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Abstract

We develop optimized analytic reconstruction for the single-photon emission computed
tomography (SPECT). This reconstruction is based on : (1) Novikov’s exact and Chang’s
approximate inversion formulas for the attenuated ray transform, (2) filtering techniques,
and (3) Morozov type discrepancy principle. Our numerical examples include comparisons
with the standard least square and expectation maximization iterative SPECT reconstruc-
tions.

1. Introduction

In the single-photon emission computed tomography (SPECT) one considers a body
containing radioactive isotopes emitting photons. The emission data p in SPECT consist
in the radiation measured outside the body by a family of detectors during some fixed
time. The basic problem of SPECT consists in finding the distribution f of these isotopes
in the body from the emission data p and some a priori information concerning the body.
Usually this a priori information consists in the photon attenuation coefficient a in the
points of body, where this coefficient is found in advance by the methods of the transmission
computed tomography.

In addition, it is assumed that:

f(x) ≥ 0, a(x) ≥ 0, x ∈ R
d,

supp a ⊆ D, supp f ⊆ D,
(1.1)

where f and a are the aforementioned density of radioactive isotopes and photon attenua-
tion coefficient, D is some known compact domain containing the body; the aforementioned
emission data p are defined on the detector set Γ, where Γ is identified with some discrete
subset of the set T of all oriented straight lines in R

d; p(γ) is the number of photons com-
ing from (the domain containing) the body along oriented straight line γ to the detector
associated with γ, where γ ∈ Γ ⊂ T .

In some approximation

p(γ) is a realization of a Poisson variate p(γ)

with the mean Mp(γ) = g(γ) = CPaf(γ) for any γ ∈ Γ

and all p(γ), γ ∈ Γ, are independent,

(1.2)
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where

Paf(γ) =

∫

γ

exp [−Da(x, γ̂)]f(x)dx, (1.3)

where γ̂ is the direction of γ, dx is standard Euclidean measure on γ,

Da(x, θ) =

+∞∫

0

a(x + tθ)dt, x ∈ R
d, θ ∈ S

d−1, (1.4)

C = C1t, where t is the detection time, C1 is independent of t.
The transform Paf of (1.2), (1.3) is the attenuated ray transform of f ; the transform

Da of (1.3), (1.4) is the divergent beam transform of a.
Although the SPECT problem p, a −→ Cf arises for a body contained in R

d, d = 3,
this problem can be restricted to each fixed 2D plane Ξ intersecting the body and identified
with R

2.
We recall that T ≈ R × S

1, where T is the set of all oriented straight lines in R
2. If

γ = (s, θ) ∈ R × S
1, then γ = {x ∈ R

2 : x = tθ + sθ⊥, t ∈ R} (modulo orientation) and θ
gives the orientation of γ, where θ⊥ = (−θ2, θ1) for θ = (θ1, θ2) ∈ S

1.
After the restriction to 2D plane we assume that: (1.1) is fulfilled for

D = BR = {x ∈ R
2 : |x| ≤ R}, where R is radius of image support; Γ is a uniform n × n

sampling of

TR = {γ ∈ T : γ ∩ BR 6= 0} = {(s, θ) ∈ R × S
1 : |s| ≤ R}. (1.5)

In addition, the standard value for n is 128.
In the present article we consider the following problem.

Problem 1. Find (as well as possible) Cf from p and a, where Cf , a and p are the
functions of (1.2) considered in the framework of the 2D restriction as described above.

More precisely, we continue studies on numerical realizations of explicit analytic re-
construction formulas for Problem 1. In particular, the main result of the present article
consists in some optimized analytic reconstruction (for Problem 1) based on Novikov’s ex-
act and Chang’s approximate formulas for finding f on R

2 from Paf on T and a on R
2 and

on Morozov type discrepancy principle, see Sections 2, 3, 4. Related numerical examples
are given in Section 5 containing also comparative studies with some well-known iterative
methods. One can see that our optimized analytic reconstruction is rather efficient as
regards smallness of its reconstruction error in L2 norm.

2. Novikov formula

We consider the following exact inversion formula

Cf = Nag, (2.1)

where g = CPaf is defined as in (1.3) for d = 2 and γ = (s, θ) ∈ R × S
1,

Naq(x) =
1

4π

∫

S
1

θ⊥∇xK(x, θ)dθ, (2.2a)

K(x, θ) = exp [−Da(x,−θ)] q̃θ(xθ⊥), (2.2b)
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q̃θ(s) = exp
(
Aθ(s)) cos (Bθ(s))H(exp (Aθ) cos (Bθ) qθ

)
(s)+

exp
(
Aθ(s)) sin (Bθ(s))H(exp (Aθ) sin (Bθ) qθ

)
(s),

(2.2c)

Aθ(s) =
1

2
Pa(s, θ), Bθ(s) = H Aθ(s), qθ(s) = q(s, θ), (2.2d)

where q is a test function, Da is defined by (1.4), P = P0 is the classical two-dimensional
ray transformation (i.e. P0 is defined by (1.3) with a ≡ 0), H is the Hilbert transformation
defined by the formula

H u(s) =
1

π
p.v.

∫

R

u(t)

s − t
dt, (2.3)

where u is a test function, x = (x1, x2) ∈ R
2, θ = (θ1, θ2) ∈ S

1, θ⊥ = (−θ2, θ1), s ∈ R, dθ
is arc-length measure on the circle S

1.
In a slightly different form (using complex notations) formula (2.1) was obtained in

[Nov1]. Some new proofs of this formula were given in [Na] and [BS]. Formula (2.1)
was successfully implemented numerically in [Ku2] and [Na] via a direct generalization of
the (classical) filtered back-projection (FBP) algorithm. However, this generalized FBP
algorithm turned out to be considerably less stable, in general, than its classical analogue.
Some possibilities for improving the stability of SPECT imaging based on (2.1), (2.2) with
respect to the Poisson noise in the emission data g were proposed, in particular, in [Ku2]
(preprint version), [GJKNT], [GN1] and [GN2]. Some fast numerical implementation of
formula (2.1) was proposed in [BM].

In the present article we suggest new stabilization of the generalized FBP algorithm
implementing formula (2.1). This new stabilization involves Morozov’s discrepancy prin-
ciple and Chang’s formula, see Sections 3 and 4.

3. Chang formula

We consider the following approximate inversion formula

Cf ≃ Chag, (3.1)

where g = CPaf is defined as in (1.3) for d = 2 and γ = (s, θ) ∈ R × S
1,

Chaq(x) =
1

4πw0(x)

∫

S
1

θ⊥∇xHqθ(xθ⊥)dθ, (3.2a)

w0(x) =
1

2π

∫

S
1

exp[−Da(x, θ)]dθ, (3.2b)

qθ(s) = q(s, θ), (3.2c)

where q is a test function, H is defined by (2.3), Da is defined by (1.4), x ∈ R
2,

θ = (θ1, θ2) ∈ S
1, θ⊥ = (−θ2, θ1), s ∈ R, dθ is arc-length measure on S

1.
Formula (3.1) is known as Chang’s approximate inversion formula for the transforma-

tion Pa, see [Ch], [Ku1], [Nov2]. This formula is approximate for the continuous case but
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its result is sufficiently stable for reconstruction from discrete and noisy data p of (1.2) on
the basis of classical FBP algorithm. It is known that this formula is efficient as the first
approximation in SPECT reconstructions, see [Ch], [Ku1], [Nov2].

4. Optimization

The exact formula (2.1) is sufficiently stable on sufficiently low frequency part of p
and a but is rather unstable on other part of these data, see [Ku2], [GJKNT]. Therefore,
some reasonable low frequency approximation to Cf can be found as

Cf ≈ Cfα = Naα
(Wp)α or (4.1a)

Cf ≈ Cfα = (Na(Wp)α)α, (4.1b)

where Na denotes the generalized FBP algorithm implementing (2.2), α is optimization
parameter, W is some moderate filter (for example, space-variant Wiener type filter of
[GN2]), aα, (Wp)α, (Na(Wp)α)α denote the low-frequency parts of a, Wp, Na(Wp)α,
respectively, obtained via some standard 2D space-invariant low-frequency filtering depen-
dent on α. In addition, according to the Morozov principle we choose α as a parameter
minimizing the discrepancy

dα = ‖PaCfα −Wp‖L2(Γ). (4.2)

Numerical examples illustrating the reconstruction (4.1) with α found via the Morozov
discrepancy principle are given in Section 5, see figure 3 and formula (5.6). As far as we
know, these very natural numerical studies were not yet given in the literature.

In addition, the approximate formula (3.1) is sufficiently stable even on reasonably
high frequency part of p and a. Therefore, the optimized approximate reconstruction (4.1)
can be considerably improved as

Cf ≈ Cfα = Naα
(Wp)α + Cha(Wp − (Wp)α) or (4.3a)

Cf ≈ Cfα = (Na(Wp)α)α + Cha(Wp − ((Wp)α)α), (4.3b)

where we use notations similar to notations of (2.1), (3.1), (4.1) and where we choose α
as a parameter minimizing the discrepancy (4.2) with Cfα of (4.3). Numerical examples
illustrating the reconstruction (4.3) with α found via the aforementioned Morozov-type
discrepancy principle are given in Section 5, see figure 4 and formula (5.7).

Note also that some optimized analytic reconstruction based on (2.1), (3.1) can be
constructed as

Cf ≈ Cfβ = (1 − β)Cf1 + βCf2, (4.4)

where Cf1 = Cfα is based on (4.1), Cf2 = ChaWp and β is a parameter minimizing
dβ of (4.2) with Cfβ of (4.4). This reconstruction Cfβ is numerically simpler than the
aforementioned reconstruction Cfα of (4.3). However, the reconstruction result for Cfα

of (4.3) is better than for Cfβ of (4.4), see formulas (5.7),(5.9).

5. Numerical examples

5.1. Preliminary remarks
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All 2D images of this article are considered on n × n grids, where n = 128.
We assume that X is uniform n × n sampling of the domain

DR = {x = (x1, x2) ∈ R
2 : max(|x1|, |x2|) ≤ R}

and Γ is uniform n×n sampling of TR defined by (1.5), where R is radius of image support.
We use also the following notations

ζ(q2, q1,Γ
′) =

‖q2 − q1‖L2(Γ′)

‖q1‖L2(Γ′)
, (5.1)

where q1, q2 are test functions on Γ′ ⊆ Γ and

η(u2, u1, X
′) =

‖u2 − u1‖L2(X′)

‖u1‖L2(X′)
, (5.2)

where u1, u2 are test functions on X ′ ⊆ X.
Given f and a on X, we assume that Paf is defined on Γ and is numerical realization

of (1.3) as in [Ku2]. Given a on X and q on Γ, we assume that Naq and Chaq are defined
on X and denote the numerical realizations of (2.2) and (3.2) on the basis of generalized
and classical FBP algorithms, respectively, see [Ku2].

We assume that q̂ = Fg denotes the discrete Fourier transform of q.
All 2D images of the present article, except the spectrum of projections, are drawn

using a linear greyscale, in such a way that the dark grey color represents zero (or negative
values, if any) and white corresponds to the maximum value of the imaged function. For
the spectrum of projections, a non-linear greyscale was used, because of too great values
of the spectrum for small frequencies.

5.2. Elliptical chest phantom

We consider a version of the elliptical chest phantom (used for numerical simulations
of cardiac SPECT imaging; see [HL], [Br], [GN1]). This version is, actually, the same that
in [GN1], [GN2] and its description consists in the following:

(1) The major axis of the ellipse representing the body is 30 cm.
(2) The attenuation map is shown in figure 1(a); the attenuation coefficient a is 0.04

cm−1 in the lung regions (modeled as two interior ellipses), 0.15 cm−1 elsewhere within
the body ellipse, and zero outside the body.

(3) The emitter activity f is shown in figure 1(b); f is in the ratio 8:0:1:0 in my-
ocardium (represented as a ring), lungs, elsewhere within the body, and outside the body.

(4) The attenuated ray transform g = CPaf and noisy emission data p of (1.2) are
shown in figures 1(c), 2(a). In addition, the constant C was specified by the equation

‖g‖L1(Γ)/‖g‖
2
L2(Γ) = (0.30)2 (5.3)

in order to have that the noise level ζ(p, g,Γ) ≈ 0.30 (where ζ is defined by (5.1)). Actually,
we have that

ζ(p, g,Γ) = 0.298,
∑

γ∈Γ

p(γ) = 125450 (5.4)
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for p shown in figure 2(a), where ζ is defined by (5.1).

Figures 1(d) and 2(b) show the spectrums |ĝ| and |p̂|.

5.3. Reconstruction results

Figures 2(c), 2(d) show the filtering result Wp and its spectrum |Ŵp| (for p shown
in figure 2 (a)) for W = Asym

8,8 , where Asym
l1,l2

is the approximately optimal space-variant
Wiener-type filter of Section 5.3 of [GN2]. In addition,

ζ(Wp, g,Γ) = 0.110 (5.5)

which is about three times smaller than ζ of (5.4).
Figures 3, 4 show the reconstructions Cfα of (4.1a), (4.3a) and their central horizontal

profiles, where W = Asym
8,8 and α is found, for each of these reconstructions, as a parameter

minimizing dα of (4.2). In addition,

η(Cfα, Cf,X) = 0.445 for Cfα of (4.1a), (5.6)

η(Cfα, Cf,X) = 0.367 for Cfα of (4.3a), (5.7)

where Cf is, actually, shown in figure 1(b), η is defined by (5.2).
We have also that:

η(Cf2, Cf,X) = 0.393 (5.8)

for Cf2 = ChaWp of (4.4), where W = Asym
8,8 ;

η(Cfβ , Cf,X) = 0.391 (5.9)

for Cfβ of (4.4), where W = Asym
8,8 and β is found as a parameter minimizing dβ of (4.2).

An efficiency of (3.1), confirmed by (5.8), is explained in particular in [Nov2].

Figures 5(a)-(d) show standard steepest descent least square (SDLS) and expectation
maximization (EM) reconstructions Cfrec and their central horizontal profiles, obtained
via 60 iterations of each of these methods from a and p shown in figures 1(a), 2(a). In
addition,

η(Cfrec, Cf,X) = 0.436 for the SDLS case, (5.10)

η(Cfrec, Cf,X) = 0.421 for the EM case, (5.11)

where η, Cf,X are the same that in (5.6)-(5.9). For description of EM method in emission
tomography, see [HL], [SV] and references therein.

One can see that in our numerical examples Cfα of (4.3a) is the best as regards
smallness of the reconstruction error in L2 norm, whereas Cfrec obtained via 60 EM
iterations is the best as regards the resolution. Possible optimizations of EM and SDLS
reconstructions with respect to the iteration number will be not discussed in the present
article.
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(a) (b) (c) (d)

Figure 1. Attenuation map a (a), emitter activity f (b), noiseless emission data
g = CPaf (c), spectrum |ĝ| (d). (See Section 1 and Subsection 5.2.)

(a) (b) (c) (d)

Figure 2. Noisy emission data p (a), spectrum |p̂| (b), filtering result Wp (c), spectrum

|Ŵp| (d), for W = Asym
8,8 . (See Sections 1, 4 and Subsections 5.2, 5.3.)

(a) (b)

Figure 3. Reconstruction Cfα of (4.1a) (a) with its central horizontal profile (b). (See
Section 4 and Subsection 5.3.)
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(a) (b)
Figure 4. Reconstruction Cfα of (4.3a) (a) with its central horizontal profile (b). (See

Section 4 and Subsection 5.3.)

(a) (b) (c) (d)
Figure 5. Reconstruction Cfrec by 60 SDLS iterations(a), by 60 EM iterations (c),

and their central horizontal profiles (b), (d). (See Section 1 and Subsection 5.3.)

6. Conclusions

In this work we developed optimized analytic reconstructions based on : (1) Chang’s
approximate and Novikov’s exact inversion formulas for the attenuated ray transform, see
formulas (2.1), (3.1); (2) filtering techniques including Wiener-type filters of [GN2]; (3) Mo-
rozov type discrepancy principle. The formulas of these optimized analytic reconstructions
are given in Section 4 and related numerical examples are given in Section 5.

One can see that, for example, our optimized analytic reconstruction Cfα of (4.3) is
quite competitive with classical iterative (SDLS and EM) methods as regards the recon-
struction error in L2 norm, see formulas (5.7), (5.10), (5.11). However, the classical EM
method works better as regards the resolution, see figures 4 and 5(c), 5(d).

Thus, improving resolution properties of analytic reconstructions in SPECT is an open
direction for researches.
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