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Abstract

We study the impedance boundary map (or Robin-to-Robin map) for
the Schrédinger equation in open bounded demain at fixed energy in mul-
tidimensions. At least, in dimension d > 3, we give global stability esti-
mates for determining potential from these boundary data and, as corol-
lary, from the Cauchy data set. Our results include also, in particular,
an extension of the Alessandrini identity to the case of the impedance
boundary map.

We consider the Schrédinger equation

—AY+v(z)yp =Ey, x€ D, EeR, (0.1)
where
D is an open bounded domain in R, d > 2, 0.2)
with D € C?, '
v e L®(D). (0.3)
We consider the impedance boundary map Ma = Maﬂ, (E) defined by
Ma[w]a = ['(/)]afﬂ/Z (04)

for all sufficiently regular solutions 1) of equation (0.1) in D = D U dD, where
. oY
[V]a = [¥(2)]a = cosap(x) —sina %bp(x), z€dD, aeR (0.5)

and v is the outward normal to dD. One can show(see Lemma 2.2) that there
is not more than a countable number of a € R such that F is an eigenvalue for
the operator —A + v in D with the boundary condition

. 0
cosa1plap — sina aiypr =0. (0.6)

Therefore, for any energy level E we can assume that for some fixed a € R

FE is not an eigenvalue for the operator —A 4+ v in D 07)
with boundary condition (0.6) '

and, as a corollary, M, can be defined correctly.

Note that the impedance boundary map M, is reduced to the Dirichlet-to-
Neumann(DtN) map if @ = 0 and is reduced to the Neumann-to-Dirichlet(NtD)
map if & = 7/2. The map M, can be called also as the Robin-to-Robin map.
General Robin-to-Robin map was considered, in particular, in [9].



We consider the following inverse boundary value problem for equation (0.1).

Problem 1.1. Given M, for some fixed F and a, find v.

This problem can be considered as the GelSfand inverse boundary value
problem for the Schréodinger equation at fixed energy (see [8], [16]). At zero
energy this problem can be considered also as a generalization of the Calderon
problem of the electrical impedance tomography (see [5], [16]).

Problem 1.1 includes, in particular, the following questions: (a) uniqueness,
(b) reconstruction, (c) stability.

Global uniqueness theorems and global reconstruction methods for Problem
1.1 with a = 0 were given for the first time in [16] in dimension d > 3 and in [4]
in dimension d = 2.

Global stability estimates for Problem 1.1 with o = 0 were given for the
first time in [1] in dimension d > 3 and in [23] in dimension d = 2. A principal
improvement of the result of [1] was given recently in [21] (for the zero energy
case). Due to [14] these logarithmic stability results are optimal (up to the value
of the exponent). An extention of the instability estimates of [14] to the case of
the non-zero energy as well as to the case of Dirichlet-to-Neumann map given
on the energy intervals was given in [11].

Note also that for the Calderon problem (of the electrical impedance tomog-
raphy) in its initial formulation the global uniqueness was firstly proved in [27]
for d > 3 and in [15] for d = 2.

It should be noted that in most of previous works on inverse boundary
value problems for equation (0.1) at fixed F it was assumed in one way or
another that F is not a Dirichlet eigenvalue for the operator —A + v in D,
see [1], [14], [16], [21], [23], [24], [25]. Nevertheless, the results of [4] can be
considered as global uniqueness and reconstruction results for Problem 1.1 in
dimension d = 2 with general a.

In the present work we give global stability estimates for Problem 1.1 in
dimension d > 2 with general a. These results are presented in detail in Section
2.

In addition, in the present work we establish some basic properties of the
impedance boundary map with general o. In particular, we extend the Alessan-
drini identity to this general case. These results are presented in detail in Section
3.

In a subsequent paper we plan to give also global reconstruction method for
Problem 1.1 in multidimensions with general c.

1 Stability estimates

In this section we always assume that D satisfies (0.2).
We will use the fact that if vy, vo are potentials satisfying (0.3), (0.7) for
some fixed F and «, then

My v, (E) — My, (E) is a bounded operator in L°°(0D), (1.1)



where Ma,vl (E), Ma,v2 (E) denote the impedance boundary maps for vy, va, re-
spectively. Actually, under our assumptions, Ma,vl (E)— Ma,w (F) is a compact
operator in L°°(0D) (see Corollary 3.1).

Let
[|A|| denote the norm of an operator

A:L*(0D) — L*>*(9D).
Let the Cauchy data set C, for equation (0.1) be defined by:

(1.2)

c - ol (971/) | . for all sufficiently regular solutions 1 of (1.3)
v oD gy 1or ) equation (0.1)in D=DUJD [ '

In addition, the Cauchy data set C, can be represented as the graph of the
impedance boundary map M, = M, ,(E) defined by (0.4) under assumptions
(0.7).

1.1 Estimates for d > 3

In this subsection we assume for simplicity that

v E Wm’l(]Rd) for some m > d, suppv C D, (1.4)
where
WL RY) = {v: 07v e LYRY), |J| <m}, meNUO, (1.5)
where .,
ol lu(z)
JeNuU)Y, |7 =Y J, v(z) = —————2—. 1.6
(NU0)?, |J] ; (x) ol 00T (1.6)
Let
[0llm,1 = lgllg)’anaJUHLl(Rd)- (L.7)

Note also that (1.4) = (0.3).

Theorem 1.1. Let D satisfy (0.2), where d > 3. Let v1, vy satisfy (1.4) and
(0.7) for some fized E and «. Let ||vj||m1 < N, j=1,2, for some N > 0. Let
Moo, (E) and Me ., (E) denote the impedance boundary maps for vy and va,
respectively. Then

o1 = val| (D) < Ca (In (3—&-(5;1))75, 0<s<(m—d)/m, (1.8)

where Co = Co(N, D, m, 8, E), o = ||Myn, (E) = Mo, (E)|| is defined accord-
ing to (1.2).

Remark 2.1. Estimate (1.8) with a = 0 is a variation of the result of [1] (see
also [21]).

Proof of Theorem 1.1 is given in Section 5. This proof is based on results
presented in Sections 3, 4.

Theorem 1.1 implies the following corollary:



Corollary 2.1. Let D satisfy (0.2), where d > 3. Let potentials vy, vy satisfy
(1.4). Then

[[v1 — va||Lee(p) < mei]%C’a (In (3+5;1))_5, 0<s<(m-—d)/m, (1.9)

where Cy, and 0., at fixed o are the same that in Theorem 1.1.

Actually, Corollary 2.1 can be considered as global stability estimate for
determining potential v from its Cauchy data set C, for equation (0.1) at fixed
energy F, where d > 3.

1.2 Estimates for d =2

In this subsection we assume for simplicity that
v € C*(D), suppv C D. (1.10)
Note also that (1.10) = (0.3).

Theorem 1.2. Let D satisfy (0.2), where d = 2. Let vy, ve satisfy (1.10) and
(0.7) for some fired E and . Let ||vj||c2py < N, j = 1,2, for some N > 0.

Let Ma,m (E) and Mam (E) denote the impedance boundary maps for vy and
vg, respectively. Then

|[v1 — v2|| L (p) < Ca (In (3+5;1))_s (In (3In (3 +5;1)))2, 0<s<3/4,
) ) (1.11)
where Cp, = Co(N, D, s, E), 0q = || My, (E) — My, (E)|| is defined according
to (1.2).

Remark 2.2. Theorem 1.2 for « = 0 was given in [23] with s = 1/2 and in [25]
with s = 3/4.

Proof of Theorem 1.2 is given in Section 7. This proof is based on results
presented in Sections 3, 6.

Theorem 1.2 implies the following corollary:
Corollary 2.2. Let D satisfy (0.2), where d = 2. Let potentials v1, va satisfy
(1.10). Then

||[v1 = va||Le (D) < gneiﬂréC’a (In (3—}—5;1))75 (In (31n (3+(5;1)))2, 0<s<3/4,

(1.12)
where Cy, and 0., at fixed o are the same that in Theorem 1.2.
Actually, Corollary 2.2 can be considered as global stability estimate for
determining potential v from its Cauchy data set C, for equation (0.1) at fixed
energy E, where d = 2.

1.3 Concluding remarks

Theorems 2.1, 2.2 and Lemma 2.2 imply the following corollary:



Corollary 2.3.  Under assumptions (1.2), (1.8), real-valued potential v is
uniquely determined by its Cauchy data C, at fizved real energy E .

To our knowledge the result of Corollary 2.3 for d > 3 was not yet completely
proved in the literature.

Let 04, denote the spectrum of the operator —A + v in D with boundary
condition (0.6).

Remark 2.3. In Theorems 1.1 and 1.2 we do not assume that E ¢ 04 4, U0,
namely for & = 0 in contrast with [1], [21], [23], [24], [25]. In addition, in fact,
in Corollaries 2.1 and 2.2 there are no special assumptions on E and « at all.
Actually, the stability estimates of [1], [21], [23], [24], [25] make no sense for
E € 09,4, U0og, and are too weak if dist(E, 0¢., U g v,) is too small.
Remark 2.4. The stability estimates of Subsections 2.1 and 2.2 admit principal
improvement in the sense described in [21], [22], [26]. In particular, Theorem
1.1 with s = m — d (for d = 3 and E = 0) follows from results presented in
Sections 3, 4 of the present work and results presented in Section 8 of [21]. In
addition, estimates (2.8), (2.9) for s = (m —d)/d admit a proof technically very
similar to the proof of Theorem 2.1, presented in Section 5. Possibility of such
a proof of estimate (2.8) for s = (m — d)/d, a = 0, E = 0 was mentioned, in
particular, in [30].

Remark 2.5. The stability estimates of Subsections 2.1 and 2.2 can be extended
to the case when we do not assume that suppv C D or, by other words, that v
is zero near the bounadry. In this connection see, for example, [1], [23].

In the present work we do not develop Remarks 2.4 and 2.5 in detail because
of restrictions in time.

Note also that Theorems 1.1 and 1.2 remain valid with complex-valued po-
tentials vy, v and complex F, a. Finally, we note that in Theorems 2.1, 2.2 and
Corollaries 2.1, 2.2 with real «, constant C, can be considered as independent
of a.

2 Some basic properties of the impedance bound-
ary map

Lemma 2.1. Let D satisfy (0.2). Let potential v satisfy (0.3) and (0.7) for
some fized E and «. Let M, = M, ,(E) denote the impedance boundary map
forv. Then

(sinona Jrcosozf) [¥]a = Y|oD,
(2.1)

(cosaMa — Sinaf) [V]o = g% 8D
/ [ o Malp®)ada = / [V o Ml odz (2:2)

oD oD

Jor all sufficiently regular solutions 1, 1 2 of equation (0.1) in D, where
I denotes the identity operator on 0D and [¢], is defined by (0.5).



Note that identities (2.1) imply that

(sin(a1 — ag)Mal + cos(ag — ag)f) (sin(a2 — al)Maz + cos(ag — al)f) =1,
(2.3)
under the assumptions of Lemma 2.1 fulfilled simultaneously for @ = a7 and
o = Q9.

Note also that from (2.2) we have that

A R T (2.4)
oD oD

for all sufficiently regular functions ¢, ¢ on dD. R
Proof of Lemma 2.1. Identities (2.1) follow from definition (0.4) of the map M,,.
To prove (2.2) we use, in particular, the Green formula

(@) W
/ ( ¢(1>5§; e 33: >dx _ / <¢<1> AGD _ 4 A¢<1>) v, (25)
oD D

where ¢(1) and ¢(?) are arbitrary sufficiently regular functions in D. Using (2.5)
and the identities

PpM AR = (v— E)¢(1)¢(2) =pPAp®  in D, (2.6)
we obtain that @ @
oY oY
1) — @ =
/ <¢ By P By ) dz = 0. (2.7)
oD

Using (2.7), we get that

1) (2)
/ cosozw(l) — sinaaw sinom/)(Q) + cosoz8¢ dx =
ov ov
D

9]
(2.8)
©)) M
= / (cosaz/;(2) - Sina%) (sinoml)(l) + cosaaw ) dx.
ov ov
oD
Identity (2.2) follows from (2.8) and definition (0.4) of the map M,. |

Theorem 2.1. Let D satisfy (0.2). Let two potentials vy, vy satisfy (0.3), (0.7)
for some fized E and o. Let My, = My, (E), My v, = My, (E) denote the
impedance boundary maps for vy, v, respectively. Then

[ =) rinde = [orda (Vo = Vo) Wolade— (29)
D oD

for all sufficiently regular solutions 11 and 1o of equation (0.1) in D with v = v,
and v = v, respectively, where [¢], is defined by (0.5).



Proof of Theorem 2.1. As in (2.6) we have that

1 Aty = (va — E)11a,

2.10
Vo Atpy = (v1 — E)11ha. (2:10)
Combining (2.10) with (2.5), (2.1) and (2.4), we obtain that
[ @@ - ey e = [ (w520 - 02 ) ar-
D oD
= / (sinoz]\;[oé,v2 —i—cosaf) [¥2]a (coscu]\;.l'aw1 — sinaf) [th1]adx —
op (2.11)
- / (Sinod\AIOM,1 + cosaf) [¥1]a (cosod\%aﬂ,2 - sinaf) [tho]ndx =
oD
= /[7/}1}(1 (Ma,vl - M(x,vz) [¢z]ad9€-
oD
|

Remark 3.1. Identity (2.9) for & = 0 is reduced to Alessandrini’s identity
(Lemma 1 of [1]).

Let Gu(z,y, E) be the Green function for the operator A — v + E in D
with the impedance boundary condition (0.6) under assumptions (0.2), (0.3)
and (0.7). Note that

Guo(z,y,E) =Gu(y,x, E), z,y€D. (2.12)
The symmetry (2.12) is proved in Section 9.

Theorem 2.2. Let D satisfy (0.2). Let potential v satisfy (0.3) and (0.7) for
some fized E and « such that sina # 0. Let Go(z,y, E) be the Green function
for the operator A — v + E in D with the impedance boundary condition (0.6).
Then for x,y € 0D

COS

1
5— Gal(r,y,E) — —— dap(z — y), (2.13)

Ma(ajyva): B
ST « SN &«

where Mo (x,y, E) and dop(x—y) denote the Schwartz kernels of the impedance
boundary map My = My (E) and the identity operator I on 0D, respectively,
where M, and I are considered as linear integral operators.

Proof of Theorem 2.2. Note that

COS &

(@) - (2.14)

1 .
Maiﬂﬂ - sin? sina glop - sin a



for all suffuciently regular functions ¢ in some neighbourhood of 9D in D. Since
G, is the Green function for equation (0.1) we have that

o) = [ (¥ 5 @0 B) = Galon B @) ) do, ye D (215)

oD

for all suffuciently regular solutions ¢ of equation (0.1). Using (2.15) and
impedance boundary condition (0.6) for G, we get that

sina () =sina [ (400522 (0,0 B) ~ Cuo Y3 (o)) do -
op (2.16)
:/W@h%@wEM%yeD

oD

Due to (2.4) we have that
My(x,y, E) = My(y,z, E), z,y € 0OD. (2.17)

Combining (0.4), (2.14), (2.16) and (2.17), we obtain (2.13). |

Corollary 3.1. Let assumtions of Theorem 2.1 hold. Then

My, (E) = My, (E) is a compact operator in 1L.°°(0D). (2.18)

Scheme of the proof of Corollary 3.1. Let Gu o, (z,y, E) and Gau,(z,y, E)
be the Green functions for the operator A — v 4+ E in D with the impedance
boundary condition (0.6) for v = v1 and v = vy, respectively. Using (2.12), we
find that

G (2,9, E) = / Grvon (2.6, F) (D — v9(€) + E) Gorog (€., E) d,
D

Ga,UQ(m,va) = /(A§ *’Ul(g) +E) Ga,vl(zafaE)Ga,vg(gayaE) df;
D
G v, 0G0,
/(Ga,vl(x7€,E)aV7(g,y,E)_Ga,vz(fany)aV’(x,g,E)) dé-:O,
5p 3 3
x,y € D.

(2.19)
Combining (2.19) with (2.5), we get that

Gon, (v,y,E) — Gom&(xvyaE) = /(Ul(f) —2(§)) Ga,vl(x,faE)Ga,vz(fayaE) dg,
D
x,y € D.
(2.20)



The proof of (2.18) for the case of sina # 0 can be completed proceeding
from (2.3), (2.13), (2.20) and estimates of [12] and [3] on G, (x,y, E) for v = 0.

Corollary 3.1 for the Dirichlet-to-Neumann case (sin v = 0) was given in [16].
]

Lemma 2.2. Let D satisfy (0.2). Let v be a real-valued potential satisfying
(0.3). Then for any fized E € R there is not more than countable number of
a € R such that E is an eigenvalue for the operator —A +wv in D with boundary
condition (0.6).

Proof of Lemma 2.2. Let (V) 1)(2) be eigenfunctions for the operator —A + v
in D with boundary condition (0.6) for & = o™ and o = a?, respectively.
Then

1)
sin (a(l) — a(z)) /1/J(1)¢(2)dx = sina™® sin o? / (w(l 81# w(2) 81811 > dx = 0.
v
aD

aD
(2.21)
Since in the separable space L.2(9D) there is not more than countable orthogonal
system of functions, we obtain the assertion of Lemma 2.2. [

Remark 3.1 The assertion of Lemma 2.2 remains valid for the case of o € C.

3 Faddeev functions

We consider the Faddeev functions G, 9, h (see [6], [7], [10], [16]):

(oK) = e + / G — . Kyo(y)(y k)dy. (3.1)
_ ke eie g
Gz, k)=¢e k g(z, k), gz, k)=—(2m)" -/£2 ke’ (3.2)

where 2z € R?, k € C4, Imk # 0, d > 3,

h(k,1) = (2m) ¢ / ey (x, k)de, (3.3)
R4
where
k,leC k=12 Imk=1Iml+#0. (3.4)

One can consider (3.1), (3.3) assuming that

v is a sufficiently regular function on R? with suffucient decay at infinity.
(3.5)



For example, in connection with Problem 1.1, one can consider (3.1), (3.3)
assuming that
vel™®(D), v=0onR\D. (3.6)

We recall that (see [6], [7], [10], [16]):

e The function G satisfies the equation
(A + k2)G(x,k) = 6(x), z€RY keC?\RY (3.7)
e Formula (3.1) at fixed k is considered as an equation for
¥ =M ula, k), (3.8)
where 1 is sought in L>°(R?);
e As a corollary of (3.1), (3.2), (3.7), ¢ satisfies (0.1) for E = k?;

o The Faddeev functions G, ¢, h are (non-analytic) continuation to the
complex domain of functions of the classical scattering theory for the
Schrodinger equation (in particular, h is a generalized "‘scattering"’
plitude).

am-

In addition, G, v, h in their zero energy restriction, that is for £ = 0, were
considered for the first time in [2]. The Faddeev functions G, ¥, h were, actually,
rediscovered in [2].

Let
Sp={keC": kK* =k +...+kj=E}, (3.9)
Op={keXp, 1 €Y :Imk=1Iml}. '
Under the assumptions of Theorem 1.1, we have that:
wlx, k) —1 as |Imk| — oo (3.10)
and, for any o > 1,
(e, k)| + V(e k)| <o for |mk|>ri(N,D,B;m,o),  (3.11)
where z € R, k € Yp;
b(p) = li h(k,l) fi e RY, 3.12
W)=y edm kD) foranyp (3.12)
[Imk| = |Im!l| — oo
D,E,m)N?
0(p) — h(k, )| < Cl(’p’m) for (k,1) € Op, p=k—1,
Imk| = [fml| = p > rs(N, D, E,m),  (313)
p* S4(E+p?),
where
(p) = (27r)7d/eipmv(a:)dx, p € R (3.14)

Rd
10



Results of the type (3.10) go back to [2]. Results of the type (3.12), (3.13)
(with less precise right-hand side in (3.13)) go back to [10]. In the present
work estimate (3.11) is given according to [18], [20]. Estimate (3.13) follows, for
example, from the estimate

A2 g(k)A™%||L2 (Rd)—L2(RE) = O(lk|™") as |k| — oo,

ke CI\RY, |k| = (|[Rek|® + |Im k|?)1/2, (3.15)
for s > 1/2, where g(k) denotes the integral operator with the Schwartz kernel
g(x—y, k) and A denotes the multiplication operator by the function (14-|z|?)!/2.
Estimate (3.15) was formulated, first, in [13] for d > 3. Concerning proof of
(3.15), see [29].

In addition, we have that:

(k) = (kD) = (22) [ 1. ~1)(v2(a) = 01(0)) . i
Rt (3.16)

for (k,1) € ©g, |Imk| = [Im!| # 0,

and vy, ve satisfying (3.5),

(k) = s (1) = (20) [ 1Dl (W = M) 2 Bad
oD
for (k,1) € Op, Imk| = [Im!| # 0,
and vy, ve satisfying (0.7), (3.6),
) (3.17)
where hj, 1; denote h and 9 of (3.3) and (3.1) for v = vj;, and M, ,; denotes
the impedance boundary map of (0.4) for v = v;, where j =1, 2.

Formula (3.16) was given in [17]. Formula (3.17) follows from Theorem 2.1
and (3.16). Formula (3.17) for & = 0 was given in [19].

4 Proof of Theorem 1.1

Let 4 4
L7 RY) ={u e L¥[R) : [lul|, < +oo},
lull = ess sup (1+ [p))* u(p)], 1> 0. (4.1
pER?
Note that
w e W™ RY) = o € L*(RY) NC(RY), (42)
[@]l < c2(m, d)[[w]lmy  for p=m, '
where W1 LL5° are the spaces of (1.5), (4.1),
w(p) = (27r)_d/eimw(x)dx, p € R (4.3)

Rd

11



Using the inverse Fourier transform formula
w(z) = /e*ipww(p)dp, z € RY,
Rd

we have that

o1 = valLee(py < sup | [ e (02(p) — 01(p)) dp| <
x€D R

< ILi(r)+ Ix(r) forany r >0,

where

n(r) = / [62(p) — 0(p)|dp,

[p|<r

I(r) = / [62(p) — 0n.(p)dp.

[p|>r

Using (4.2), we obtain that
|02(p) — 01(p)| < 2¢2(m, d)N(1+|p|])™™, peR™
Due to (3.13), we have that

[o2(p) — 01.(p)| < |ha(k, 1) — ha(k,D)] + W

peR!, p=k—1, (k1) €Op,
Imk| = [Imi| = p > ro(N, D, E,m),
P’ <A(E+p?).

)

Let
= (27) ¢ L=
c3 = (2m) /dm, ;releau[()m,
oD
0o = HMa,vz (E) - Ma,m (E)”7

where ||Ma’v2(E) — Ma,vl (E)|| is defined according to (1.2).
Due to (3.16), (3.17), we have that

|ha(k, 1) = ha(k, D)| < esl|[¥1(, =DlallLe op) da [[¥2(-, K)]allL=oD)
(k,1) € O, |Imk| = |Iml| # 0.

Using (0.5), (3.11), we find that

N6, B ol op) < ca(E) o exp (|Imk|(L N 1)),
keXg, Imk|>ri(N,D,E,m,o).
12

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)



Here and bellow in this section the constant o is the same that in (3.11).
Combining (4.10) and (4.11), we obtain that

(b = (D) < ca(ea(E)0)? exp (2L + 1) )

(4.12)
(k,1) € ©g, p=|lmk| =|Iml| > ri(N,D,E,m,o).
Using (4.8), (4.12), we get that
. . 2¢1(D, E,m)N?
i) = 19 < s (x(E)0)* ex (20t 1) g,  ZURZIL

pEeR?, p? <AE+p?), p>r3(N,D,E,m,0),
where r3(N, D, E,m, o) is such that

pZTl(N,D,E,Wl,O’),
p>r3(N,D,E,m,0) = ¢ p=r2(N,D,E,m), (4.14)
p?™ < A(E + p?).

c5 = / dp, cg= / dp. (4.15)

peR4,|p|<1 peRY |p|=1

Using (4.6), (4.13), we get that

Let

i

Li(r) < esr? (03 (ca(E)o)? exp <2p(L + 1)) o + 201(D7Evm)N2>

(4.16)
r>0, 72 <4(p* + E), p>r3(N,D,E, m,o).
Using (4.6), (4.7), we find that for any r > 0
T dt 2e(m,D)Neg 1
Cco(, Ce
Ir(r) < 2ca(m,d)Ncg / I S g i (4.17)
Combining (4.5), (4.16), (4.17) for r = p'/™ and (4.14), we get that
||U1 - v2||]L°°(D) < C7(Dv G)pd/mSZP(L+1)5(I + CS(Nv D7 E7 m)p7%7 (4 ].8)
p>r3(N,D,E,m,o). .
We fix some 7 € (0,1) and let
1—7
=-— p=pl 55" 4.1
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where §,, is so small that p > r3(N, D, E,m,o). Then due to (4.18), we have
that

v1 — V2L (D) < e7(Dyo n(3+o, + 0o at
o1 — vallie (o) < er(D,0) (BIn (3+6;1)) ™ (3+ 5,1V 5
tes(N, D, Eym) (Bln (34 651)) 7 = 120)
= e2(D,0) Y™ (14 36,) 767 (In (3 + 0 )™ 4
+es(N, D, E,m)p~ "% (In (3+6;1))J"”7d :
where 7, 8 and §,, are the same as in (4.19).
Using (4.20), we obtain that
_m=d
o1 = valLee(py < co(N, D, E,m,0) (In (3+4,")) ™ (4.21)

for 8o, = || My — Muw, || < 3O(N, D, E,m, o), where §(% is a sufficiently small
positive constant. Estimate (4.21) in the general case (with modified ¢g) follows
from (4.21) for 6, < 0©)(N, D, E,m,0) and the property that lvjllLee(py <
C10 (D, m)N

Thus, Theorem 2.1 is proved for s = mde and, since In (3 + 5;1) > 1, for
any 0 < s < mde_

5 Buckhgeim-type analogs of the Faddeev func-
tions

In dimension d = 2, we consider the functions G.,, %, ¥y, 0hs, of [23], going
back to Buckhgeim’s paper [4] and being analogs of the Faddeev functions:

Voo (2, \) = 200" 4 / o (2, ¢ A)0(C)ibae (€, A) dReC dIme,

- . o (5.1)
Do (2, N) = AE—20)° | / G (2 G N0(O) g (€, \) dReC dIme,
D
—A(n—z0 24 n—Zzo 2 o
G (Z ¢ >‘) = L e MR ) d_RendImn e)\(zfzn)z7>\(C*z'o)2
Z0 AR 4 D) — ,
7 =m0 652)

z=x1+1ix2, 20 € D, X €C,
where R? is identified with C and v, D satisfy (0.2), (0.3) for d = 2;

5hZO(A):/szl(z,fx)(ug(z)fvl(z));uzmg(z,x)dRezdImz, AeC, (5.3)

where vy, vo satisfy (0.3) for d = 2 and 152071, 15,2 denote QZZO, ., of (5.1) for
v = v1 and v = vy, respectively.
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We recall that (see [23], [24]):
ae (2,¢A) =6d(z2 =)
4——GL (2,0, A) =0(2 — (),
020z (5.4)
478(866:% (z,¢, ) =d(z = (),

where 2,20, € D, A € C and ¢ is the Dirac delta function; formulas (5.1) at
fixed zp and A are considered as equations for ¢, {/;zO in L*°(D); as a corollary
of (5.1), (5.2), (5.4), the functions t,,, ¥, satisfy (0.1) for E = 0 and d = 2;
Oh, is similar to the right side of (3.16).

Let potentials v, vy, v2 € C%(D) and

lvllezpy < N, vjllezpy < N, 5 =1,2,

0 (5.5)
(Ul - U2)|aD =0, 5(1}1 - U2)|8D =0,
then we have that:
Yo (2, 0) = 707 (20), g (2,0) = AET L (2,0), (5.6)
L (2,A) = 1, [z (2,A) =1 as|A| — oo (5.7)
and, for any o > 1,
120 (2, A + [Viz, (2, )] < o, (5.8a)
iz (2, A)] + [VHiz, (2,A)] < 0, (5.8b)

where V = (0/0x1,0/0x3), z = x1 + ixa, 20 € D, A € C, |A\| > p1(N, D, 0);

2
va(z0) — v1(20) = AH—>H<>1<> ;|)\\6hz0()\) (5.9)

for any 29 € D,

c11(N, D) (In(3]A]))*
|A|3/4 (5.10)
for zg € D, |A| > p2(N, D).

valz0) = 1(20) = 2 Moha, (V)] <

Formulas (5.6) can be considered as definitions of p,,, fi,,. Formulas (5.7),
(5.9) were given in [23], [24] and go back to [4]. Estimate (5.10) was obtained
in [23], [25]. Estimates (5.8) are proved in Section 8.

6 Proof of Theorem 1.2

We suppose that 1., 1 (-, =), z,.2(-, A), 6z, (A) are defined as in Section 6 but
with v; — E in place of v;, j = 1,2. We use the identity

Mey.o(E) = My 5(0). (6.1)

15



We also use the notation Ng = N + E. Then, using (5.10), we have that
c11(Ng, D) (In(3|A])”

AP/ (6.2)
for zo € D, || > p2(Ng, D).

v2(20) — v1(20) — 72r)\|§hzo()\)’ <

According to Theorem 2.1 and (5.3), we get that

20N = g [ e oMo (Vs (B) = Nl (B)) Bz 2, M), 1],
oD
AeC.
(6.3)
Let )
c12 = —5 / |dz|, L = max |z,
4 A 2€0D (6.4)

0o = ||Ma,v2(E) - Mouvl (E)H,

where || My, (E) — My, (E)]|| is defined according to (1.2).
Using (6.3), we get that

18Rz (W] < e12ll 20,1, =MallLe @) 8o | a2 (5 M, <o), A € C.

(6.5)
Using (0.5), (5.8), we find that:
170~ Aallmcan) < 7 exp (@2 + 41 ).
6.6
6202 Aoy < 7 exp (AL +48) ), (6.5)
AE(C7 |>\|ZP1(NE,D,U)
Here and bellow in this section the constant o is the same that in (5.8).
Combining (6.5), (6.6), we obtain that
|6h.y (V)] < 120 exp ()\|(8L2 + 8L)) dars (6.7)

/\667 |>‘|ZPI(NE7D70)
Using (6.2) and (6.7), we get that
e (Np, D) (In(3[A])*

lva(20) — v1(20)| < €120 exp (|)\|(8L2 + 8L))5a +

PZE—
z0€ D, ANeC, |\ > p3(Ng,D,o0)=max{p1,p2}
(6.8)
We fix some 7 € (0,1) and let
1—7
= — — 1 -1 .
b=sirrsn Bln(3+6,1), (6.9)
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where 4, is so small that |A| > p3(Ng, D,0). Then due to (6.8), we have that

_ 8L*+8L
H’Ul — UQH]LOO(D) < 0120'2 (3 + 5a1)6( )5a—|-

A LICEILYCRL )
(BIn(3+0a"))"
= 1902 (1436,)" 7767+
s (In(36In (3+651)))°
(n(3+0651))*

(6.10)

+c11(Ng, D)

where 7, 3 and 4, are the same as in (6.9).
Using (6.10), we obtain that

o1 — val(py < c13(Np, D, o) (In (3+051)) 7 (n (3m (3+0651)))* (6.11)

for 8 = || Mo (E) = Mg, (E)|| < 8 (Ng, D, o), where 6©) is a sufficiently
small positive constant. Estimate (4.21) in the general case (with modified ¢13)
follows from (6.11) for 6, < §©°)(Ng, D, o) and the property that lvjllLee(py <
614(D)N.

Thus, Theorem 2.2 is proved for s = % and, since In (3 + 6;1) > 1, for any
0<s< %.

7 Proof of estimates (5.8)

In this section we prove estimate (5.8a). Estimate (5.8b) can be proved a com-
pletely similar way. Let

ou _
ClD)=3u:u,— e€C(D
10) = {usu G e o)},
ou
HUHc;(D) = max ||UHC(D)7 H£|\C(D) .
Due to estimates of Section 3 of [23]|, we have that, for any ¢; > 0,
fzo () € CL(D),  lptzo (5 M llerpy <1461 for [A| > pa(N, D,er). (7.2)
In view of (7.2), to prove (5.8a) it remains to prove that, for any e5 > 0,

8ZMZO('7A) € C(D)a ”azﬂzo('v)‘)HC(D) <e&y for |/\‘ = p5(N,D,EQ), (73)

where 0,11, (-, \) is considered as a function of z € D and 9, = 9/0z.
We have that (see Sections 2 and 5 of [23]):

1. -
aZ[LI’Z() = ZHT207>\DMZO7 (7.4)
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Tu(z) = -+ / “C)  JRe¢ dim ¢, (7.5)

= B(=rE
_ e—Mz—20)*+A(2-%)* eM¢—20)°—A((—%0)?
Topu(2) = — g | w0 amc. (76)
D

where u is a test function, z € D.
In view of (7.2), (7.4) and Theorem 1.33 of [28], to prove (7.3) it is sufficient
to show that

_AWD,s)
Cs(D) = A5G

I T2 a0l lulloxpy:  IA[21, 2z €D, (7.7)

for some fixed s € (0, 3) and 6(s) > 0, where Cy(D) is the Holder space,

Cy(D) = {ue C(D): |lulle,py < +o0},

[[ul

c.p) = max {ulopy. el o) } s

[u(z1) — u(z2)|
ICS(D) = sup )

_ _ s
z1,22€D,0< |21 —22|<1 |Z1 22‘

[[ul

Due to estimate (5.6) of [23], we have that

= Ao(D) -
T2 aullepy < WH“HC%(D)y A[>1, 20€D. (7.9)

Therefore, to prove (7.7) it remains to prove that

Al(D,S) —
c.(b) < W||u||0;(D)a Al =1, 2z €D, (7.10)

I T2l

for some fixed s € (0, 3) and 6(s) > 0.
We will use that

luruzlle, 5y < lwlle, 5y lluzllom) + lmllem)lluzlle, gy, 0<s<1. (7.11)

One can see that

T.pn = Fo 2 TF. 0, (7.12)
where T = Tzo,O and F, » is the multiplication operator by the function
F(z,20,\) = AEm70)"=A(z=20)% (7.13)
One can see also that

[F( 20, =Mlewpy =1,

_ 7.14
IF G20, =N, oy < A2(D,s)AP, A =1, z € D. (7.14)

18



In view of (7.9), (7.11) - (7.14), to prove (7.10) it remains to prove that

A5(D S)

||Ton /\U”c WT(S

lullcipy, Al =1, 20 € D, (7.15)

for some fixed s € (0, %) and & (s) >
We have that

F _
7TTFZO )\U(Zl) - ﬂ-TFZU )\u Z2 / C7 ZO’ ,) (g) l)dReC dImC =
—z1)(C — 22)
= Z07A1€(217 22) + JZQ,)\,&(ZI7 22)7
(7.16)
where

Ly re(21,22) = / F(S, 20, Au (€)<222 — %) dRe( dIm ¢, (7.17)

Joone(21,22) = / F(C, 20, Au (@(5222_ Zl)dRe(dImC, (7.18)

20,21,22,€

2
where B = {C € C:[¢ — 2| <&}, Dagzyege = D\ (U B)
j=0

We will use the following inequalities:

2
i D I
MM’ S’I’L1|22—21| j=21|€»_zj‘1+57 (719)
2
e ey L
(C—2z1)(¢ — 22)(¢ — 20) < nofz — 21 Jgo ‘C*Zj|2+s7 (7.20)
. 2o 1
¢ ((C—zl)(g_ZQ)(C_zo))‘ < nglzg — 21| jgo IE=PAEEE (7.21)

where s € (0,1), ny,n2,n3 > 0, 20, 21,22, € C and { # z; for j =0,1,2
Using (8.17), (8.19), we obtain that

Lyae(z1,22) < na(s)e' ™%z — 21|, (7.22)

where n4(s) > 0, z0, 21, 22,( € C and ¢ € (0,1). Further, we have that

OF( 20N u(0)(z =) m¢ =
/ 86 (6_ 21)(5_ 22)(5_20)dR6CdI C —

1
2
D

Joone(21, 22) = —
O

= Zlo,NE(Zl’ 22) + ‘]220,)\,5 (Zh ZQ)a
(7.23)
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where

. _ F(Cvzm )
Taoreler,22) = — = / (C—2)(¢ -

al)zo,zl,zz,a

2 _ 1 9
J2ae(z1,22) = o / F(C,ZO,A)ag ((521)(522)(520)> dRe¢ dIm ¢,

[)zo,zl,zQ,s

(7.24)
Using (8.20), (8.21), (8.24), we obtain that
Jhoae(z1,22) < A7 ns (D, s)e ™ 0 ze — 21 ull ey,
JZQ()’)\,E(ZM 22) < |)\|71n6(D7 5)57178‘22 - Zl|SHu”C lj)+ (7 25)
_ ou
+ A7 e (D, s)e ™ |z2 — 21| 5 ,
Zllc(Dd)

where zg, 21,22, A € C, |A| > 1, £ € (0,1).
Using (8.16), (8. 22) (8.23), ( 25) and putting e = |A\|~/? into (8.22), (8.25),
we obtain (8.15) with d1(s) = (1 s)/2

8 Proof of symmetry (2.12)

Let D’ be an open bounded domain in R? such that
e DC D,
e D’ satisfies (1.2),
e FE is not a Dirichlet eigenvalue for the operator —A + v in D’.

Here and bellow in this section we assume that v =0 on D'\ D. Let R(z,y, F)
denote the Green function for the operator —A +v — E in D’ with the Dirichlet
boundary condition. We recall that

R(x7y7 E) = R(y’ :'L'7 E)’ x?:l/ G ‘D/' (8'1)
Using (2.5), (8.1)7 we find that for z,y € D

OR

/( (0.6 E) 5 16, - <y,5,E>5%<x,aE>)d§=

/ Z‘EE Ag—’U—i—E) (yafaE)_R(yang)(Af_U+E)R($’§7E)>d§:
D
—R(z,y,E) + R(y,z,E) = 0.

(8.2)
Note that W = G, + R(E) is the solution of the equation

(_A:C+U_E)W(x7y) :Oa T,y € D (83)
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with the boundary condition

x€dD

<cos aW(z,y) —sina gTWT(x, y))

OR (8.4)
= <cosaR(x,y,E) —sin o M(x’y’E)) ‘xeaD’ yeD.

Using (2.5) and (8.3), we find that for z,y € D

/((@) (€) - WEm) 2 (@))g

oD

— [ (W&o @c = v+ BYW(ED) ~ W(E0) (B¢ — v+ EYW(E0))d =0

D
(8.5)
Note that
W(a,y) = —/W(g,y) (A —v+ E)R(6,0, E)dE, w.yeD.  (86)
D
Combining (2.5), (8.3) and (8.6), we obtain that
W(l‘,y) = - (53 ) (g,l’ E) (57:17 E) (57 ) d£7
8£< ) (8.7)

z,y €D.
Using (8.4) and (8.7), we get that
sinaW(z,y) =

= /W(f,y) (cosaW({,m) —sina ZTW(f,x) — cosaR(ﬁ,x,E)) d¢ —
3
aD

/R &x, F) <cosaR(§ Y, )—sma OR (f,az E) - cosaW(f,y)) dg,

z,y €D.
(8.8)
Combining similar to (8.8) formula for sina W (y, =), (8.2) and (8.5), we obtain
that
sinaW(z,y) —sinaW(y,z) =0, z,y€D. (8.9)

In the case of sina = 0, combining (8.4) and (8.7), we get that

W) - | (—R(&y,E)gZ(mE)+W(£,m>gZ(£,y>> d,

A (8.10)

z,y € D.
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Hence, one can get that for any «

W(z,y) =Wl(y,z), =z,y€D. (8.11)

Combining (8.1) and (8.11), we obtain (2.12).

We note that symmetry (2.12) for v =0, E = 0, d > 3 was proved early, for

example, in [12].
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