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Abstract

We study the impedance boundary map (or Robin-to-Robin map) for
the Schrödinger equation in open bounded demain at fixed energy in mul-
tidimensions. At least, in dimension d ≥ 3, we give global stability esti-
mates for determining potential from these boundary data and, as corol-
lary, from the Cauchy data set. Our results include also, in particular,
an extension of the Alessandrini identity to the case of the impedance
boundary map.

We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ D, E ∈ R, (0.1)

where
D is an open bounded domain in Rd, d ≥ 2,

with ∂D ∈ C2,
(0.2)

v ∈ L∞(D). (0.3)

We consider the impedance boundary map M̂α = M̂α,v(E) defined by

M̂α[ψ]α = [ψ]α−π/2 (0.4)

for all sufficiently regular solutions ψ of equation (0.1) in D̄ = D ∪ ∂D, where

[ψ]α = [ψ(x)]α = cosαψ(x)− sinα
∂ψ

∂ν
|∂D(x), x ∈ ∂D, α ∈ R (0.5)

and ν is the outward normal to ∂D. One can show(see Lemma 2.2) that there
is not more than a countable number of α ∈ R such that E is an eigenvalue for
the operator −∆ + v in D with the boundary condition

cosαψ|∂D − sinα
∂ψ

∂ν
|∂D = 0. (0.6)

Therefore, for any energy level E we can assume that for some fixed α ∈ R

E is not an eigenvalue for the operator −∆ + v in D
with boundary condition (0.6)

(0.7)

and, as a corollary, M̂α can be defined correctly.
Note that the impedance boundary map M̂α is reduced to the Dirichlet-to-

Neumann(DtN) map if α = 0 and is reduced to the Neumann-to-Dirichlet(NtD)
map if α = π/2. The map M̂α can be called also as the Robin-to-Robin map.
General Robin-to-Robin map was considered, in particular, in [9].
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We consider the following inverse boundary value problem for equation (0.1).
Problem 1.1. Given M̂α for some fixed E and α, find v.
This problem can be considered as the GelŠfand inverse boundary value

problem for the Schrödinger equation at fixed energy (see [8], [16]). At zero
energy this problem can be considered also as a generalization of the Calderon
problem of the electrical impedance tomography (see [5], [16]).

Problem 1.1 includes, in particular, the following questions: (a) uniqueness,
(b) reconstruction, (c) stability.

Global uniqueness theorems and global reconstruction methods for Problem
1.1 with α = 0 were given for the first time in [16] in dimension d ≥ 3 and in [4]
in dimension d = 2.

Global stability estimates for Problem 1.1 with α = 0 were given for the
first time in [1] in dimension d ≥ 3 and in [23] in dimension d = 2. A principal
improvement of the result of [1] was given recently in [21] (for the zero energy
case). Due to [14] these logarithmic stability results are optimal (up to the value
of the exponent). An extention of the instability estimates of [14] to the case of
the non-zero energy as well as to the case of Dirichlet-to-Neumann map given
on the energy intervals was given in [11].

Note also that for the Calderon problem (of the electrical impedance tomog-
raphy) in its initial formulation the global uniqueness was firstly proved in [27]
for d ≥ 3 and in [15] for d = 2.

It should be noted that in most of previous works on inverse boundary
value problems for equation (0.1) at fixed E it was assumed in one way or
another that E is not a Dirichlet eigenvalue for the operator −∆ + v in D,
see [1], [14], [16], [21], [23], [24], [25]. Nevertheless, the results of [4] can be
considered as global uniqueness and reconstruction results for Problem 1.1 in
dimension d = 2 with general α.

In the present work we give global stability estimates for Problem 1.1 in
dimension d ≥ 2 with general α. These results are presented in detail in Section
2.

In addition, in the present work we establish some basic properties of the
impedance boundary map with general α. In particular, we extend the Alessan-
drini identity to this general case. These results are presented in detail in Section
3.

In a subsequent paper we plan to give also global reconstruction method for
Problem 1.1 in multidimensions with general α.

1 Stability estimates
In this section we always assume that D satisfies (0.2).

We will use the fact that if v1, v2 are potentials satisfying (0.3), (0.7) for
some fixed E and α, then

M̂α,v1(E)− M̂α,v2(E) is a bounded operator in L∞(∂D), (1.1)
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where M̂α,v1(E), M̂α,v2(E) denote the impedance boundary maps for v1, v2, re-
spectively. Actually, under our assumptions, M̂α,v1(E)−M̂α,v2(E) is a compact
operator in L∞(∂D) (see Corollary 3.1).

Let
||A|| denote the norm of an operator

A : L∞(∂D)→ L∞(∂D).
(1.2)

Let the Cauchy data set Cv for equation (0.1) be defined by:

Cv =
{(

ψ|∂D,
∂ψ

∂ν
|∂D
)

:
for all sufficiently regular solutions ψ of

equation (0.1) in D̄ = D ∪ ∂D

}
. (1.3)

In addition, the Cauchy data set Cv can be represented as the graph of the
impedance boundary map M̂α = M̂α,v(E) defined by (0.4) under assumptions
(0.7).

1.1 Estimates for d ≥ 3

In this subsection we assume for simplicity that

v ∈Wm,1(Rd) for some m > d, supp v ⊂ D, (1.4)

where
Wm,1(Rd) = {v : ∂Jv ∈ L1(Rd), |J | ≤ m}, m ∈ N ∪ 0, (1.5)

where

J ∈ (N ∪ 0)d, |J | =
d∑
i=1

Ji, ∂
Jv(x) =

∂|J|v(x)
∂xJ1

1 . . . ∂xJd

d

. (1.6)

Let
||v||m,1 = max

|J|≤m
||∂Jv||L1(Rd). (1.7)

Note also that (1.4) ⇒ (0.3).

Theorem 1.1. Let D satisfy (0.2), where d ≥ 3. Let v1, v2 satisfy (1.4) and
(0.7) for some fixed E and α. Let ||vj ||m,1 ≤ N, j = 1, 2, for some N > 0. Let
M̂α,v1(E) and M̂α,v2(E) denote the impedance boundary maps for v1 and v2,
respectively. Then

||v1 − v2||L∞(D) ≤ Cα
(
ln
(
3 + δ−1

α

))−s
, 0 < s ≤ (m− d)/m, (1.8)

where Cα = Cα(N,D,m, s,E), δα = ||M̂α,v1(E)− M̂α,v2(E)|| is defined accord-
ing to (1.2).

Remark 2.1. Estimate (1.8) with α = 0 is a variation of the result of [1] (see
also [21]).

Proof of Theorem 1.1 is given in Section 5. This proof is based on results
presented in Sections 3, 4.

Theorem 1.1 implies the following corollary:
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Corollary 2.1. Let D satisfy (0.2), where d ≥ 3. Let potentials v1, v2 satisfy
(1.4). Then

||v1 − v2||L∞(D) ≤ min
α∈R

Cα
(
ln
(
3 + δ−1

α

))−s
, 0 < s ≤ (m− d)/m, (1.9)

where Cα and δα at fixed α are the same that in Theorem 1.1.
Actually, Corollary 2.1 can be considered as global stability estimate for

determining potential v from its Cauchy data set Cv for equation (0.1) at fixed
energy E, where d ≥ 3.

1.2 Estimates for d = 2

In this subsection we assume for simplicity that

v ∈ C2(D̄), supp v ⊂ D. (1.10)

Note also that (1.10) ⇒ (0.3).

Theorem 1.2. Let D satisfy (0.2), where d = 2. Let v1, v2 satisfy (1.10) and
(0.7) for some fixed E and α. Let ||vj ||C2(D̄) ≤ N, j = 1, 2, for some N > 0.
Let M̂α,v1(E) and M̂α,v2(E) denote the impedance boundary maps for v1 and
v2, respectively. Then

||v1 − v2||L∞(D) ≤ Cα
(
ln
(
3 + δ−1

α

))−s (
ln
(
3 ln

(
3 + δ−1

α

)))2
, 0 < s ≤ 3/4,

(1.11)
where Cα = Cα(N,D, s,E), δα = ||M̂α,v1(E)− M̂α,v2(E)|| is defined according
to (1.2).

Remark 2.2. Theorem 1.2 for α = 0 was given in [23] with s = 1/2 and in [25]
with s = 3/4.

Proof of Theorem 1.2 is given in Section 7. This proof is based on results
presented in Sections 3, 6.

Theorem 1.2 implies the following corollary:
Corollary 2.2. Let D satisfy (0.2), where d = 2. Let potentials v1, v2 satisfy
(1.10). Then

||v1− v2||L∞(D) ≤ min
α∈R

Cα
(
ln
(
3 + δ−1

α

))−s (
ln
(
3 ln

(
3 + δ−1

α

)))2
, 0 < s ≤ 3/4,

(1.12)
where Cα and δα at fixed α are the same that in Theorem 1.2.

Actually, Corollary 2.2 can be considered as global stability estimate for
determining potential v from its Cauchy data set Cv for equation (0.1) at fixed
energy E, where d = 2.

1.3 Concluding remarks
Theorems 2.1, 2.2 and Lemma 2.2 imply the following corollary:
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Corollary 2.3. Under assumptions (1.2), (1.3), real-valued potential v is
uniquely determined by its Cauchy data Cv at fixed real energy E .

To our knowledge the result of Corollary 2.3 for d ≥ 3 was not yet completely
proved in the literature.

Let σα,v denote the spectrum of the operator −∆ + v in D with boundary
condition (0.6).
Remark 2.3. In Theorems 1.1 and 1.2 we do not assume that E /∈ σα,v1 ∪σα,v2

namely for α = 0 in contrast with [1], [21], [23], [24], [25]. In addition, in fact,
in Corollaries 2.1 and 2.2 there are no special assumptions on E and α at all.
Actually, the stability estimates of [1], [21], [23], [24], [25] make no sense for
E ∈ σ0,v1 ∪ σ0,v2 and are too weak if dist(E, σ0,v1 ∪ σ0,v2) is too small.
Remark 2.4. The stability estimates of Subsections 2.1 and 2.2 admit principal
improvement in the sense described in [21], [22], [26]. In particular, Theorem
1.1 with s = m − d (for d = 3 and E = 0) follows from results presented in
Sections 3, 4 of the present work and results presented in Section 8 of [21]. In
addition, estimates (2.8), (2.9) for s = (m−d)/d admit a proof technically very
similar to the proof of Theorem 2.1, presented in Section 5. Possibility of such
a proof of estimate (2.8) for s = (m − d)/d, α = 0, E = 0 was mentioned, in
particular, in [30].
Remark 2.5. The stability estimates of Subsections 2.1 and 2.2 can be extended
to the case when we do not assume that supp v ⊂ D or, by other words, that v
is zero near the bounadry. In this connection see, for example, [1], [23].

In the present work we do not develop Remarks 2.4 and 2.5 in detail because
of restrictions in time.

Note also that Theorems 1.1 and 1.2 remain valid with complex-valued po-
tentials v1, v2 and complex E, α. Finally, we note that in Theorems 2.1, 2.2 and
Corollaries 2.1, 2.2 with real α, constant Cα can be considered as independent
of α.

2 Some basic properties of the impedance bound-
ary map

Lemma 2.1. Let D satisfy (0.2). Let potential v satisfy (0.3) and (0.7) for
some fixed E and α. Let M̂α = M̂α,v(E) denote the impedance boundary map
for v. Then (

sinα M̂α + cosα Î
)

[ψ]α = ψ|∂D,(
cosα M̂α − sinα Î

)
[ψ]α =

∂ψ

∂ν
|∂D,

(2.1)

∫
∂D

[ψ(1)]αM̂α[ψ(2)]αdx =
∫
∂D

[ψ(2)]αM̂α[ψ(1)]αdx (2.2)

for all sufficiently regular solutions ψ, ψ(1), ψ(2) of equation (0.1) in D̄, where
Î denotes the identity operator on ∂D and [ψ]α is defined by (0.5).

5



Note that identities (2.1) imply that(
sin(α1 − α2)M̂α1 + cos(α1 − α2)Î

)(
sin(α2 − α1)M̂α2 + cos(α2 − α1)Î

)
= Î ,

(2.3)
under the assumptions of Lemma 2.1 fulfilled simultaneously for α = α1 and
α = α2.

Note also that from (2.2) we have that∫
∂D

[φ(1)]αM̂α[φ(2)]αdx =
∫
∂D

[φ(2)]αM̂α[φ(1)]αdx (2.4)

for all sufficiently regular functions φ(1), φ(2) on ∂D.
Proof of Lemma 2.1. Identities (2.1) follow from definition (0.4) of the map M̂α.

To prove (2.2) we use, in particular, the Green formula∫
∂D

(
φ(1) ∂φ

(2)

∂ν
− φ(2) ∂φ

(1)

∂ν

)
dx =

∫
D

(
φ(1)∆φ(2) − φ(2)∆φ(1)

)
dx, (2.5)

where φ(1) and φ(2) are arbitrary sufficiently regular functions in D̄. Using (2.5)
and the identities

ψ(1)∆ψ(2) = (v − E)ψ(1)ψ(2) = ψ(2)∆ψ(1) in D, (2.6)

we obtain that ∫
∂D

(
ψ(1) ∂ψ

(2)

∂ν
− ψ(2) ∂ψ

(1)

∂ν

)
dx = 0. (2.7)

Using (2.7), we get that∫
∂D

(
cosαψ(1) − sinα

∂ψ(1)

∂ν

)(
sinαψ(2) + cosα

∂ψ(2)

∂ν

)
dx =

=
∫
∂D

(
cosαψ(2) − sinα

∂ψ(2)

∂ν

)(
sinαψ(1) + cosα

∂ψ(1)

∂ν

)
dx.

(2.8)

Identity (2.2) follows from (2.8) and definition (0.4) of the map M̂α. �

Theorem 2.1. Let D satisfy (0.2). Let two potentials v1, v2 satisfy (0.3), (0.7)
for some fixed E and α. Let M̂α,v1 = M̂α,v1(E), M̂α,v2 = M̂α,v2(E) denote the
impedance boundary maps for v1, v2, respectively. Then∫

D

(v1 − v2)ψ1ψ2 dx =
∫
∂D

[ψ1]α
(
M̂α,v1 − M̂α,v2

)
[ψ2]αdx (2.9)

for all sufficiently regular solutions ψ1 and ψ2 of equation (0.1) in D̄ with v = v1

and v = v2, respectively, where [ψ]α is defined by (0.5).
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Proof of Theorem 2.1. As in (2.6) we have that

ψ1∆ψ2 = (v2 − E)ψ1ψ2,

ψ2∆ψ1 = (v1 − E)ψ1ψ2.
(2.10)

Combining (2.10) with (2.5), (2.1) and (2.4), we obtain that∫
D

(v1(x)− v2(x))ψ1(x)ψ2(x)dx =
∫
∂D

(
ψ2
∂ψ1

∂ν
− ψ1

∂ψ2

∂ν

)
dx =

=
∫
∂D

(
sinα M̂α,v2 + cosα Î

)
[ψ2]α

(
cosα M̂α,v1 − sinα Î

)
[ψ1]αdx −

−
∫
∂D

(
sinα M̂α,v1 + cosα Î

)
[ψ1]α

(
cosα M̂α,v2 − sinα Î

)
[ψ2]αdx =

=
∫
∂D

[ψ1]α
(
M̂α,v1 − M̂α,v2

)
[ψ2]αdx.

(2.11)

�

Remark 3.1. Identity (2.9) for α = 0 is reduced to Alessandrini’s identity
(Lemma 1 of [1]).

Let Gα(x, y, E) be the Green function for the operator ∆ − v + E in D
with the impedance boundary condition (0.6) under assumptions (0.2), (0.3)
and (0.7). Note that

Gα(x, y, E) = Gα(y, x,E), x, y ∈ D̄. (2.12)

The symmetry (2.12) is proved in Section 9.

Theorem 2.2. Let D satisfy (0.2). Let potential v satisfy (0.3) and (0.7) for
some fixed E and α such that sinα 6= 0. Let Gα(x, y, E) be the Green function
for the operator ∆− v + E in D with the impedance boundary condition (0.6).
Then for x, y ∈ ∂D

Mα(x, y, E) =
1

sin2 α
Gα(x, y, E)− cosα

sinα
δ∂D(x− y), (2.13)

where Mα(x, y, E) and δ∂D(x−y) denote the Schwartz kernels of the impedance
boundary map M̂α = M̂α,v(E) and the identity operator Î on ∂D, respectively,
where M̂α and Î are considered as linear integral operators.

Proof of Theorem 2.2. Note that

[φ]α−π/2 =
1

sin2 α
sinαφ|∂D −

cosα
sinα

[φ]α. (2.14)
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for all suffuciently regular functions φ in some neighbourhood of ∂D in D. Since
Gα is the Green function for equation (0.1) we have that

ψ(y) =
∫
∂D

(
ψ(x)

∂Gα
∂νx

(x, y, E)−Gα(x, y, E)
∂ψ

∂ν
(x)
)
dx, y ∈ D, (2.15)

for all suffuciently regular solutions ψ of equation (0.1). Using (2.15) and
impedance boundary condition (0.6) for Gα, we get that

sinαψ(y) = sinα
∫
∂D

(
ψ(x)

∂Gα
∂νx

(x, y, E)−Gα(x, y, E)
∂ψ

∂ν
(x)
)
dx =

=
∫
∂D

[ψ(x)]αGα(x, y, E)dx, y ∈ D.
(2.16)

Due to (2.4) we have that

Mα(x, y, E) = Mα(y, x,E), x, y ∈ ∂D. (2.17)

Combining (0.4), (2.14), (2.16) and (2.17), we obtain (2.13). �

Corollary 3.1. Let assumtions of Theorem 2.1 hold. Then

M̂α,v1(E)− M̂α,v2(E) is a compact operator in L∞(∂D). (2.18)

Scheme of the proof of Corollary 3.1. Let Gα,v1(x, y, E) and Gα,v2(x, y, E)
be the Green functions for the operator ∆ − v + E in D with the impedance
boundary condition (0.6) for v = v1 and v = v2, respectively. Using (2.12), we
find that

Gα,v1(x, y, E) =
∫
D

Gα,v1(x, ξ, E) (∆ξ − v2(ξ) + E)Gα,v2(ξ, y, E) dξ,

Gα,v2(x, y, E) =
∫
D

(∆ξ − v1(ξ) + E)Gα,v1(x, ξ, E)Gα,v2(ξ, y, E) dξ,

∫
∂D

(
Gα,v1(x, ξ, E)

∂Gα,v2

∂νξ
(ξ, y, E)−Gα,v2(ξ, y, E)

∂Gα,v1

∂νξ
(x, ξ, E)

)
dξ = 0,

x, y ∈ D.
(2.19)

Combining (2.19) with (2.5), we get that

Gα,v1(x, y, E)−Gα,v2(x, y, E) =
∫
D

(v1(ξ)− v2(ξ))Gα,v1(x, ξ, E)Gα,v2(ξ, y, E) dξ,

x, y ∈ D.
(2.20)
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The proof of (2.18) for the case of sinα 6= 0 can be completed proceeding
from (2.3), (2.13), (2.20) and estimates of [12] and [3] on Gα(x, y, E) for v ≡ 0.

Corollary 3.1 for the Dirichlet-to-Neumann case (sinα = 0) was given in [16].
�

Lemma 2.2. Let D satisfy (0.2). Let v be a real-valued potential satisfying
(0.3). Then for any fixed E ∈ R there is not more than countable number of
α ∈ R such that E is an eigenvalue for the operator −∆+v in D with boundary
condition (0.6).

Proof of Lemma 2.2. Let ψ(1), ψ(2) be eigenfunctions for the operator −∆ + v
in D with boundary condition (0.6) for α = α(1) and α = α(2), respectively.
Then

sin
(
α(1) − α(2)

) ∫
∂D

ψ(1)ψ(2)dx = sinα(1) sinα(2)

∫
∂D

(
ψ(1) ∂ψ

(2)

∂ν
− ψ(2) ∂ψ

(1)

∂ν

)
dx = 0.

(2.21)
Since in the separable space L2(∂D) there is not more than countable orthogonal
system of functions, we obtain the assertion of Lemma 2.2. �

Remark 3.1 The assertion of Lemma 2.2 remains valid for the case of α ∈ C.

3 Faddeev functions
We consider the Faddeev functions G, ψ, h (see [6], [7], [10], [16]):

ψ(x, k) = eikx +
∫
Rd

G(x− y, k)v(y)ψ(y, k)dy, (3.1)

G(x, k) = eikxg(x, k), g(x, k) = −(2π)−d
∫
Rd

eiξxdξ

ξ2 + 2kξ
, (3.2)

where x ∈ Rd, k ∈ Cd, Im k 6= 0, d ≥ 3,

h(k, l) = (2π)−d
∫
Rd

e−ilxv(x)ψ(x, k)dx, (3.3)

where
k, l ∈ Cd, k2 = l2, Im k = Im l 6= 0. (3.4)

One can consider (3.1), (3.3) assuming that

v is a sufficiently regular function on Rd with suffucient decay at infinity.
(3.5)
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For example, in connection with Problem 1.1, one can consider (3.1), (3.3)
assuming that

v ∈ L∞(D), v ≡ 0 on R \D. (3.6)

We recall that (see [6], [7], [10], [16]):

• The function G satisfies the equation

(∆ + k2)G(x, k) = δ(x), x ∈ Rd, k ∈ Cd \ Rd; (3.7)

• Formula (3.1) at fixed k is considered as an equation for

ψ = eikxµ(x, k), (3.8)

where µ is sought in L∞(Rd);

• As a corollary of (3.1), (3.2), (3.7), ψ satisfies (0.1) for E = k2;

• The Faddeev functions G, ψ, h are (non-analytic) continuation to the
complex domain of functions of the classical scattering theory for the
Schrödinger equation (in particular, h is a generalized "‘scattering"’ am-
plitude).

In addition, G, ψ, h in their zero energy restriction, that is for E = 0, were
considered for the first time in [2]. The Faddeev functions G, ψ, h were, actually,
rediscovered in [2].

Let
ΣE =

{
k ∈ Cd : k2 = k2

1 + . . .+ k2
d = E

}
,

ΘE = {k ∈ ΣE , l ∈ ΣE : Im k = Im l} .
(3.9)

Under the assumptions of Theorem 1.1, we have that:

µ(x, k)→ 1 as |Im k| → ∞ (3.10)

and, for any σ > 1,

|µ(x, k)|+ |∇µ(x, k)| ≤ σ for |Im k| ≥ r1(N,D,E,m, σ), (3.11)

where x ∈ Rd, k ∈ ΣE ;

v̂(p) = lim
(k, l) ∈ ΘE , k − l = p
|Im k| = |Im l| → ∞

h(k, l) for any p ∈ Rd, (3.12)

|v̂(p)− h(k, l)| ≤ c1(D,E,m)N2

ρ
for (k, l) ∈ ΘE , p = k − l,

|Im k| = |Im l| = ρ ≥ r2(N,D,E,m),

p2 ≤ 4(E + ρ2),

(3.13)

where
v̂(p) = (2π)−d

∫
Rd

eipxv(x)dx, p ∈ Rd. (3.14)
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Results of the type (3.10) go back to [2]. Results of the type (3.12), (3.13)
(with less precise right-hand side in (3.13)) go back to [10]. In the present
work estimate (3.11) is given according to [18], [20]. Estimate (3.13) follows, for
example, from the estimate

‖Λ−sg(k)Λ−s‖L2(Rd)→L2(Rd) = O(|k|−1) as |k| → ∞,

k ∈ Cd \ Rd, |k| = (|Re k|2 + |Im k|2)1/2,
(3.15)

for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel
g(x−y, k) and Λ denotes the multiplication operator by the function (1+|x|2)1/2.
Estimate (3.15) was formulated, first, in [13] for d ≥ 3. Concerning proof of
(3.15), see [29].

In addition, we have that:

h2(k, l)− h1(k, l) = (2π)−d
∫
Rd

ψ1(x,−l)(v2(x)− v1(x))ψ2(x, k)dx

for (k, l) ∈ ΘE , |Im k| = |Im l| 6= 0,
and v1, v2 satisfying (3.5),

(3.16)

h2(k, l)− h1(k, l) = (2π)−d
∫
∂D

[ψ1(·,−l)]α
(
M̂α,v2 − M̂α,v1

)
[ψ2(·, k)]αdx

for (k, l) ∈ ΘE , |Im k| = |Im l| 6= 0,
and v1, v2 satisfying (0.7), (3.6),

(3.17)
where hj , ψj denote h and ψ of (3.3) and (3.1) for v = vj , and M̂α,vj

denotes
the impedance boundary map of (0.4) for v = vj , where j = 1, 2.

Formula (3.16) was given in [17]. Formula (3.17) follows from Theorem 2.1
and (3.16). Formula (3.17) for α = 0 was given in [19].

4 Proof of Theorem 1.1
Let

L∞µ (Rd) = {u ∈ L∞(Rd) : ‖u‖µ < +∞},
‖u‖µ = ess sup

p∈Rd

(1 + |p|)µ|u(p)|, µ > 0. (4.1)

Note that
w ∈Wm,1(Rd) =⇒ ŵ ∈ L∞µ (Rd) ∩ C(Rd),
‖ŵ‖µ ≤ c2(m, d)‖w‖m,1 for µ = m,

(4.2)

where Wm,1, L∞µ are the spaces of (1.5), (4.1),

ŵ(p) = (2π)−d
∫
Rd

eipxw(x)dx, p ∈ Rd. (4.3)
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Using the inverse Fourier transform formula

w(x) =
∫
Rd

e−ipxŵ(p)dp, x ∈ Rd, (4.4)

we have that

‖v1 − v2‖L∞(D) ≤ sup
x∈D̄
|
∫
Rd

e−ipx (v̂2(p)− v̂1(p)) dp| ≤

≤ I1(r) + I2(r) for any r > 0,

(4.5)

where
I1(r) =

∫
|p|≤r

|v̂2(p)− v̂1(p)|dp,

I2(r) =
∫
|p|≥r

|v̂2(p)− v̂1(p)|dp.
(4.6)

Using (4.2), we obtain that

|v̂2(p)− v̂1(p)| ≤ 2c2(m, d)N(1 + |p|)−m, p ∈ Rd. (4.7)

Due to (3.13), we have that

|v̂2(p)− v̂1(p)| ≤ |h2(k, l)− h1(k, l)|+ 2c1(D,E,m)N2

ρ
,

p ∈ Rd, p = k − l, (k, l) ∈ ΘE ,

|Im k| = |Im l| = ρ ≥ r2(N,D,E,m),

p2 ≤ 4(E + ρ2).

(4.8)

Let
c3 = (2π)−d

∫
∂D

dx, L = max
x∈∂D

|x|,

δα = ‖M̂α,v2(E)− M̂α,v1(E)‖,

(4.9)

where ‖M̂α,v2(E)− M̂α,v1(E)‖ is defined according to (1.2).
Due to (3.16), (3.17), we have that

|h2(k, l)− h1(k, l)| ≤ c3‖[ψ1(·,−l)]α‖L∞(∂D) δα ‖[ψ2(·, k)]α‖L∞(∂D),

(k, l) ∈ ΘE , |Im k| = |Im l| 6= 0.
(4.10)

Using (0.5), (3.11), we find that

‖[ψ(·, k)]α‖L∞(∂D) ≤ c4(E)σ exp
(
|Im k|(L+ 1)

)
,

k ∈ ΣE , |Im k| ≥ r1(N,D,E,m, σ).
(4.11)
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Here and bellow in this section the constant σ is the same that in (3.11).
Combining (4.10) and (4.11), we obtain that

|h2(k, l)− h1(k, l)| ≤ c3 (c4(E)σ)2 exp
(

2ρ(L+ 1)
)
δα,

(k, l) ∈ ΘE , ρ = |Im k| = |Im l| ≥ r1(N,D,E,m, σ).
(4.12)

Using (4.8), (4.12), we get that

|v̂2(p)− v̂1(p)| ≤ c3 (c4(E)σ)2 exp
(

2ρ(L+ 1)
)
δα +

2c1(D,E,m)N2

ρ
,

p ∈ Rd, p2 ≤ 4(E + ρ2), ρ ≥ r3(N,D,E,m, σ),
(4.13)

where r3(N,D,E,m, σ) is such that

ρ ≥ r3(N,D,E,m, σ) =⇒


ρ ≥ r1(N,D,E,m, σ),
ρ ≥ r2(N,D,E,m),

ρ2/m ≤ 4(E + ρ2).

(4.14)

Let
c5 =

∫
p∈Rd,|p|≤1

dp, c6 =
∫

p∈Rd,|p|=1

dp. (4.15)

Using (4.6), (4.13), we get that

I1(r) ≤ c5rd
(
c3 (c4(E)σ)2 exp

(
2ρ(L+ 1)

)
δα +

2c1(D,E,m)N2

ρ

)
,

r > 0, r2 ≤ 4(ρ2 + E), ρ ≥ r3(N,D,E,m, σ).
(4.16)

Using (4.6), (4.7), we find that for any r > 0

I2(r) ≤ 2c2(m, d)Nc6

+∞∫
r

dt

tm−d+1
≤ 2c2(m,D)Nc6

m− d
1

rm−d
. (4.17)

Combining (4.5), (4.16), (4.17) for r = ρ1/m and (4.14), we get that

‖v1 − v2‖L∞(D) ≤ c7(D,σ)ρd/me2ρ(L+1)δα + c8(N,D,E,m)ρ−
m−d

m ,

ρ ≥ r3(N,D,E,m, σ).
(4.18)

We fix some τ ∈ (0, 1) and let

β =
1− τ

2(L+ 1)
, ρ = β ln

(
3 + δ−1

α

)
, (4.19)
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where δα is so small that ρ ≥ r3(N,D,E,m, σ). Then due to (4.18), we have
that

‖v1 − v2‖L∞(D) ≤ c7(D,σ)
(
β ln

(
3 + δ−1

α

))d/m (
3 + δ−1

α

)2β(L+1)
δα+

+c8(N,D,E,m)
(
β ln

(
3 + δ−1

α

))−m−d
m =

= c7(D,σ)βd/m (1 + 3δα)1−τ
δτα
(
ln
(
3 + δ−1

α

))d/m
+

+c8(N,D,E,m)β−
m−d

m

(
ln
(
3 + δ−1

α

))−m−d
m ,

(4.20)

where τ, β and δα are the same as in (4.19).
Using (4.20), we obtain that

‖v1 − v2‖L∞(D) ≤ c9(N,D,E,m, σ)
(
ln
(
3 + δ−1

α

))−m−d
m (4.21)

for δα = ‖M̂α,v2−M̂α,v1‖ ≤ δ(0)(N,D,E,m, σ), where δ(0) is a sufficiently small
positive constant. Estimate (4.21) in the general case (with modified c9) follows
from (4.21) for δα ≤ δ(0)(N,D,E,m, σ) and the property that ‖vj‖L∞(D) ≤
c10(D,m)N .

Thus, Theorem 2.1 is proved for s = m−d
m and, since ln

(
3 + δ−1

α

)
> 1, for

any 0 < s ≤ m−d
m .

5 Buckhgeim-type analogs of the Faddeev func-
tions

In dimension d = 2, we consider the functions Gz0 , ψz0 , ψ̃z0 , δhz0 of [23], going
back to Buckhgeim’s paper [4] and being analogs of the Faddeev functions:

ψz0(z, λ) = eλ(z−z0)2
+
∫
D

Gz0(z, ζ, λ)v(ζ)ψz0(ζ, λ) dReζ dImζ,

ψ̃z0(z, λ) = eλ̄(z̄−z̄0)2
+
∫
D

Gz0(z, ζ, λ)v(ζ)ψ̃z0(ζ, λ) dReζ dImζ,
(5.1)

Gz0(z, ζ, λ) =
1

4π2

∫
D

e−λ(η−z0)2+λ̄(η̄−z̄0)2
dReη dImη

(z − η)(η̄ − ζ̄)
eλ(z−z0)2−λ̄(ζ̄−z̄0)2

,

z = x1 + ix2, z0 ∈ D, λ ∈ C,

(5.2)

where R2 is identified with C and v, D satisfy (0.2), (0.3) for d = 2;

δhz0(λ) =
∫
D

ψ̃z0,1(z,−λ) (v2(z)− v1(z))ψz0,2(z, λ) dRez dImz, λ ∈ C, (5.3)

where v1, v2 satisfy (0.3) for d = 2 and ψ̃z0,1, ψz0,2 denote ψ̃z0 , ψz0 of (5.1) for
v = v1 and v = v2, respectively.
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We recall that (see [23], [24]):

4
∂2

∂z∂z̄
Gz0(z, ζ, λ) = δ(z − ζ),

4
∂2

∂ζ∂ζ̄
Gz0(z, ζ, λ) = δ(z − ζ),

(5.4)

where z, z0, ζ ∈ D, λ ∈ C and δ is the Dirac delta function; formulas (5.1) at
fixed z0 and λ are considered as equations for ψz0 , ψ̃z0 in L∞(D); as a corollary
of (5.1), (5.2), (5.4), the functions ψz0 , ψ̃z0 satisfy (0.1) for E = 0 and d = 2;
δhz0 is similar to the right side of (3.16).

Let potentials v, v1, v2 ∈ C2(D̄) and

‖v‖C2(D̄) ≤ N, ‖vj‖C2(D̄) ≤ N, j = 1, 2,

(v1 − v2)|∂D = 0,
∂

∂ν
(v1 − v2)|∂D = 0,

(5.5)

then we have that:

ψz0(z, λ) = eλ(z−z0)2
µz0(z, λ), ψ̃z0(z, λ) = eλ̄(z̄−z̄0)2

µ̃z0(z, λ), (5.6)

µz0(z, λ)→ 1, µ̃z0(z, λ)→ 1 as |λ| → ∞ (5.7)

and, for any σ > 1,
|µz0(z, λ)|+ |∇µz0(z, λ)| ≤ σ, (5.8a)

|µ̃z0(z, λ)|+ |∇µ̃z0(z, λ)| ≤ σ, (5.8b)

where ∇ = (∂/∂x1, ∂/∂x2), z = x1 + ix2, z0 ∈ D, λ ∈ C, |λ| ≥ ρ1(N,D, σ);

v2(z0)− v1(z0) = lim
λ→∞

2
π
|λ|δhz0(λ)

for any z0 ∈ D,
(5.9)

∣∣∣∣v2(z0)− v1(z0)− 2
π
|λ|δhz0(λ)

∣∣∣∣ ≤ c11(N,D) (ln(3|λ|))2

|λ|3/4

for z0 ∈ D, |λ| ≥ ρ2(N,D).
(5.10)

Formulas (5.6) can be considered as definitions of µz0 , µ̃z0 . Formulas (5.7),
(5.9) were given in [23], [24] and go back to [4]. Estimate (5.10) was obtained
in [23], [25]. Estimates (5.8) are proved in Section 8.

6 Proof of Theorem 1.2
We suppose that ψ̃z0,1(·,−λ), ψz0,2(·, λ), δhz0(λ) are defined as in Section 6 but
with vj − E in place of vj , j = 1, 2. We use the identity

M̂α,v(E) = M̂α,v−E(0). (6.1)
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We also use the notation NE = N + E. Then, using (5.10), we have that∣∣∣∣v2(z0)− v1(z0)− 2
π
|λ|δhz0(λ)

∣∣∣∣ ≤ c11(NE , D) (ln(3|λ|))2

|λ|3/4

for z0 ∈ D, |λ| ≥ ρ2(NE , D).
(6.2)

According to Theorem 2.1 and (5.3), we get that

δhz0(λ) =
1

4π2

∫
∂D

[ψ̃z0,1(·,−λ)]α
(
M̂α,v2(E)− M̂α,v1(E)

)
[ψz0,2(·, λ)]α |dz|,

λ ∈ C.
(6.3)

Let
c12 =

1
4π2

∫
∂D

|dz|, L = max
z∈∂D

|z|,

δα = ‖M̂α,v2(E)− M̂α,v1(E)‖,

(6.4)

where ‖M̂α,v2(E)− M̂α,v1(E)‖ is defined according to (1.2).
Using (6.3), we get that

|δhz0(λ)| ≤ c12‖[ψ̃z0,1(·,−λ)]α‖L∞(∂D) δα ‖ [ψz0,2(·, λ)]α ‖L∞(∂D), λ ∈ C.
(6.5)

Using (0.5), (5.8), we find that:

‖[ψ̃z0,1(·,−λ)]α‖L∞(∂D) ≤ σ exp
(
|λ|(4L2 + 4L)

)
,

‖[ψz0,2(·, λ)]α‖L∞(∂D) ≤ σ exp
(
|λ|(4L2 + 4L)

)
,

λ ∈ C, |λ| ≥ ρ1(NE , D, σ).

(6.6)

Here and bellow in this section the constant σ is the same that in (5.8).
Combining (6.5), (6.6), we obtain that

|δhz0(λ)| ≤ c12σ
2 exp

(
|λ|(8L2 + 8L)

)
δα,

λ ∈ C, |λ| ≥ ρ1(NE , D, σ).
(6.7)

Using (6.2) and (6.7), we get that

|v2(z0)− v1(z0)| ≤ c12σ
2 exp

(
|λ|(8L2 + 8L)

)
δα +

c11(NE , D) (ln(3|λ|))2

|λ|3/4
,

z0 ∈ D, λ ∈ C, |λ| ≥ ρ3(NE , D, σ) = max{ρ1, ρ2}.
(6.8)

We fix some τ ∈ (0, 1) and let

β =
1− τ

8L2 + 8L
, λ = β ln

(
3 + δ−1

α

)
, (6.9)
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where δα is so small that |λ| ≥ ρ3(NE , D, σ). Then due to (6.8), we have that

‖v1 − v2‖L∞(D) ≤ c12σ
2
(
3 + δ−1

α

)β(8L2+8L)
δα+

+ c11(NE , D)

(
ln
(
3β ln

(
3 + δ−1

α

)))2(
β ln

(
3 + δ−1

α

)) 3
4

=

= c12σ
2 (1 + 3δα)1−τ

δτα+

+ c11(NE , D)β−
3
4

(
ln
(
3β ln

(
3 + δ−1

α

)))2(
ln
(
3 + δ−1

α

)) 3
4

,

(6.10)

where τ, β and δα are the same as in (6.9).
Using (6.10), we obtain that

‖v1 − v2‖L∞(D) ≤ c13(NE , D, σ)
(
ln
(
3 + δ−1

α

))− 3
4
(
ln
(
3 ln

(
3 + δ−1

α

)))2 (6.11)

for δα = ‖M̂α,v2(E) − M̂α,v1(E)‖ ≤ δ(0)(NE , D, σ), where δ(0) is a sufficiently
small positive constant. Estimate (4.21) in the general case (with modified c13)
follows from (6.11) for δα ≤ δ(0)(NE , D, σ) and the property that ‖vj‖L∞(D) ≤
c14(D)N .

Thus, Theorem 2.2 is proved for s = 3
4 and, since ln

(
3 + δ−1

α

)
> 1, for any

0 < s ≤ 3
4 .

7 Proof of estimates (5.8)
In this section we prove estimate (5.8a). Estimate (5.8b) can be proved a com-
pletely similar way. Let

C1
z̄ (D̄) =

{
u : u,

∂u

∂z̄
∈ C(D̄)

}
,

‖u‖C1
z̄ (D̄) = max

(
‖u‖C(D̄), ‖

∂u

∂z̄
‖C(D̄)

)
.

(7.1)

Due to estimates of Section 3 of [23], we have that, for any ε1 > 0,

µz0(·, λ) ∈ C1
z̄ (D̄), ‖µz0(·, λ)‖C1

z̄ (D̄) ≤ 1 + ε1 for |λ| ≥ ρ4(N,D, ε1). (7.2)

In view of (7.2), to prove (5.8a) it remains to prove that, for any ε2 > 0,

∂zµz0(·, λ) ∈ C(D̄), ‖∂zµz0(·, λ)‖C(D̄) ≤ ε2 for |λ| ≥ ρ5(N,D, ε2), (7.3)

where ∂zµz0(·, λ) is considered as a function of z ∈ D̄ and ∂z = ∂/∂z.
We have that (see Sections 2 and 5 of [23]):

∂zµz0 =
1
4

Π T̄z0,λvµz0 , (7.4)
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Πu(z) = − 1
π

∫
D

u(ζ)
(ζ − z)2

dReζ dIm ζ, (7.5)

T̄z0,λu(z) = −e
−λ(z−z0)2+λ̄(z̄−z̄0)2

π

∫
D

eλ(ζ−z0)2−λ̄(ζ̄−z̄0)2

ζ̄ − z̄
u(ζ)dReζ dIm ζ, (7.6)

where u is a test function, z ∈ D̄.
In view of (7.2), (7.4) and Theorem 1.33 of [28], to prove (7.3) it is sufficient

to show that

‖T̄z0,λu‖Cs(D̄) ≤
A(D, s)
|λ|δ(s)

||u||C1
z̄ (D̄), |λ| ≥ 1, z0 ∈ D̄, (7.7)

for some fixed s ∈ (0, 1
2 ) and δ(s) > 0, where Cs(D̄) is the Hölder space,

Cs(D̄) =
{
u ∈ C(D̄) : ‖u‖Cs(D̄) < +∞

}
,

‖u‖Cs(D̄) = max
{
‖u‖C(D̄), ‖u‖′Cs(D̄)

}
,

‖u‖′Cs(D̄) = sup
z1,z2∈D̄,0<|z1−z2|<1

|u(z1)− u(z2)|
|z1 − z2|s

.

(7.8)

Due to estimate (5.6) of [23], we have that

‖T̄z0,λu‖C(D̄) ≤
A0(D)
|λ|1/2

||u||C1
z̄ (D̄), |λ| ≥ 1, z0 ∈ D̄. (7.9)

Therefore, to prove (7.7) it remains to prove that

‖T̄z0,λu‖′Cs(D̄) ≤
A1(D, s)
|λ|δ(s)

||u||C1
z̄ (D̄), |λ| ≥ 1, z0 ∈ D̄, (7.10)

for some fixed s ∈ (0, 1
2 ) and δ(s) > 0.

We will use that

‖u1u2‖′Cs(D̄) ≤ ‖u1‖′Cs(D̄)‖u2‖C(D̄) + ‖u1‖C(D̄)‖u2‖′Cs(D̄), 0 < s < 1. (7.11)

One can see that
T̄z0,λ = Fz0,−λT̄Fz0,λ, (7.12)

where T̄ = T̄z0,0 and Fz0,λ is the multiplication operator by the function

F (z, z0, λ) = eλ(z−z0)2−λ̄(z̄−z̄0)2
. (7.13)

One can see also that

‖F (·, z0,−λ)‖C(D̄) = 1,

‖F (·, z0,−λ)‖′Cs(D̄) ≤ A2(D, s)|λ|s, |λ| ≥ 1, z0 ∈ D̄.
(7.14)
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In view of (7.9), (7.11) - (7.14), to prove (7.10) it remains to prove that

‖T̄Fz0,λu‖′Cs(D̄) ≤
A3(D, s)
|λ|δ1(s)

||u||C1
z̄ (D̄), |λ| ≥ 1, z0 ∈ D̄, (7.15)

for some fixed s ∈ (0, 1
2 ) and δ1(s) > 0.

We have that

πT̄Fz0,λu(z1)− πT̄Fz0,λu(z2) =
∫
D

F (ζ, z0, λ)u(ζ)(z̄2 − z̄1)
(ζ̄ − z̄1)(ζ̄ − z̄2)

dReζ dIm ζ =

= Iz0,λ,ε(z1, z2) + Jz0,λ,ε(z1, z2),
(7.16)

where

Iz0,λ,ε(z1, z2) =
∫

D\Dz0,z1,z2,ε

F (ζ, z0, λ)u(ζ)(z̄2 − z̄1)
(ζ̄ − z̄1)(ζ̄ − z̄2)

dReζ dIm ζ, (7.17)

Jz0,λ,ε(z1, z2) =
∫

Dz0,z1,z2,ε

F (ζ, z0, λ)u(ζ)(z̄2 − z̄1)
(ζ̄ − z̄1)(ζ̄ − z̄2)

dReζ dIm ζ, (7.18)

where Bz,ε = {ζ ∈ C : |ζ − z| < ε}, Dz0,z1,z2,ε = D \

(
2⋃
j=0

Bzj ,ε

)
.

We will use the following inequalities:∣∣∣∣ z2 − z1

(ζ − z1)(ζ − z2)

∣∣∣∣ ≤ n1|z2 − z1|s
2∑
j=1

1
|ζ − zj |1+s

, (7.19)

∣∣∣∣ z2 − z1

(ζ − z1)(ζ − z2)(ζ − z0)

∣∣∣∣ ≤ n2|z2 − z1|s
2∑
j=0

1
|ζ − zj |2+s

, (7.20)

∣∣∣∣ ∂∂ζ
(

z2 − z1

(ζ − z1)(ζ − z2)(ζ − z0)

)∣∣∣∣ ≤ n3|z2 − z1|s
2∑
j=0

1
|ζ − zj |3+s

, (7.21)

where s ∈ (0, 1), n1, n2, n3 > 0, z0, z1, z2, ζ ∈ C and ζ 6= zi for j = 0, 1, 2.
Using (8.17), (8.19), we obtain that

Iz0,λ,ε(z1, z2) ≤ n4(s)ε1−s|z2 − z1|s, (7.22)

where n4(s) > 0, z0, z1, z2, ζ ∈ C and ε ∈ (0, 1). Further, we have that

Jz0,λ,ε(z1, z2) = − 1
2λ̄

∫
Dz0,z1,z2,ε

∂F (ζ, z0, λ)
∂ζ̄

u(ζ)(z̄2 − z̄1)
(ζ̄ − z̄1)(ζ̄ − z̄2)(ζ̄ − z̄0)

dReζ dIm ζ =

= J1
z0,λ,ε(z1, z2) + J2

z0,λ,ε(z1, z2),
(7.23)
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where

J1
z0,λ,ε(z1, z2) = − 1

4iλ̄

∫
∂Dz0,z1,z2,ε

F (ζ, z0, λ)u(ζ)(z̄2 − z̄1)
(ζ̄ − z̄1)(ζ̄ − z̄2)(ζ̄ − z̄0)

dζ,

J2
z0,λ,ε(z1, z2) =

1
2λ̄

∫
Dz0,z1,z2,ε

F (ζ, z0, λ)
∂

∂ζ̄

(
u(ζ)(z̄2 − z̄1)

(ζ̄ − z̄1)(ζ̄ − z̄2)(ζ̄ − z̄0)

)
dReζ dIm ζ,

(7.24)
Using (8.20), (8.21), (8.24), we obtain that

J1
z0,λ,ε(z1, z2) ≤ |λ|−1n5(D, s)ε−1−s|z2 − z1|s‖u‖C(D̄),

J2
z0,λ,ε(z1, z2) ≤ |λ|−1n6(D, s)ε−1−s|z2 − z1|s‖u‖C(D̄)+

+ |λ|−1n7(D, s)ε−s|z2 − z1|s
∥∥∥∥∂u∂z̄

∥∥∥∥
C(D̄)

,

(7.25)

where z0, z1, z2, λ ∈ C, |λ| ≥ 1, ε ∈ (0, 1).
Using (8.16), (8.22), (8.23), (8.25) and putting ε = |λ|−1/2 into (8.22), (8.25),

we obtain (8.15) with δ1(s) = (1− s)/2.

8 Proof of symmetry (2.12)

Let D′ be an open bounded domain in Rd such that

• D ⊂ D′,

• D′ satisfies (1.2),

• E is not a Dirichlet eigenvalue for the operator −∆ + v in D′.

Here and bellow in this section we assume that v ≡ 0 on D′ \D. Let R(x, y, E)
denote the Green function for the operator −∆ + v−E in D′ with the Dirichlet
boundary condition. We recall that

R(x, y, E) = R(y, x,E), x, y ∈ D′. (8.1)

Using (2.5), (8.1), we find that for x, y ∈ D∫
∂D

(
R(x, ξ, E)

∂R

∂νξ
(y, ξ, E)−R(y, ξ, E)

∂R

∂νξ
(x, ξ, E)

)
dξ =

=
∫
D

(
R(x, ξ, E) (∆ξ − v + E)R(y, ξ, E)−R(y, ξ, E) (∆ξ − v + E)R(x, ξ, E)

)
dξ =

= −R(x, y, E) +R(y, x,E) = 0.
(8.2)

Note that W = Gα +R(E) is the solution of the equation

(−∆x + v − E)W (x, y) = 0, x, y ∈ D (8.3)

20



with the boundary condition(
cosαW (x, y)− sinα

∂W

∂νx
(x, y)

) ∣∣∣
x∈∂D

=

=
(

cosαR(x, y, E)− sinα
∂R

∂νx
(x, y, E)

) ∣∣∣
x∈∂D

, y ∈ D.
(8.4)

Using (2.5) and (8.3), we find that for x, y ∈ D∫
∂D

(
W (ξ, x)

∂W

∂νξ
(ξ, y)−W (ξ, y)

∂W

∂νξ
(ξ, x)

)
dξ =

=
∫
D

(
W (ξ, x) (∆ξ − v + E)W (ξ, y)−W (ξ, y) (∆ξ − v + E)W (ξ, x)

)
dξ = 0

(8.5)
Note that

W (x, y) = −
∫
D

W (ξ, y) (∆ξ − v + E)R(ξ, x,E)dξ, x, y ∈ D. (8.6)

Combining (2.5), (8.3) and (8.6), we obtain that

W (x, y) = −
∫
∂D

(
W (ξ, y)

∂R

∂νξ
(ξ, x,E)−R(ξ, x,E)

∂W

∂νξ
(ξ, y)

)
dξ,

x, y ∈ D.

(8.7)

Using (8.4) and (8.7), we get that

sinαW (x, y) =

=
∫
∂D

W (ξ, y)
(

cosαW (ξ, x)− sinα
∂W

∂νξ
(ξ, x)− cosαR(ξ, x,E)

)
dξ −

−
∫
∂D

R(ξ, x,E)
(

cosαR(ξ, y, E)− sinα
∂R

∂νξ
(ξ, x,E)− cosαW (ξ, y)

)
dξ,

x, y ∈ D.
(8.8)

Combining similar to (8.8) formula for sinαW (y, x), (8.2) and (8.5), we obtain
that

sinαW (x, y)− sinαW (y, x) = 0, x, y ∈ D. (8.9)

In the case of sinα = 0, combining (8.4) and (8.7), we get that

W (x, y) =
∫
∂D

(
−R(ξ, y, E)

∂R

∂νξ
(ξ, x,E) +W (ξ, x)

∂W

∂νξ
(ξ, y)

)
dξ,

x, y ∈ D.

(8.10)
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Hence, one can get that for any α

W (x, y) = W (y, x), x, y ∈ D. (8.11)

Combining (8.1) and (8.11), we obtain (2.12).
We note that symmetry (2.12) for v ≡ 0, E = 0, d ≥ 3 was proved early, for

example, in [12].
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