ‖∞<ρ

∥∥uRN(u0)(t)− uRN(φ)(t)
∥∥
∞ 6 ρe−mt, ∀t > 0

}
. (4.12)From Proposition 4.2, we get P(ΩR) > 1− e−CR/ε.Let us �x δ1 > 0. We de�ne T (ε) = e

Ŝ−δ1
ε and we take ε < ε0 such that e−mT (ε) < ρ. Onthe set {σN(φl0) > T (ε)

}, setting ψ = uRN(φ)(σ
N(φl0)), we get

∥∥ψ − uRN(φl0)(σ
N(φl0))

∥∥
∞ < e−mT (ε) < ρ (4.13)with probability at least 1 − e−CR/ε. Let us suppose that σN(φ) − σN(φl0) > 0 and that

uRN(φl0)(σ
N(φl0)) ∈ Bρ(φi).The deterministic process uN,0R is the solution of (3.8) for the drift bR and ε = 0. φNi isa minimum of SN , so φNi is an equilibrium point of uN,0R . Then using Equation (4.11), weget for t > 0

∥∥∥uN,0R (ψ)(t)− φi

∥∥∥
2

L2
6 e−bt ‖ψ − φi‖2L2 6 e−bt(e−mtρ+ ρ)2 6 4ρ2e−bt (4.14)by the triangle inequality. For t > t0 =

1
b
ln(16), we obtain ∥∥∥uN,0R (ψ)(t)− φi

∥∥∥
L2

6
ρ
2
.From the large deviation principle, we can compare the deterministic solution with theperturbed one. We obtain C > 0 such that

P

[{∥∥∥uN,0R (ψN)− uNR (ψ
N)
∥∥∥
∞,2t0

<
ρ

3

}]
> 1− e−C/ε. (4.15)Therefore, with probability at least 1 − e−C/ε − e−CR/ε, we get ∥∥uNR (ψ)(2t0)− φi

∥∥
L2 <

5ρ
6which implies

(σN(φ)− σN(φl0))+ 6 2t0. (4.16)We proceed similarly if σN(φ)−σN(φl0) 6 0. In this case, we stop the process at σN (φ).Finally we get ∣∣σN(φ)− σN(φl0)
∣∣ 6 2t0 with probability at least 1−e−C′/ε, for some C ′ > 0.
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E
[∣∣σN(φ)− σN(φl0)

∣∣] 6 E

[∣∣σN (φ)− σN(φl0)
∣∣1ΩR

1{σN (φl0 )>T (ε)}
]

+ E

[∣∣σN(φ)− σN(φl0)
∣∣ (1Ωc

R
+ 1{σN (φl0 )>T (ε)}c)

]

6 2t0(1− e−C
′/ε)P

[
ΩR ∩

{
σN (φl0) > T (ε)

}] (4.17)
+ E

[∣∣σN(φ)− σN(φl0)
∣∣2
] 1

2

(P[ΩcR]
1
2 + P

[{
σN(φl0) 6 T (ε)

}] 1
2 ).By using Proposition 4.2, we have P[ΩcR] < e−CR/ε. From Proposition 4.1, we deduce thatfor ε 6 ε0

P[σN(φl0) 6 T (ε)] < 1− e−e
−

δ1
ε < e−

δ1
ε . (4.18)Moreover, we have for all δ2 > 0

E

[∣∣σN(φ)− σN(φl0)
∣∣2
]
< e2

Ŝ+δ2
ε . (4.19)So we �nally get

E[
∣∣σN(φ)− σN(φl0)

∣∣] 6 2t0(1− e−CR/ε − e−
δ1
ε ) + e

Ŝ+δ2
ε (e−C/2ε + e−

δ1
2ε ) 6 e

Ŝ−η
ε . (4.20)By choosing δ1, δ2 and η small enough, we prove the proposition for the localized process.Let us now choose R such that Ŝ(B∞

R (0), B∞
ρ (φl0)) > Ŝ + 1, then from Proposition 4.1,we have

sup
φ∈B∞

ρ (φl0 )

Pφ[τε(B
∞
R (0)) 6 exp((Ŝ + 1− δ3)/ε) = T2(ε)] 6 e−C/ε (4.21)

sup
φ∈B∞

ρ (φl0 )

Pφ[τ
N
ε (Ml) > T2(ε)] 6 e−C/ε. (4.22)We consider the process u starting from φ and φl0 . Before T2(ε), with high probability,the processes are in B∞

R (0) and coincide with uR up to this time. Moreover T2(ε) is muchlarger than the transition time, so the transition already occurs when the processes reach
B∞
R (0)c. Therefore, with very high probability, the transition time for the localized processis exactly the correct transition time.For Equation (4.10), we follow a similar method, by using Proposition 4.2 for the local-ized process and then comparing the deterministic and stochastic processes in the neigh-borhood of a minimum. �5. Approximation of the potentialIn this section, we prove (or refer to) results about the convergence of the potential andits related quantities.



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 215.1. Convergence of the potential. Let us recall from Section 4.2 that for a point
uN ∈ R

N , we denote also by uN the linear interpolation between the points (xi, uNi ). Fora function u ∈ Cbc([0, 1]), we denote by ûN the linear interpolation between the points
(xi, u(xi)). We say that the sequence uN ∈ R

N converges to u ∈ H1 if the sequence oflinear interpolations associated to uN (also denoted uN) converges to u in the H1 norm.Let us recall that HSN(uN) is the Hessian matrix of SN at uN and can be interpretedas a bilinear form. We prove the following proposition.Proposition 5.1. For any sequence uN ∈ R
N converging to u ∈ H1, we have

• SN(uN) −−−→
N→∞

S(u) <∞
• for any sequence hN converging to h: ∇SN(uN) · hN −−−→

N→∞
DuS(h)

• for any sequences hN , kN converging to h, k:
HSN(uN)(hN , kN) −−−→

N→∞
D2
uS(h, k).If u is twice di�erentiable DuS(h) =

∫ 1

0
δS
δφ
(u)h and if k is twice di�erentiable D2

uS(h, k) =∫ 1

0
hHuSk.Proof. Let uN ∈ R

N be a sequence converging to u ∈ H1, then uN converges uniformly on
[0, 1] to u, so by dominated convergence,

1

N

N∑

i=1

V (uNi ) −−−→
N→∞

∫ 1

0

V (u(x))dx. (5.1)The convergence in H1 directly ensures us that
1

N

N∑

i=1

N2(uNi+1 − uNi )
2 =

∫ 1

0

∣∣∣
(
uN
)′
(x)
∣∣∣
2

dx −−−→
N→∞

∫ 1

0

|u′(x)|2 dx. (5.2)Let hN ∈ R
N be some sequence converging to h ∈ H1 then we have

∇SN(uN) · hN =

N∑

i=1

∂SN

∂xi
(uNi )h

N
i =

1

N

N∑

i=1

γN2(uNi+1 − uNi )(h
N
i+1 − hNi ) + V ′(uNi )h

N
i

−−−→
N→∞

∫ 1

0

γu′h′ + V ′(u)h (5.3)by L2 convergence of the derivatives and dominated convergence. Lastly, the convergenceof the Hessian is completely similar. �5.2. Convergence of the eigenvalues. Let us consider a sequence of points uN ∈
R
N converging to u in H1. We need to estimate the convergence of the eigenvalues

(Nλk,N)16k6N of N ·HSN(uN) to the eigenvalues (λk)16k of HuS.The convergence of a single eigenvalue Nλk,N for k �xed, is obvious from Proposition5.1. The control of the convergence for all the eigenvalues is complex because of the highereigenvalues (e.g. λN,N). This problem is closely related to the discrepancy between the
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N
∆N and γ∆, the discrete Laplacian (de�ned by (3.3)) and the Lapla-cian. We denote λ0N,k, λ0k their respective eigenvalues in the increasing order. For Dirichletboundary conditions, we have
ek,N = Nλ0N,k − λ0k = γ

[
4N2 sin2

(
kπ

2N

)
− π2k2

]
. (5.4)Then eN,N = γN2(4−π2) does not converge to 0. The following proposition adapted from[30] gives us a control of the approximation of the eigenvalues and eigenvectors.Proposition 5.2. Let us consider a sequence uN ∈ R

N converging to u ∈ C2 and suchthat ‖uN − u‖∞ = O
(

1
N2

). We have:(i) there exist α ∈ [0, 1[ and a constant C1 such that for all N and k < αN

|NλN,k − λk − ek,N | 6
C1

N2
, (5.5)(ii) there exists a constant C2 such that |eN,k| 6 C2k

4N−2,(iii) for a �xed k 6 N , the normalized (in H1) eigenvector φk,N of HSN(uN) associatedto λk,N converges in H1 to the eigenvector φk of HuS associated to λk and we have,for all k
‖φk,N‖∞
‖φk,N‖2,N

6
C√
N
. (5.6)Proof. The proposition is an adaptation of the results of [30] in our case since NHSN(uN)is the �nite di�erence approximation of the Sturm-Liouville operator HuS. The originalstatement in [30] concerns an approximating sequence uN which is precisely the sequence

ûN of linear interpolations of u. If we take a sequence uN , then for all y ∈ R
N

N
∣∣∣HSN(uN)(y)−HSN(ûN)(y)

∣∣∣ =
N∑

i=1

∣∣V ′′(uNi )− V ′′(u(xi))
∣∣ y2i 6 C

∥∥uN − u
∥∥
∞ ‖y‖22 .(5.7)Since ‖uN − u‖∞ = O

(
1
N2

), we deduce that the di�erence between the eigenvalues of
NHSN(uN) and NHSN(ûN) is bounded by O( 1

N2 ) which gives us the result. A similarcontrol holds for the convergence of the eigenvectors. The last result (5.6) comes from thefact that for the eigenvectors of HuS ([18] pp.334-335), we have a constant C such that
‖φk‖∞ 6 C ‖φk‖L2. Then, since φk,N converges in H1, it converges in L∞ and L2, then theresult comes from the fact that ‖φk,N‖2,N > C

√
N ‖φk,N‖L2 . �Remark 4. The normalized eigenvector eN = φN

‖φN‖2,N
satis�es

‖eN‖2∞,N =
‖φN‖2∞,N

‖φN‖22,N
6

‖φN‖2L∞

N ‖φN‖2L2

6
C

N

‖φN‖2H1

‖φN‖2L2

6
C

N
. (5.8)Thus, this proves that the coordinates of the normalized eigenvectors in R

N for the eu-clidean norm are uniformly bounded by O ( 1√
N

).



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 23The following proposition from [30] states uniform estimates in the function φ of theeigenvalues of the Hessian operators HφS and HSN(φN).Proposition 5.3. Let φN1 , φN2 be sequences converging in H1 to φ1, φ2, then for all N, k
∣∣λ1k,N − λ2k,N

∣∣ 6 C
∣∣λ1k − λ2k

∣∣ 6 C (5.9)and λik = π2k2 +
∫ 1

0
V ′′(φi(x))dx+O

(
1
k2

) for i = 1, 2.Remark 5. This proposition shows the convergence of the in�nite product of the ratio ofeigenvalues denoted by D(φ, ψ)

N∏

k=1

λk(φ)

λk(ψ)
=

N∏

k=1

[
1 +

λk(φ)− λk(ψ)

λk(ψ)

]
−−−→
N→∞

∞∏

k=1

λk(φ)

λk(ψ)
= D(φ, ψ) (5.10)since ∣∣∣∣

λk(φ)− λk(ψ)

λk(ψ)

∣∣∣∣ 6
C

k2
. (5.11)5.3. Product of eigenvalues. We show the convergence of the product ratio of the eigen-values of HSN(φN) and HSN(ψN) to D(φ, ψ).Proposition 5.4. For any φN , ψN converging in H1 to φ, ψ such that HS(ψ) and HS(φ)do not have a zero eigenvalue, and that

∥∥φN − φ
∥∥
∞ ∨

∥∥ψN − ψ
∥∥
∞ 6

C

N2
, (5.12)we have the convergence

det(HSN(φN))

det(HSN(ψN))
−−−→
N→∞

D(φ, ψ) =

+∞∏

k=1

λk(φ)

λk(ψ)
. (5.13)Proof. The proof of the convergence comes from the fact that for small k the approximatedeigenvalues are close to the continuous ones (λk,N ≈ λk) whereas this is not the case for kclose to N (Proposition 5.2). The eigenvalues λk,N(φ), λk,N(ψ) are close at the �rst orderin k uniformly on φ, ψ (Proposition 5.3). Therefore we decompose the product in twoparts for small k (i.e. k < αN from Proposition 5.2) and large k.Let us denote µk,N(φ) = NλN,k(φ

N)− λk(φ)− ek,N . From Proposition 5.2, there exists
0 < α < 1 such that, for k 6 αN , |µk,N(φ)| 6 c

N2 . The same holds for the sequence ψN .Then, we get,
Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)
=

1 + θk,N(φ)

1 + θk,N(ψ)
= 1 +

θk,N(φ)− θk,N(ψ)

1 + θk,N(ψ)
(5.14)where θk,N(φ) = λk(φ)

−1(ek,N + µk,N(φ)). Let us remark that for k 6 αN

|θk,N(ψ)| 6
C

k2

(
k4

N2
+

1

N2

)
6 C

(
α2 +

1

N2

) (5.15)



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 24thus if we take α small enough and N large enough, we have |θk,N(ψ)| < 1
2
. Hence weobtain ∣∣∣∣∣ln

αN∏

k=1

Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)

∣∣∣∣∣ 6 2
αN∑

k=1

|θk,N(φ)− θk,N(ψ)| 6
2Cα

N
(5.16)since from Proposition 5.3, |θk,N(φ)− θk,N(ψ)| 6 C

N2 .For k > αN we proceed similarly. Let us write
Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)
=

1 + θ′k,N
1 + θ′k

= 1 +
θ′k,N − θ′k
1 + θ′k

(5.17)where θ′k,N = λk,N(ψ)
−1(λk,N(φ)− λk,N(ψ)) and alike for θ′k. From Proposition 5.3, we getfor all k and N > N0, that ∣∣θ′k,N ∣∣ ∨ |θ′k| 6 C

k2
. Thus we obtain

∣∣∣∣∣ln
N∏

k=αN

Nλk,N(φ)

λk(φ)

λk(ψ)

Nλk,N(ψ)

∣∣∣∣∣ 6
N∑

k=αN

C

k2

(
1 +

C

k2

)
6
C

N
(5.18)which �nishes the proof. �In fact, we need a slightly di�erent convergence.Corollary 5.5. Let be φN , ψN converging to φ, ψ such that

∥∥φN − φ
∥∥
L2 ∨

∥∥ψN − ψ
∥∥
L2 6

C

N
. (5.19)Then we have

det(HSN(φN))

det(HSN(ψN))
−−−−→
N→+∞

D(φ, ψ). (5.20)Proof. From the previous proposition, we get that
det(HSN(φ̂N))

det(HSN(ψ̂N))
−−−−→
N→+∞

D(φ, ψ) (5.21)where φ̂N (resp. ψ̂N) is the linear interpolation of φ (resp. ψ). So we prove
DN =

det(HSN(φ̂N))

det(HSN(ψ̂N))

[
det(HSN(φN))

det(HSN(ψN))

]−1

=
N∏

k=1

1 + θk(φ)

1 + θk(ψ)
−−−→
N→∞

1 (5.22)where θk(φ) = λk,N(φ
N)−1(λk,N(φ̂

N)− λk,N(φ
N)). From the fact that ∥∥φN − φ

∥∥
L2 6

C
N
weobtain ∥∥∥φN − φ̂N

∥∥∥
L2

6 C′

N
. Then for all y ∈ R

N , we have
∣∣∣HSN(φN)(y)−HSN(φ̂N)(y)

∣∣∣ = 1

N

N∑

i=1

∣∣V ′′(φNi )− V ′′(φ(xi))
∣∣ |yi|2

6
C

N

N∑

i=1

∣∣φNi − φ(xi)
∣∣ |yi|2 6

C√
N

∥∥∥φN − φ̂N
∥∥∥
L2

‖y‖24,N 6
C

N3/2
‖y‖22,N .
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N)
∣∣∣ 6 C

N3/2 . The same holds for ψ.Then, we obtain
|θk(ψ)| 6

CN

k2
× 1

N3/2
6

C

k2
√
N

6
1

2
(5.23)for N su�ciently large.Thus we get

|ln [DN ]| 6
N∑

k=1

|θk(φ)− θk(ψ)|
1 + θk(ψ)

6 2

N∑

k=1

|θk(φ)|+ |θk(ψ)| 6 4C

N∑

k=1

1

k2
√
N
. (5.24)Then let us �x η > 0, we have

|ln [DN ]| 6 C

η 3√N∑

k=1

1

k2
√
N

+ C

N∑

k=η 3√N

1

k2
√
N

6 CηN−1/6 +
C

η2
N−1/6. (5.25)Therefore we get lim supN→∞ |ln [DN ]| = 0 which proves the proposition. �5.4. Approximated stationary points. The last property we need to check is thatfor each stationary point of S, there exists a unique sequence of stationary points of

SN converging to this stationary point. Moreover, to ensure the limit of the ratio ofeigenvalues, this convergence has to be fast enough (see Corollary 5.5). To this aim, wehave the following proposition.Proposition 5.6. There exist C,N0, such that for all N > N0, there is for each minimum(resp. saddle point) φ of S a minimum (resp. saddle point) φN of SN such that
∥∥φ− φN

∥∥
L2 6

C

N
(5.26)where φ̂N is the linear interpolation of φ.Proof. Since by Assumption 2.4, there is a �nite number of saddles and stationnary pointsthen we only need to prove the proposition for a given saddle or minimum. Let φ be aminimum, we prove that there is sequence φN of minima of SN such that

∥∥∥φN − φ̂N
∥∥∥
L2

6
C

N
. (5.27)The result (5.26) follows from (5.27) since we already have that

∥∥∥φ− φ̂N
∥∥∥
L2

6

∥∥∥φ− φ̂N
∥∥∥
∞

6
C

N2
. (5.28)In order to prove (5.27), we use a �xed point theorem. Let us consider the ball BC/

√
Nof radius C√

N
in the ‖·‖2,N norm where C is a constant we will �x later. We want to �nd

z0 ∈ BC/
√
N such that ∇SN(φ̂N + z0) = 0. In that case we will have φN = φ̂N + z and

∥∥∥φN − φ̂N
∥∥∥
2

L2
6

1

N
‖z‖22,N 6

C

N2
. (5.29)
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∇SN(φ̂N + z)i = ∇SN(φ̂N)i + (HSN(φ̂N)z)i + gi(z) (5.30)where gi is the remainder which can take the form

gi(z) =

∫ 1

0

(1− t)
∂3SN

∂z3i
(φ̂N + tz)z2i dt =

1

N

∫ 1

0

(1− t)V ′′′(φi + tzi)z
2
i dt. (5.31)Then we have for all z, y ∈ BC/

√
N

|gi(z)| 6
C0

N
z2i and |gi(x)− gi(y)| 6

C0

N

∣∣z2i − y2i
∣∣ 6 2C0

N3/2
|zi − yi| . (5.32)Let us also remark that since φ is a stationary point for the potential S, thus we have

−γφ′′(xi) + V ′(φ(xi)) = 0. Therefore we get
∣∣∣∇SN(φ̂N)i

∣∣∣ =
∣∣∣∣∇SN(φ̂N)i −

1

N
(−γφ′′(xi) + V ′′(φ(xi)))

∣∣∣∣

=
1

N

∣∣γN2(φ(xi+1)− 2φ(xi) + φ(xi−1))− γφ′′(xi)
∣∣ 6 C1

N2
. (5.33)For N su�ciently large HSN(φ̂N) is not degenerate then z0 is solution of the �xed pointequation

z0 = HSN(φ̂N)−1(−∇SN(φ̂N)− gi(z
0)) = F (z0). (5.34)The (2, N)-norm of HSN(φ̂N)−1 is bounded by the inverse of the smallest eigenvalue (inabsolute value). Then ∥∥∥HSN(φ̂N)−1

∥∥∥
2,N

6 C2N . For z ∈ BC/
√
N , we get

‖F (z)‖22,N 6

∥∥∥HSN(φ̂N)−1
∥∥∥
2

2

(∥∥∥∇SN(φ̂N)
∥∥∥
2

2
+

N∑

i=1

|gi(z)|2
)

6 C2
2N

2

(
C2

1

N3
+ C2

0 ‖z‖44,N
)

6 C ′
1

(
1

N
+N2 ‖z‖42,N

)
6 C ′

1

(
1

N
+
C4

N2

)
6
C2

N
(5.35)for C su�ciently small. Therefore F (BC/

√
N ) ⊂ BC/

√
N . We also have for z, y ∈ BC/

√
N ,

F (y)− F (z) = HSN(φ̂N)−1(−gi(y) + gi(z)).Then
‖F (y)− F (z)‖22,N 6 C2N

2

N∑

i=1

|−gi(y) + gi(z)|2 6
C ′

2

N
‖y − z‖22,N .Thus F is a contraction for N su�ciently large. By the �xed point Theorem, there exists

z0 ∈ BC/
√
N solution of z0 = F (z0) which proves Proposition 5.6 �



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 276. Estimates6.1. Description. In this section, we compute uniformly in the dimension the expectationof the transition times. We proceed as in [2] and use the potential theory developed in [9].Let us consider the N-dimensional di�usion
dYt = −∇SN(Yt)dt+

√
2εdBt (6.1)which comes from (2.30) with the time change YhN t = Xt. We denote by µN the invariantmeasure for the process Y

µN(dx) = e−
SN (x)

ε dx. (6.2)Let us consider the norms for y ∈ R
N and p > 1

‖y‖pp,N =

N∑

x=1

|yi|p ‖y‖∞,N = max
i=1···N

|yi| . (6.3)Remark 6. As in the previous section, we associate to a point y ∈ R
N its linear interpolationon [0, 1] between the points (xi, yi) (xi is given by (2.33),(2.34)) that we denote by y. Letus consider the Lp norm of y on [0, 1], we have for all p ∈ [1,+∞]

1

(4N)1/p
‖y‖p,N 6 ‖y‖Lp =

[∫ 1

0

|y(x)|p dx
] 1

p

6
1

N1/p
‖y‖p,N . (6.4)This can be done using the Riesz-Thorin Theorem, remarking that

1

4N
‖y‖1,N 6 ‖y‖L1 6

1

N
‖y‖1,N and ‖y‖∞,N = ‖y‖L∞ . (6.5)In order to introduce the other norms, we need the following a priori estimates on theeigenvalues of the Hessian of SN . Let us recall the Hessian of SN at a point φN ∈ R

N is
HSN(φN)(h)j = − 1

N
(∆Nh)j +

1

N
V ′′(φN(xj))hj, for h ∈ R

N (6.6)with the suitable boundary conditions.Lemma 6.1 ([30]). For all φN ∈ R
N such that ∥∥φN∥∥∞ < A, the eigenvalues (λk,N(φN))Nk=1of HSN(φN) arranged in increasing order satisfy the bound

m(A)k2 − 1 6 Nλk,N(φ
N) 6M(A)k2 + 1 (6.7)where m(A) and M(A) do not depend on N and φN (only on A).Let us �x φN ∈ R

N . We consider the orthonormal eigenvectors (vl)l of HSN(φN).The decomposition of h ∈ R
N in this orthonormal basis is given by h =

∑N
l=1 h̃ivl. For

p ∈ [1,∞], we de�ne the norms ‖h‖p,F
‖h‖pp,F =

N∑

i=1

∣∣∣h̃i
∣∣∣
p

‖h‖∞,F = max
i=1···N

∣∣∣h̃i
∣∣∣ . (6.8)As in [2], these are the norms we use to control the approximations of the potential aroundour stationary points. Let us note that the norms depend on the point φN .



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 28Remark 7. As in Section 4.1.1 in [2], the Hausdor�-Young Theorem can be adapted to thenorms ‖·‖p,F and ‖·‖p,N . For all 2 6 p 6 +∞ and q such that q−1 + p−1 = 1, we obtain
1

N
‖x‖pp,N 6 C

(
1√
N

‖x‖q,F
)p

. (6.9)In fact, let T : RN → R
N be the linear mapping T (y) = ∑N−1

k=0 ykvN,l(z
∗
i ). By de�nition,

‖Ty‖p,F = ‖y‖p,N . The proof of (6.9) is an application of the Riesz-Thorin Theorem,between p = 2 and p = ∞. On one hand, we have ‖Ty‖22,N = ‖y‖22,N since the eigenvectorsform a orthonormal basis. On the other hand, we have ‖Ty‖∞,N 6 C√
N
‖y‖1,N since thecoordinates of the eigenvectors of the basis are bounded by C√

N
(see Lemma 5.2, Equation(5.6)).Let us recall the in�nite dimensional situation. The process u starts from a minimum

φl0 of S and reaches the set of minima Ml. We denote by Ŝ0 = Ŝ(φl0 ,Ml) the height ofthe saddle points de�ned by (2.14).By Assumption 2.4, for all N su�ciently large, we have a �nite set MN = {x∗i } ofminima of SN . From Proposition 5.2 and Proposition 5.6, we deduce that a sequenceof minima x∗l0 converges to φl0 . Similarly, there is a subset MN
l of MN such that eachminimum of MN

l converges to a minimum of Ml.We construct a graph for the �nite dimensional case as the graph for the in�nite dimen-sional case in Section 2.3. The vertices are the minima MN . The edges are the saddlepoints z∗k of SN for which ∣∣∣Ŝ0 − SN(z∗k)
∣∣∣ < η for some �xed η > 0. We connect the edge z∗kbetween the two minima that the saddle point z∗k connects directly. To each saddle point

z∗k , we associate a weight
w∗
k =

∣∣λ−N(z∗k)
∣∣ e−

SN (z∗k)

ε

√
|detHSN(z∗k)|

. (6.10)To each minima x∗j , we associate a value aj = a(x∗j ) ∈ R. We denote by ai+ and ai− thetwo values associated to the minima connected by the saddle point z∗i .We associate to this graph a quadratic form QN (a), for a a real vector indexed by theminima MN

QN(a) =
∑

z∗l

w∗
l (al+ − al−)

2. (6.11)The equivalent conductance, C∗(N, ε), between the sets x∗l0 and MN
l is de�ned by

C∗(N, ε) = inf
{
QN(a), a(x∗l0) = 1, a(x∗i ) = 0, x∗i ∈ MN

l

}
. (6.12)We recall the fundamental formula (6.15) proved in [9]. The expression of the expectationof the hitting time τNε (BNρ (x∗l0)) is based on two quantities: the equilibrium potential andthe capacity with respect to the sets BNρ (x∗l0) and BNρ (MN

l ). The equilibrium potential,
h∗, is de�ned by h∗(x) = Px[τ

N
ε (BNρ (x∗l0)) < τNε (BNρ (MN

l ))]. The Dirichlet form, E N ,
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N is

E
N(h) = ε

∫

RN

‖∇h(x)‖22,N µN(dx). (6.13)The capacity is the evaluation of the Dirichlet form on h∗. The capacity also satis�es avariational principle. We have
cap

(
BNρ (x∗l0),BNρ (MN

l )
)
= E

N (h∗)

= inf
{
E
N (h), h ∈ H1(RN), h = 1 on BNρ (x∗l0), h = 0 on BNρ (MN

l )
}
. (6.14)The expectation of the hitting time is expressed by

EνN [τ
N
ε (BNρ (MN

l ))] =

∫
RN h

∗(x)dµN (x)

cap
(
BNρ (x∗l0),BNρ (MN

l )
) (6.15)where νN is a probability measure on ∂BNρ (x∗l0).6.2. Capacity. We prove that the capacity de�ned in (6.14) can be estimated by theequivalent conductance C∗(N, ε) de�ned in (6.12).Proposition 6.2. For all ε < ε0 and ρ, we have

cap
(
BNρ (x∗l0),BNρ (MN

l )
)
= ε

√
2πε

N−2
C∗(N, ε)(1 + ψ1(ε,N)) (6.16)where lim supN→+∞ |ψ1(ε,N)| < √

ε |ln(ε)|3/2 for all N > N0.The proof of this result is an adaptation to the case of a �nite number of saddle pointsof Proposition 4.3 in [2]. The estimate of the capacity is made in two steps: an upperbound and a lower bound.6.2.1. Upper bound. We have the following proposition.Proposition 6.3. For all ε < ε0 and ρ, we have
cap

(
BNρ (x∗l0),BNρ (MN

l )
)
6 ε

√
2πε

N−2
C∗(N, ε)(1 + ψu(ε,N)) (6.17)where lim supN→∞ |ψu(ε,N)| < √

ε |ln(ε)|3/2.Proof. The proof of this upper bound follows the proof of Lemma 4.4 in [2]. To obtain anupper bound for the capacity, we just estimate the Dirichlet form on a test function h+.
h+ is de�ned on some neighborhood CN

δ (z∗i ) of each saddle point z∗i for some δ > 0 smallenough.In the local orthonormal basis (given by coordinates y(i) ∈ R
N ) of the saddle point z∗i ,the neighborhood CN

δ (z∗i ) is de�ned by
CN
δ (z∗i ) =

{
y(i) ∈ R

N : |y(i)l | 6 δ
rl√
|λN,l|

, 0 6 l 6 N − 1

}
+ z∗i (6.18)where (rl) is a sequence satifying ∑l

r
3/2
l

l3/2
< ∞ and (λN,l)l are the eigenvalues in theincreasing order of HSN(z∗i ). Let us denote CN
δ = ∪iCN

δ (z∗i ).
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SN,δ =

{
x, SN(x) > SN(z∗i ) + cδ2, ∀i

}
. (6.19)The set (SN,δ ∪ CN

δ )c contains a �nite number of connected components denoted Dj sinceeach of them contains at least a minimum x∗j (which are in �nite number by Assumption2.4). For each connected component Dj, we de�ne h+ to be the constant aj ∈ [0, 1]. Fora saddle z∗i , we denote Di+ and Di− the connected components attained from z∗i when
y(i) = (δσ0, 0) and y(i) = (−δσ0, 0) respectively.On SN,δ \CN

δ , we take h+ of class C1 and such that ‖∇h+‖2,N ≤ c1
δ
. Then we de�ne h+on each CN

δ (z∗i ) in the local coordinates, by h+(y(i)) = fi(y
(i)
0 ) where

fi(y0) = (ai− − ai+)

∫ δσ0
y0

e−|λN,0|t2/2εdt
∫ δσ0
−δσ0 e

−|λN,0|t2/2εdt
+ ai+. (6.20)Therefore, we have to estimate EN(h+) =∑i I1(i) + I2 with

I1(i) = ε

∫

CN
δ (z∗i )

∥∥∇h+(x)
∥∥2
2,N

e−
SN (x)

ε dx, I2 = ε

∫

SN,δ\BN
δ

∥∥∇h+(x)
∥∥2
2,N

e−
SN (x)

ε dx.(6.21)Taking δ = K
√
ε |ln ε|, the integrals I1(i) give us the right asymptotics and are estimatedby an adaptation of Lemma 4.4 from [2]. The quadratic approximation of the potential onthe sets CN

δ (z∗i ) is a consequence of Remark 7 and of the choice of the sets CN
δ (z∗i ). Theintegral I2 is computed by following the same method as in Lemma 4.6 in [2].Therefore, we obtain that for all (aj)j , for N > N0(ε)

cap
(
BNρ (x∗),BNρ (MN

l )
)
6
∑

i

ε
√
2πε

N−2 (ai− − ai+)2 |λN,0| e−
SN (z∗i )

ε√
| det(HSN(z∗i ))|

(1 + A1

√
ε |ln(ε)|3/2).Taking the minimum of the right-hand side over a, we get the result (6.17). �6.2.2. Lower bound. We now prove the corresponding lower bound.Proposition 6.4. For all ε < ε0 and ρ, we have

cap
(
BNρ (x∗),BNρ (MN

l )
)
> ε

√
2πε

N−2
C∗(N, ε)(1 + ψl(ε,N)) (6.22)where lim supN→∞ |ψl(ε,N)| < √

ε |ln(ε)|3/2.Proof. The proof is adapted from [2]. For a saddle point z∗i , we take a narrow corridor fromone (local) minimum to another one and minimize the Dirichlet form on the union of thesecorridors. In [2], this corridor was a rectangle because of the particular case considered.In this article, we have to be more precise about their construction. We use the samenotations as in the proof of the upper bound.Let us �x δ0. We consider the subset of RN−1

CN,⊥
δ (z∗i ) =

{
y(i) ∈ R

N : |y(i)l | 6 δ
rl√
|λN,l|

, 1 6 l 6 N − 1

}
. (6.23)
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δ (z∗i ) = [−δ0, δ0] × CN,⊥

δ (z∗i ) + z∗i . We denote by x∗i− and x∗i+ the twominima of the basins surrounding z∗i .Let (γ0(s))s∈[−s−,s+] be a regular C2 path from xi− to xi+ with γ0(s) = z∗i + (s, 0) for
s ∈ [−δ0, δ0]. We also suppose that there is η > 0 for which SN(γ0(s)) < SN0 − 3η for
|s| > δ0 and that ‖γ′0(s)‖2,N = 1. Let, for all s, A(s) be an isomorphism from R

N−1 to
γ′0(s)

⊥ ⊂ R
N of class C1 in s and such that for |s| < δ0, A(s)y = (0, y1, · · · , yN−1). Thenwe construct a family of paths γ(s, y⊥) by

γ(s, y⊥) = γ0(s) + A(s)y⊥. (6.24)Such a construction of a path γ0 is always possible in the in�nite dimensional setting(because of Assumption 2.4). Then taking the �nite dimensional projection, it gives us apath for the �nite dimensional case.We de�ne the corridor from xi− to xi+, for δ > 0 small enough
Cδ(z

∗
i ) =

{
x = γ(s, y⊥), y⊥ ∈ CN,⊥

δ (z∗i ), ∀s
}
. (6.25)Let h be the equilibrium potential which realizes the minimum of the Dirichlet form andde�ne ai±(y⊥) = h(xi± + A(±s±)y⊥), the values near the minimum.To estimate a lower bound, we are going to restrict the Dirichlet form on the union ofthe corridors Cδ(z∗i ):

EN(h) = ε

∫

RN

‖∇h‖22,N µN(dx) >
∑

i

ε

∫

Cδ(z
∗

i )

‖∇h‖22,N µN(dx) = ε
∑

I5(i). (6.26)We de�ne the function fi on Cδ(z∗i ), by fi(s, y⊥) = h(γ(s, y⊥)). The change of variableon Cδ(z∗i ) gives us the Jacobian gi(s, y⊥) = det(Jγ)(s, y⊥) and we obtain
I5(i) >

∫

BN,⊥
δ (z∗i )

∫ s+

−s−

∣∣∣∣
∂fi
∂s

∣∣∣∣
2

e−S
N (γ(s,y⊥))/εgi(s, y⊥)dsdy⊥. (6.27)We take y⊥ as a parameter then the second term is bounded below by the minimum overfunctions fi of the integral

∫ s+

−s−

∣∣∣∣
∂fi
∂s

∣∣∣∣
2

e−S
N (γ(s,y⊥))/εgi(s, y⊥)ds (6.28)with the conditions fi(−s−, y⊥) = h(xi− +A(−s−)y⊥) = ai−(y⊥) and fi(s+, y⊥) = h(xi+ +

A(s+)y⊥) = ai+(y⊥). This gives us a lower bound for the capacity.A simple computation shows that the function fi realizing this lower bound is
fi(s, y⊥) = (ai+(y⊥)− ai−(y⊥))

∫ s
−s− e

SN (s,y⊥)/εgi(s, y⊥)
−1ds

∫ s+
−s− e

SN (s,y⊥)/εgi(s, y⊥)−1ds
+ ai−(y⊥). (6.29)Inserting this function in the integral (6.27), we obtain

I5(i) >

∫

CN,⊥
δ (z∗i )

(ai+(y⊥)− ai−(y⊥))
2

[∫ s+

−s−
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds

]−1

dy⊥. (6.30)



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 32The end of the proof comes from an upper bound of the integral uniformly for y⊥ ∈
CN,⊥
δ (z∗i ). We write

∫ s+

−s−
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds = I6(i) + I7(i) (6.31)where

I6(i) =

∫ δ0

−δ0
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds and I7(i) =

∫

|s|>δ0
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds. (6.32)As in Lemma 4.8 in [2], we control the quadratic approximation near the saddle z∗i withthe following lemma for which we omit the proof.Lemma 6.5. For all y = (s, y⊥) ∈ CN

δ (z∗i ), if the sequence (rl)l satis�es ∑l

r
3/2
l

l3/2
<∞, wehave for δ0 > δ

∣∣∣∣SN(γ(s, y⊥) + z∗i )− SN(γ(0, y⊥) + z∗i ) +
1

2
|λ0,N | s2

∣∣∣∣ 6 A6δ
3
0 (6.33)

∣∣∣∣∣S
N(z∗i + γ(0, y⊥))− SN(z∗i )−

1

2

N−1∑

k=1

λN,ky
2
k

∣∣∣∣∣ < A8δ
3. (6.34)Following the proof of Lemma 4.7 in [2], we can also prove the existence of a constant

A6 such that for all N and y⊥
I6(i) 6 e

SN (z∗i +(0,y⊥))

ε

√
2πε

|λN,0|

(
1 + A6

δ30
ε

)
. (6.35)In addition, we need to prove an upper bound for the integral I7(i).Lemma 6.6. There exists a constant A7 such that for all N and y⊥

I7(i) 6 A7

√
Ne

Ŝ−2η
ε (6.36)where η > 0 is given by the de�nition of the path γ0.Proof. We have to be careful with the change of variable. Let us write the Jacobian matrix

Jγ(s, y⊥) in the local base (γ′0(s), γ
′
0(s)

⊥), if we denote P0 the projection on Span(γ′0(s)),we get the Jacobian matrix (written by blocks)
Jγ(s, y⊥) =

(
1 + P0(A

′(s)y⊥) 0
∗ A(s)

) (6.37)since ImA(s) = γ′0(s)
⊥. Then, as A(s) is an isometry, we obtain that

gi(s, y⊥) = |det(Jγ(s, y⊥))| = |1 + P0(A
′(s)y⊥)| = 1 +O(δ). (6.38)Thus, for δ su�ciently small,

I7(i) =

∫

|s|>δ0
eS

N (s,y⊥)/εgi(s, y⊥)
−1ds 6 (1 + Cδ)e

Ŝ−2η
ε (s+ + s−) 6 2(s+ + s−)e

Ŝ−2η
ε
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δ . Then by construction of the pathwe have that

s+ + s− 6 C ‖xi− − xi+‖2,N 6 C
√
N ‖xi− − xi+‖L2 . (6.39)

�We insert (6.35) and (6.36) in Equation (6.30). Then we proceed as in the proof ofLemma 4.7 from [2] and we obtain
I5(i) > ε

√
|λN,0|
2πε

∫

BN,⊥
δ (z∗i )

(ai+(y⊥)− ai−(y⊥))
2e−

SN (z∗i +(0,y
⊥

))

ε dy⊥

[
1 + A6

δ30
ε
+ A′

7e
− η

ε

]−1

.(6.40)Using Equation (4.10) from Proposition 4.3, we obtain for all y⊥, |aj(y⊥)− aj(0)| < e−
C
ε .Then using the approximation (6.34) and following the proof of Lemma 4.7 in [2], weobtain for δ =√Kε |ln ε| and δ0 = K ′ε |ln ε| with K ′ > K,

I5(i) > ε(ai− − ai+)2e−
SN (z∗i )

ε

√
2πε

N−2 |λN,0|√
| det(HSN(z∗i ))|

(1− A5

√
ε |ln(ε)|3/2). (6.41)Equation (6.22) follows by minimizing along the (aj)j. �6.3. Uniform estimate of the mass of the equilibrium potential. We prove esti-mates of the numerator of (6.15). Let us denote x∗l0 ∈ R

N to be the closest minimum to
φl0 in L2([0, 1]). We will prove an adaptation of Proposition 4.9 of [2].Proposition 6.7. For all ε < ε0 and ρ, we have

∫

RN

h∗(x)dµN(x) =
(2πε)N√

detHSN(x∗l0)
e−

SN (x∗l0
)

ε (1 + ψ2(ε,N)) (6.42)where |ψ2(ε,N)| < √
ε |ln(ε)|3/2 for all N > N0.Proof. As the previous section, we de�ne around the minimum x∗l0 ∈ R

N a neighborhood
CN
δ (x∗l0). In the local orthonormal basis of the minimum x∗l0 , the neighborhood CN

δ (x∗l0) isde�ned by
CN
δ (x∗l0) =

{
y ∈ R

N : |yl| 6 δ
rl√
|λN,l|

, 0 6 l 6 N − 1

}
+ x∗l0 (6.43)where (rl) is a sequence satifying ∑l

r
3/2
l

l3/2
< ∞ and (λN,l)l are the eigenvalues in theincreasing order of HSN(x∗l0).We need to estimate ∫

RN

h∗(x)dµN (x). (6.44)Let us remark that for x ∈ ∂CN
δ (x∗), then one of the coordinate is precisely δrk/√λk,Nthus

SN(x) > SN(x∗) + δ2r2k − Cδ3 > SN(x∗) + cδ2. (6.45)



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 34We consider S ′ such that the set {φ, S(φ) ∈]S(φl0), S ′]} contains no stationary point. Thenusing Proposition 5.1, for all η small enough, there exists N0 such that for N > N0,{
x, SN (x) ∈ [SN(x∗) + 1

2
cδ2, S ′ − η]

} contains no stationary point. We de�ne the set A ={
SN (x) 6 SN(x∗) + cδ2

}
\ BNρ (x∗). Note also that for δ small enough, CN

δ (x∗) ⊂ BNρ (x∗).Hence we decompose (6.44) in three parts:
∫

RN

h∗(x)dµN (x) = I8 +

∫

SN (x)>SN (x∗l0
)+cδ2

h∗(x)dµN(x) +

∫

A

h∗(x)dµN (x) (6.46)To estimate the third integral we need a control on the equilibrium potential on the set A.Lemma 6.8. For all ρ < ρ0 and η > 0 there exists ε0(ρ) such that for ε < ε0 and δ > 0,let x ∈ A, we have
h∗N(x) = Px[τ

N
ε (BN

ρ (x
∗)) < τNε (BN

ρ (MN
l ))] 6 e−(S′−SN (x)−2η)/ε. (6.47)Proof. By de�nition of the set A all the paths from x ∈ A to x∗ attain a height of S ′ − ηat least. To prove this fact, let us take a path from x to x∗, it must attain its maximum Ŝat some time t0. This maximum must satis�es Ŝ > SN(x∗) + cδ2, since if it is not the casethen from Equation (6.45), the path must stay in CN
δ (x∗) which contradicts the fact that

x is in A. Then the minimal path from x to x∗ must attain its maximum at a stationarypoint of height greater than SN(x∗) + cδ2 thus of height greater than S ′ − η. This gives usan easy lower bound for the rate function on the set of transition from x ∈ A to x∗. Thenusing the method from [25] and the uniform large deviation principle, we prove that
h∗(x) = Px[τ

N
ε (BNρ (x∗)) < τNε (BNρ (MN

l ))] 6 e−(S′−2η−SN (x))/ε (6.48)uniformly in N . �We get from (6.46)
∫

RN

h∗(x)dµN(x) 6 I8 +

∫

SN (x)>SN (x∗l0
)+cδ2

e−S
N (x)/εdx+

∫

SN (x)6SN (x∗l0
)+cδ2

e−(S′−2η)/εdx(6.49)where we have used the fact that h∗ is bounded by one for the second integral and theprevious lemma for the third integral. The integral I8 gives the main contribution and isestimated as in the proof of Proposition 4.9 of [2] using the quadratic approximation ofthe potential on CN
ρ (x∗l0). The second integral on the right-hand side is estimated as inthe proof of Lemma 4.6 in [2].We bound the third integral by the volume of the set {SN(x) 6 SN(x∗l0) + cδ2

} which isbounded uniformly in N . In fact, from the bound on SN and the convergence of SN(x∗l0)to S(φl0), we get for δ su�ciently small
{
SN(x) 6 SN(x∗l0) + cδ2

}
⊂
{∥∥∇Nx

∥∥2
2,N

+ ‖x‖22,N < N(S(φl0) + c)
} (6.50)which is a deformed ball. The computation shows that this quantity is uniformly boundedin N .



SHARP METASTABLE ASYMPTOTICS FOR ONE DIMENSIONAL SPDES 35We obtain the result since the order of magnitude of the two last integrals (O (e−(S′−η)/ε))of (6.49) is much smaller than I8 = O
(
e−S

N (x∗l0
)/ε
). �6.4. Finite Dimensional Formula. The �nite dimensional Formula is now obtained witha uniform control in the dimension. From Proposition 5.6, we take x∗ = φNl0 where φNl0 isthe unique minimum of SN such that

∥∥φl0 − φNl0
∥∥
L2 6

C

N

∥∥∥φ̂Nl0 − φNl0

∥∥∥
∞

6
C√
N

(6.51)where φ̂Nl0 is the linear interpolation of φl0 .Proposition 6.9. Let τNε be the transition time from BNρ (φNl0 ) to BNρ (MN
l ), we have uni-formly in N

EφNl0

[
τNε
]
=

2πe
SN (φNl0

)

ε

C∗(N, ε)
√
detHSN(φNl0 )

(1 + Ψ(ε,N)) (6.52)where C∗(N, ε) is the equivalent conductance and
lim sup
N→+∞

|Ψ(ε,N)| 6 C
√
ε |ln ε|3/2 . (6.53)Proof. Inserting the estimates for the capacity (Proposition 6.2) and the numerator (Propo-sition 6.7) in Equation (6.15) we conclude that

EνN [τ
N
ε ] =

2πe
SN (φNl0

)

ε

C∗(N, ε)
√
detHSN(φNl0 )

(1 + Ψ1(ε,N)) (6.54)where lim supN |Ψ1(ε,N)| < C
√
ε |ln(ε)|3/2 and νN is a probability measure on ∂BNρ (φNl0 ).Now we use Proposition 4.3 to replace the measure νN by the point φNl0 . For y ∈ BNρ (φNl0 ),we have by de�nition

∥∥φNl0 − y
∥∥2
L2 < ρ2

∣∣SN(φNl0 )− SN(y)
∣∣ < ρ. (6.55)Then from Proposition 5.6, we have N0 such that for N > N0

‖φl0 − y‖2L2 < 2ρ2
∣∣S(φl0)− SN(y)

∣∣ < 2ρ. (6.56)Thus since V is regular, we obtain ∣∣∣∥∥φ′
l0

∥∥2
L2 − ‖y′‖2L2

∣∣∣ < Cρ.Let z = y − φl0, we have by integration by parts
∣∣∣
∥∥φ′

l0 + z′
∥∥2
L2 −

∥∥φ′
l0

∥∥2
L2

∣∣∣ =
∣∣∣2
〈
φ′
l0, z

′〉+ ‖z′‖2L2

∣∣∣ =
∣∣∣−2

〈
φ′′
l0 , z
〉
+ ‖z′‖2L2

∣∣∣ < Cρ (6.57)since φl0 is regular as a classical solution of a di�erential equation. Then we obtain by theCauchy-Schwarz inequality
‖z′‖2L2 6 Cρ+ 2

∥∥φ′′
l0

∥∥
L2 ‖z‖L2 6 (C + 2

∥∥φ′′
l0

∥∥
L2)ρ. (6.58)
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∥∥y − φNl0

∥∥
∞ 6 ‖y − φl0‖∞ 6 C ′ ‖y − φl0‖H1 = C ′ ‖z‖H1 6 C ′′√ρ. (6.59)Using Proposition 4.3, we get that for all N > N0∣∣∣EνN

[
τNε
]
− Eφl0

N

[
τNε
]∣∣∣ 6 e

Ŝ−2η
ε (6.60)which gives us (6.52) since the exponential asymptotics of (6.54) is greater than e Ŝ−η

ε . �6.5. Proof of Theorem 2.6. From Proposition 6.9 applied to the �nite di�usion approx-imation where the minima and saddle points are given by Proposition 5.6, we have
EφNl0

[
τNε
]
=

2πhNe
SN (φNl0

)

ε

C∗(N, ε)
√
detHSN(φNl0 )

(1 + Ψ(ε,N)) (6.61)where the factor hN comes from the time change (Equation (2.30)). Using Proposition 5.2(convergence of the eigenvalues) and Corollary 5.5 (convergence of the ratio of eigenvalues),the quadratic forms QN converges to Q:
1

hN
QN(a)

√
detHSN(φNl0 ) =

∑

φ∗Nl

∣∣λ−N (φ∗N
l )
∣∣

hN

√
detHSN(φNl0 )∣∣detHSN(φ∗N

l )
∣∣e

−SN (φ∗Nl )

ε (al+ − al−)
2

1

hN
QN(a)

√
detHSN(φNl0 ) −−−−→N→+∞

∑

φ∗l

∣∣λ−(φ∗
l)
∣∣
√

DetHφl0
S∣∣DetHφ∗l
S
∣∣e

−S(φ∗l)

ε (al+ − al−)
2

= Q(a)e−
S(φ∗l)

ε

√
DetHφl0

S. (6.62)where φ∗N
l are the relevant saddle points given by Proposition 5.6. Then the minimizerconverges. For all ε, we get
1

hN
C∗(N, ε)

√
detHSN(φNl0 ) −−−→N→∞

C∗(φl0 ,Ml)e
−S(φ∗l)

ε

√
DetHφl0
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