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Homogenization of a nonstationaryonvetion-di�usion equation in a thin rod and in alayerG. Allaire ∗ I. Pankratova † A. Piatnitski ‡Marh 8, 2012AbstratThe paper deals with the homogenization of a non-stationary onvetion-di�usion equation de�ned in a thin rod or in a layer with Dirihlet boundaryondition. Under the assumption that the onvetion term is large, we desribethe evolution of the solution's pro�le and determine the rate of its deay. Themain feature of our analysis is that we make no assumption on the supportof the initial data whih may touh the domain's boundary. This requires theonstrution of boundary layer orretors in the homogenization proess whih,surprisingly, play a ruial role in the de�nition of the leading order term at thelimit. Therefore we have to restrit our attention to simple geometries like a rodor a layer for whih the de�nition of boundary layers is easy and expliit.Keywords: Homogenization, onvetion-di�usion, loalization, thin ylin-der, layer.1 IntrodutionThe paper deals with the homogenization of a nonstationary onvetion-di�usionequation with large onvetion stated either in a thin rod or in a layer. In theprevious work [4℄ the authors addressed a similar homogenization problem for an
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equation de�ned in a general bounded domain Ω ⊂ R
d. Namely, the followinginitial-boundary value problem has been onsidered:





∂tu
ε − div

(
a
(x
ε

)
∇uε

)
+

1

ε
b
(x
ε

)
· ∇uε = 0, in (0, T ) × Ω,

uε(t, x) = 0, on (0, T ) × ∂Ω,

uε(0, x) = u0(x), x ∈ Ω,

(1.1)with periodi oe�ients aij, bj and a small parameter ε. Notie that in the ase ofa solenoidal vetor-�eld b(y) with zero mean-value the problem an be studied bythe lassial homogenization methods (see, for example, [8℄, [24℄). In partiular,the sequene of solutions is bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] andonverges, as ε → 0, to the solution of an e�etive or homogenized problem inwhih there is no onvetive term. For more general vetor �elds b, a similarbehaviour of uε is observed if the so-alled e�etive drift (a suitable weightedaverage of b) is equal to zero. The behaviour of the solution hanges essentially ifthe e�etive drift is nontrivial. Problem (1.1) with nonzero e�etive drift has �rstbeen onsidered in the whole spae R
d [3℄, [12℄, [18℄, [21℄ by using the method ofmoving oordinates: the solution travels at a large speed (equal to the e�etivedrift divided by ε) and its pro�le is given by the solution of an homogenizeddi�usion equation. Reently the authors solved the same problem in a boundeddomain Ω under the ruial assumption that the initial funtion u0 has a ompatsupport in Ω [4℄. In this ase the initial pro�le moves towards the boundary duringa time of order ε, and then, upon reahing the boundary, starts dissipating.As a result, the solution is asymptotially small for time t ≫ ε and our paper[4℄ desribes preisely the asymptotis of uε, whih is quite di�erent from thatobtained in the ase of R

d.Without the assumption that u0 has a ompat support in Ω, one faes theneessity to onstrut boundary layer orretors in the neighbourhood of ∂Ω. Itis well known that the onstrution of boundary layers for general domains isa di�ult problem whih annot be expressed in expliit form (see however thereent papers [13℄, [14℄). However, it is a feasible task if the periodi strutureagrees with the geometry of the boundary of Ω. In the present paper we onsidertwo types of domains whih possess this property. Namely, we study a onvetion-di�usion models in a thin rod (see Fig. 1) and in a layer (see Fig. 2) in R
d. Weemphasize that, unlike in lassial homogenization, the boundary layers we shallonstrut for (1.1) are not just orretor terms but, rather, they play a ruialrole in the de�nition of the leading order term in the asymptoti analysis (formore details, see the disussion after Theorem 2.1).In the ase of a thin rod (Setion 2) we impose homogeneous Neumann bound-ary onditions on the lateral boundary of the rod and homogeneous Dirihletboundary onditions on its bases. As in the ase of a general bounded domain[4℄, the solution asymptotially vanishes for time t≫ ε. Theorem 2.1 determinesthe rate of vanishing of the solution and desribes the evolution of its pro�le. If2



the e�etive axial drift is not zero (otherwise the problem is trivial), the resaledsolution onentrates in the viinity of one of the rod ends, and the hoie of theend depends on the sign of the e�etive onvetion. In order to haraterize therate of deay we introdue a 1-parameter family of auxiliary ell spetral prob-lems, similar to Bloh waves but with real exponential argument (see [8℄, [9℄, [11℄).The asymptoti behaviour of the solution is then governed by the �rst eigenpairof the said family of spetral problems and by a one-dimensional homogenizedproblem with a singular initial data.In the ase of a layer, addressed in Setion 3, in addition to the fatorizationpriniple, we also have to introdue moving oordinates [3℄, [12℄. More preisely,we use a parameterized ell spetral problem and fatorization priniple to sup-press the normal omponent of the e�etive drift (perpendiular to the layerboundary). While, due to the presene of the longitudinal omponents of the ef-fetive onvetion, we have to introdue moving oordinates (parallel to the layerboundary). The main result in this ase is given by Theorem 3.1. The asymp-toti behaviour of uε is again governed by the �rst eigenpair of the spetral ellproblem and by a homogenized problem with a singular initial data.In both ases (rod or layer) the initial data of the homogenized problem, andthus the asymptoti behavior of solutions to (1.1), di�er from those obtained forthe ase of a general domain in [4℄ (see again the disussion after Theorem 2.1).Among the tehnial tools used in the paper, are fatorization priniple (see [16℄,[23℄, [24℄, [2℄, [9℄), dimension redution arguments and qualitative results requiredfor onstruting boundary layer orretors.2 The ase of a thin rodThis setion is onerned with the homogenization of equation (1.1) stated ina thin rod Gε = (−1, 1) × εQ (see Figure 1). Here Q ⊂ R
d−1 is a boundeddomain with Lipshitz boundary ∂Q, ε > 0 is a small parameter. Without lossof generality, we assume that Q has a unit (d − 1)-dimensional measure, i.e.

|Q|d−1 = 1. Throughout this setion the points in R
d are denoted x = (x1, x

′)with x′ ∈ R
d−1. The lateral boundary of the rod Gε is denoted Σε = (−1, 1) ×

ε∂Q. For T > 0, we onsider the following model:




∂tu
ε(t, x) +Aε u

ε(t, x) = 0, in (0, T ) ×Gε,

Bεu
ε(t, x) = 0, on (0, T ) × Σε,

uε(t,±1, x′) = 0, on (0, T ) × εQ,

uε(0, x) = u0(x1), x ∈ Gε

(2.1)
with

Aεu
ε = −div

(
aε∇uε

)
+

1

ε
bε · ∇uε; Bεu

ε = aε∇uε · n.3
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Figure 1: The rod GεThe oe�ients of the equation are given by
aε

ij = aij

(x
ε

)
, bεj = bj

(x
ε

)
, 1 ≤ i , j ≤ d. (2.2)Note that the �xed domain Ω in (1.1) is replaed in (2.1) by Gε whih has avanishing ross-setion and that the Dirihlet boundary onditions are appliedmerely at the end bases of the thin rod. If the rod had a square ross-setion,the problem with the Neumann boundary ondition on the lateral boundary Σεould be redued to a problem with periodi boundary onditions in a ylinderhaving in the ross-setion the square of double size. This gives us an idea thatour results an be extended to the ase of periodi boundary onditions on thelateral boundary of the rod. Indeed, the arguments used in the paper also apply,with some simpli�ations, to the ase of periodi boundary onditions.We assume that:(H1) The oe�ients of Aε are measurable bounded funtions, that is aij , bj ∈

L∞(R × Q). Moreover, aij(y1, y
′), bj(y1, y

′) are 1-periodi with respet to
y1.(H2) The d × d matrix a(y) is symmetri and satis�es the uniform elliptiityondition, that is there exists Λ > 0 suh that

aij(y)ξiξj ≥ Λ|ξ|2, ∀x, ξ ∈ R
d.(H3) The initial funtion u0(x1) ∈ C1[−1, 1].(H4) For simpliity, we assume that ε = 1/N , N ∈ Z+.Remark 2.1. In assumption (H2) the Einstein summation onvention over re-peated indies is used, as well as later in this paper. Assumption (H4) meansthat the rod is made up of a number of entire ells whih are not ut at both ends.Sine the rod has a vanishing thikness and u0 is smooth, there is no funda-mental restrition in assuming that u0 depends only on x1.Under the stated assumptions we study the asymptoti behaviour of solutions

uε(t, x) of problem (2.1), as ε→ 0.2.1 Auxiliary spetral problems and main resultIn what follows we denote
Au = −div(a∇u) + b · ∇u, Bu = a∇u · n; (2.3)4



A∗u = −div(a∇u) − div(b u), B∗u = a∇u · n+ (b · n)u. (2.4)Following [8℄, [9℄, for θ ∈ R, we introdue two parameterized families of spetralproblems (diret and adjoint) whih are di�erent from the usual Floquet-Blohspetral problems beause the exponential fator θ is real instead of being purelyimaginary. They reads




e−θy1 Aeθy1 pθ(y) = λ(θ) pθ(y), in Y = T1 ×Q,

e−θy1 B eθy1 pθ(y) = 0, on ∂Y = T1 × ∂Q,

y1 → pθ(y) 1-periodi, (2.5)and 



eθy1 A∗ e−θy1 p∗θ(y) = λ(θ) p∗θ(y), in Y,
eθy1 B∗ e−θy1 p∗θ(y) = 0, on ∂Y,
y1 → p∗θ(y) 1-periodi.Here T1 is the 1-dimensional unit irle. Note that the exponential transform isapplied only with respet to the �rst spae omponent y1. The next result, basedon the Krein-Rutman theorem, has been proved in [9℄.Lemma 2.1. For eah θ ∈ R, the �rst eigenvalue λ1(θ) of problem (2.5) is real,simple, and the orresponding eigenfuntions pθ and p∗θ an be hosen positive.Moreover, θ → λ1(θ) is twie di�erentiable, stritly onave and admits a maxi-mum whih is obtained for a unique θ = Θ.The eigenfuntions pθ and p∗θ de�ned by Lemma 2.1, are normalized by

∫

Y

|pθ(y)|2 dy = 1 and ∫

Y

pθ(y) p
∗
θ(y) dy = 1. (2.6)Di�erentiating equation (2.5) with respet to θ, integrating against p∗θ and writingdown the ompatibility ondition for the resulting equation, yield

dλ1

dθ
=

∫

Y

(
b1 pθ p

∗
θ + a1j(pθ ∂yj

p∗θ − p∗θ ∂yj
pθ) − 2 θ pθ p

∗
θ a11

)
dy. (2.7)Notiing that λ1(0) = 0 and pθ(y)|θ=0 = 1, one obtains

dλ1

dθ

∣∣∣
θ=0

=

∫

Y

(
a1j ∂yj

p∗ + b1 p
∗
)
dy ≡ b̄1, (2.8)where p∗(y) = p∗θ(y)|θ=0. The last expression is the so-alled e�etive axial drift

b̄1 ∈ R.In what follows we assume that b̄1 > 0 (whih is equivalent to Θ > 0). Thease b̄1 < 0 is symmetri and an be onsidered in the same way.To avoid exessive tehnialities, we �rst formulate our main result in a looseway. 5



Theorem 2.1. Let onditions (H1) − (H4) be ful�lled and b̄1 > 0 (see (2.8)).Suppose that u0(−1) 6= 0. Then there exist onstants aeff and M suh that, for
t > 0 and x ∈ Gε, the asymptotis of the solution uε of problem (2.1) takes theform

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

) [
u(t, x1) + rε(t, x)

]
,where u is a solution of the one-dimensional e�etive problem





∂tu = aeff ∂2
x1
u, (t, x1) ∈ (0, T ) × (−1, 1),

u(t,±1) = 0, t ∈ (0, T ),

u(0, x1) = −M u0(−1) δ′(x1 + 1), x1 ∈ (−1, 1).Here rε(t, x) is suh that |rε(t, ·)| ≤ C ε for t ≥ t0 > 0, x ∈ I+×εQ, I+ ⋐ (−1, 1],and the onstant C depends on I+,Λ, Q, d.A more preise statement of Theorem 2.1 an be found below in Theorems 2.2and 2.3. The interpretation of Theorem 2.1 is that it is a result of both loaliza-tion/onentration and homogenization. Indeed, up to a multipliative onstant
ε2, the solution uε is asymptotially equal to the produt of two exponentialterms, a periodially osillating funtion pΘ

(
x
ε

) (whih is uniformly positive andbounded) and the homogenized funtion u(t, x1) (whih is independent of ε). The�rst exponential term e−
λ1(Θ)t

ε2 indiates a fast deay in time, uniform in spae.The seond exponential term, eΘ(x1+1)
ε , indiates a loalization of the solutionin a small neighborhood of the right end of the rod, where the solution attainsits maximum; everywhere else in (−1, 1) the solution is exponentially smaller.The homogenized solution u depends only on the value of the initial data u0 atthe opposite extremity x1 = −1 and it is proportional to the onstant M whihdepends on some homogenization boundary layers.The role of boundary layers is thus ruial in the result of Theorem 2.1.Furthermore, if the initial data u0 had a ompat support [α, β] ⋐ (−1, 1) and

u0(α) 6= 0, then Theorem 5.2 in [4℄ gives a similar asymptoti behaviour ex-ept for the initial data of the homogenized problem whih would be u(0, x1) =

M̃ u0(α) δ(x1 − α). In other words, the derivative of the Dira mass would bereplaed with the Dira mass itself.Remark 2.2. The error estimate for the remainder term rε is not preise enoughand it shall be improved in Theorem 2.3. Indeed, the homogeneous Dirihletboundary ondition for u(t, x1), together with the exponential eΘ(x1+1)
ε shows that

uε(t, x) attains its maximum at a distane of order ε of the end point x1 = 1:there, by a Taylor expansion, u(t, x1) is of the order of ε, like the remainder term
rε(t, x) whih is thus not negligible. A better ansatz with a better error estimatewill be given in Theorem 2.3 (again, boundary layers will be ruial).The proof of Theorem 2.1 is performed in several steps. First, we makeuse of a fatorization priniple in order to simplify the original problem. Then,6



we represent the new unknown funtion in terms of the orresponding Green'sfuntion. And, �nally, we study the asymptoti behaviour of the mentionedGreen's funtion, as ε→ 0.2.2 Proof of Theorem 2.12.2.1 FatorizationIn order to simplify the original problem we perform the hange of unknowns, aswas suggested in [3℄, [4℄, [10℄, [23℄.
uε(t, x) = e−

λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

)
vε(t, x). (2.9)Note that (2.9) is a proper de�nition of vε sine pΘ is a positive funtion. Sub-stituting (2.9) into (2.1) yields the problem for the new unknown funtion vε





ρΘ

(x
ε

)
∂tv

ε − div
(
aΘ

(x
ε

)
∇vε

)
+

1

ε
bΘ

(x
ε

)
· ∇vε = 0, in (0, T ) ×Gε,

aΘ
(x
ε

)
∇vε · n = 0, on (0, T ) × Σε,

vε(t,±1, x′) = 0, x′ ∈ (0, T ) × εQ,

vε(0, x) = u0(x1) p
−1
Θ

(x
ε

)
e−

Θ(x1+1)
ε , x ∈ Gε.(2.10)Here

ρΘ(y) = pΘ(y) p∗Θ(y), aΘ(y) = pΘ(y) p∗Θ(y) a(y),

bΘ(y) = pΘ(y) p∗Θ(y) b(y) − 2Θ pΘ(y) p∗Θ(y) a(y)e1

+a(y)
[
pΘ(y)∇yp

∗
Θ(y) − p∗Θ(y)∇ypΘ(y)

]
,

(2.11)with e1 the �rst oordinate vetor. For brevity, in what follows we denote
Aε

Θv = −div
(
aΘ

(x
ε

)
∇v

)
+

1

ε
bΘ

(x
ε

)
· ∇v, Bε

Θv = aΘ
(x
ε

)
∇v · n,

AΘv = −div(aΘ∇v) + bΘ · ∇v, BΘv = aΘ∇v · n, (2.12)
A∗,ε

Θ v = −div
(
aΘ

(x
ε

)
∇v

)
− 1

ε
bΘ

(x
ε

)
· ∇v,

A∗
Θv = −div(aΘ∇v) − bΘ · ∇v. (2.13)Straightforward alulations yield that, for any θ ∈ R,

divyb
θ(y) = 0 in Y, bθ · n = 0 on ∂Y. (2.14)Taking into aount the fat that Θ is the maximum point of λ1 and equality(2.7), we obtain that the �rst omponent of bΘ has zero mean:

∫

Y

bΘ1 (y) dy = 0. (2.15)7



Due to (2.14), (2.15), the partial di�erential equation in (2.10) ould be homoge-nized by standard methods [7℄, [8℄ if the initial data were independent of ε. How-ever, the presene of an asymptotially singular initial ondition in (2.10) bringssome di�ulties into the homogenization proedure. In partiular, the lassialapproah of homogenization (based on energy estimates in Sobolev spaes) annotbe applied sine the initial data is not uniformly bounded in L2(Gε).In order to study the asymptoti behaviour of vε, following our previous work[4℄, we use its representation in terms of the orresponding Green's funtion
Kε(t, x, ξ)

vε(t, x) =

∫

Gε

Kε(t, x, ξ)u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ. (2.16)Here Kε, as a funtion of t and x, for eah ξ ∈ Gε, solves the problem





ρε
Θ ∂tKε +Aε

ΘKε = 0, (t, x) ∈ (0, T ) ×Gε,

Bε
ΘKε = 0, (t, x) ∈ (0, T ) × Σε,

Kε(t, x, ξ)
∣∣∣
x1=±1

= 0, (t, x′) ∈ (0, T ) × εQ,

Kε(0, x, ξ) = δ(x − ξ), x ∈ Gε.

(2.17)
Note that Kε with respet to (t, ξ) is a solution of the formally adjoint problem,whih di�ers from (2.17) by the sign in front of the �rst-order terms.Beause of the presene of the delta-funtion in the initial ondition, it isdi�ult to onstrut the asymptotis for Kε diretly. Let us introdue a funtion

Vε(t, x, ξ) = Φε(t, x, ξ) −Kε(t, x, ξ), (2.18)where Φε stands for the Green funtion in the in�nite ylinder Gε = R × εQ. Asa funtion of t and ξ, it is a solution to the following problem




ρε
Θ(ξ) ∂tΦε +A∗,ε

Θ Φε = 0, (t, ξ) ∈ (0, T ) × Gε,

Bε
ΘΦε = 0, (t, ξ) ∈ (0, T ) × Γε,

Φε(0, x, ξ) = δ(x− ξ), ξ ∈ Gε.

(2.19)By Γε we denote the lateral boundary R × ∂(εQ) of the ylinder Gε. For eah
x ∈ Gε, Vε as a funtion of t and ξ solves the problem





ρε
Θ(ξ) ∂tVε +A∗,ε

Θ Vε = 0, (t, ξ) ∈ (0, T ) ×Gε,

Bε
ΘVε = 0, (t, ξ) ∈ (0, T ) × Σε,

Vε(t, x, ξ)
∣∣∣
ξ1=±1

= Φε(t, x, ξ)
∣∣∣
ξ1=±1

, (t, ξ) ∈ (0, T ) × εQ,

Vε(0, x, ξ) = 0, ξ ∈ Gε.

(2.20)
In the following subsetion we onstrut an asymptoti expansion for Φε whih is arelatively easy task beause it is de�ned in an in�nite ylinder (thus not requiring8



any boundary layers). Subsetion 2.2.3 will be devoted to the approximation of
Vε whih is deliate beause of the neessity of de�ning boundary layers but stillpossible sine the boundary ondition for Vε is smooth for x 6= ±1. The �nalsubsetion will ombine these two results to get an ansatz for Kε and, using(2.16), to prove Theorem 2.1.2.2.2 Asymptotis for Φε(t, x, ξ)The goal of this setion is to ompute an asymptoti expansion for the Greenfuntion Φε with a bound on the error term (see Lemma 2.3 below). Denote by
Φ0 a fundamental solution of the 1-dimensional homogenized problem





∂tΦ0 = aeff ∂2
ξ1Φ0(t, x1, ξ1), (t, ξ1) ∈ (0, T ) × R, x1 ∈ R,

Φ0(0, x1, ξ1) = δ(x1 − ξ1), ξ1, x1 ∈ R.
(2.21)Here the e�etive oe�ient aeff is given by one of the two equivalent formulae

aeff =

∫

Y

(aΘ
11 + aΘ

1j∂yj
N − bΘ1 N) dy =

∫

Y

(aΘ
11 + aΘ

1j∂yj
N∗ + bΘ1 N

∗) dy, (2.22)where the 1-periodi in y1 funtions N and N∗ solve the standard ell problems(diret and adjoint, respetively):




AΘN(y) = ∂yj
aΘ

j1(y) − bΘ1 (y), y ∈ Y,

BΘN(y) = 0, y ∈ ∂Y ;
(2.23)





A∗
ΘN

∗(η) = ∂ηj
aΘ

j1(η) + bΘ1 (η), η ∈ Y,

BΘN
∗(η) = 0, η ∈ ∂Y.

(2.24)Of ourse, (2.21) is the homogenized problem for (2.19) and it an be shown that
aeff > 0. Note that N and N∗ are Hölder ontinuous funtions (see [15℄). Thefundamental solution Φ0 admits the expliit formula

Φ0(t, x1, ξ1) =
1

2
√
π t

1

aeff
e
−

|x1−ξ1|
2

4aeff t . (2.25)We also introdue the �rst- and seond-order approximations of Φε by
Φε

1(t, x, ξ) = Φ0(t, x1, ξ1) + εN
(x
ε

)
∂x1Φ0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1Φ0(t, x1, ξ1),

(2.26)
Φε

2(t, x, ξ) = Φε
1(t, x, ξ) + ε2N2

(x
ε

)
∂2

x1
Φ0(t, x1, ξ1)

+ε2N∗
2

(ξ
ε

)
∂2

ξ1Φ0(t, x1, ξ1) + ε2N
(x
ε

)
N∗

(ξ
ε

)
∂x1∂ξ1Φ0(t, x1, ξ1).

(2.27)Our further analysis relies on Aronson type upper bound for Φε. Consider theGreen funtion Φ(t, y, η) of the following initial boundary problem in the in�nite9



resaled ylinder G = R ×Q with lateral boundary Σ:




ρΘ(y) ∂tΦ +AΘΦ = 0, (t, y) ∈ (0,∞) × G,

BΘΦ = 0, (t, y) ∈ (0,∞) × Σ,

Φ(0, y, η) = δ(y − η), y ∈ G.

(2.28)Lemma 2.2. The Green funtion Φ, solution of (2.28), satis�es the followingAronson type estimate
0 < Φ(t, y, η) ≤ C1 max

(
t−d/2, t−1/2

)
exp

(
− c

|y − η|2
t

)
. (2.29)with positive onstants C1 and c.Remark 2.3. In the right hand side of estimate (2.29) the fator t−d/2 takes areof the short times (for whih there is no di�erene between the ylinder G and thefull spae R

d) while the other fator t−1/2 is valid for the longer times (for whihthe ylinder G behaves as a 1-d line).Proof. We only brie�y sketh this proof. The idea is to derive (2.29) from thelassial Aronson estimate in R
d (see [5℄) for divergene form operators. Let ushek �rst that the operator AΘ an be rewritten in divergene form. Sine bΘ isa divergene-free vetor �eld and the average of its �rst omponent is zero, thereis a skew-symmetri periodi in y1 matrix S(y) with bounded entries suh that

bΘ = divS (see e.g. [9℄). Then
AΘφ = −div

(
(aΘ − S)∇φ

)
.Assume for a moment that the ross setion Q is the unit ube in R

d−1. Wedupliate the ube by symmetri re�etion of the operator oe�ients and thesolution Φ(t, y, η) of (2.28) with respet to eah diretion orthogonal to its faes.The resulting problem is now periodi with period 2 in eah oordinate diretion.It should be noted that the initial ondition on eah period is the sum of 2d−1delta funtions in y at the point η and its symmetri re�etions. We denotethese points by {ηk(η)}2d−1

k=1 with η1(η) = η. Then the solution Φ̃(t, y, η) of theintrodued above 2Q-periodi problem oinides with Φ(t, y, η) on Q.Due to the linearity of the problem
Φ̃(t, y, η) =

2d−1∑

k=1

G#(t, y, ηk(η)),where G#(t, y, η) is the Green funtion of the orresponding 2Q-periodi operator.Clearly, G#(t, y, η) is onstruted from the fundamental solution G(t, y, η) in thewhole spae by summing over the square periodi network of period 2Q. Namely,
G#(t, y, η) =

∑

n∈Zd−1

G(t, y, η + 2n).10



Making use of the lassial Aronson estimate for the fundamental solutionG(t, y, η)in R
d, we get

G#(t, y, η) =
∑

n∈Zd−1

G(t, y, η + 2n)

≤ C

td/2

∑

n∈Zd−1

e−C0
|y1−η1|

2

t e−C0
|y′−η′−2n|2

t ,
(2.30)for some positive onstants C,C0. For small time the ontributions of the distantells are negligible beause of the exponential deay, and the main ontributionis given by the term with n = 0. Consequently, for small time

G#(t, y, η) ≤ C̃

td/2
e−C̃0

|y−η|2

t ,with some positive onstants C̃, C̃0. For large time t all the terms in (2.30)ontribute. Indeed, after making the hange of variables
t =

τ

δ2
, y =

ỹ

δ
, η =

η̃

δ
, n =

ñ

δ
,for small δ > 0, we get

G#(
τ

δ2
,
ỹ

δ
,
η̃

δ
) ≤ C δd

τd/2
e−C0

|ỹ1−η̃1|
2

τ

∑

ñ∈(δZ)d−1

e−C0
|ỹ′−η̃′−ñ|2

τ

≤ C1 δ

τd/2
e−C0

|ỹ1−η̃1|
2

τ

∫

Rd−1

e−C0
|ỹ′−η̃′−ñ|2

τ dñ ≤ C̃1 δ

τ1/2
e−C0

|ỹ1−η̃1|
2

τ .Changing bak the variables we have
G#(t, y, η) ≤ C1√

t
e−C0

|y1−η1|
2

tfor any time t suh that t ≥ t0 > 0. Thus, estimate (2.29) is satis�ed when Q isthe unit ube.Finally, if Q is not a ube, we �rst map it to the unit ube by a Lipshitzdi�eomorphism whih preserves the divergene form and ellipti harater of theoperator with uniformly bounded oe�ients.Using Lemma 2.2, we an paraphrase the upper bound, announed in [24℄(see Chapter II, page 85) and then proved rigorously in [1℄ (similar results wereproved in [6℄). The di�erene is that we address the ase of an in�nite ylinderinstead of the whole spae as in these previous referenes.Lemma 2.3. For any x, ξ ∈ Gε and t ≥ ε2,
|εd−1 Φε(t, x, ξ) − Φε

k(t, x1, ξ1)| ≤ C
εk+1

t(k+2)/2
, k = 0, 1, 2, (2.31)where Φε

0 ≡ Φ0, Φε
1 is de�ned by (2.26) and Φε

2 by (2.27).We do not give the details of the proof of Lemma 2.3 whih is ompletelysimilar to that in [1℄. It relies on two arguments. The �rst one is the Blohdeomposition and m-setorial property of the deomposition of the operator AΘin Y whih still holds true in the present ase. The seond one is the Aronsonestimate whih is granted by Lemma 2.2. Estimate (2.31) holds true if |Q|d−1 = 1.Otherwise, the multiplier |Q|d−1 appears in front of εd−1 Φε(t, x, ξ).11



2.2.3 Asymptotis for Vε(t, x, ξ)The goal of this setion is to onstrut an asymptoti expansion for the di�erene
Vε, de�ned by (2.18), with a bound on the remainder term (see Lemmas 2.4 and2.5 below). Bearing in mind estimate (2.31), it is εd−1Vε, rather than Vε, whihhas a limit. The formal asymptoti expansion for εd−1 Vε takes the form (see e.g.[7℄, [19℄)

Wε(t, x, ξ) = V0(t, x1, ξ1) + εN
(x
ε

)
∂x1V0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1V0(t, x1, ξ1) + ε V1(t, x1, ξ1) + ε V ε

bl(t, x, ξ)

+ε2 V2

(
t, x1, ξ1;

x

ε
,
ξ

ε

)
+ ε3W ε

bl(t, x, ξ),

(2.32)where V0, for eah x1, is the solution of the homogenized problem




∂tV0 = aeff ∂2
ξ1V0, (t, ξ1) ∈ (0, T ) × (−1, 1),

V0(t, x1,±1) = Φ0(t, x1,±1), t ∈ (0, T ),

V0(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1)

(2.33)with the e�etive oe�ient aeff de�ned by (2.22). Reall that N and N∗ aresolutions of (2.23) and (2.24), respetively. The other terms in (2.32) are de�nedas follows.The funtion V2 is de�ned by
V2(t, x1, ξ1; y, η) = N2(y) ∂

2
x1
V0(t, x1, ξ1)

+N∗
2 (η) ∂2

ξ1V0(t, x1, ξ1) +N(y)N∗(η) ∂x1∂ξ1V0(t, x1, ξ1)

+N(y) ∂x1V1(t, x1, ξ1) +N∗(η) ∂ξ1V1(t, x1, ξ1)

(2.34)where the funtions N2(y) and N∗
2 (η) (1-periodi with respet to their �rst vari-able) solve the following problems:





AΘN2 = ∂yi
(aΘ

i1N) + aΘ
1j∂yj

N + aΘ
11 − bΘ1 N − aeff ρΘ, in Y,

BΘN2 = −aΘ
i1 niN, on ∂Y, (2.35)and





A∗
ΘN

∗
2 = ∂ηi

(aΘ
i1N

∗) + aΘ
1j∂ηj

N∗ + aΘ
11 + bΘ1 N

∗ − aeff ρΘ, in Y,
BΘN

∗
2 = −aΘ

i1 niN
∗, on ∂Y.In order to de�ne V1 and the boundary layer orretor V ε

bl in (2.32), we introduetwo funtions v± de�ned in semi-in�nite ylinders, v− in G
+ = (0,+∞)×Q and

v+ in G
− = (−∞, 0) ×Q:





A∗
Θv

±(η) = 0, η ∈ G
∓,

BΘv
±(η) = 0, η ∈ Σ∓,

v±(0, η′) = −N∗(0, η′),

(2.36)12



where Σ± are the lateral boundaries of G
±. It has been proved in [20℄ thatbounded solutions v± exist, are uniquely de�ned and stabilize to some onstants

v̂± at an exponential rate, as η1 → ±∞:
|v±(η1, η

′) − v̂±| ≤ C0 e
−γ |η1|, C0, γ > 0;

‖∇v−‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0,

‖∇v+‖L2((−(n+1),−n)×Q) ≤ C e−γ n, ∀n > 0.

(2.37)Then the �rst boundary layer orretor is given by
V ε

bl(t, x, ξ) =
[
v−

(ξ1 + 1

ε
,
ξ′

ε

)
− v̂−

]
∂ξ1(V0 − Φ0)(t, x1, ξ1 = −1)

+
[
v+

(ξ1 − 1

ε
,
ξ′

ε

)
− v̂+

]
∂ξ1(V0 − Φ0)(t, x1, ξ1 = 1),

(2.38)and V1, for x1 ∈ (−1, 1), satis�es the problem




∂tV1 = aeff ∂2
ξ1V1 + F (t, x1, ξ1), (t, ξ1) ∈ (0, T ) × (−1, 1),

V1(t, x1,±1) = v̂± ∂ξ1 (V0 − Φ0)
∣∣∣
ξ1=±1

, t ∈ (0, T ),

V1(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1),

(2.39)where
F (t, x1, ξ1) = ∂3

ξ1V0(t, x1, ξ1)

∫

Y

(
aΘ

1j(η)∂ηj
N∗

2 (η)

+ aΘ
11(η)N

∗(η) + bΘ1 (η)N∗
2 (η) − aeff ρΘ(η)N∗(η)

)
dη.

(2.40)Finally, the seond boundary layer orretor W ε
bl is designed to ompensate thetime derivative of V ε

bl and is de�ned by
W ε

bl(t, x, ξ) =
[
w−

(ξ1 + 1

ε
,
ξ′

ε

)
− ŵ−

]
∂t∂ξ1(V0 − Φ0)(t, x1, ξ1 = −1)

+
[
w+

(ξ1 − 1

ε
,
ξ′

ε

)
− ŵ+

]
∂t∂ξ1(V0 − Φ0)(t, x1, ξ1 = 1).The funtions w± solve nonhomogeneous problems





A∗
Θw

±(η) = (v̂± − v±(η)) ρΘ(η), η ∈ G
∓,

BΘw
±(η) = 0, η ∈ Σ∓,

w±(0, η′) = 0.Bounded solutions w± exist, are uniquely de�ned and stabilize to some onstants
ŵ± at an exponential rate, as η1 → ±∞ (see [20℄).Using the standard ellipti estimates one an easily show that, for x1 6= ±1,the funtion V0 belongs to C∞([0, T ] × (−1, 1) × [−1, 1]), and for t ∈ [0, T ],
x1 ∈ I ⋐ (−1, 1), ξ1 ∈ [−1, 1], we have

|∂k
t ∂

l
x1
∂m

ξ1 V0(t, x1, ξ1)| ≤
C

min{|x1 − 1|, |x1 + 1|}2k+l+m+1
. (2.41)13



Then V1 is also a smooth funtion of its variables for x ∈ I ⋐ (−1, 1). Notie�nally that N2 and N∗
2 are Hölder ontinuous. Indeed, it is straightforward tohek that the equation and the boundary onditions in (2.35) an be rewrittenin the form 




AΘ(N2 + y1N +
1

2
y2
1) = −aeffρΘ, y ∈ Y,

BΘ(N2 + y1N +
1

2
y2
1) = 0, y ∈ ∂Y.Sine aeffρΘ ∈ L∞(Y ), then it is known that the orresponding solution is Hölderontinuous (see [15℄). The Hölder ontinuity of N∗

2 an be justi�ed in a similarway.We denote by V ε
1 the �rst-order approximation of εd−1Vε

V ε
1 (t, x, ξ) = V0(t, x1, ξ1) + εN

(x
ε

)
∂x1V0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1V0(t, x1, ξ1) + ε V1(t, x1, ξ1) + ε V ε

bl(t, x, ξ).

(2.42)By onstrution, its trae at the ylinder ends oinide with that of Φε
1, namely

{
V ε

1 (t, x, ξ)
}∣∣∣

ξ1=±1
= Φε

1(t, x, ξ)
∣∣∣
ξ1=±1

,where Φε
1 is de�ned by (2.26). Of ourse, V ε

1 is also the �rst-order approximationof Wε, de�ned by (2.32). It turns out that all terms in V ε
1 will ontribute to theleading term of the asymptotis of εd−1Vε, while the other terms, V2 and W ε

bl, in(2.32) are onstruted in order to guarantee the required auray.Lemma 2.4. Let Vε be de�ned by (2.18), or equivalently be a solution of (2.20).Let V ε
1 be de�ned by (2.42). Then, there exists a onstant C, depending on

I,Λ, Q, d and independent of ε, suh that, for x ∈ I × εQ and t ≥ 0, I ⋐ (−1, 1),
∫

Gε

|εd−1Vε − V ε
1 |2 dξ ≤ C ε4 εd−1. (2.43)Proof. The strategy of the proof is the following: we plug the di�erene (Wε −

εd−1Vε) into the boundary value problem (2.20) and alulate the right hand sidesin the equation and in the boundary ondition. The terms of the asymptoti ex-pansion Wε were designed in a suh a way that these right-hand sides are small.Thus, by a priori estimates, the di�erene Wε − εd−1Vε is small in a appropriatenorm. For the sake of larity, we divide the proof in several steps.Step 1. We �rst prove a priori estimates for the following problem:




ρε
Θ∂tw

ε +A∗,ε
Θ wε = f(t, x) + divF (t, x), in (0, T ) ×Gε,

Bε
Θw

ε = εg(t, x) − F · n, on (0, T ) × Σε,

wε(t,±1, x′) = 0, (t, x′) ∈ (0, T ) ×Q,

wε(0, x) = 0, x ∈ Gε.

(2.44)
14



Sine by (2.14) div bεΘ = 0 and bεΘ · n = 0 on the lateral boundary, a prioriestimates are obtained in a standard way. Multiplying the equation in (2.44) by
wε and integrating by parts and exploiting the Cauhy-Bunyakovsky inequalityand Grönwall's lemma, we obtain for any t ≤ T

∫

Gε

|wε(t)|2 dx+

t∫

0

∫

Gε

|∇wε|2 dx dτ

≤ C eC1t
(
‖f‖2

L2((0,T )×Gε) + ε2‖g‖2
L2((0,T )×Σε) + ‖F‖2

L2((0,T )×Gε)

)
,

(2.45)where the onstants C,C1 are independent of ε and t.Step 2. To estimate the L2(Gε) norm of Wε − εd−1Vε, we �rst substitute Wε −
εd−1Vε for wε in (2.44). This yields

ρε
Θ ∂t(Wε − εd−1Vε) +A∗ε

Θ (Wε − εd−1Vε)

= εR1(t, x1, ξ1;x/ε, ξ/ε) + ε∂ηi
R̃1,i(t, x1, ξ1;x/ε, ξ/ε)

+ε2R2(t, x1, ξ1;x/ε, ξ/ε) + ε3Rε
3(t, x1, ξ),

Bε
Θ(Wε − εd−1Vε) = ε2 ni R̃1,i(t, x1, ξ1;x/ε, ξ/ε),

(2.46)
where

R1(t, x1, ξ1; y, η) = ρΘ(η)N(y)∂t∂x1V0(t, x1, ξ1)

+ρΘ(η)N∗(η)∂t∂ξ1V0 + ρΘ(η)∂tV1 − aΘ
11(η)N(y)∂2

ξ1∂x1V0(t, x1, ξ1)

−aΘ
11(η)N

∗(η)∂3
ξ1V0(t, x1, ξ1) − aΘ

11(η)∂
2
ξ1V1(t, x1, ξ1)

−aΘ
1j(η)∂ξ1∂ηj

V2(t, x1, ξ1; y, η) − bΘ1 (η)∂ξ1V2(t, x1, ξ1; y, η),and
R̃1,i(t, x1, ξ1; y, η) = aΘ

i1(η)∂ξ1V2(t, x1, ξ1; y, η),

R2(t, x1, ξ1; y, η) = ρΘ ∂tV2(t, x1, ξ1; y, η) − aΘ
11(η)∂

2
ξ1V2(t, x1, ξ1; y, η),

Rε
3(t, x1, ξ) = ρε

Θ ∂tW
ε
bl(t, x, ξ).All anellations on the right hand side of (2.46) are lassial (see e.g. [7℄) exeptfor the one due to the additional boundary layer orretor term ε3W ε

bl in theansatz (2.32) for Wε. Indeed, the oe�ient ε3 in front of W ε
bl allows us to anelthe time derivative of V ε

bl. By onstrution
∂tV

ε
bl(t, x, ξ) = −ε2A∗,ε

Θ W ε
bl(t, x, ξ)and

(ρε
Θ ∂t +A∗ε

Θ ) (ε V ε
bl(t, x, ξ) + ε3W ε

bl(t, x, ξ)) = ε3 ρε
Θ ∂tW

ε
bl(t, x, ξ).15



By linearity, we have Wε− εd−1Vε = Ṽ ε
1 + Ṽ ε

2 , where Ṽ ε
1 and Ṽ ε

2 , for eah x ∈ Gε,solve the following problems:




ρε
Θ ∂tṼ

ε
1 +A∗ε

Θ Ṽ
ε
1 = εR1(t, x1, ξ1;x/ε, ξ/ε) + ε∂ηi

R̃1,i(t, x1, ξ1;x/ε, ξ/ε)+

+ε2R2(t, x1, ξ1;x/ε, ξ/ε) + ε3Rε
3(t, x1, ξ), (t, ξ) ∈ (0, T ) ×Gε,

Bε
ΘṼ

ε
1 = ε2 ni R̃1,i(t, x1, ξ1;x/ε, ξ/ε), (t, ξ) ∈ (0, T ) × Σε,

Ṽ ε
1 (t, x, ξ)

∣∣∣
ξ1=±1

= 0, t ∈ (0, T )

Ṽ ε
1 (0, x, ξ) = 0, ξ ∈ Gε;





ρε
Θ ∂tṼ

ε
2 +A∗ε

Θ Ṽ
ε
2 = 0, (t, ξ) ∈ (0, T ) ×Gε,

Bε
ΘṼ

ε
2 = 0, (t, ξ) ∈ (0, T ) × Σε,

Ṽ ε
2 (t, x, ξ)

∣∣∣
ξ1=±1

= (Wε − εd−1Φε)(t, x, ξ)
∣∣∣
ξ1=±1

, t ∈ (0, T )

Ṽ ε
2 (0, x, ξ) = 0, ξ ∈ Gε.Step 3. We estimate Ṽ ε

1 using the a priori estimates (2.45) obtained in the �rststep. To this end, we notie that, in view of (2.33) and (2.39),
∫

Y

R1(t, x1, ξ1; y, η) dη = 0.Thus, there exists a 1-periodi with respet to η1 vetor-funtion χ = χ(t, x1, ξ1; y, η)suh that {
−divηχ = R1 η ∈ Y,
χ · n = 0, η ∈ ∂Y.Obviously,

R1(t, x1, ξ1; y, η)
∣∣∣
η=ξ/ε

= −εdivξ

(
(χ

(
t, x1, ξ1; y,

ξ

ε

))
+ε∂ξ1χ1

(
t, x1, ξ1; y, η

)∣∣∣
η=ξ/ε

,and
∂ηi
R̃1,i(t, x1, ξ1; y, η)

∣∣∣
η=ξ/ε

= ε∂ξi

(
R̃1,i(t, x1, ξ1; y,

ξ

ε
)

)
−ε∂ξi

R̃1,i

(
t, x1, ξ1; y, η

)∣∣∣
η=ξ/ε

.Considering (2.34) and (2.41), we see that
∫

Gε

|ε2R2(t, x1, ξ1; y,
ξ

ε
) + ε3Rε

3(t, x1, ξ)|2 dξ ≤ C ε4 εd−1, x ∈ I × εQ. (2.47)With the help of (2.45) the above relations yield, for x ∈ I × εQ,
∫

Gε

|Ṽ ε
1 (t, x, ξ)|2 dξ ≤ C ε4 εd−1, t ≥ 0, (2.48)with the onstant C depending on I,Λ, Q, d only.16



Step 4. We proeed to the estimate of Ṽ ε
2 . Due to the presene of the boundarylayer orretor V ε

bl, some anellations our and the axial boundary onditionsread
Wε(t, x, ξ

′,±1) − εd−1Vε(t, x, ξ
′,±1) = Wε(t, x, ξ

′,±1) − εd−1Φε(t, x, ξ
′,±1)

=
(
ε2V2(t, x1, ξ1; y,

ξ

ε
) + ε3W ε

bl(t, x, ξ)
)

+
(
Φε

1(t, x, ξ) − εd−1Φε(t, x, ξ)
)
.Taking into aount (2.41) and the fat that N,N∗, N2, N

∗
2 are Hölder ontinuousfuntions, we see that

∣∣∣ε2V2(t, x1, ξ1; y,
ξ

ε
)+ε3W ε

bl(t, x, ξ)
∣∣∣ ≤ C ε2, t ≥ 0, ξ ∈ Gε, x ∈ I×εQ, (2.49)where C depends on I,Λ, Q, d only.To estimate the other term (Φε

1 − εd−1Φε) we onsider separately small times
t ≤ εβ , β ∈ (0, 2), and larger times t > εβ . For t ≤ εβ we have

|Φε
1 − εd−1Φε| ≤ Φε

1 + εd−1Φε.The �rst term on the right-hand side here is small by its very de�nition (2.26)while we use Aronson's estimates (see Lemma 2.2) for the seond one. Namely,thanks to (2.14)-(2.15), for x ∈ I × εQ and t ≤ εβ

|Φε(t, x,±1, ξ′)| ≤ O(e−C/εβ

)with some positive onstant C.For large time t ≥ εβ, we use Lemma 2.3. Namely, for x, ξ ∈ Gε, the followingestimate holds true:
|εd−1Φε(t, x, ξ) − Φε

2(t, x, ξ)| ≤ C ε3−3β/2, ∀β > 0,with the onstant C independent of ε. On the other hand, in view of (2.25), forany t ≥ 0,
|Φε

2(t, x,±1, ξ′) − Φε
1(t, x,±1, ξ′)| ≤ C ε2, ξ′ ∈ εQ, x ∈ I × εQ,with some onstant C = C(I,Λ, Q, d). Finally, hoosing small enough β, weobtain that, for any t ≥ 0,

|εd−1Φε(t, x,±1, ξ′) − Φε
1(t, x,±1, ξ′)| ≤ C ε2, ξ′ ∈ εQ, x ∈ I × εQ,where C depends on I,Λ, Q, d only.Combining the last estimate with (2.49), we obtain that the boundary ondi-tions on the bases of the rod are satis�ed up to the seond order in ε:

|Wε(t, x,±1, ξ′) − εd−1Φε(t, x,±1, ξ′)| ≤ C ε2, t ≥ 0, x ∈ I × εQ (2.50)where C depends on I,Λ, Q, d. Thus, by the maximum priniple, for x ∈ I × εQ,
|Ṽ ε

2 (t, x, ξ)| ≤ C ε2, t ≥ 0, ξ ∈ Gε, (2.51)17



where C depends on I,Λ, Q, d.Step 5. Realling that Wε − εd−1Vε = Ṽ ε
1 + Ṽ ε

2 , by summing (2.48) and (2.51),for any t ∈ [0, T ], we obtain
∫

Gε

|εd−1Vε −Wε|2 dx ≤ C ε4 εd−1, x ∈ I × εQ.It is easy to see that for x ∈ I × εQ, t ≥ 0,
∫

Gε

∣∣∣V2

(
t, x1, ξ1; y,

ξ

ε

)∣∣∣
2
dξ +

∫

Gε

|W ε
bl(t, x, ξ)|2 dξ ≤ C εd−1.Consequently, last two estimates yield (2.43). Lemma 2.4 is proved.Lemma 2.4 provides an L2 estimate for the disrepany. By working harderwe an get an L∞ estimate of the same order. Namely, we prove the followingresult.Lemma 2.5. Let Vε be a solution of (2.20) and V ε

1 be de�ned by (2.42) as a �rst-order approximation of εd−1Vε. Then, for t ≥ 0, x ∈ I+ × εQ and ξ ∈ I− × εQ,the following estimate is valid:
|εd−1Vε(t, x, ξ) − V ε

1 (t, x, ξ)| ≤ C ε2 (2.52)where I+ ⋐ (−1, 1], I− ⋐ [−1, 1); the onstant C depends on I+, I−,Λ, Q, d andis independent of ε.Remark 2.4. The same estimate holds if ξ ∈ I+ × εQ and x ∈ I− × εQ.Proof. Estimate in Lemma 2.4 is based on two auxiliary bounds, (2.48) and (2.51).Notie that estimate (2.51) gives a bound in L∞ norm and, thus, need not beimproved. Our goad is to modify the ansatz W ε in order to obtain a greaterpower of ε on the right-hand side of (2.48). This will allow us to use L∞ elliptiestimates.Observe that adding interior higher order terms to the asymptoti expan-sion (2.32) (without adding additional boundary layer orretors) inreases thepower of ε in estimate (2.48). More preisely, denote by W ε
k (t, x, ξ) the k-orderapproximation for εd−1Vε

W ε
k (t, x, ξ) = Wε(t, x, ξ) +

k∑

n=3

εn Vn(t, x1, ξ1; y, η)
∣∣∣
y= x

ε
,η= ξ

ε

,where Vn(t, x1, ξ1; y, η) are 1-periodi with respet to y1, η1. For the sake ofbrevity, we do not speify the form of funtions Vn (for preise formulae see [7℄,[19℄). Let us substitute W ε
k − εd−1Vε into (2.20) and then, represent W ε

k − εd−1Vεas a sum W̃ ε
1 +W̃ ε

2 , where W̃ ε
1 solves nonhomogeneous problem with homogeneousDirihlet boundary onditions at the rod ends (ompare with Ṽ ε

1 ), and W̃ ε
2 is asolution of a homogeneous problem with nonhomogeneous Dirihlet boundary18



onditions at ξ1 = ±1 (ompare with Ṽ ε
2 ). Arguing exatly like in Lemma 2.4,we see that ∫

Gε

|W̃ ε
1 |2 dξ ≤ C1 ε

2 k εd−1, t ≥ 0, x ∈ I × εQ, (2.53)where I ⋐ (−1, 1); and by the maximum priniple,
|W̃ ε

2 (t, x, ξ)| ≤ C2 ε
2, t ≥ 0, x ∈ I × εQ, ξ ∈ Gε,where C1, C2 depend on I,Λ, Q, d.Notie that Vε is Hölder ontinuous, and by the Nash�De Giorgi estimates inthe resaled ylinder, for ξ, ζ ∈ Gε

|Vε(t, x, ξ) − Vε(t, x, ζ)| ≤ C ε−α|ξ − ζ|α, t ≥ 0, x ∈ I × εQ, (2.54)where C,α depend on Λ, Q, d and are independent of ε. Indeed, let us hangethe variables τ = t/ε2, y = x/ε, η = ξ/ε in (2.20) and denote Ṽε(τ, y, η) =

Vε(ε
2τ, εy, εη). By the maximum priniple,

|Ṽε(τ, y, η)| ≤ C τ ≥ 0, η ∈ (−ε−1, ε−1) ×Q, y ∈ ε−1I ×Q,where I ⋐ (−1, 1). Due to the loal Nash�De Giorgi estimates, for any n ∈ Z,
τ ≥ 0, y ∈ ε−1I ×Q

|Ṽε(τ, y, η) − Ṽε(τ, y, ϑ)| ≤ C |η − ϑ|α, η, ϑ ∈ (n, n + 1) ×Q,for some 0 < α < 1 and C depending on Λ, Q, d. Changing bak the variables inthe last inequality yields (2.54).Due to the Hölder ontinuity properties of N,N∗, N2, N
∗
2 , regularity of V0,the funtion Wε is uniformly w.r.t. ε Hölder ontinuous. Indeed, for example,sine N∗ is Hölder ontinuous, so is N∗(ξ/ε) and

|N∗
(ξ
ε

)
−N∗

(ζ
ε

)
| ≤ C ε−α |ξ − ζ|α, ξ1, ξ2 ∈ Gε, 0 < α < 1.Thus, εN∗(ξ/ε)∂ξ1V0(t, x1, ξ1) is Hölder ontinuous uniformly with respet to ε.By similar arguments, W ε

k and W̃ ε
2 are Hölder ontinuous funtions, so is W̃ ε

1 .By ontradition one an prove that, if (2.53) holds, then for some δ ∈ (0, 1)

|W̃ ε
1 (t, x, ξ)| ≤ C εδ (k−α),where δ depends on Λ, Q, d. Thus, for su�iently large k,

|εd−1Vε(t, x, ξ) −W ε
k (t, x, ξ)| ≤ C3 ε

2, t ≥ 0, ξ ∈ Gε, x ∈ I × εQ,where C3 depends on I,Λ, Q, d and is independent of ε. Clearly, by regularity of
V0

|W ε
k (t, x, ξ) −Wε(t, x, ξ)| ≤ C4 ε

2, ξ ∈ Gε, x ∈ I × εQ,with C4 = C4(I,Λ, d,Q). 19



Combining the two last estimates implies a similar bound for (εd−1Vε −Wε)with the onstant C that depends on I,Λ, Q, d only. Eventually, using (2.49)whih proves that (Wε − V ε
1 ) is of order ε2 we obtain (2.52), at least for x1 in aompat subset of (−1, 1).Now we extend this estimate to point x and ξ suh that for x ∈ I+ × εQ and

ξ ∈ I−×εQ (or ξ ∈ I+×εQ and x ∈ I−×εQ). To this end, onsidering Vε(t, x, ξ)as a solution of the equation in (t, x) (for �xed ξ), we get a "symmetri" estimate
|Wε(t, x, ξ) − εd−1Vε(t, x, ξ)| ≤ C5 ε

2, t ≥ 0, x ∈ Gε, ξ ∈ I × εQ,with the onstant C5 depending on I,Λ, Q, d. In partiular,
|Wε(t, x, ξ) − εd−1Vε(t, x, ξ)|

∣∣∣
ξ1=0

≤ C ε2, t ≥ 0, x ∈ Gε (2.55)with the onstant C independent of t, x, ξ, ε. ConsideringWε(t, x, ξ)−εd−1Vε(t, x, ξ)as a solution (w.r.t. t, ξ, for �xed x) of a nonhomogeneous initial boundary prob-lem stated �rst in I− × εQ and then in I+ × εQ, using estimate (2.55) andarguing as above we obtain, for x ∈ I+ × εQ and ξ ∈ I− × εQ (or ξ ∈ I+ × εQand x ∈ I− × εQ),
|εd−1Vε(t, x, ξ) − V ε

1 (t, x, ξ)| ≤ C ε2, t ≥ 0,with the onstant C depending on I−, I+,Λ, d,Q and independent of ε.2.2.4 Asymptotis for vε and main resultsRealling from (2.18) that Kε = Φε − Vε and using the �rst order approxima-tions (2.26) and (2.42) obtained in the previous setions, we de�ne a �rst orderapproximation of the Green funtion Kε

Kε
1(t, x, ξ) = Φε

1(t, x, ξ) − V ε
1 (t, x, ξ)

= K0(t, x1, ξ1) + εN
(x
ε

)
∂x1K0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1K0(t, x1, ξ1) + εK1(t, x1, ξ1) − ε V ε

bl(t, x, ξ),

(2.56)whereK0 = Φ0−V0 is the Green funtion of the one-dimensional e�etive problem




∂tK0 = aeff ∂2
ξ1K0, (t, ξ1) ∈ (0, T ) × (−1, 1),

K0(t, x1,±1) = 0, t ∈ (0, T ),

K0(0, x1, ξ1) = δ(x1 − ξ1), ξ1 ∈ (−1, 1),

(2.57)
K1 = −V1 with V1, the solution of (2.39), and the boundary layer orretor V ε

bl isde�ned by (2.36) and (2.38). By ombining Lemmata 2.3 and 2.5, we immediatelyobtain the following statement. 20



Lemma 2.6. Denote by I+, I− ompat subsets of (−1, 1] and [−1, 1), respe-tively. Let onditions (H1) − (H4) be ful�lled. Then, for eah x ∈ I+ × εQ,
ξ ∈ I−×εQ, and t ≥ t0 > 0, there exists a onstant C depending on I+, I−,Λ, Q, dand independent of ε suh that

|εd−1Kε(t, x, ξ) −Kε
1(t, x, ξ)| ≤ C ε2. (2.58)We an now state our main result.Theorem 2.2. Let onditions (H1) − (H4) be ful�lled and b̄1 > 0. Let Θ bethe maximum point of λ1(θ) and pΘ the orresponding eigenfuntion de�ned byLemma 2.1.1. Suppose u0 ∈ C1[−1, 1] is suh that u0(−1) 6= 0. The asymptotis of thesolution uε of problem (2.1), for t ≥ t0 > 0 and x ∈ Gε, takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

) [
u(t, x1) + rε(t, x)

]
,where u is the solution of the homogenized problem





∂tu = aeff ∂2
x1
u, (t, x1) ∈ (0, T ) × (−1, 1),

u(t,±1) = 0, t ∈ (0, T ),

u(0, x1) = −M u0(−1) δ′(x1 + 1), x1 ∈ (−1, 1),

(2.59)where the e�etive oe�ient aeff is de�ned by (2.22), and the onstant Mis de�ned by
M =

+∞∫

0

∫

Q

(z1 +N∗(z) + v−(z)) p−1
Θ (z) e−Θz1 dz′dz1, (2.60)with N∗, solution of the adjoint ell problem (2.24) and v−, solution of theboundary layer problem (2.36). For some onstant C = C(I+,Λ, Q, d), theremainder term satis�es the estimate

|rε(t, x)| ≤ C ε,whih is uniform for t ≥ t0 > 0, x ∈ I+ × εQ, with I+ ⋐ (−1, 1].2. If u0 ∈ Ck+1(−1, 1) is suh that u(l)
0 (−1) = 0, l = 0, · · · , k − 1, and

u
(k)
0 (−1) 6= 0, then

uε(t, x) = εk+2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

) [
ũ(t, x) + r̃ε(t, x)

]
,where ũ is the solution of the homogenized problem





∂tũ = aeff ∂2
x1
ũ, (t, x1) ∈ (0, T ) × (−1, 1),

ũ(t,±1) = 0, t ∈ (0, T ),

ũ(0, x1) = −Mk u
(k)
0 (−1) δ′(x1 + 1), x1 ∈ (−1, 1),21



with the onstant Mk given by
Mk =

1

k!

+∞∫

0

∫

Q

(z1)
k
(
z1 +N∗(z) + v−(z)

)
p−1
Θ (z) e−Θz1 dz′dz1.The remainder term satis�es |r̃ε(t, x)| ≤ C ε, and the estimate is uniformfor t ≥ t0 > 0, x ∈ I+ × εQ, with I+ ⋐ (−1, 1].Remark 2.5. If the initial data u0 is non-negative, then the e�etive initial datais non-negative too. Indeed, −δ′(x1 + 1) is non-negative in distributional sense,and M is positive, beause by the maximum priniple, (z1 +N∗ + v−) is positive.The multipliative onstant M depends expliitly on the boundary layer v− forthe left end point x1 = −1 (see formula (2.60)). It is quite surprinsing that suh aboundary layer (whih is of lower order in lassial homogenization theory) entersthe asymptotis of uε at the main order.Note also that, if the initial data u0 had a ompat support, then Theorem5.2 in [4℄ gives a similar asymptoti behaviour with a di�erent initial data forthe homogenized problem, featuring a Dira mass instead of the derivative of theDira mass as in (2.59).Remark 2.6. Theorem 2.2 provides the leading term of the asymptotis of uε.But, as already explained in Remark 2.2, the error estimate for the remainderterm rε is not preise enough in the region of interest where uε(t, x) ahieves itsmaximum. A better ansatz with a better error estimate are given in Theorem 2.3below (again, boundary layers will be ruial).Proof. Based on Lemma 2.6 we an ompute the asymptotis of vε, given by(2.16) in terms of the orresponding Green funtion Kε. Obviously, (2.16) anbe rewritten in the following form

εd−1vε(t, x) =

∫

Gε

Kε
1(t, x, ξ)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

+

∫

Gε

(εd−1Kε(t, x, ξ) −Kε
1(t, x, ξ))u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ.(2.61)Thanks to (2.58), for x ∈ I+ × εQ, t ≥ t0 > 0, we have

∣∣∣
∫

Gε

(εd−1Kε(t, x, ξ) −Kε
1(t, x, ξ))u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

∣∣∣

≤ C1 ε
2

∫

Gε

e−
Θ(ξ1+1)

ε dξ ≤ C1 ε
2 εd|Q|

+∞∫

0

e−Θ η1 dη1 ≤ C εd+2with the hange of variables ξ1 + 1 = εz1, ξ′ = εz′ and for some onstants C,C1whih do not depend on ε.We proeed by evaluating the �rst integral in (2.61). We ompute separatelythe ontributions of eah summand in (2.56). Expanding K0 and u0 into Taylor22



series in the neighbourhood of ξ1 = −1, and realling that K0(t, x1,−1) = 0, wesee that, for t ≥ t0 > 0,
∫

Gε

K0(t, x1, ξ1)u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

=
(
u0(−1) ∂ξ1K0(t, x1,−1) +O(ε)

) ∫

Gε

(ξ1 + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ.Performing again the hange of variables ξ1 + 1 = εz1, ξ′ = εz′ and using theperiodiity of pΘ yields

∫

Gε

(ξ1 + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ = εd+1

+∞∫

0

∫

Q

z1 p
−1
Θ (z) e−Θz1 dz′dz1 +O(εd+2).(2.62)Reall that, for the simpliity of presentation, we assumed (H4), namely ε =

1/N , N ∈ Z+. Similarly, for t ≥ t0 > 0,
ε

∫

Gε

N∗
(ξ
ε

)
∂ξ1K0(t, x, ξ)

u0(ξ1)

pΘ(ξ/ε)
e−

Θ(ξ1+1)

ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

+∞∫

0

∫

Q

N∗(z)

pΘ(z)
e−Θz1 dz′dz1 +O(εd+2).On the ontrary, sine di�erentiating (2.57) with respet to x1 does not a�et thehomogeneous Dirihlet boundary onditions, we have ∂x1K0(t, x1,±1) = 0 and,therefore, the following term an be negleted

ε

∫

Gε

N
(x
ε

)
∂x1K0(t, x1, ξ1)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)

ε dξ = O(εd+2).The last summand (εK1 − εV ε
bl) in (2.56) is written as a sum of three terms.The �rst one, sine K1(t, x1,−1) − v̂−∂ξ1K0(t, x1,−1) = 0, gives a negligibleontribution

ε

∫

Gε

(K1(t, x1, ξ1) − v̂−∂ξ1K0(t, x1,−1))u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ = O(εd+2).For the seond one, performing a hange of variables as above and using theperiodiity of pΘ yields

ε

∫

Gε

v−
(ξ1 + 1

ε
,
ξ′

ε

)
∂ξ1K0(t, x1,−1)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

+∞∫

0

∫

Q

v−(z)

pΘ(z)
e−Θz1 dz′dz1 +O(εd+2).

(2.63)Thanks to (2.37), the third term ontaining the boundary layer orretor nearthe right base of the rod x1 = 1 is exponentially small. Combining (2.61)�(2.63)yields
vε(t, x) = ε2 (M u0(−1) ∂ξ1K0(t, x1,−1) +O(ε)), (2.64)23



where O(ε) is uniform for t ≥ t0 > 0 and x ∈ I+ × εQ.The seond statement of Theorem 2.2 an be proved in the same way as the�rst one and we safely leave it to the reader.Theorem 2.2 provided the leading term of the asymptotis of uε. But, as al-ready explained in Remark 2.6, due to the presene of the exponentially largefator eΘ(x1+1)/ε, we are mostly interested in the asymptotis of uε in a ε-neighbourhood of the right end of the rod, where both, the leading and theorretor terms (together with the boundary layer orretor) are of the sameorder. Therefore, we an not laim that, in this loalization zone, we have
eΘ(x1+1)/ε rε(t, x) ≪ eΘ(x1+1)/ε u(t, x1).Due to similar reasons, we had to onstrut extra terms in the asymptotis ofthe Green funtion Kε. Indeed, beause of the fator e−Θ(x1+1)/ε in (2.16), onlythe behaviour of Kε in a ε-neighbourhood of the left end plays a signi�ant part.To obtain a preise asymptotis near the left end of the rod, we have onstrutedthe orretor terms for Kε. Notie that the integrals (2.61)�(2.63) are of the sameorder.In Theorem 2.3 below we onstrut the orretor for uε, that improves theasymptotis of uε near the right end of the rod and, therefore, makes the resultof Theorem 2.2 omplete.Theorem 2.3. Under the same assumptions as in Theorem 2.2, the re�nedasymptotis of the solution uε of problem (2.1), for t ≥ t0 > 0 and x ∈ Gε,takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

) [
U ε(t, x) +Rε(t, x)

]
,where U ε is given by

U ε(t, x) = u(t, x1) + εN
(x
ε

)
∂x1u(t, x1)

+εu1(t, x1) + ε
[
v+
∗

(x1 − 1

ε
,
x′

ε

)
− v̂+

∗

]
∂x1u(t, 1),

(2.65)where u(t, x1) is the solution of the homogenized problem (2.59), N solves (2.23),
u1 and the boundary layer orretor v+

∗ are de�ned in (2.70) and (2.69), re-spetively. For some onstant C = C(Λ, Q, d), the remainder term satis�es theestimate
|Rε(t, x)| ≤ C ε(1 − x1),whih is uniform for t ≥ t0 > 0, x ∈ Gε.Proof. In view of the faorization (2.9), it is su�ient to improve the asymptotisof vε. Beause of (2.64), the funtion u(t, x1), solution of (2.59), is in fat theleading term of the asymptotis for ε−2vε(t, x) for t ≥ t0 > 0. Let us onstrut24



the orretor for ε−2vε(t, x). Obviously, due to the semigroup property of theparaboli operator, one an represent ε−2vε(t, x) as a sum ṽε
1 + ṽε

2, where




ρε
Θ(x) ∂tṽ

ε
1 +Aε

Θṽ
ε
1 = 0, in (t0, T ) ×Gε,

Bε
Θṽ

ε
1 = 0, on (t0, T ) × Σε,

ṽε
1(t,±1, x′) = 0, x′ ∈ (t0, T ) × εQ,

ṽε
1(t0, x) = u(t0, x1), x ∈ Gε;

(2.66)




ρε
Θ(x) ∂tṽ

ε
2 +Aε

Θṽ
ε
2 = 0, in (t0, T ) ×Gε,

Bε
Θṽ

ε
2 = 0, on (t0, T ) × Σε,

ṽε
2(t,±1, x′) = 0, x′ ∈ (t0, T ) × εQ,

ṽε
2(t0, x) = ε−2vε(t0, x) − u(t0, x1), x ∈ Gε.

(2.67)It is easy to see that the asymptotis of ṽε
1 takes the form

Ũ ε(t, x) = u(t, x1) + εN
(x
ε

)
∂x1u(t, x1)

+εu1(t, x1) + ε
[
v+
∗

(x1 − 1

ε
,
x′

ε

)
− v̂+

∗

]
∂x1u(t, 1)

+ε
[
v−∗

(1 + x1

ε
,
x′

ε

)
− v̂−∗

]
∂x1u(t,−1),

(2.68)where the boundary layer orretors v±∗ (y) and their asymptoti limits v̂±∗ arede�ned similarly to v±(y) and v̂± in (2.36), exept that the adjoint operator andthe adjoint ell funtions are replaed by the diret ones. In other words, v±∗ aresolution in the semi-in�nite ylinders G
− = (−∞, 0)×Q and G

+ = (0,+∞)×Qof 



AΘv
±
∗ (y) = 0, y ∈ G

∓,

BΘv
±
∗ (y) = 0, y ∈ Σ∓,

v+
∗ (0, y′) = −N(0, y′).

(2.69)The boundary layers v±∗ (y) stabilize at in�nity to onstants v̂±∗ exponentially fast,as in (2.37).In (2.68) the funtion u1 is designed so that Ũ ε satisfy homogeneous boundaryonditions at x1 = ±1, namely it solves




∂tu1(t, x1) = aeff ∂2
x1
u1(t, x1) + f(t, x1), (t, x1) ∈ (t0, T ) × (−1, 1),

u1(t,±1) = ŵ±∂x1u(t,±1), t ∈ (t0, T ),

u1(t0, x1) = 0, x1 ∈ (−1, 1),

(2.70)where, N2 being a solution of (2.35), f(t, x1) is given by
f(t, x1) = ∂3

ξ1u(t, x1)

∫

Y

[
aΘ

1j∂yj
N2 + aΘ

11N − bΘ1 N2 − aeff ρΘN
]
dy.25



As in the proof of Theorem 2.2, one an prove that the following estimate holds
|ṽε

1 − Ũ ε| ≤ C ε2, t ≥ t0, x ∈ Gε,with the onstant C independent of ε. On the other hand, beause of the expo-nential stabilization of the boundary layer v−∗ , we have
|Ũ ε − U ε| ≤ C ε (1 − x1), t ≥ t0, x ∈ Gε,where U ε is given by (2.65). This yields
|ṽε

1 − U ε| ≤ C ε (1 − x1), t ≥ t0, x ∈ Gε. (2.71)We proeed by estimating the solution ṽε
2 of (2.67). Let φε(t, x) be a solutionof the following problem





ρε
Θ(x) ∂tφ

ε +Aε
Θφ

ε = 0, in (t0, T ) ×Gε,

Bε
Θφ

ε = 0, on (t0, T ) × Σε,

φε(t,±1, x′) = 0, x′ ∈ (t0, T ) × εQ,

φε(t0, x) = 1, x ∈ Gε.

(2.72)
Then, by the maximum priniple,

|ṽε
2(t, x)| ≤ φε(t, x) max

x∈Gε

|ε−2vε(t0, x) − u(t0, x1)|, (t, x) ∈ (t0, T ) ×Gε.In view of Theorem 2.2,
max
x∈Gε

|ε−2vε(t0, x) − u(t0, x1)| ≤ C ε,thus,
|ṽε

2(t, x)| ≤ C εφε(t, x), (t, x) ∈ (t0, T ) ×Gε.By standard homogenization it easy to prove that
|φε(t, x)| ≤ C (1 − x1), (t, x) ∈ (2 t0, T ) ×Gε.Combining the last two estimates yields
|ṽε

2(t, x)| ≤ C ε (1 − x1), (t, x) ∈ (2 t0, T ) ×Gε. (2.73)Estimates (2.71), (2.73) imply the statement of Theorem 2.3. The proof is om-plete.3 The ase of a layerWe now onsider the ase of a layer in R
d. More preisely, the domain Ω is de�nedas the layer {x ∈ R

d : x′ = (x1, · · · , xd−1) ∈ R
d−1, −1 ≤ xd ≤ 1} (see Figure 2).Note that we hange the notations from the previous setion sine a point x ∈ R
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x1

x3

1

−1

Ω

x2

Γ+

Γ−

b

bFigure 2: The layer Ωis now denoted x = (x′, xd) with x′ ∈ R
d−1. The boundary of Ω onsists of twohyperplanes Γ± = {x ∈ R

d : xd = ±1}. We study the homogenization of thenon-stationary onvetion-di�usion problem (1.1) whih, in the ase of a layer,reads 



∂tu
ε +Aε u

ε = 0, in (0, T ) × Ω,

uε = 0, on (0, T ) × (Γ+ ∪ Γ−),

uε(0, x) = u0(x), in Ω,

(3.1)where, as before,
Aεu

ε = −div
(
aε∇uε

)
+

1

ε
bε · ∇uε,and the oe�ients of the equation are still given by (2.2), namely aε

ij(x) =

aij(x/ε) and bεi (x) = bi(x/ε). In the ase of a layer our main assumptions areslightly di�erent from those in the previous setion. We assume that the followingonditions are satis�ed.(A1) The oe�ients of the equation aij , bj ∈ L∞(Ω) are Y -periodi, Y = (0, 1]dbeing the periodiity ell.(A2) The d × d matrix a(y) is symmetri and satis�es a uniform elliptiity on-dition with a oerivity onstant Λ > 0.(A3) The initial data u0 has ompat support with respet to x′ = (x1, · · · , xd−1),namely u0(x) ∈ C1
0 (Rd−1;C1[−1, 1]).(A4) For simpliity we assume that ε = 1/N , N ∈ Z

+, so that an entire numberof periodiity ells �ts in the thikness of the layer Ω.As in the ase of a thin rod, we study the asymptoti behaviour of solutions
uε(t, x) of problem (3.1), as ε→ 0.3.1 Auxiliary spetral problems, fatorization and mainresult.In order to simplify the original problem, we make use of the fatorization prin-iple, as in Setion 2 (with respet to xd instead of x1), and then onstrut the27



asymptotis of the new unknown funtion. However, the main di�erene withthe previous ase of a rod is that we must use moving oordinates (see [3℄, [12℄,[18℄) in the diretions parallel to the layer. This makes the equation homogeniz-able at the prie that the initial ondition beomes asymptotially singular. Asbefore, we irumvent this di�ulty of singular initial data by onstruting theasymptotis of the Green funtion of the fatorized problem.We reall that the ell operator A is de�ned by (2.3) and its adjoint A∗ by(2.4). For θ ∈ R, we introdue two families of spetral problems, similar to (2.5),




e−θ yd Aeθ yd pθ(y) = λ(θ) pθ(y), in Y,
y → pθ(y) Y-periodi, (3.2)





eθ yd A∗ e−θ yd p∗θ(y) = λ(θ) p∗θ(y), in Y,
y → p∗θ(y) Y-periodi.By the Krein-Rutman theorem, for eah θ ∈ R, the �rst eigenvalue λ1(θ) ofproblem (3.2) is real, simple, and the orresponding eigenfuntions pθ and p∗θ anbe hosen positive. Moreover, the statement of Lemma 2.1 remains valid, andwe all Θ the unique maximum point of λ1(θ). The eigenfuntions pθ and p∗θ arenormalized by (2.6) as above. Arguments similar to those in Setion 2 yield
dλ1

dθ

∣∣∣
θ=0

=

∫

Y

(
bd p

∗
θ + adj ∂yj

p∗θ
)
dy = b̄d, (3.3)where b̄d is alled the normal e�etive drift (normal to the layer). Hene, b̄d = 0if and only if Θ = 0. If the normal e�etive drift is zero, i.e., b̄d = 0, then themethod of homogenization in moving oordinates an be applied diretly (see [3℄,[12℄, [18℄). Therefore, we assume that b̄d 6= 0 (or, equivalently, Θ 6= 0).In what follows we onsider the ase b̄d > 0, the other ase b̄d < 0 beingsymmetri. If b̄d > 0, then we perform the hange of unknown funtion as follows

uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ (xd+1)

ε pΘ

(x
ε

)
vε(t, x). (3.4)Substituting (3.4) into (3.1), one obtains that the new unknown funtion vε solvesthe following problem





ρε
Θ ∂tv

ε +Aε
Θ v

ε = 0, (t, x) ∈ (0, T ) × Ω,

vε = 0, (t, x) ∈ (0, T ) × (Γ+ ∪ Γ−),

vε(0, x) = u0(x) p
−1
Θ

(x
ε

)
e−

Θ (xd+1)

ε , x ∈ Ω,

(3.5)where ρε
Θ(x) = ̺Θ(x/ε),

Aε
Θv = −div

(
aΘ

(x
ε

)
∇v

)
+

1

ε
bΘ

(x
ε

)
· ∇v,

28



and the oe�ients of the operator are given by
aΘ

ij(y) = ̺Θ(y) aij(y), ̺Θ(y) = pΘ(y) p∗Θ(y),

bΘi (y) = ̺Θ(y) bi(y) − 2 ̺Θ(y) aid(y)Θ

+aij(y)
[
pΘ(y) ∂yj

p∗Θ(y) − p∗Θ(y) ∂yj
pΘ(y)

]
.

(3.6)The matrix aΘ is positive de�nite sine both pΘ and p∗Θ are positive funtions.The vetor-�eld bΘ, for eah θ ∈ R, is divergene-free and its last omponent bΘdhas zero mean, that is
∫

Y

bΘd (y) dy = 0; div bθ = 0, ∀ θ. (3.7)The averages of the other omponents are denoted by
βΘ

i =

∫

Y

bΘi (y) dy, i = 1, · · · , d. (3.8)The vetor βΘ is alled the e�etive onvetion (note that its formula is di�erentfrom that of the normal e�etive drift b̄d de�ned in (3.3)). Sine βΘ
d = 0 beauseof (3.7), the onvetion is parallel to the layer. When the e�etive onvetion

βΘ is not equal to zero, ontrary to the ase of the rod, we annot use lassialhomogenization methods for (3.5), and, rather, we rely on the method of movingoordinates (see [3℄, [12℄, [18℄).Theorem 3.1. Suppose that onditions (A1)-(A4) are ful�lled, the normal ef-fetive drift (de�ned by (3.3)) satis�es b̄d > 0 and u0(·,−1) 6= 0. Then, for
t ≥ t0 > 0, the asymptotis of the solution uε of problem (3.1) takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ

(x
ε

) [
u
(
t, x− βΘ

ε
t
)

+ rε(t, x)
]
,where u(t, x) is the solution of the homogenized problem





∂tu(t, x) = div(aeff∇u(t, x)), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × (Γ− ∪ Γ+).

u(0, x) = −M u0(x
′,−1) δ′(xd + 1), x ∈ Ω,

(3.9)with a positive de�nite matrix aeff de�ned by (3.14) and the onstant M de�nedby
M =

∫

(0,1]d−1

+∞∫

0

[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′, (3.10)where N∗
d is a solution of the ell problem (3.16) and the boundary layer v− isde�ned by (3.25). The remainder term satis�es, for t ≥ t0 > 0,
|rε(t, x)| ≤ C ε for any x ∈ Ω suh that xd ∈ I+

⋐ (−1, 1],and the onstant C depends solely on I+,Λ, d.29



Remark 3.1. In the ase u0(x
′,−1) = · · · = ∂k−1

ξd
u0(x

′,−1) = 0 and ∂k
xd
u0(x

′,−1) 6=
0 for some k, the asymptotis of uε takes the form

uε(t, x) = ε2+k e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ

(x
ε

) [
u(t, x− βΘ

ε
t) + rε(t, x)

]
,where |rε(t, x)| ≤ C ε, for t ≥ t0 > 0 and x ∈ Ω suh that xd ∈ I+ ⋐ (−1, 1] and

u(t, x) solves the problem




∂tu(t, x) = div(aeff∇u(t, x)), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × (Γ− ∪ Γ+).

u(0, x) = −Mk ∂
k
xd
u0(x

′,−1) δ′(xd − 1), x ∈ Ω,with the onstant Mk given by
Mk =

1

k!

∫

(0,1]d−1

+∞∫

0

(zd)
k
[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′.Remark 3.2. Similarly to the ase of a rod (see Remarks 2.2 and 2.6), theerror estimate for the remainder term rε is not preise enough in the region ofinterest where uε(t, x) ahieves its maximum. Indeed, the homogeneous Dirihletboundary ondition for u(t, x), together with the exponential eΘ(xd+1)

ε shows that
uε(t, x) attains its maximum at a distane of order ε of the plane Γ+: there, bya Taylor expansion, u(t, x) is of the order of ε, like the remainder term rε(t, x)whih is thus not negligible. A better ansatz with a better error estimate will begiven in Theorem 3.2 below.3.2 Proof of Theorem 3.1The proof is partly similar to that of Theorem 2.1 and relies on the representationformula for vε

vε(t, x) =

∫

Ω

Kε(t, x, ξ)u0(ξ) p
−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ, (3.11)where Kε(t, x, ξ) is the Green funtion of problem (3.5). However, one majordi�erene with the previous ase of a rod is that, as was already pointed out, inthe ase βΘ 6= 0, the lassial homogenization methods do not apply to problem(3.5). To overome this di�ulty, we shall use moving oordinates.Reall that, for any x, Kε solves the adjoint problem




̺Θ

(ξ
ε

)
∂tKε(t, x, ξ) +A∗,ε

Θ Kε(t, x, ξ) = 0, (t, ξ) ∈ (0, T ) × Ω,

Kε(t, x, ξ) = 0, (t, ξ) ∈ (0, T ) × (Γ− ∪ Γ+),

Kε(0, x, ξ) = δ(x − ξ), ξ ∈ Ω,

(3.12)
A∗,ε

Θ v = −div
(
aΘ

(x
ε

)
∇v

)
− 1

ε
bΘ

(x
ε

)
· ∇v.30



Sine bΘ is divergene-free, A∗,ε
Θ di�ers from Aε

Θ by the sign in front of the �rst-order term. For any ξ ∈ Ω, Kε solves the diret problem with respet to (t, x),but sine we are interested in the asymptotis of Kε w.r.t ξ, we prefer to interpretit from the very beginning as a solution of adjoint problem (3.12).We study the asymptoti behaviour of Kε, as ε → 0, and then from (3.11)derive the asymptotis for vε.3.2.1 Asymptoti behaviour of Kε(t, x, ξ)As in the proof of Theorem 2.1, instead of analyzing diretly Kε, we onsider thedi�erene
Vε(t, x, ξ) = Φε(t, x, ξ) −Kε(t, x, ξ),where Φε is the fundamental solution in R

d, that is, for any x ∈ R
d, Φε solvesthe problem





̺Θ

(ξ
ε

)
∂tΦε +A∗,ε

Θ Φε = 0, (t, ξ) ∈ (0, T ) × R
d,

Φε(0, x, ξ) = δ(x− ξ), ξ ∈ R
d.In this way, for all x ∈ Ω, Vε satis�es the problem





̺Θ

(ξ
ε

)
∂tVε(t, x, ξ) +A∗,ε

Θ Vε(t, x, ξ) = 0, (t, ξ) ∈ (0, T ) × Ω,

Vε(t, x, ξ) = Φε(t, x, ξ), (t, ξ) ∈ (0, T ) × (Γ− ∪ Γ+),

Vε(0, x, ξ) = 0, ξ ∈ Ω.

(3.13)We emphasize that Vε is a regular funtion of ξ, for x suh that xd 6= ±1.The asymptotis of Φε is easier to establish. First, we introdue its zero-orderapproximation Φ0(t, x, ξ), the fundamental solution of the e�etive problem




∂tΦ0 = divξ(a
eff∇ξΦ0), (t, ξ) ∈ (0, T ) × R

d,

Φ0(0, x, ξ) = δ(x − ξ), ξ ∈ R
dwith aeff given by

aeff
ij =

∫

Y

(aΘ
ij(y) + aΘ

ik(y)∂yk
Nj(y) − bΘi (y)Nj(y) + βΘ

j ρΘNj(y)) dy

=

∫

Y

(aΘ
ij(η) + aΘ

ik(η)∂yk
N∗

j (η) + bΘi (η)N∗
j (η) − βΘ

j ρΘN
∗
j (η)) dη.

(3.14)The vetor funtions N and N∗ solve the following ell problems (diret andadjoint, respetively)




−div(aΘ∇Ni) + bΘ · ∇Ni = ∂yj
aΘ

ij(y) − bΘi (y) + βΘ
i , in Y,

y 7→ Ni Y − periodi; (3.15)




−div(aΘ∇N∗
i ) − bΘ · ∇N∗

i = ∂yj
aΘ

ij(y) + bΘi (y) − βΘ
i , in Y,

y 7→ N∗
i Y − periodi. (3.16)31



Notie that, although the above ell problems (3.15) and (3.16) are of the sametype as (2.23) and (2.24), they ontain additional βΘ
i term on the right-hand side.Observe that, by the very de�nition of βΘ, the ompatibility onditions for (3.15)and (3.16) are satis�ed.We further introdue the seond-order orretor funtions N2

ij, N
2∗
ij , solutionsof 




AΘN
2
ij = ∂yk

(aΘ
kiNj) + aΘ

ik∂yk
Nj + aΘ

ij

−bΘi Nj + βΘ
i ρΘNj − aeff

ij ρΘ, in Y,
y 7→ N2

ij is periodi; (3.17)




A∗
ΘN

2∗
ij = ∂yk

(aΘ
kiN

∗
j ) + aΘ

ik∂yk
N∗

j + aΘ
ij

+bΘi N
∗
j − βΘ

i ρΘN
∗
j − aeff

ij ρΘ, in Y,
y 7→ N2∗

ij is periodi, (3.18)where AΘ and A∗
Θ are de�ned by (2.12) and (2.13), respetively.Then we de�ne the �rst- and seond-order approximations of Φε

Φε
1

(
t, x, ξ̃

)
= Φ0

(
t, x, ξ̃

)
+εN

(x
ε

)
·∇xΦ0

(
t, x, ξ̃

)
+εN∗

(ξ
ε

)
·∇eξ

Φ0

(
t, x, ξ̃

)
, (3.19)

Φε
2

(
t, x, ξ̃

)
= Φε

1

(
t, x, ξ̃

)
+ ε2N2

ij

(x
ε

)
∂xi

∂xj
Φ0(t, x, ξ̃)

+ε2N2∗
ij

(ξ
ε

)
∂ξi
∂ξj

Φ0(t, x, ξ̃) + ε2Ni

(x
ε

)
N∗

j

(ξ
ε

)
∂xi

∂ξj
Φ0(t, x1, ξ̃),

(3.20)where ξ̃ is the moving oordinate de�ned by
ξ̃ = ξ +

βΘ

ε
t. (3.21)Remark 3.3. The variables x and ξ being dual, the moving oordinate for x isde�ned with the opposite veloity, namely

x̃ = x− βΘ

ε
t.By the same tehniques, as in [1℄, one an proveLemma 3.1. Assume that onditions (A1)-(A2) are ful�lled. Then, for x, ξ ∈

R
d and t ≥ ε2, the estimate holds

∣∣∣Φε(t, x, ξ) − Φε
k

(
t, x, ξ +

βΘ

ε
t
)∣∣∣ ≤ C

εk+1

t(d+k+1)/2
, k = 0, 1, 2,where βΘ is de�ned by (3.8).Turning bak to Vε, its zero-order approximation is V0, de�ned for any x ∈ Ω,as a solution of the homogenized problem





∂tV0 = divξ(a
eff∇ξV0), (t, ξ) ∈ (0, T ) × Ω,

V0(t, x, ξ) = Φ0(t, x, ξ), (t, ξ) ∈ (0, T ) × (Γ− ∪ Γ+),

V0(0, x, ξ) = 0, ξ ∈ Ω.32



Note that V0(t, x, ξ) ∈ C∞([0, T ] × Ω × Ω) and for (t, ξ) ∈ [0, T ] × Ω one has
|∂k

t ∂
l
x ∂

m
ξ V0(t, x, ξ)| ≤

C

dist(K, (Γ− ∪ Γ+))2k+l+m+d
, x ∈ K ⋐ Ω.The �rst-order approximation of Vε is de�ned by

V ε
1 (t, x, ξ) = V0

(
t, x, ξ̃

)
+ εNj

(x
ε

)
∂xj

V0

(
t, x, ξ̃

)

+εN∗
j

(ξ
ε

)
∂ξj
V0

(
t, x, ξ̃

)
+ ε V1

(
t, x, ξ̃

)
+ ε V ε

bl(t, x, ξ),

(3.22)where ξ̃ is the moving oordinate de�ned by (3.21), and V1, V ε
bl are de�ned below.A higher order asymptoti expansion for Vε takes the form

Wε

(
t, x, ξ

)
= V ε

1 (t, x, ξ) + ε2 V ε
2 (t, x, ξ) + ε2 ϕε

bl(t, x, ξ) + ε3 ψε
bl(t, x, ξ) (3.23)with

V ε
2 (t, x, ξ) = N2

ij(x/ε) ∂xi
∂xj

V0(t, x, ξ̃)

+N2∗
ij (ξ/ε) ∂ξi

∂ξj
V0(t, x, ξ̃) +Ni(x/ε)N

∗
j (ξ/ε) ∂xi

∂ξj
V0(t, x, ξ̃)

+Ni(x/ε) ∂xi
V1(t, x, ξ̃) +N∗

i (ξ/ε) ∂ξi
V1(t, x, ξ̃).

(3.24)In order to de�ne V1 and the �rst boundary layer orretor V ε
bl, we onsiderauxiliary problems in semi-in�nite ylinders G

∓ = (0, 1]d−1 × (0,∓∞):




A∗
Θv

± = 0, η ∈ G
∓,

v±(η′, 0) = −N∗
d (η′, 0),

η′ 7→ v±(η′, ηd) is (0, 1]d−1 − periodi. (3.25)Sine βd = 0, suh funtions v± exist, are uniquely de�ned and stabilize to someonstants v̂± at an exponential rate, as ηd → ∓∞ (see [22℄):
|v±(η′, ηd) − v̂±| ≤ C0 e

−γ |ηd|, C0, γ > 0;

‖∇v+‖L2((n−1,n)×Q) ≤ C e−γ n, ∀n < 0,

‖∇v−‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0.

(3.26)The �rst boundary layer orretor is given by
V ε

bl(t, x, ξ) =
[
v−

(ξ′
ε
,
ξd + 1

ε

)
− v̂−

]
∂ξd

(V0 − Φ0)
(
t, x, ξ − βΘ

ε
t
)∣∣∣

ξd=−1

+
[
v+

(ξ′
ε
,
ξd − 1

ε

)
− v̂+

]
∂ξd

(V0 − Φ0)
(
t, x, ξ − βΘ

ε
t
)∣∣∣

ξd=1
. (3.27)Then, V1, for x ∈ Ω, is de�ned as the solution of





∂tV1 = divξ(a
eff ∇ξV1) + F (t, x, ξ), (t, ξ) ∈ (0, T ) × Ω,

V1(t, x, ξ) = v̂± ∂ξd
(V0 − Φ0)(t, x, ξ), (t, ξ) ∈ (0, T ) × Γ±,

V1(0, x, ξ) = 0, ξ ∈ Ω,

(3.28)33



where
F (t, x, ξ) = ∂ξk

∂ξi
∂ξj
V0(t, x, ξ)

∫

Y

[
aΘ

kl∂ηl
N2∗

ij

+ aΘ
ijN

∗
k + bΘk N

2∗
ij − βΘ

k ρΘN
2∗
ij − aeff

ij ρΘN
∗
k

]
dη.The seond boundary layer orretor ϕε

bl is de�ned as follows
ϕε

bl(t, x, ξ)

=
[
ϕ−

k

(ξ′
ε
,
ξd + 1

ε

)
− ϕ̂−

k

]
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=−1

)

+
[
ϕ+

k

(ξ′
ε
,
ξd − 1

ε

)
− ϕ̂+

k

]
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=1

)
.Remark that, sine βΘ

d = 0, we have ξd = ξ̃d and the above de�nition makes sensewhen we enfore ξd = −1. The funtions ϕ±
k solve nonhomogeneous problems





A∗
Θϕ

±
k = ∂ηi

(aΘ
ik(v± − v̂±)) + aΘ

ik ∂ηi
v±

+(bΘk − βΘ
k ρΘ)(v± − v̂±), η ∈ G

∓,

ϕ±
k (η′, 0) = 0,

η′ 7→ ϕ±
k (η′, ηd) is (0, 1]d−1 − periodi.The right-hand side of the above equation, due to (3.26), is an exponentiallydeaying funtion. Sine βΘ

d = 0, the funtions ϕ±
k exist, are uniquely de�nedand stabilize to some onstants ϕ̂±

k at an exponential rate, as ηd → ±∞ (see [22℄).The orretor ϕε
bl is introdued to ompensate the terms of order ε0 whih willappear on the right-hand side after substituting V ε

bl into the original equation.The last boundary layer orretor ψε
bl is de�ned by

ψε
bl(t, x, ξ)

=
[
ψ−

ik

(ξ′
ε
,
ξd + 1

ε

)
− ψ̂−

ik

]
∂ξi
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=−1

)

+
[
ψ+

ik

(ξ′
ε
,
ξd − 1

ε

)
− ψ̂+

ik

]
∂ξi
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=1

)
.The funtions ψ±

ik solve nonhomogeneous problems




A∗
Θψ

±
ik = (aΘ

ik − aeff
ikρΘ)(v± − v̂±) + ∂ηi

(aΘ
ij(ϕ

±
k − ϕ̂k

±))

+aΘ
ij∂ηj

ϕ±
k + (bΘi − βΘ

i )(ϕ±
k − ϕ̂k

±), η ∈ G
∓,

ψ±
ik(η

′, 0) = 0,

η′ 7→ ψ±
ik(η

′, ηd) is (0, 1]d−1 − periodi.The right-hand side of the above equation is again an exponentially deayingfuntion. Thus, the funtions ψ±
ik exist, are uniquely de�ned and stabilize tosome onstants ψ̂±

j at an exponential rate, as ηd → ∓∞. The boundary layerorretor ψε
bl is designed in order to ompensate the terms of order ε on the right-hand side of equation (3.13) whih omes from V ε

bl and ϕε
bl being substituted intothis equation. 34



This ompletes the onstrution of the formal expansion. We proeed with itsjusti�ation. Reall that the funtions V1 and V ε
bl are introdued to satisfy theboundary onditions on Γ± up to seond order in ε, while the purpose of V ε

2 , ϕ
ε
bland ψε

bl is to guarantee the required auray, and the latter terms will not showup in the �nal result.Proposition 3.1. Let V ε
1 be the �rst-order approximation of Vε de�ned by (3.22).Then, for x suh that xd ∈ I ⋐ (−1, 1) and for t ≥ 0, we have

∫

Ω

|Vε − V ε
1 |2 dx ≤ C ε4 (3.29)with the onstant C depending only on dist(x,Γ− ∪ Γ+),Λ and d.Proof. Let us substitute ansatz (3.23) into (3.13) and ompute the disrepany

ρε
Θ∂t(Wε − Vε) +A∗,ε

Θ (Wε − Vε)

= εR1

(
t, x, ξ̃; y, η

)
+ εdivη(a

Θ(η)∇eξ
V2(t, x, ξ̃; y, η))

∣∣∣
y= x

ε
,η= ξ

ε

+ε2R2

(
t, x, ξ̃; η

)
+ ε3R3

(
t, x, ξ̃; η

)∣∣∣
y= x

ε
,η= ξ

ε

,

(3.30)where ξ̃ is the moving oordinate de�ned by (3.21) and
R1

(
t, x, ξ̃; y, η

)
= −ρΘ(η)∂tV1(t, x, ξ̃) − ρΘ(η)N∗

j (η)∂t∂ξj
V0(t, x, ξ̃)

−ρΘ(η)Nj(y)∂t∂xj
V0(t, x, ξ̃) − ρΘ(η)βΘ

j ∂eξj
V2(t, x, ξ̃; y, η)

+divξ(a
Θ(η)∇ηV2(t, x, ξ̃; y, η)) + divξ(a

Θ(η)∇ξ(N
∗(η) · ∇ξV0(t, x, ξ̃))

+divξ(a
Θ(η)∇ξ(N(y) · ∇xV0(t, x, ξ̃)) + divξ(a

Θ(η)∇ξV1(t, x, ξ̃))

+bΘj (η)∂ξj
V2(t, x, ξ̃; y, η),and
R2

(
t, x, ξ̃; η

)
=

{
(aeff

ij − aΘ
ij(η))(ϕk(η) − ϕ̂k)

−∂ηj
(aΘ

jl(η)(ψik(η) − ψ̂ik)) − aΘ
jl(η)∂ηl

ψik(η)

+(βΘ
j − bΘj (η))(ψik(η) − ψ̂ik)

}

×∂ξj
∂ξi
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=1

)
;

R3

(
t, x, ξ̃; η

)
= (ρΘ(η)aeff

jl − aΘ
jl)(ψik(η) − ψ̂ik)

×∂ξl
∂ξj
∂ξi
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=1

)
.Notie that, in view of (3.24) and (3.28),

∫

Y

R1

(
t, x, ξ̃; y, η

)
dη = 0.Thus, there exists χ(

t, x, ξ̃; y, η
), periodi in η, suh that

−divηχ = R1

(
t, x, ξ̃; y, η

)
.35



Consequently,
R1

(
t, x, ξ̃; y,

ξ

ε

)
= −εdivξχ

(
t, x, ξ̃; y,

ξ

ε

)
+ εdivξχ

(
t, x, ξ̃; y, η

)∣∣∣
η= ξ

ε

.It is easy to see that, for su�iently small ε,
∫

Ω

[
χ
(
t, x, ξ̃; y,

ξ

ε

)]2
dξ ≤ C

∫

Ω

∫

Y

[
R1

(
t, x, ξ; y, η

)]2
dη dξwith the onstant C independent of ε. To estimate the norm on the right-handside of the last inequality, we notie that eah term in R1 is a produt of the form

F (y, η) ∂r
t ∂

m
ξj
V0(t, x, ξ̃)with a bounded periodi funtion F (y, η). It is a lassial matter to show thatthe derivatives V0 are exponentially dereasing at in�nity. Consequently,

∫

Ω

[
χ
(
t, x, ξ̃; y,

ξ

ε

)]2
dξ ≤ Cfor xd ∈ I. Then, multiplying equation (3.30) by Wε − Vε, integrating by partstaking into aount (3.7), the exponential deay of boundary layers and of V0, weobtain ∫

Ω

|Wε − Vε|2 dξ ≤ C ε4, t ≥ 0. (3.31)Note that due to the presene of the boundary layer orretors, the boundaryonditions on Γ+ ∩ Γ− in (3.13) are satis�ed up to the seond order in ε. Itremains to notie that for t ≥ 0 and x ∈ Ω suh that xd ∈ I ⋐ (−1, 1)

∫

Ω

|Wε(t, x, ξ) − V ε
1 (t, x, ξ)|2dξ ≤ C ε4,where V ε

1 is the �rst-order approximation of Vε de�ned by (3.22). Combining thelast two estimates �nishes the proof of Proposition 3.1.Combining the previous estimates on the aproximations of Φε (Lemma 3.1)and of Vε (Proposition 3.1), we dedue similar result for the asymptotis of theGreen funtion Kε(t, x, ξ). We do not give the proofs of the two lemmas belowsine they are very similar to their ounterpart given in Setion 2 in the ase ofa rod.Lemma 3.2. Assume that onditions (A1) − (A2) are satis�ed. Let Kε be theGreen funtion solving (3.12). For t ≥ t0 > 0 and x ∈ Ω suh that xd ∈ I ⋐

(−1, 1), we have
∫

Ω

|Kε(t, x, ξ) −Kε
1

(
t, x, ξ +

βΘ

ε
t
)
|2dξ ≤ C ε4,36



where Kε
1 is a �rst-order approximation of Kε given by

Kε
1

(
t, x, ξ̃

)
= K0

(
t, x, ξ̃

)
+ εN

(x
ε

)
· ∇xK0

(
t, x, ξ̃

)

+εN
(ξ
ε

)
· ∇ξK0

(
t, x, ξ̃

)
+ εK1(t, x, ξ̃) − ε V ε

bl(t, x, ξ̃),
(3.32)

ξ̃ is the moving oordinate de�ned by (3.21), K0 = Φ0 − V0 is the Green fun-tion of the e�etive problem (3.9), N,N∗ are the ell solutions of (3.15), (3.16),respetively, V ε
bl is de�ned by (3.27) and K1(t, x, ξ) = −V1(t, x, ξ) with V1 thesolution of (3.28).Lemma 3.3. Denote by I+, I− ompat subsets of (−1, 1] and [−1, 1), respe-tively. Let onditions (A1) − (A2) be ful�lled. Then, for x, ξ ∈ Ω suh that

xd ∈ I+, ξd ∈ I−, and t ≥ t0 > 0, the following estimate holds true:
|Kε(t, x, ξ) −Kε

1

(
t, x− βΘ

ε
t, ξ

)
| ≤ C ε2, (3.33)with the onstant C depending on I+, I−,Λ, d and independent of ε.3.2.2 Asymptotis of uε(t, x)Reall that vε as a solution of (3.4), is represented in terms of the Green funtion

Kε by (3.11). Obviously,
vε(t, x) =

∫

Ω

Kε
1

(
t, x− βΘ

ε
t, ξ

)
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ

+

∫

Ω

(
Kε(t, x, ξ) −Kε

1

(
t, x− βΘ

ε
t, ξ

))
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ,

(3.34)where Kε
1 is the �rst order approximation of Kε given by (3.32). Suppose thatthe initial funtion is suh that u0(x

′,−1) 6= 0. The ase u0(x
′,−1) = · · · =

∂k−1
ξd

u0(x
′,−1) = 0, ∂k

ξd
u0(x

′,−1) 6= 0 an be onsidered similarly. With the helpof Lemma 3.3 we estimate the seond integral in (3.34).
∣∣∣
∫

Ω

(
Kε(t, x, ξ) −Kε

1

(
t, x− βΘ

ε
t, ξ

))
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ
∣∣∣

≤ C ε3
∫

Rd−1

|u0(ξ
′,−1)| dξ′

+∞∫

0

e−Θzd dzd ≤ C ε3.To omplete the proof it remains to ompute the asymptoti behavior of the �rstintegral in (3.34). Denote
vε
0(ξ) = u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε .
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Then, by de�nition (3.32) of Kε
1 ,

∫

Ω

Kε
1(t, x, ξ) vε

0(ξ) dξ =

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

+ε

∫

Ω

N∗
j

(ξ
ε

)
∂ξj
K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

+ε

∫

Ω

v−
(ξ′
ε
,
ξd + 1

ε

)
∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

vε
0(ξ) dξ

+ε

∫

Ω

Nj

(x
ε

)
∂xj

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

+ε

∫

Ω

(
K1

(
t, x− βΘ

ε
t, ξ

)
− v̂− ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

)
vε
0(ξ) dξ

+ε

∫

Ω

(
v+

(ξ′
ε
,
ξd − 1

ε

)
− v̂+ ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=1

)
vε
0(ξ) dξ.

(3.35)
Notie that K0

(
t, x− βΘ

ε t, ξ
)

= K0

(
t, x, ξ+ βΘ

ε t
) sine βΘ

d = 0 and Ω is boundedonly in the xd-diretion. Expanding K0 and u0 into Taylor series with respet to
ξd, for t ≥ t0 > 0, we obtain

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

=

∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
1∫

−1

(ξd + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε dξd +O(ε3)

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
+∞∫

0

zd p
−1
Θ

(ξ′
ε
, zd

)
e−Θzddzd +O(ε3).The funtion

ψ(ζ ′) =

+∞∫

0

zd p
−1
Θ

(
ζ ′, zd

)
e−Θzddzd,is (0, 1]d−1-periodi and belongs to H1((0, 1]d−1). By the lassial mean-valuetheorem, we dedue the asymptoti behavior of the �rst term in (3.35)

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
∫

(0,1]d−1

+∞∫

0

zd p
−1
Θ (z′, zd) e

−Θzddzd dz
′ +O(ε3).38



By similar arguments, the other terms in (3.35) admit the representations
∫

Ω

N∗
j

(ξ
ε

)
∂ξj
K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
∫

(0,1]d−1

+∞∫

0

N∗
d (z) p−1

Θ (z) e−Θzddzd dz
′ +O(ε3)and ∫

Ω

v−
(ξ′
ε
,
ξd + 1

ε

)
∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
∫

(0,1]d−1

+∞∫

0

v−(z) p−1
Θ (z) e−Θzddzd dz

′ +O(ε3).Notiing that K1

∣∣
ξd=−1

= v̂−∂ξd
K0

∣∣
ξd=−1

, and ∂xj
K0

∣∣
ξd=−1

= 0, one an seethat the last three integrals in (3.35) are of order ε3. We emphasize that, in viewof (3.26), the terms ontaining boundary layer orretors near Γ+ are negligible.Finally,
vε(t, x) = ε2M

∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′ +O(ε3),where the onstant M is given by (3.10). This ompletes the proof of Theorem3.1. �As already said in Remark 3.2, Theorem 3.1 provides only the leading termof the asymptotis of uε. However, due to the presene of the exponentiallylarge fator eΘ(xd+1)/ε, we are mostly interested in the asymptotis of uε in a ε-neighbourhood of Γ+, where uε is maximum and where both, the leading and theorretor terms (inluding the boundary layer orretor) are of the same order.In Theorem 3.2 below we onstrut the orretor terms for uε, that improvessigni�antly the asymptotis of uε in the viinity of Γ+ and, therefore, makes theresult of Theorem 3.1 omplete.Let us de�ne the �rst-order approximation for uε by
U ε(t, x) = u

(
t, x− βΘ

ε
t
)

+ εNk

(x
ε

)
∂xk

u
(
t, x− βΘ

ε
t
)

+εu1

(
t, x− βΘ

ε
t
)

+ ε
[
v+
∗

(x′
ε
,
xd − 1

ε

)
− v̂+

∗

]
∂x1u

(
t, x− βΘ

ε
t
)∣∣∣

xd=1
.

(3.36)Here u(t, x) is the solution of the homogenized problem (3.9), N solves (3.15).The boundary layer orretor v+
∗ (y) are de�ned similarly to v+(y) (see (3.27)),39



exept for the fat that the adjoint operator is replaed with the diret one.Namely, v+
∗ solves the following problem in G

− = (0, 1]d−1 × (−∞, 0):




AΘv
+
∗ = 0, y ∈ G

−,

v+
∗ (y′, 0) = −Nd(y

′, 0),

y′ 7→ v+
∗ (y′, yd) is (0, 1]d−1 − periodi.Sine βd = 0, there exists a unique bounded solution v+

∗ and it stabilizes to someonstant v̂+
∗ at an exponential rate, as yd → −∞.The funtion u1(t, x) in (3.36) solves the following problem




∂tu1 = div(aeff ∇u1) + F (t, x), (t, x) ∈ (0, T ) × Ω,

u1(t, x) = v̂+
∗ ∂xd

u(t, x), (t, x) ∈ (0, T ) × (Γ− ∪ Γ+),

u1(0, x) = 0, x ∈ Ω,where
F (t, x) = ∂xk

∂xi
∂xj

u(t, x)

∫

Y

[
aΘ

kl∂ηl
N2

ij

+ aΘ
ijNk − bΘk N

2
ij + βΘ

k ρΘN
2
ij − aeff

ij ρΘNk

]
dη.Theorem 3.2. Let the assumptions of Theorem 3.1 be ful�lled. The re�nedasymptotis of the solution uε of problem (3.1), for t ≥ t0 > 0 and x ∈ Ω, takesthe form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ

(x
ε

) [
U ε(t, x) +Rε(t, x)

]
,where U ε is given by(3.36), and, for some onstant C = C(Λ, d), the remainderterm satis�es the estimate
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