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Homogenization of a nonstationary
onve
tion-di�usion equation in a thin rod and in alayerG. Allaire ∗ I. Pankratova † A. Piatnitski ‡Mar
h 8, 2012Abstra
tThe paper deals with the homogenization of a non-stationary 
onve
tion-di�usion equation de�ned in a thin rod or in a layer with Diri
hlet boundary
ondition. Under the assumption that the 
onve
tion term is large, we des
ribethe evolution of the solution's pro�le and determine the rate of its de
ay. Themain feature of our analysis is that we make no assumption on the supportof the initial data whi
h may tou
h the domain's boundary. This requires the
onstru
tion of boundary layer 
orre
tors in the homogenization pro
ess whi
h,surprisingly, play a 
ru
ial role in the de�nition of the leading order term at thelimit. Therefore we have to restri
t our attention to simple geometries like a rodor a layer for whi
h the de�nition of boundary layers is easy and expli
it.Keywords: Homogenization, 
onve
tion-di�usion, lo
alization, thin 
ylin-der, layer.1 Introdu
tionThe paper deals with the homogenization of a nonstationary 
onve
tion-di�usionequation with large 
onve
tion stated either in a thin rod or in a layer. In theprevious work [4℄ the authors addressed a similar homogenization problem for an
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equation de�ned in a general bounded domain Ω ⊂ R
d. Namely, the followinginitial-boundary value problem has been 
onsidered:





∂tu
ε − div

(
a
(x
ε

)
∇uε

)
+

1

ε
b
(x
ε

)
· ∇uε = 0, in (0, T ) × Ω,

uε(t, x) = 0, on (0, T ) × ∂Ω,

uε(0, x) = u0(x), x ∈ Ω,

(1.1)with periodi
 
oe�
ients aij, bj and a small parameter ε. Noti
e that in the 
ase ofa solenoidal ve
tor-�eld b(y) with zero mean-value the problem 
an be studied bythe 
lassi
al homogenization methods (see, for example, [8℄, [24℄). In parti
ular,the sequen
e of solutions is bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] and
onverges, as ε → 0, to the solution of an e�e
tive or homogenized problem inwhi
h there is no 
onve
tive term. For more general ve
tor �elds b, a similarbehaviour of uε is observed if the so-
alled e�e
tive drift (a suitable weightedaverage of b) is equal to zero. The behaviour of the solution 
hanges essentially ifthe e�e
tive drift is nontrivial. Problem (1.1) with nonzero e�e
tive drift has �rstbeen 
onsidered in the whole spa
e R
d [3℄, [12℄, [18℄, [21℄ by using the method ofmoving 
oordinates: the solution travels at a large speed (equal to the e�e
tivedrift divided by ε) and its pro�le is given by the solution of an homogenizeddi�usion equation. Re
ently the authors solved the same problem in a boundeddomain Ω under the 
ru
ial assumption that the initial fun
tion u0 has a 
ompa
tsupport in Ω [4℄. In this 
ase the initial pro�le moves towards the boundary duringa time of order ε, and then, upon rea
hing the boundary, starts dissipating.As a result, the solution is asymptoti
ally small for time t ≫ ε and our paper[4℄ des
ribes pre
isely the asymptoti
s of uε, whi
h is quite di�erent from thatobtained in the 
ase of R

d.Without the assumption that u0 has a 
ompa
t support in Ω, one fa
es thene
essity to 
onstru
t boundary layer 
orre
tors in the neighbourhood of ∂Ω. Itis well known that the 
onstru
tion of boundary layers for general domains isa di�
ult problem whi
h 
annot be expressed in expli
it form (see however there
ent papers [13℄, [14℄). However, it is a feasible task if the periodi
 stru
tureagrees with the geometry of the boundary of Ω. In the present paper we 
onsidertwo types of domains whi
h possess this property. Namely, we study a 
onve
tion-di�usion models in a thin rod (see Fig. 1) and in a layer (see Fig. 2) in R
d. Weemphasize that, unlike in 
lassi
al homogenization, the boundary layers we shall
onstru
t for (1.1) are not just 
orre
tor terms but, rather, they play a 
ru
ialrole in the de�nition of the leading order term in the asymptoti
 analysis (formore details, see the dis
ussion after Theorem 2.1).In the 
ase of a thin rod (Se
tion 2) we impose homogeneous Neumann bound-ary 
onditions on the lateral boundary of the rod and homogeneous Diri
hletboundary 
onditions on its bases. As in the 
ase of a general bounded domain[4℄, the solution asymptoti
ally vanishes for time t≫ ε. Theorem 2.1 determinesthe rate of vanishing of the solution and des
ribes the evolution of its pro�le. If2



the e�e
tive axial drift is not zero (otherwise the problem is trivial), the res
aledsolution 
on
entrates in the vi
inity of one of the rod ends, and the 
hoi
e of theend depends on the sign of the e�e
tive 
onve
tion. In order to 
hara
terize therate of de
ay we introdu
e a 1-parameter family of auxiliary 
ell spe
tral prob-lems, similar to Blo
h waves but with real exponential argument (see [8℄, [9℄, [11℄).The asymptoti
 behaviour of the solution is then governed by the �rst eigenpairof the said family of spe
tral problems and by a one-dimensional homogenizedproblem with a singular initial data.In the 
ase of a layer, addressed in Se
tion 3, in addition to the fa
torizationprin
iple, we also have to introdu
e moving 
oordinates [3℄, [12℄. More pre
isely,we use a parameterized 
ell spe
tral problem and fa
torization prin
iple to sup-press the normal 
omponent of the e�e
tive drift (perpendi
ular to the layerboundary). While, due to the presen
e of the longitudinal 
omponents of the ef-fe
tive 
onve
tion, we have to introdu
e moving 
oordinates (parallel to the layerboundary). The main result in this 
ase is given by Theorem 3.1. The asymp-toti
 behaviour of uε is again governed by the �rst eigenpair of the spe
tral 
ellproblem and by a homogenized problem with a singular initial data.In both 
ases (rod or layer) the initial data of the homogenized problem, andthus the asymptoti
 behavior of solutions to (1.1), di�er from those obtained forthe 
ase of a general domain in [4℄ (see again the dis
ussion after Theorem 2.1).Among the te
hni
al tools used in the paper, are fa
torization prin
iple (see [16℄,[23℄, [24℄, [2℄, [9℄), dimension redu
tion arguments and qualitative results requiredfor 
onstru
ting boundary layer 
orre
tors.2 The 
ase of a thin rodThis se
tion is 
on
erned with the homogenization of equation (1.1) stated ina thin rod Gε = (−1, 1) × εQ (see Figure 1). Here Q ⊂ R
d−1 is a boundeddomain with Lips
hitz boundary ∂Q, ε > 0 is a small parameter. Without lossof generality, we assume that Q has a unit (d − 1)-dimensional measure, i.e.

|Q|d−1 = 1. Throughout this se
tion the points in R
d are denoted x = (x1, x

′)with x′ ∈ R
d−1. The lateral boundary of the rod Gε is denoted Σε = (−1, 1) ×

ε∂Q. For T > 0, we 
onsider the following model:




∂tu
ε(t, x) +Aε u

ε(t, x) = 0, in (0, T ) ×Gε,

Bεu
ε(t, x) = 0, on (0, T ) × Σε,

uε(t,±1, x′) = 0, on (0, T ) × εQ,

uε(0, x) = u0(x1), x ∈ Gε

(2.1)
with

Aεu
ε = −div

(
aε∇uε

)
+

1

ε
bε · ∇uε; Bεu

ε = aε∇uε · n.3
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Figure 1: The rod GεThe 
oe�
ients of the equation are given by
aε

ij = aij

(x
ε

)
, bεj = bj

(x
ε

)
, 1 ≤ i , j ≤ d. (2.2)Note that the �xed domain Ω in (1.1) is repla
ed in (2.1) by Gε whi
h has avanishing 
ross-se
tion and that the Diri
hlet boundary 
onditions are appliedmerely at the end bases of the thin rod. If the rod had a square 
ross-se
tion,the problem with the Neumann boundary 
ondition on the lateral boundary Σε
ould be redu
ed to a problem with periodi
 boundary 
onditions in a 
ylinderhaving in the 
ross-se
tion the square of double size. This gives us an idea thatour results 
an be extended to the 
ase of periodi
 boundary 
onditions on thelateral boundary of the rod. Indeed, the arguments used in the paper also apply,with some simpli�
ations, to the 
ase of periodi
 boundary 
onditions.We assume that:(H1) The 
oe�
ients of Aε are measurable bounded fun
tions, that is aij , bj ∈

L∞(R × Q). Moreover, aij(y1, y
′), bj(y1, y

′) are 1-periodi
 with respe
t to
y1.(H2) The d × d matrix a(y) is symmetri
 and satis�es the uniform ellipti
ity
ondition, that is there exists Λ > 0 su
h that

aij(y)ξiξj ≥ Λ|ξ|2, ∀x, ξ ∈ R
d.(H3) The initial fun
tion u0(x1) ∈ C1[−1, 1].(H4) For simpli
ity, we assume that ε = 1/N , N ∈ Z+.Remark 2.1. In assumption (H2) the Einstein summation 
onvention over re-peated indi
es is used, as well as later in this paper. Assumption (H4) meansthat the rod is made up of a number of entire 
ells whi
h are not 
ut at both ends.Sin
e the rod has a vanishing thi
kness and u0 is smooth, there is no funda-mental restri
tion in assuming that u0 depends only on x1.Under the stated assumptions we study the asymptoti
 behaviour of solutions

uε(t, x) of problem (2.1), as ε→ 0.2.1 Auxiliary spe
tral problems and main resultIn what follows we denote
Au = −div(a∇u) + b · ∇u, Bu = a∇u · n; (2.3)4



A∗u = −div(a∇u) − div(b u), B∗u = a∇u · n+ (b · n)u. (2.4)Following [8℄, [9℄, for θ ∈ R, we introdu
e two parameterized families of spe
tralproblems (dire
t and adjoint) whi
h are di�erent from the usual Floquet-Blo
hspe
tral problems be
ause the exponential fa
tor θ is real instead of being purelyimaginary. They reads




e−θy1 Aeθy1 pθ(y) = λ(θ) pθ(y), in Y = T1 ×Q,

e−θy1 B eθy1 pθ(y) = 0, on ∂Y = T1 × ∂Q,

y1 → pθ(y) 1-periodi
, (2.5)and 



eθy1 A∗ e−θy1 p∗θ(y) = λ(θ) p∗θ(y), in Y,
eθy1 B∗ e−θy1 p∗θ(y) = 0, on ∂Y,
y1 → p∗θ(y) 1-periodi
.Here T1 is the 1-dimensional unit 
ir
le. Note that the exponential transform isapplied only with respe
t to the �rst spa
e 
omponent y1. The next result, basedon the Krein-Rutman theorem, has been proved in [9℄.Lemma 2.1. For ea
h θ ∈ R, the �rst eigenvalue λ1(θ) of problem (2.5) is real,simple, and the 
orresponding eigenfun
tions pθ and p∗θ 
an be 
hosen positive.Moreover, θ → λ1(θ) is twi
e di�erentiable, stri
tly 
on
ave and admits a maxi-mum whi
h is obtained for a unique θ = Θ.The eigenfun
tions pθ and p∗θ de�ned by Lemma 2.1, are normalized by

∫

Y

|pθ(y)|2 dy = 1 and ∫

Y

pθ(y) p
∗
θ(y) dy = 1. (2.6)Di�erentiating equation (2.5) with respe
t to θ, integrating against p∗θ and writingdown the 
ompatibility 
ondition for the resulting equation, yield

dλ1

dθ
=

∫

Y

(
b1 pθ p

∗
θ + a1j(pθ ∂yj

p∗θ − p∗θ ∂yj
pθ) − 2 θ pθ p

∗
θ a11

)
dy. (2.7)Noti
ing that λ1(0) = 0 and pθ(y)|θ=0 = 1, one obtains

dλ1

dθ

∣∣∣
θ=0

=

∫

Y

(
a1j ∂yj

p∗ + b1 p
∗
)
dy ≡ b̄1, (2.8)where p∗(y) = p∗θ(y)|θ=0. The last expression is the so-
alled e�e
tive axial drift

b̄1 ∈ R.In what follows we assume that b̄1 > 0 (whi
h is equivalent to Θ > 0). The
ase b̄1 < 0 is symmetri
 and 
an be 
onsidered in the same way.To avoid ex
essive te
hni
alities, we �rst formulate our main result in a looseway. 5



Theorem 2.1. Let 
onditions (H1) − (H4) be ful�lled and b̄1 > 0 (see (2.8)).Suppose that u0(−1) 6= 0. Then there exist 
onstants aeff and M su
h that, for
t > 0 and x ∈ Gε, the asymptoti
s of the solution uε of problem (2.1) takes theform

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

) [
u(t, x1) + rε(t, x)

]
,where u is a solution of the one-dimensional e�e
tive problem





∂tu = aeff ∂2
x1
u, (t, x1) ∈ (0, T ) × (−1, 1),

u(t,±1) = 0, t ∈ (0, T ),

u(0, x1) = −M u0(−1) δ′(x1 + 1), x1 ∈ (−1, 1).Here rε(t, x) is su
h that |rε(t, ·)| ≤ C ε for t ≥ t0 > 0, x ∈ I+×εQ, I+ ⋐ (−1, 1],and the 
onstant C depends on I+,Λ, Q, d.A more pre
ise statement of Theorem 2.1 
an be found below in Theorems 2.2and 2.3. The interpretation of Theorem 2.1 is that it is a result of both lo
aliza-tion/
on
entration and homogenization. Indeed, up to a multipli
ative 
onstant
ε2, the solution uε is asymptoti
ally equal to the produ
t of two exponentialterms, a periodi
ally os
illating fun
tion pΘ

(
x
ε

) (whi
h is uniformly positive andbounded) and the homogenized fun
tion u(t, x1) (whi
h is independent of ε). The�rst exponential term e−
λ1(Θ)t

ε2 indi
ates a fast de
ay in time, uniform in spa
e.The se
ond exponential term, eΘ(x1+1)
ε , indi
ates a lo
alization of the solutionin a small neighborhood of the right end of the rod, where the solution attainsits maximum; everywhere else in (−1, 1) the solution is exponentially smaller.The homogenized solution u depends only on the value of the initial data u0 atthe opposite extremity x1 = −1 and it is proportional to the 
onstant M whi
hdepends on some homogenization boundary layers.The role of boundary layers is thus 
ru
ial in the result of Theorem 2.1.Furthermore, if the initial data u0 had a 
ompa
t support [α, β] ⋐ (−1, 1) and

u0(α) 6= 0, then Theorem 5.2 in [4℄ gives a similar asymptoti
 behaviour ex-
ept for the initial data of the homogenized problem whi
h would be u(0, x1) =

M̃ u0(α) δ(x1 − α). In other words, the derivative of the Dira
 mass would berepla
ed with the Dira
 mass itself.Remark 2.2. The error estimate for the remainder term rε is not pre
ise enoughand it shall be improved in Theorem 2.3. Indeed, the homogeneous Diri
hletboundary 
ondition for u(t, x1), together with the exponential eΘ(x1+1)
ε shows that

uε(t, x) attains its maximum at a distan
e of order ε of the end point x1 = 1:there, by a Taylor expansion, u(t, x1) is of the order of ε, like the remainder term
rε(t, x) whi
h is thus not negligible. A better ansatz with a better error estimatewill be given in Theorem 2.3 (again, boundary layers will be 
ru
ial).The proof of Theorem 2.1 is performed in several steps. First, we makeuse of a fa
torization prin
iple in order to simplify the original problem. Then,6



we represent the new unknown fun
tion in terms of the 
orresponding Green'sfun
tion. And, �nally, we study the asymptoti
 behaviour of the mentionedGreen's fun
tion, as ε→ 0.2.2 Proof of Theorem 2.12.2.1 Fa
torizationIn order to simplify the original problem we perform the 
hange of unknowns, aswas suggested in [3℄, [4℄, [10℄, [23℄.
uε(t, x) = e−

λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

)
vε(t, x). (2.9)Note that (2.9) is a proper de�nition of vε sin
e pΘ is a positive fun
tion. Sub-stituting (2.9) into (2.1) yields the problem for the new unknown fun
tion vε





ρΘ

(x
ε

)
∂tv

ε − div
(
aΘ

(x
ε

)
∇vε

)
+

1

ε
bΘ

(x
ε

)
· ∇vε = 0, in (0, T ) ×Gε,

aΘ
(x
ε

)
∇vε · n = 0, on (0, T ) × Σε,

vε(t,±1, x′) = 0, x′ ∈ (0, T ) × εQ,

vε(0, x) = u0(x1) p
−1
Θ

(x
ε

)
e−

Θ(x1+1)
ε , x ∈ Gε.(2.10)Here

ρΘ(y) = pΘ(y) p∗Θ(y), aΘ(y) = pΘ(y) p∗Θ(y) a(y),

bΘ(y) = pΘ(y) p∗Θ(y) b(y) − 2Θ pΘ(y) p∗Θ(y) a(y)e1

+a(y)
[
pΘ(y)∇yp

∗
Θ(y) − p∗Θ(y)∇ypΘ(y)

]
,

(2.11)with e1 the �rst 
oordinate ve
tor. For brevity, in what follows we denote
Aε

Θv = −div
(
aΘ

(x
ε

)
∇v

)
+

1

ε
bΘ

(x
ε

)
· ∇v, Bε

Θv = aΘ
(x
ε

)
∇v · n,

AΘv = −div(aΘ∇v) + bΘ · ∇v, BΘv = aΘ∇v · n, (2.12)
A∗,ε

Θ v = −div
(
aΘ

(x
ε

)
∇v

)
− 1

ε
bΘ

(x
ε

)
· ∇v,

A∗
Θv = −div(aΘ∇v) − bΘ · ∇v. (2.13)Straightforward 
al
ulations yield that, for any θ ∈ R,

divyb
θ(y) = 0 in Y, bθ · n = 0 on ∂Y. (2.14)Taking into a

ount the fa
t that Θ is the maximum point of λ1 and equality(2.7), we obtain that the �rst 
omponent of bΘ has zero mean:

∫

Y

bΘ1 (y) dy = 0. (2.15)7



Due to (2.14), (2.15), the partial di�erential equation in (2.10) 
ould be homoge-nized by standard methods [7℄, [8℄ if the initial data were independent of ε. How-ever, the presen
e of an asymptoti
ally singular initial 
ondition in (2.10) bringssome di�
ulties into the homogenization pro
edure. In parti
ular, the 
lassi
alapproa
h of homogenization (based on energy estimates in Sobolev spa
es) 
annotbe applied sin
e the initial data is not uniformly bounded in L2(Gε).In order to study the asymptoti
 behaviour of vε, following our previous work[4℄, we use its representation in terms of the 
orresponding Green's fun
tion
Kε(t, x, ξ)

vε(t, x) =

∫

Gε

Kε(t, x, ξ)u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ. (2.16)Here Kε, as a fun
tion of t and x, for ea
h ξ ∈ Gε, solves the problem





ρε
Θ ∂tKε +Aε

ΘKε = 0, (t, x) ∈ (0, T ) ×Gε,

Bε
ΘKε = 0, (t, x) ∈ (0, T ) × Σε,

Kε(t, x, ξ)
∣∣∣
x1=±1

= 0, (t, x′) ∈ (0, T ) × εQ,

Kε(0, x, ξ) = δ(x − ξ), x ∈ Gε.

(2.17)
Note that Kε with respe
t to (t, ξ) is a solution of the formally adjoint problem,whi
h di�ers from (2.17) by the sign in front of the �rst-order terms.Be
ause of the presen
e of the delta-fun
tion in the initial 
ondition, it isdi�
ult to 
onstru
t the asymptoti
s for Kε dire
tly. Let us introdu
e a fun
tion

Vε(t, x, ξ) = Φε(t, x, ξ) −Kε(t, x, ξ), (2.18)where Φε stands for the Green fun
tion in the in�nite 
ylinder Gε = R × εQ. Asa fun
tion of t and ξ, it is a solution to the following problem




ρε
Θ(ξ) ∂tΦε +A∗,ε

Θ Φε = 0, (t, ξ) ∈ (0, T ) × Gε,

Bε
ΘΦε = 0, (t, ξ) ∈ (0, T ) × Γε,

Φε(0, x, ξ) = δ(x− ξ), ξ ∈ Gε.

(2.19)By Γε we denote the lateral boundary R × ∂(εQ) of the 
ylinder Gε. For ea
h
x ∈ Gε, Vε as a fun
tion of t and ξ solves the problem





ρε
Θ(ξ) ∂tVε +A∗,ε

Θ Vε = 0, (t, ξ) ∈ (0, T ) ×Gε,

Bε
ΘVε = 0, (t, ξ) ∈ (0, T ) × Σε,

Vε(t, x, ξ)
∣∣∣
ξ1=±1

= Φε(t, x, ξ)
∣∣∣
ξ1=±1

, (t, ξ) ∈ (0, T ) × εQ,

Vε(0, x, ξ) = 0, ξ ∈ Gε.

(2.20)
In the following subse
tion we 
onstru
t an asymptoti
 expansion for Φε whi
h is arelatively easy task be
ause it is de�ned in an in�nite 
ylinder (thus not requiring8



any boundary layers). Subse
tion 2.2.3 will be devoted to the approximation of
Vε whi
h is deli
ate be
ause of the ne
essity of de�ning boundary layers but stillpossible sin
e the boundary 
ondition for Vε is smooth for x 6= ±1. The �nalsubse
tion will 
ombine these two results to get an ansatz for Kε and, using(2.16), to prove Theorem 2.1.2.2.2 Asymptoti
s for Φε(t, x, ξ)The goal of this se
tion is to 
ompute an asymptoti
 expansion for the Greenfun
tion Φε with a bound on the error term (see Lemma 2.3 below). Denote by
Φ0 a fundamental solution of the 1-dimensional homogenized problem





∂tΦ0 = aeff ∂2
ξ1Φ0(t, x1, ξ1), (t, ξ1) ∈ (0, T ) × R, x1 ∈ R,

Φ0(0, x1, ξ1) = δ(x1 − ξ1), ξ1, x1 ∈ R.
(2.21)Here the e�e
tive 
oe�
ient aeff is given by one of the two equivalent formulae

aeff =

∫

Y

(aΘ
11 + aΘ

1j∂yj
N − bΘ1 N) dy =

∫

Y

(aΘ
11 + aΘ

1j∂yj
N∗ + bΘ1 N

∗) dy, (2.22)where the 1-periodi
 in y1 fun
tions N and N∗ solve the standard 
ell problems(dire
t and adjoint, respe
tively):




AΘN(y) = ∂yj
aΘ

j1(y) − bΘ1 (y), y ∈ Y,

BΘN(y) = 0, y ∈ ∂Y ;
(2.23)





A∗
ΘN

∗(η) = ∂ηj
aΘ

j1(η) + bΘ1 (η), η ∈ Y,

BΘN
∗(η) = 0, η ∈ ∂Y.

(2.24)Of 
ourse, (2.21) is the homogenized problem for (2.19) and it 
an be shown that
aeff > 0. Note that N and N∗ are Hölder 
ontinuous fun
tions (see [15℄). Thefundamental solution Φ0 admits the expli
it formula

Φ0(t, x1, ξ1) =
1

2
√
π t

1

aeff
e
−

|x1−ξ1|
2

4aeff t . (2.25)We also introdu
e the �rst- and se
ond-order approximations of Φε by
Φε

1(t, x, ξ) = Φ0(t, x1, ξ1) + εN
(x
ε

)
∂x1Φ0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1Φ0(t, x1, ξ1),

(2.26)
Φε

2(t, x, ξ) = Φε
1(t, x, ξ) + ε2N2

(x
ε

)
∂2

x1
Φ0(t, x1, ξ1)

+ε2N∗
2

(ξ
ε

)
∂2

ξ1Φ0(t, x1, ξ1) + ε2N
(x
ε

)
N∗

(ξ
ε

)
∂x1∂ξ1Φ0(t, x1, ξ1).

(2.27)Our further analysis relies on Aronson type upper bound for Φε. Consider theGreen fun
tion Φ(t, y, η) of the following initial boundary problem in the in�nite9



res
aled 
ylinder G = R ×Q with lateral boundary Σ:




ρΘ(y) ∂tΦ +AΘΦ = 0, (t, y) ∈ (0,∞) × G,

BΘΦ = 0, (t, y) ∈ (0,∞) × Σ,

Φ(0, y, η) = δ(y − η), y ∈ G.

(2.28)Lemma 2.2. The Green fun
tion Φ, solution of (2.28), satis�es the followingAronson type estimate
0 < Φ(t, y, η) ≤ C1 max

(
t−d/2, t−1/2

)
exp

(
− c

|y − η|2
t

)
. (2.29)with positive 
onstants C1 and c.Remark 2.3. In the right hand side of estimate (2.29) the fa
tor t−d/2 takes 
areof the short times (for whi
h there is no di�eren
e between the 
ylinder G and thefull spa
e R

d) while the other fa
tor t−1/2 is valid for the longer times (for whi
hthe 
ylinder G behaves as a 1-d line).Proof. We only brie�y sket
h this proof. The idea is to derive (2.29) from the
lassi
al Aronson estimate in R
d (see [5℄) for divergen
e form operators. Let us
he
k �rst that the operator AΘ 
an be rewritten in divergen
e form. Sin
e bΘ isa divergen
e-free ve
tor �eld and the average of its �rst 
omponent is zero, thereis a skew-symmetri
 periodi
 in y1 matrix S(y) with bounded entries su
h that

bΘ = divS (see e.g. [9℄). Then
AΘφ = −div

(
(aΘ − S)∇φ

)
.Assume for a moment that the 
ross se
tion Q is the unit 
ube in R

d−1. Wedupli
ate the 
ube by symmetri
 re�e
tion of the operator 
oe�
ients and thesolution Φ(t, y, η) of (2.28) with respe
t to ea
h dire
tion orthogonal to its fa
es.The resulting problem is now periodi
 with period 2 in ea
h 
oordinate dire
tion.It should be noted that the initial 
ondition on ea
h period is the sum of 2d−1delta fun
tions in y at the point η and its symmetri
 re�e
tions. We denotethese points by {ηk(η)}2d−1

k=1 with η1(η) = η. Then the solution Φ̃(t, y, η) of theintrodu
ed above 2Q-periodi
 problem 
oin
ides with Φ(t, y, η) on Q.Due to the linearity of the problem
Φ̃(t, y, η) =

2d−1∑

k=1

G#(t, y, ηk(η)),where G#(t, y, η) is the Green fun
tion of the 
orresponding 2Q-periodi
 operator.Clearly, G#(t, y, η) is 
onstru
ted from the fundamental solution G(t, y, η) in thewhole spa
e by summing over the square periodi
 network of period 2Q. Namely,
G#(t, y, η) =

∑

n∈Zd−1

G(t, y, η + 2n).10



Making use of the 
lassi
al Aronson estimate for the fundamental solutionG(t, y, η)in R
d, we get

G#(t, y, η) =
∑

n∈Zd−1

G(t, y, η + 2n)

≤ C

td/2

∑

n∈Zd−1

e−C0
|y1−η1|

2

t e−C0
|y′−η′−2n|2

t ,
(2.30)for some positive 
onstants C,C0. For small time the 
ontributions of the distant
ells are negligible be
ause of the exponential de
ay, and the main 
ontributionis given by the term with n = 0. Consequently, for small time

G#(t, y, η) ≤ C̃

td/2
e−C̃0

|y−η|2

t ,with some positive 
onstants C̃, C̃0. For large time t all the terms in (2.30)
ontribute. Indeed, after making the 
hange of variables
t =

τ

δ2
, y =

ỹ

δ
, η =

η̃

δ
, n =

ñ

δ
,for small δ > 0, we get

G#(
τ

δ2
,
ỹ

δ
,
η̃

δ
) ≤ C δd

τd/2
e−C0

|ỹ1−η̃1|
2

τ

∑

ñ∈(δZ)d−1

e−C0
|ỹ′−η̃′−ñ|2

τ

≤ C1 δ

τd/2
e−C0

|ỹ1−η̃1|
2

τ

∫

Rd−1

e−C0
|ỹ′−η̃′−ñ|2

τ dñ ≤ C̃1 δ

τ1/2
e−C0

|ỹ1−η̃1|
2

τ .Changing ba
k the variables we have
G#(t, y, η) ≤ C1√

t
e−C0

|y1−η1|
2

tfor any time t su
h that t ≥ t0 > 0. Thus, estimate (2.29) is satis�ed when Q isthe unit 
ube.Finally, if Q is not a 
ube, we �rst map it to the unit 
ube by a Lips
hitzdi�eomorphism whi
h preserves the divergen
e form and ellipti
 
hara
ter of theoperator with uniformly bounded 
oe�
ients.Using Lemma 2.2, we 
an paraphrase the upper bound, announ
ed in [24℄(see Chapter II, page 85) and then proved rigorously in [1℄ (similar results wereproved in [6℄). The di�eren
e is that we address the 
ase of an in�nite 
ylinderinstead of the whole spa
e as in these previous referen
es.Lemma 2.3. For any x, ξ ∈ Gε and t ≥ ε2,
|εd−1 Φε(t, x, ξ) − Φε

k(t, x1, ξ1)| ≤ C
εk+1

t(k+2)/2
, k = 0, 1, 2, (2.31)where Φε

0 ≡ Φ0, Φε
1 is de�ned by (2.26) and Φε

2 by (2.27).We do not give the details of the proof of Lemma 2.3 whi
h is 
ompletelysimilar to that in [1℄. It relies on two arguments. The �rst one is the Blo
hde
omposition and m-se
torial property of the de
omposition of the operator AΘin Y whi
h still holds true in the present 
ase. The se
ond one is the Aronsonestimate whi
h is granted by Lemma 2.2. Estimate (2.31) holds true if |Q|d−1 = 1.Otherwise, the multiplier |Q|d−1 appears in front of εd−1 Φε(t, x, ξ).11



2.2.3 Asymptoti
s for Vε(t, x, ξ)The goal of this se
tion is to 
onstru
t an asymptoti
 expansion for the di�eren
e
Vε, de�ned by (2.18), with a bound on the remainder term (see Lemmas 2.4 and2.5 below). Bearing in mind estimate (2.31), it is εd−1Vε, rather than Vε, whi
hhas a limit. The formal asymptoti
 expansion for εd−1 Vε takes the form (see e.g.[7℄, [19℄)

Wε(t, x, ξ) = V0(t, x1, ξ1) + εN
(x
ε

)
∂x1V0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1V0(t, x1, ξ1) + ε V1(t, x1, ξ1) + ε V ε

bl(t, x, ξ)

+ε2 V2

(
t, x1, ξ1;

x

ε
,
ξ

ε

)
+ ε3W ε

bl(t, x, ξ),

(2.32)where V0, for ea
h x1, is the solution of the homogenized problem




∂tV0 = aeff ∂2
ξ1V0, (t, ξ1) ∈ (0, T ) × (−1, 1),

V0(t, x1,±1) = Φ0(t, x1,±1), t ∈ (0, T ),

V0(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1)

(2.33)with the e�e
tive 
oe�
ient aeff de�ned by (2.22). Re
all that N and N∗ aresolutions of (2.23) and (2.24), respe
tively. The other terms in (2.32) are de�nedas follows.The fun
tion V2 is de�ned by
V2(t, x1, ξ1; y, η) = N2(y) ∂

2
x1
V0(t, x1, ξ1)

+N∗
2 (η) ∂2

ξ1V0(t, x1, ξ1) +N(y)N∗(η) ∂x1∂ξ1V0(t, x1, ξ1)

+N(y) ∂x1V1(t, x1, ξ1) +N∗(η) ∂ξ1V1(t, x1, ξ1)

(2.34)where the fun
tions N2(y) and N∗
2 (η) (1-periodi
 with respe
t to their �rst vari-able) solve the following problems:





AΘN2 = ∂yi
(aΘ

i1N) + aΘ
1j∂yj

N + aΘ
11 − bΘ1 N − aeff ρΘ, in Y,

BΘN2 = −aΘ
i1 niN, on ∂Y, (2.35)and





A∗
ΘN

∗
2 = ∂ηi

(aΘ
i1N

∗) + aΘ
1j∂ηj

N∗ + aΘ
11 + bΘ1 N

∗ − aeff ρΘ, in Y,
BΘN

∗
2 = −aΘ

i1 niN
∗, on ∂Y.In order to de�ne V1 and the boundary layer 
orre
tor V ε

bl in (2.32), we introdu
etwo fun
tions v± de�ned in semi-in�nite 
ylinders, v− in G
+ = (0,+∞)×Q and

v+ in G
− = (−∞, 0) ×Q:





A∗
Θv

±(η) = 0, η ∈ G
∓,

BΘv
±(η) = 0, η ∈ Σ∓,

v±(0, η′) = −N∗(0, η′),

(2.36)12



where Σ± are the lateral boundaries of G
±. It has been proved in [20℄ thatbounded solutions v± exist, are uniquely de�ned and stabilize to some 
onstants

v̂± at an exponential rate, as η1 → ±∞:
|v±(η1, η

′) − v̂±| ≤ C0 e
−γ |η1|, C0, γ > 0;

‖∇v−‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0,

‖∇v+‖L2((−(n+1),−n)×Q) ≤ C e−γ n, ∀n > 0.

(2.37)Then the �rst boundary layer 
orre
tor is given by
V ε

bl(t, x, ξ) =
[
v−

(ξ1 + 1

ε
,
ξ′

ε

)
− v̂−

]
∂ξ1(V0 − Φ0)(t, x1, ξ1 = −1)

+
[
v+

(ξ1 − 1

ε
,
ξ′

ε

)
− v̂+

]
∂ξ1(V0 − Φ0)(t, x1, ξ1 = 1),

(2.38)and V1, for x1 ∈ (−1, 1), satis�es the problem




∂tV1 = aeff ∂2
ξ1V1 + F (t, x1, ξ1), (t, ξ1) ∈ (0, T ) × (−1, 1),

V1(t, x1,±1) = v̂± ∂ξ1 (V0 − Φ0)
∣∣∣
ξ1=±1

, t ∈ (0, T ),

V1(0, x1, ξ1) = 0, ξ1 ∈ (−1, 1),

(2.39)where
F (t, x1, ξ1) = ∂3

ξ1V0(t, x1, ξ1)

∫

Y

(
aΘ

1j(η)∂ηj
N∗

2 (η)

+ aΘ
11(η)N

∗(η) + bΘ1 (η)N∗
2 (η) − aeff ρΘ(η)N∗(η)

)
dη.

(2.40)Finally, the se
ond boundary layer 
orre
tor W ε
bl is designed to 
ompensate thetime derivative of V ε

bl and is de�ned by
W ε

bl(t, x, ξ) =
[
w−

(ξ1 + 1

ε
,
ξ′

ε

)
− ŵ−

]
∂t∂ξ1(V0 − Φ0)(t, x1, ξ1 = −1)

+
[
w+

(ξ1 − 1

ε
,
ξ′

ε

)
− ŵ+

]
∂t∂ξ1(V0 − Φ0)(t, x1, ξ1 = 1).The fun
tions w± solve nonhomogeneous problems





A∗
Θw

±(η) = (v̂± − v±(η)) ρΘ(η), η ∈ G
∓,

BΘw
±(η) = 0, η ∈ Σ∓,

w±(0, η′) = 0.Bounded solutions w± exist, are uniquely de�ned and stabilize to some 
onstants
ŵ± at an exponential rate, as η1 → ±∞ (see [20℄).Using the standard ellipti
 estimates one 
an easily show that, for x1 6= ±1,the fun
tion V0 belongs to C∞([0, T ] × (−1, 1) × [−1, 1]), and for t ∈ [0, T ],
x1 ∈ I ⋐ (−1, 1), ξ1 ∈ [−1, 1], we have

|∂k
t ∂

l
x1
∂m

ξ1 V0(t, x1, ξ1)| ≤
C

min{|x1 − 1|, |x1 + 1|}2k+l+m+1
. (2.41)13



Then V1 is also a smooth fun
tion of its variables for x ∈ I ⋐ (−1, 1). Noti
e�nally that N2 and N∗
2 are Hölder 
ontinuous. Indeed, it is straightforward to
he
k that the equation and the boundary 
onditions in (2.35) 
an be rewrittenin the form 




AΘ(N2 + y1N +
1

2
y2
1) = −aeffρΘ, y ∈ Y,

BΘ(N2 + y1N +
1

2
y2
1) = 0, y ∈ ∂Y.Sin
e aeffρΘ ∈ L∞(Y ), then it is known that the 
orresponding solution is Hölder
ontinuous (see [15℄). The Hölder 
ontinuity of N∗

2 
an be justi�ed in a similarway.We denote by V ε
1 the �rst-order approximation of εd−1Vε

V ε
1 (t, x, ξ) = V0(t, x1, ξ1) + εN

(x
ε

)
∂x1V0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1V0(t, x1, ξ1) + ε V1(t, x1, ξ1) + ε V ε

bl(t, x, ξ).

(2.42)By 
onstru
tion, its tra
e at the 
ylinder ends 
oin
ide with that of Φε
1, namely

{
V ε

1 (t, x, ξ)
}∣∣∣

ξ1=±1
= Φε

1(t, x, ξ)
∣∣∣
ξ1=±1

,where Φε
1 is de�ned by (2.26). Of 
ourse, V ε

1 is also the �rst-order approximationof Wε, de�ned by (2.32). It turns out that all terms in V ε
1 will 
ontribute to theleading term of the asymptoti
s of εd−1Vε, while the other terms, V2 and W ε

bl, in(2.32) are 
onstru
ted in order to guarantee the required a

ura
y.Lemma 2.4. Let Vε be de�ned by (2.18), or equivalently be a solution of (2.20).Let V ε
1 be de�ned by (2.42). Then, there exists a 
onstant C, depending on

I,Λ, Q, d and independent of ε, su
h that, for x ∈ I × εQ and t ≥ 0, I ⋐ (−1, 1),
∫

Gε

|εd−1Vε − V ε
1 |2 dξ ≤ C ε4 εd−1. (2.43)Proof. The strategy of the proof is the following: we plug the di�eren
e (Wε −

εd−1Vε) into the boundary value problem (2.20) and 
al
ulate the right hand sidesin the equation and in the boundary 
ondition. The terms of the asymptoti
 ex-pansion Wε were designed in a su
h a way that these right-hand sides are small.Thus, by a priori estimates, the di�eren
e Wε − εd−1Vε is small in a appropriatenorm. For the sake of 
larity, we divide the proof in several steps.Step 1. We �rst prove a priori estimates for the following problem:




ρε
Θ∂tw

ε +A∗,ε
Θ wε = f(t, x) + divF (t, x), in (0, T ) ×Gε,

Bε
Θw

ε = εg(t, x) − F · n, on (0, T ) × Σε,

wε(t,±1, x′) = 0, (t, x′) ∈ (0, T ) ×Q,

wε(0, x) = 0, x ∈ Gε.

(2.44)
14



Sin
e by (2.14) div bεΘ = 0 and bεΘ · n = 0 on the lateral boundary, a prioriestimates are obtained in a standard way. Multiplying the equation in (2.44) by
wε and integrating by parts and exploiting the Cau
hy-Bunyakovsky inequalityand Grönwall's lemma, we obtain for any t ≤ T

∫

Gε

|wε(t)|2 dx+

t∫

0

∫

Gε

|∇wε|2 dx dτ

≤ C eC1t
(
‖f‖2

L2((0,T )×Gε) + ε2‖g‖2
L2((0,T )×Σε) + ‖F‖2

L2((0,T )×Gε)

)
,

(2.45)where the 
onstants C,C1 are independent of ε and t.Step 2. To estimate the L2(Gε) norm of Wε − εd−1Vε, we �rst substitute Wε −
εd−1Vε for wε in (2.44). This yields

ρε
Θ ∂t(Wε − εd−1Vε) +A∗ε

Θ (Wε − εd−1Vε)

= εR1(t, x1, ξ1;x/ε, ξ/ε) + ε∂ηi
R̃1,i(t, x1, ξ1;x/ε, ξ/ε)

+ε2R2(t, x1, ξ1;x/ε, ξ/ε) + ε3Rε
3(t, x1, ξ),

Bε
Θ(Wε − εd−1Vε) = ε2 ni R̃1,i(t, x1, ξ1;x/ε, ξ/ε),

(2.46)
where

R1(t, x1, ξ1; y, η) = ρΘ(η)N(y)∂t∂x1V0(t, x1, ξ1)

+ρΘ(η)N∗(η)∂t∂ξ1V0 + ρΘ(η)∂tV1 − aΘ
11(η)N(y)∂2

ξ1∂x1V0(t, x1, ξ1)

−aΘ
11(η)N

∗(η)∂3
ξ1V0(t, x1, ξ1) − aΘ

11(η)∂
2
ξ1V1(t, x1, ξ1)

−aΘ
1j(η)∂ξ1∂ηj

V2(t, x1, ξ1; y, η) − bΘ1 (η)∂ξ1V2(t, x1, ξ1; y, η),and
R̃1,i(t, x1, ξ1; y, η) = aΘ

i1(η)∂ξ1V2(t, x1, ξ1; y, η),

R2(t, x1, ξ1; y, η) = ρΘ ∂tV2(t, x1, ξ1; y, η) − aΘ
11(η)∂

2
ξ1V2(t, x1, ξ1; y, η),

Rε
3(t, x1, ξ) = ρε

Θ ∂tW
ε
bl(t, x, ξ).All 
an
ellations on the right hand side of (2.46) are 
lassi
al (see e.g. [7℄) ex
eptfor the one due to the additional boundary layer 
orre
tor term ε3W ε

bl in theansatz (2.32) for Wε. Indeed, the 
oe�
ient ε3 in front of W ε
bl allows us to 
an
elthe time derivative of V ε

bl. By 
onstru
tion
∂tV

ε
bl(t, x, ξ) = −ε2A∗,ε

Θ W ε
bl(t, x, ξ)and

(ρε
Θ ∂t +A∗ε

Θ ) (ε V ε
bl(t, x, ξ) + ε3W ε

bl(t, x, ξ)) = ε3 ρε
Θ ∂tW

ε
bl(t, x, ξ).15



By linearity, we have Wε− εd−1Vε = Ṽ ε
1 + Ṽ ε

2 , where Ṽ ε
1 and Ṽ ε

2 , for ea
h x ∈ Gε,solve the following problems:




ρε
Θ ∂tṼ

ε
1 +A∗ε

Θ Ṽ
ε
1 = εR1(t, x1, ξ1;x/ε, ξ/ε) + ε∂ηi

R̃1,i(t, x1, ξ1;x/ε, ξ/ε)+

+ε2R2(t, x1, ξ1;x/ε, ξ/ε) + ε3Rε
3(t, x1, ξ), (t, ξ) ∈ (0, T ) ×Gε,

Bε
ΘṼ

ε
1 = ε2 ni R̃1,i(t, x1, ξ1;x/ε, ξ/ε), (t, ξ) ∈ (0, T ) × Σε,

Ṽ ε
1 (t, x, ξ)

∣∣∣
ξ1=±1

= 0, t ∈ (0, T )

Ṽ ε
1 (0, x, ξ) = 0, ξ ∈ Gε;





ρε
Θ ∂tṼ

ε
2 +A∗ε

Θ Ṽ
ε
2 = 0, (t, ξ) ∈ (0, T ) ×Gε,

Bε
ΘṼ

ε
2 = 0, (t, ξ) ∈ (0, T ) × Σε,

Ṽ ε
2 (t, x, ξ)

∣∣∣
ξ1=±1

= (Wε − εd−1Φε)(t, x, ξ)
∣∣∣
ξ1=±1

, t ∈ (0, T )

Ṽ ε
2 (0, x, ξ) = 0, ξ ∈ Gε.Step 3. We estimate Ṽ ε

1 using the a priori estimates (2.45) obtained in the �rststep. To this end, we noti
e that, in view of (2.33) and (2.39),
∫

Y

R1(t, x1, ξ1; y, η) dη = 0.Thus, there exists a 1-periodi
 with respe
t to η1 ve
tor-fun
tion χ = χ(t, x1, ξ1; y, η)su
h that {
−divηχ = R1 η ∈ Y,
χ · n = 0, η ∈ ∂Y.Obviously,

R1(t, x1, ξ1; y, η)
∣∣∣
η=ξ/ε

= −εdivξ

(
(χ

(
t, x1, ξ1; y,

ξ

ε

))
+ε∂ξ1χ1

(
t, x1, ξ1; y, η

)∣∣∣
η=ξ/ε

,and
∂ηi
R̃1,i(t, x1, ξ1; y, η)

∣∣∣
η=ξ/ε

= ε∂ξi

(
R̃1,i(t, x1, ξ1; y,

ξ

ε
)

)
−ε∂ξi

R̃1,i

(
t, x1, ξ1; y, η

)∣∣∣
η=ξ/ε

.Considering (2.34) and (2.41), we see that
∫

Gε

|ε2R2(t, x1, ξ1; y,
ξ

ε
) + ε3Rε

3(t, x1, ξ)|2 dξ ≤ C ε4 εd−1, x ∈ I × εQ. (2.47)With the help of (2.45) the above relations yield, for x ∈ I × εQ,
∫

Gε

|Ṽ ε
1 (t, x, ξ)|2 dξ ≤ C ε4 εd−1, t ≥ 0, (2.48)with the 
onstant C depending on I,Λ, Q, d only.16



Step 4. We pro
eed to the estimate of Ṽ ε
2 . Due to the presen
e of the boundarylayer 
orre
tor V ε

bl, some 
an
ellations o

ur and the axial boundary 
onditionsread
Wε(t, x, ξ

′,±1) − εd−1Vε(t, x, ξ
′,±1) = Wε(t, x, ξ

′,±1) − εd−1Φε(t, x, ξ
′,±1)

=
(
ε2V2(t, x1, ξ1; y,

ξ

ε
) + ε3W ε

bl(t, x, ξ)
)

+
(
Φε

1(t, x, ξ) − εd−1Φε(t, x, ξ)
)
.Taking into a

ount (2.41) and the fa
t that N,N∗, N2, N

∗
2 are Hölder 
ontinuousfun
tions, we see that

∣∣∣ε2V2(t, x1, ξ1; y,
ξ

ε
)+ε3W ε

bl(t, x, ξ)
∣∣∣ ≤ C ε2, t ≥ 0, ξ ∈ Gε, x ∈ I×εQ, (2.49)where C depends on I,Λ, Q, d only.To estimate the other term (Φε

1 − εd−1Φε) we 
onsider separately small times
t ≤ εβ , β ∈ (0, 2), and larger times t > εβ . For t ≤ εβ we have

|Φε
1 − εd−1Φε| ≤ Φε

1 + εd−1Φε.The �rst term on the right-hand side here is small by its very de�nition (2.26)while we use Aronson's estimates (see Lemma 2.2) for the se
ond one. Namely,thanks to (2.14)-(2.15), for x ∈ I × εQ and t ≤ εβ

|Φε(t, x,±1, ξ′)| ≤ O(e−C/εβ

)with some positive 
onstant C.For large time t ≥ εβ, we use Lemma 2.3. Namely, for x, ξ ∈ Gε, the followingestimate holds true:
|εd−1Φε(t, x, ξ) − Φε

2(t, x, ξ)| ≤ C ε3−3β/2, ∀β > 0,with the 
onstant C independent of ε. On the other hand, in view of (2.25), forany t ≥ 0,
|Φε

2(t, x,±1, ξ′) − Φε
1(t, x,±1, ξ′)| ≤ C ε2, ξ′ ∈ εQ, x ∈ I × εQ,with some 
onstant C = C(I,Λ, Q, d). Finally, 
hoosing small enough β, weobtain that, for any t ≥ 0,

|εd−1Φε(t, x,±1, ξ′) − Φε
1(t, x,±1, ξ′)| ≤ C ε2, ξ′ ∈ εQ, x ∈ I × εQ,where C depends on I,Λ, Q, d only.Combining the last estimate with (2.49), we obtain that the boundary 
ondi-tions on the bases of the rod are satis�ed up to the se
ond order in ε:

|Wε(t, x,±1, ξ′) − εd−1Φε(t, x,±1, ξ′)| ≤ C ε2, t ≥ 0, x ∈ I × εQ (2.50)where C depends on I,Λ, Q, d. Thus, by the maximum prin
iple, for x ∈ I × εQ,
|Ṽ ε

2 (t, x, ξ)| ≤ C ε2, t ≥ 0, ξ ∈ Gε, (2.51)17



where C depends on I,Λ, Q, d.Step 5. Re
alling that Wε − εd−1Vε = Ṽ ε
1 + Ṽ ε

2 , by summing (2.48) and (2.51),for any t ∈ [0, T ], we obtain
∫

Gε

|εd−1Vε −Wε|2 dx ≤ C ε4 εd−1, x ∈ I × εQ.It is easy to see that for x ∈ I × εQ, t ≥ 0,
∫

Gε

∣∣∣V2

(
t, x1, ξ1; y,

ξ

ε

)∣∣∣
2
dξ +

∫

Gε

|W ε
bl(t, x, ξ)|2 dξ ≤ C εd−1.Consequently, last two estimates yield (2.43). Lemma 2.4 is proved.Lemma 2.4 provides an L2 estimate for the dis
repan
y. By working harderwe 
an get an L∞ estimate of the same order. Namely, we prove the followingresult.Lemma 2.5. Let Vε be a solution of (2.20) and V ε

1 be de�ned by (2.42) as a �rst-order approximation of εd−1Vε. Then, for t ≥ 0, x ∈ I+ × εQ and ξ ∈ I− × εQ,the following estimate is valid:
|εd−1Vε(t, x, ξ) − V ε

1 (t, x, ξ)| ≤ C ε2 (2.52)where I+ ⋐ (−1, 1], I− ⋐ [−1, 1); the 
onstant C depends on I+, I−,Λ, Q, d andis independent of ε.Remark 2.4. The same estimate holds if ξ ∈ I+ × εQ and x ∈ I− × εQ.Proof. Estimate in Lemma 2.4 is based on two auxiliary bounds, (2.48) and (2.51).Noti
e that estimate (2.51) gives a bound in L∞ norm and, thus, need not beimproved. Our goad is to modify the ansatz W ε in order to obtain a greaterpower of ε on the right-hand side of (2.48). This will allow us to use L∞ ellipti
estimates.Observe that adding interior higher order terms to the asymptoti
 expan-sion (2.32) (without adding additional boundary layer 
orre
tors) in
reases thepower of ε in estimate (2.48). More pre
isely, denote by W ε
k (t, x, ξ) the k-orderapproximation for εd−1Vε

W ε
k (t, x, ξ) = Wε(t, x, ξ) +

k∑

n=3

εn Vn(t, x1, ξ1; y, η)
∣∣∣
y= x

ε
,η= ξ

ε

,where Vn(t, x1, ξ1; y, η) are 1-periodi
 with respe
t to y1, η1. For the sake ofbrevity, we do not spe
ify the form of fun
tions Vn (for pre
ise formulae see [7℄,[19℄). Let us substitute W ε
k − εd−1Vε into (2.20) and then, represent W ε

k − εd−1Vεas a sum W̃ ε
1 +W̃ ε

2 , where W̃ ε
1 solves nonhomogeneous problem with homogeneousDiri
hlet boundary 
onditions at the rod ends (
ompare with Ṽ ε

1 ), and W̃ ε
2 is asolution of a homogeneous problem with nonhomogeneous Diri
hlet boundary18




onditions at ξ1 = ±1 (
ompare with Ṽ ε
2 ). Arguing exa
tly like in Lemma 2.4,we see that ∫

Gε

|W̃ ε
1 |2 dξ ≤ C1 ε

2 k εd−1, t ≥ 0, x ∈ I × εQ, (2.53)where I ⋐ (−1, 1); and by the maximum prin
iple,
|W̃ ε

2 (t, x, ξ)| ≤ C2 ε
2, t ≥ 0, x ∈ I × εQ, ξ ∈ Gε,where C1, C2 depend on I,Λ, Q, d.Noti
e that Vε is Hölder 
ontinuous, and by the Nash�De Giorgi estimates inthe res
aled 
ylinder, for ξ, ζ ∈ Gε

|Vε(t, x, ξ) − Vε(t, x, ζ)| ≤ C ε−α|ξ − ζ|α, t ≥ 0, x ∈ I × εQ, (2.54)where C,α depend on Λ, Q, d and are independent of ε. Indeed, let us 
hangethe variables τ = t/ε2, y = x/ε, η = ξ/ε in (2.20) and denote Ṽε(τ, y, η) =

Vε(ε
2τ, εy, εη). By the maximum prin
iple,

|Ṽε(τ, y, η)| ≤ C τ ≥ 0, η ∈ (−ε−1, ε−1) ×Q, y ∈ ε−1I ×Q,where I ⋐ (−1, 1). Due to the lo
al Nash�De Giorgi estimates, for any n ∈ Z,
τ ≥ 0, y ∈ ε−1I ×Q

|Ṽε(τ, y, η) − Ṽε(τ, y, ϑ)| ≤ C |η − ϑ|α, η, ϑ ∈ (n, n + 1) ×Q,for some 0 < α < 1 and C depending on Λ, Q, d. Changing ba
k the variables inthe last inequality yields (2.54).Due to the Hölder 
ontinuity properties of N,N∗, N2, N
∗
2 , regularity of V0,the fun
tion Wε is uniformly w.r.t. ε Hölder 
ontinuous. Indeed, for example,sin
e N∗ is Hölder 
ontinuous, so is N∗(ξ/ε) and

|N∗
(ξ
ε

)
−N∗

(ζ
ε

)
| ≤ C ε−α |ξ − ζ|α, ξ1, ξ2 ∈ Gε, 0 < α < 1.Thus, εN∗(ξ/ε)∂ξ1V0(t, x1, ξ1) is Hölder 
ontinuous uniformly with respe
t to ε.By similar arguments, W ε

k and W̃ ε
2 are Hölder 
ontinuous fun
tions, so is W̃ ε

1 .By 
ontradi
tion one 
an prove that, if (2.53) holds, then for some δ ∈ (0, 1)

|W̃ ε
1 (t, x, ξ)| ≤ C εδ (k−α),where δ depends on Λ, Q, d. Thus, for su�
iently large k,

|εd−1Vε(t, x, ξ) −W ε
k (t, x, ξ)| ≤ C3 ε

2, t ≥ 0, ξ ∈ Gε, x ∈ I × εQ,where C3 depends on I,Λ, Q, d and is independent of ε. Clearly, by regularity of
V0

|W ε
k (t, x, ξ) −Wε(t, x, ξ)| ≤ C4 ε

2, ξ ∈ Gε, x ∈ I × εQ,with C4 = C4(I,Λ, d,Q). 19



Combining the two last estimates implies a similar bound for (εd−1Vε −Wε)with the 
onstant C that depends on I,Λ, Q, d only. Eventually, using (2.49)whi
h proves that (Wε − V ε
1 ) is of order ε2 we obtain (2.52), at least for x1 in a
ompa
t subset of (−1, 1).Now we extend this estimate to point x and ξ su
h that for x ∈ I+ × εQ and

ξ ∈ I−×εQ (or ξ ∈ I+×εQ and x ∈ I−×εQ). To this end, 
onsidering Vε(t, x, ξ)as a solution of the equation in (t, x) (for �xed ξ), we get a "symmetri
" estimate
|Wε(t, x, ξ) − εd−1Vε(t, x, ξ)| ≤ C5 ε

2, t ≥ 0, x ∈ Gε, ξ ∈ I × εQ,with the 
onstant C5 depending on I,Λ, Q, d. In parti
ular,
|Wε(t, x, ξ) − εd−1Vε(t, x, ξ)|

∣∣∣
ξ1=0

≤ C ε2, t ≥ 0, x ∈ Gε (2.55)with the 
onstant C independent of t, x, ξ, ε. ConsideringWε(t, x, ξ)−εd−1Vε(t, x, ξ)as a solution (w.r.t. t, ξ, for �xed x) of a nonhomogeneous initial boundary prob-lem stated �rst in I− × εQ and then in I+ × εQ, using estimate (2.55) andarguing as above we obtain, for x ∈ I+ × εQ and ξ ∈ I− × εQ (or ξ ∈ I+ × εQand x ∈ I− × εQ),
|εd−1Vε(t, x, ξ) − V ε

1 (t, x, ξ)| ≤ C ε2, t ≥ 0,with the 
onstant C depending on I−, I+,Λ, d,Q and independent of ε.2.2.4 Asymptoti
s for vε and main resultsRe
alling from (2.18) that Kε = Φε − Vε and using the �rst order approxima-tions (2.26) and (2.42) obtained in the previous se
tions, we de�ne a �rst orderapproximation of the Green fun
tion Kε

Kε
1(t, x, ξ) = Φε

1(t, x, ξ) − V ε
1 (t, x, ξ)

= K0(t, x1, ξ1) + εN
(x
ε

)
∂x1K0(t, x1, ξ1)

+εN∗
(ξ
ε

)
∂ξ1K0(t, x1, ξ1) + εK1(t, x1, ξ1) − ε V ε

bl(t, x, ξ),

(2.56)whereK0 = Φ0−V0 is the Green fun
tion of the one-dimensional e�e
tive problem




∂tK0 = aeff ∂2
ξ1K0, (t, ξ1) ∈ (0, T ) × (−1, 1),

K0(t, x1,±1) = 0, t ∈ (0, T ),

K0(0, x1, ξ1) = δ(x1 − ξ1), ξ1 ∈ (−1, 1),

(2.57)
K1 = −V1 with V1, the solution of (2.39), and the boundary layer 
orre
tor V ε

bl isde�ned by (2.36) and (2.38). By 
ombining Lemmata 2.3 and 2.5, we immediatelyobtain the following statement. 20



Lemma 2.6. Denote by I+, I− 
ompa
t subsets of (−1, 1] and [−1, 1), respe
-tively. Let 
onditions (H1) − (H4) be ful�lled. Then, for ea
h x ∈ I+ × εQ,
ξ ∈ I−×εQ, and t ≥ t0 > 0, there exists a 
onstant C depending on I+, I−,Λ, Q, dand independent of ε su
h that

|εd−1Kε(t, x, ξ) −Kε
1(t, x, ξ)| ≤ C ε2. (2.58)We 
an now state our main result.Theorem 2.2. Let 
onditions (H1) − (H4) be ful�lled and b̄1 > 0. Let Θ bethe maximum point of λ1(θ) and pΘ the 
orresponding eigenfun
tion de�ned byLemma 2.1.1. Suppose u0 ∈ C1[−1, 1] is su
h that u0(−1) 6= 0. The asymptoti
s of thesolution uε of problem (2.1), for t ≥ t0 > 0 and x ∈ Gε, takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

) [
u(t, x1) + rε(t, x)

]
,where u is the solution of the homogenized problem





∂tu = aeff ∂2
x1
u, (t, x1) ∈ (0, T ) × (−1, 1),

u(t,±1) = 0, t ∈ (0, T ),

u(0, x1) = −M u0(−1) δ′(x1 + 1), x1 ∈ (−1, 1),

(2.59)where the e�e
tive 
oe�
ient aeff is de�ned by (2.22), and the 
onstant Mis de�ned by
M =

+∞∫

0

∫

Q

(z1 +N∗(z) + v−(z)) p−1
Θ (z) e−Θz1 dz′dz1, (2.60)with N∗, solution of the adjoint 
ell problem (2.24) and v−, solution of theboundary layer problem (2.36). For some 
onstant C = C(I+,Λ, Q, d), theremainder term satis�es the estimate

|rε(t, x)| ≤ C ε,whi
h is uniform for t ≥ t0 > 0, x ∈ I+ × εQ, with I+ ⋐ (−1, 1].2. If u0 ∈ Ck+1(−1, 1) is su
h that u(l)
0 (−1) = 0, l = 0, · · · , k − 1, and

u
(k)
0 (−1) 6= 0, then

uε(t, x) = εk+2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

) [
ũ(t, x) + r̃ε(t, x)

]
,where ũ is the solution of the homogenized problem





∂tũ = aeff ∂2
x1
ũ, (t, x1) ∈ (0, T ) × (−1, 1),

ũ(t,±1) = 0, t ∈ (0, T ),

ũ(0, x1) = −Mk u
(k)
0 (−1) δ′(x1 + 1), x1 ∈ (−1, 1),21



with the 
onstant Mk given by
Mk =

1

k!

+∞∫

0

∫

Q

(z1)
k
(
z1 +N∗(z) + v−(z)

)
p−1
Θ (z) e−Θz1 dz′dz1.The remainder term satis�es |r̃ε(t, x)| ≤ C ε, and the estimate is uniformfor t ≥ t0 > 0, x ∈ I+ × εQ, with I+ ⋐ (−1, 1].Remark 2.5. If the initial data u0 is non-negative, then the e�e
tive initial datais non-negative too. Indeed, −δ′(x1 + 1) is non-negative in distributional sense,and M is positive, be
ause by the maximum prin
iple, (z1 +N∗ + v−) is positive.The multipli
ative 
onstant M depends expli
itly on the boundary layer v− forthe left end point x1 = −1 (see formula (2.60)). It is quite surprinsing that su
h aboundary layer (whi
h is of lower order in 
lassi
al homogenization theory) entersthe asymptoti
s of uε at the main order.Note also that, if the initial data u0 had a 
ompa
t support, then Theorem5.2 in [4℄ gives a similar asymptoti
 behaviour with a di�erent initial data forthe homogenized problem, featuring a Dira
 mass instead of the derivative of theDira
 mass as in (2.59).Remark 2.6. Theorem 2.2 provides the leading term of the asymptoti
s of uε.But, as already explained in Remark 2.2, the error estimate for the remainderterm rε is not pre
ise enough in the region of interest where uε(t, x) a
hieves itsmaximum. A better ansatz with a better error estimate are given in Theorem 2.3below (again, boundary layers will be 
ru
ial).Proof. Based on Lemma 2.6 we 
an 
ompute the asymptoti
s of vε, given by(2.16) in terms of the 
orresponding Green fun
tion Kε. Obviously, (2.16) 
anbe rewritten in the following form

εd−1vε(t, x) =

∫

Gε

Kε
1(t, x, ξ)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

+

∫

Gε

(εd−1Kε(t, x, ξ) −Kε
1(t, x, ξ))u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ.(2.61)Thanks to (2.58), for x ∈ I+ × εQ, t ≥ t0 > 0, we have

∣∣∣
∫

Gε

(εd−1Kε(t, x, ξ) −Kε
1(t, x, ξ))u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

∣∣∣

≤ C1 ε
2

∫

Gε

e−
Θ(ξ1+1)

ε dξ ≤ C1 ε
2 εd|Q|

+∞∫

0

e−Θ η1 dη1 ≤ C εd+2with the 
hange of variables ξ1 + 1 = εz1, ξ′ = εz′ and for some 
onstants C,C1whi
h do not depend on ε.We pro
eed by evaluating the �rst integral in (2.61). We 
ompute separatelythe 
ontributions of ea
h summand in (2.56). Expanding K0 and u0 into Taylor22



series in the neighbourhood of ξ1 = −1, and re
alling that K0(t, x1,−1) = 0, wesee that, for t ≥ t0 > 0,
∫

Gε

K0(t, x1, ξ1)u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

=
(
u0(−1) ∂ξ1K0(t, x1,−1) +O(ε)

) ∫

Gε

(ξ1 + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ.Performing again the 
hange of variables ξ1 + 1 = εz1, ξ′ = εz′ and using theperiodi
ity of pΘ yields

∫

Gε

(ξ1 + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ = εd+1

+∞∫

0

∫

Q

z1 p
−1
Θ (z) e−Θz1 dz′dz1 +O(εd+2).(2.62)Re
all that, for the simpli
ity of presentation, we assumed (H4), namely ε =

1/N , N ∈ Z+. Similarly, for t ≥ t0 > 0,
ε

∫

Gε

N∗
(ξ
ε

)
∂ξ1K0(t, x, ξ)

u0(ξ1)

pΘ(ξ/ε)
e−

Θ(ξ1+1)

ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

+∞∫

0

∫

Q

N∗(z)

pΘ(z)
e−Θz1 dz′dz1 +O(εd+2).On the 
ontrary, sin
e di�erentiating (2.57) with respe
t to x1 does not a�e
t thehomogeneous Diri
hlet boundary 
onditions, we have ∂x1K0(t, x1,±1) = 0 and,therefore, the following term 
an be negle
ted

ε

∫

Gε

N
(x
ε

)
∂x1K0(t, x1, ξ1)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)

ε dξ = O(εd+2).The last summand (εK1 − εV ε
bl) in (2.56) is written as a sum of three terms.The �rst one, sin
e K1(t, x1,−1) − v̂−∂ξ1K0(t, x1,−1) = 0, gives a negligible
ontribution

ε

∫

Gε

(K1(t, x1, ξ1) − v̂−∂ξ1K0(t, x1,−1))u0(ξ1) p
−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ = O(εd+2).For the se
ond one, performing a 
hange of variables as above and using theperiodi
ity of pΘ yields

ε

∫

Gε

v−
(ξ1 + 1

ε
,
ξ′

ε

)
∂ξ1K0(t, x1,−1)u0(ξ1) p

−1
Θ

(ξ
ε

)
e−

Θ(ξ1+1)
ε dξ

= εd+1 u0(−1) ∂ξ1K0(t, x1,−1)

+∞∫

0

∫

Q

v−(z)

pΘ(z)
e−Θz1 dz′dz1 +O(εd+2).

(2.63)Thanks to (2.37), the third term 
ontaining the boundary layer 
orre
tor nearthe right base of the rod x1 = 1 is exponentially small. Combining (2.61)�(2.63)yields
vε(t, x) = ε2 (M u0(−1) ∂ξ1K0(t, x1,−1) +O(ε)), (2.64)23



where O(ε) is uniform for t ≥ t0 > 0 and x ∈ I+ × εQ.The se
ond statement of Theorem 2.2 
an be proved in the same way as the�rst one and we safely leave it to the reader.Theorem 2.2 provided the leading term of the asymptoti
s of uε. But, as al-ready explained in Remark 2.6, due to the presen
e of the exponentially largefa
tor eΘ(x1+1)/ε, we are mostly interested in the asymptoti
s of uε in a ε-neighbourhood of the right end of the rod, where both, the leading and the
orre
tor terms (together with the boundary layer 
orre
tor) are of the sameorder. Therefore, we 
an not 
laim that, in this lo
alization zone, we have
eΘ(x1+1)/ε rε(t, x) ≪ eΘ(x1+1)/ε u(t, x1).Due to similar reasons, we had to 
onstru
t extra terms in the asymptoti
s ofthe Green fun
tion Kε. Indeed, be
ause of the fa
tor e−Θ(x1+1)/ε in (2.16), onlythe behaviour of Kε in a ε-neighbourhood of the left end plays a signi�
ant part.To obtain a pre
ise asymptoti
s near the left end of the rod, we have 
onstru
tedthe 
orre
tor terms for Kε. Noti
e that the integrals (2.61)�(2.63) are of the sameorder.In Theorem 2.3 below we 
onstru
t the 
orre
tor for uε, that improves theasymptoti
s of uε near the right end of the rod and, therefore, makes the resultof Theorem 2.2 
omplete.Theorem 2.3. Under the same assumptions as in Theorem 2.2, the re�nedasymptoti
s of the solution uε of problem (2.1), for t ≥ t0 > 0 and x ∈ Gε,takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(x1+1)

ε pΘ

(x
ε

) [
U ε(t, x) +Rε(t, x)

]
,where U ε is given by

U ε(t, x) = u(t, x1) + εN
(x
ε

)
∂x1u(t, x1)

+εu1(t, x1) + ε
[
v+
∗

(x1 − 1

ε
,
x′

ε

)
− v̂+

∗

]
∂x1u(t, 1),

(2.65)where u(t, x1) is the solution of the homogenized problem (2.59), N solves (2.23),
u1 and the boundary layer 
orre
tor v+

∗ are de�ned in (2.70) and (2.69), re-spe
tively. For some 
onstant C = C(Λ, Q, d), the remainder term satis�es theestimate
|Rε(t, x)| ≤ C ε(1 − x1),whi
h is uniform for t ≥ t0 > 0, x ∈ Gε.Proof. In view of the fa
orization (2.9), it is su�
ient to improve the asymptoti
sof vε. Be
ause of (2.64), the fun
tion u(t, x1), solution of (2.59), is in fa
t theleading term of the asymptoti
s for ε−2vε(t, x) for t ≥ t0 > 0. Let us 
onstru
t24



the 
orre
tor for ε−2vε(t, x). Obviously, due to the semigroup property of theparaboli
 operator, one 
an represent ε−2vε(t, x) as a sum ṽε
1 + ṽε

2, where




ρε
Θ(x) ∂tṽ

ε
1 +Aε

Θṽ
ε
1 = 0, in (t0, T ) ×Gε,

Bε
Θṽ

ε
1 = 0, on (t0, T ) × Σε,

ṽε
1(t,±1, x′) = 0, x′ ∈ (t0, T ) × εQ,

ṽε
1(t0, x) = u(t0, x1), x ∈ Gε;

(2.66)




ρε
Θ(x) ∂tṽ

ε
2 +Aε

Θṽ
ε
2 = 0, in (t0, T ) ×Gε,

Bε
Θṽ

ε
2 = 0, on (t0, T ) × Σε,

ṽε
2(t,±1, x′) = 0, x′ ∈ (t0, T ) × εQ,

ṽε
2(t0, x) = ε−2vε(t0, x) − u(t0, x1), x ∈ Gε.

(2.67)It is easy to see that the asymptoti
s of ṽε
1 takes the form

Ũ ε(t, x) = u(t, x1) + εN
(x
ε

)
∂x1u(t, x1)

+εu1(t, x1) + ε
[
v+
∗

(x1 − 1

ε
,
x′

ε

)
− v̂+

∗

]
∂x1u(t, 1)

+ε
[
v−∗

(1 + x1

ε
,
x′

ε

)
− v̂−∗

]
∂x1u(t,−1),

(2.68)where the boundary layer 
orre
tors v±∗ (y) and their asymptoti
 limits v̂±∗ arede�ned similarly to v±(y) and v̂± in (2.36), ex
ept that the adjoint operator andthe adjoint 
ell fun
tions are repla
ed by the dire
t ones. In other words, v±∗ aresolution in the semi-in�nite 
ylinders G
− = (−∞, 0)×Q and G

+ = (0,+∞)×Qof 



AΘv
±
∗ (y) = 0, y ∈ G

∓,

BΘv
±
∗ (y) = 0, y ∈ Σ∓,

v+
∗ (0, y′) = −N(0, y′).

(2.69)The boundary layers v±∗ (y) stabilize at in�nity to 
onstants v̂±∗ exponentially fast,as in (2.37).In (2.68) the fun
tion u1 is designed so that Ũ ε satisfy homogeneous boundary
onditions at x1 = ±1, namely it solves




∂tu1(t, x1) = aeff ∂2
x1
u1(t, x1) + f(t, x1), (t, x1) ∈ (t0, T ) × (−1, 1),

u1(t,±1) = ŵ±∂x1u(t,±1), t ∈ (t0, T ),

u1(t0, x1) = 0, x1 ∈ (−1, 1),

(2.70)where, N2 being a solution of (2.35), f(t, x1) is given by
f(t, x1) = ∂3

ξ1u(t, x1)

∫

Y

[
aΘ

1j∂yj
N2 + aΘ

11N − bΘ1 N2 − aeff ρΘN
]
dy.25



As in the proof of Theorem 2.2, one 
an prove that the following estimate holds
|ṽε

1 − Ũ ε| ≤ C ε2, t ≥ t0, x ∈ Gε,with the 
onstant C independent of ε. On the other hand, be
ause of the expo-nential stabilization of the boundary layer v−∗ , we have
|Ũ ε − U ε| ≤ C ε (1 − x1), t ≥ t0, x ∈ Gε,where U ε is given by (2.65). This yields
|ṽε

1 − U ε| ≤ C ε (1 − x1), t ≥ t0, x ∈ Gε. (2.71)We pro
eed by estimating the solution ṽε
2 of (2.67). Let φε(t, x) be a solutionof the following problem





ρε
Θ(x) ∂tφ

ε +Aε
Θφ

ε = 0, in (t0, T ) ×Gε,

Bε
Θφ

ε = 0, on (t0, T ) × Σε,

φε(t,±1, x′) = 0, x′ ∈ (t0, T ) × εQ,

φε(t0, x) = 1, x ∈ Gε.

(2.72)
Then, by the maximum prin
iple,

|ṽε
2(t, x)| ≤ φε(t, x) max

x∈Gε

|ε−2vε(t0, x) − u(t0, x1)|, (t, x) ∈ (t0, T ) ×Gε.In view of Theorem 2.2,
max
x∈Gε

|ε−2vε(t0, x) − u(t0, x1)| ≤ C ε,thus,
|ṽε

2(t, x)| ≤ C εφε(t, x), (t, x) ∈ (t0, T ) ×Gε.By standard homogenization it easy to prove that
|φε(t, x)| ≤ C (1 − x1), (t, x) ∈ (2 t0, T ) ×Gε.Combining the last two estimates yields
|ṽε

2(t, x)| ≤ C ε (1 − x1), (t, x) ∈ (2 t0, T ) ×Gε. (2.73)Estimates (2.71), (2.73) imply the statement of Theorem 2.3. The proof is 
om-plete.3 The 
ase of a layerWe now 
onsider the 
ase of a layer in R
d. More pre
isely, the domain Ω is de�nedas the layer {x ∈ R

d : x′ = (x1, · · · , xd−1) ∈ R
d−1, −1 ≤ xd ≤ 1} (see Figure 2).Note that we 
hange the notations from the previous se
tion sin
e a point x ∈ R
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x1

x3

1

−1

Ω

x2

Γ+

Γ−

b

bFigure 2: The layer Ωis now denoted x = (x′, xd) with x′ ∈ R
d−1. The boundary of Ω 
onsists of twohyperplanes Γ± = {x ∈ R

d : xd = ±1}. We study the homogenization of thenon-stationary 
onve
tion-di�usion problem (1.1) whi
h, in the 
ase of a layer,reads 



∂tu
ε +Aε u

ε = 0, in (0, T ) × Ω,

uε = 0, on (0, T ) × (Γ+ ∪ Γ−),

uε(0, x) = u0(x), in Ω,

(3.1)where, as before,
Aεu

ε = −div
(
aε∇uε

)
+

1

ε
bε · ∇uε,and the 
oe�
ients of the equation are still given by (2.2), namely aε

ij(x) =

aij(x/ε) and bεi (x) = bi(x/ε). In the 
ase of a layer our main assumptions areslightly di�erent from those in the previous se
tion. We assume that the following
onditions are satis�ed.(A1) The 
oe�
ients of the equation aij , bj ∈ L∞(Ω) are Y -periodi
, Y = (0, 1]dbeing the periodi
ity 
ell.(A2) The d × d matrix a(y) is symmetri
 and satis�es a uniform ellipti
ity 
on-dition with a 
oer
ivity 
onstant Λ > 0.(A3) The initial data u0 has 
ompa
t support with respe
t to x′ = (x1, · · · , xd−1),namely u0(x) ∈ C1
0 (Rd−1;C1[−1, 1]).(A4) For simpli
ity we assume that ε = 1/N , N ∈ Z

+, so that an entire numberof periodi
ity 
ells �ts in the thi
kness of the layer Ω.As in the 
ase of a thin rod, we study the asymptoti
 behaviour of solutions
uε(t, x) of problem (3.1), as ε→ 0.3.1 Auxiliary spe
tral problems, fa
torization and mainresult.In order to simplify the original problem, we make use of the fa
torization prin-
iple, as in Se
tion 2 (with respe
t to xd instead of x1), and then 
onstru
t the27



asymptoti
s of the new unknown fun
tion. However, the main di�eren
e withthe previous 
ase of a rod is that we must use moving 
oordinates (see [3℄, [12℄,[18℄) in the dire
tions parallel to the layer. This makes the equation homogeniz-able at the pri
e that the initial 
ondition be
omes asymptoti
ally singular. Asbefore, we 
ir
umvent this di�
ulty of singular initial data by 
onstru
ting theasymptoti
s of the Green fun
tion of the fa
torized problem.We re
all that the 
ell operator A is de�ned by (2.3) and its adjoint A∗ by(2.4). For θ ∈ R, we introdu
e two families of spe
tral problems, similar to (2.5),




e−θ yd Aeθ yd pθ(y) = λ(θ) pθ(y), in Y,
y → pθ(y) Y-periodi
, (3.2)





eθ yd A∗ e−θ yd p∗θ(y) = λ(θ) p∗θ(y), in Y,
y → p∗θ(y) Y-periodi
.By the Krein-Rutman theorem, for ea
h θ ∈ R, the �rst eigenvalue λ1(θ) ofproblem (3.2) is real, simple, and the 
orresponding eigenfun
tions pθ and p∗θ 
anbe 
hosen positive. Moreover, the statement of Lemma 2.1 remains valid, andwe 
all Θ the unique maximum point of λ1(θ). The eigenfun
tions pθ and p∗θ arenormalized by (2.6) as above. Arguments similar to those in Se
tion 2 yield
dλ1

dθ

∣∣∣
θ=0

=

∫

Y

(
bd p

∗
θ + adj ∂yj

p∗θ
)
dy = b̄d, (3.3)where b̄d is 
alled the normal e�e
tive drift (normal to the layer). Hen
e, b̄d = 0if and only if Θ = 0. If the normal e�e
tive drift is zero, i.e., b̄d = 0, then themethod of homogenization in moving 
oordinates 
an be applied dire
tly (see [3℄,[12℄, [18℄). Therefore, we assume that b̄d 6= 0 (or, equivalently, Θ 6= 0).In what follows we 
onsider the 
ase b̄d > 0, the other 
ase b̄d < 0 beingsymmetri
. If b̄d > 0, then we perform the 
hange of unknown fun
tion as follows

uε(t, x) = e−
λ1(Θ)t

ε2 e
Θ (xd+1)

ε pΘ

(x
ε

)
vε(t, x). (3.4)Substituting (3.4) into (3.1), one obtains that the new unknown fun
tion vε solvesthe following problem





ρε
Θ ∂tv

ε +Aε
Θ v

ε = 0, (t, x) ∈ (0, T ) × Ω,

vε = 0, (t, x) ∈ (0, T ) × (Γ+ ∪ Γ−),

vε(0, x) = u0(x) p
−1
Θ

(x
ε

)
e−

Θ (xd+1)

ε , x ∈ Ω,

(3.5)where ρε
Θ(x) = ̺Θ(x/ε),

Aε
Θv = −div

(
aΘ

(x
ε

)
∇v

)
+

1

ε
bΘ

(x
ε

)
· ∇v,

28



and the 
oe�
ients of the operator are given by
aΘ

ij(y) = ̺Θ(y) aij(y), ̺Θ(y) = pΘ(y) p∗Θ(y),

bΘi (y) = ̺Θ(y) bi(y) − 2 ̺Θ(y) aid(y)Θ

+aij(y)
[
pΘ(y) ∂yj

p∗Θ(y) − p∗Θ(y) ∂yj
pΘ(y)

]
.

(3.6)The matrix aΘ is positive de�nite sin
e both pΘ and p∗Θ are positive fun
tions.The ve
tor-�eld bΘ, for ea
h θ ∈ R, is divergen
e-free and its last 
omponent bΘdhas zero mean, that is
∫

Y

bΘd (y) dy = 0; div bθ = 0, ∀ θ. (3.7)The averages of the other 
omponents are denoted by
βΘ

i =

∫

Y

bΘi (y) dy, i = 1, · · · , d. (3.8)The ve
tor βΘ is 
alled the e�e
tive 
onve
tion (note that its formula is di�erentfrom that of the normal e�e
tive drift b̄d de�ned in (3.3)). Sin
e βΘ
d = 0 be
auseof (3.7), the 
onve
tion is parallel to the layer. When the e�e
tive 
onve
tion

βΘ is not equal to zero, 
ontrary to the 
ase of the rod, we 
annot use 
lassi
alhomogenization methods for (3.5), and, rather, we rely on the method of moving
oordinates (see [3℄, [12℄, [18℄).Theorem 3.1. Suppose that 
onditions (A1)-(A4) are ful�lled, the normal ef-fe
tive drift (de�ned by (3.3)) satis�es b̄d > 0 and u0(·,−1) 6= 0. Then, for
t ≥ t0 > 0, the asymptoti
s of the solution uε of problem (3.1) takes the form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ

(x
ε

) [
u
(
t, x− βΘ

ε
t
)

+ rε(t, x)
]
,where u(t, x) is the solution of the homogenized problem





∂tu(t, x) = div(aeff∇u(t, x)), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × (Γ− ∪ Γ+).

u(0, x) = −M u0(x
′,−1) δ′(xd + 1), x ∈ Ω,

(3.9)with a positive de�nite matrix aeff de�ned by (3.14) and the 
onstant M de�nedby
M =

∫

(0,1]d−1

+∞∫

0

[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′, (3.10)where N∗
d is a solution of the 
ell problem (3.16) and the boundary layer v− isde�ned by (3.25). The remainder term satis�es, for t ≥ t0 > 0,
|rε(t, x)| ≤ C ε for any x ∈ Ω su
h that xd ∈ I+

⋐ (−1, 1],and the 
onstant C depends solely on I+,Λ, d.29



Remark 3.1. In the 
ase u0(x
′,−1) = · · · = ∂k−1

ξd
u0(x

′,−1) = 0 and ∂k
xd
u0(x

′,−1) 6=
0 for some k, the asymptoti
s of uε takes the form

uε(t, x) = ε2+k e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ

(x
ε

) [
u(t, x− βΘ

ε
t) + rε(t, x)

]
,where |rε(t, x)| ≤ C ε, for t ≥ t0 > 0 and x ∈ Ω su
h that xd ∈ I+ ⋐ (−1, 1] and

u(t, x) solves the problem




∂tu(t, x) = div(aeff∇u(t, x)), (t, x) ∈ (0, T ) × Ω,

u(t, x) = 0, (t, x) ∈ (0, T ) × (Γ− ∪ Γ+).

u(0, x) = −Mk ∂
k
xd
u0(x

′,−1) δ′(xd − 1), x ∈ Ω,with the 
onstant Mk given by
Mk =

1

k!

∫

(0,1]d−1

+∞∫

0

(zd)
k
[
zd +N∗

d (z) + v−(z)
]
p−1
Θ (z) e−Θzddzd dz

′.Remark 3.2. Similarly to the 
ase of a rod (see Remarks 2.2 and 2.6), theerror estimate for the remainder term rε is not pre
ise enough in the region ofinterest where uε(t, x) a
hieves its maximum. Indeed, the homogeneous Diri
hletboundary 
ondition for u(t, x), together with the exponential eΘ(xd+1)

ε shows that
uε(t, x) attains its maximum at a distan
e of order ε of the plane Γ+: there, bya Taylor expansion, u(t, x) is of the order of ε, like the remainder term rε(t, x)whi
h is thus not negligible. A better ansatz with a better error estimate will begiven in Theorem 3.2 below.3.2 Proof of Theorem 3.1The proof is partly similar to that of Theorem 2.1 and relies on the representationformula for vε

vε(t, x) =

∫

Ω

Kε(t, x, ξ)u0(ξ) p
−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ, (3.11)where Kε(t, x, ξ) is the Green fun
tion of problem (3.5). However, one majordi�eren
e with the previous 
ase of a rod is that, as was already pointed out, inthe 
ase βΘ 6= 0, the 
lassi
al homogenization methods do not apply to problem(3.5). To over
ome this di�
ulty, we shall use moving 
oordinates.Re
all that, for any x, Kε solves the adjoint problem




̺Θ

(ξ
ε

)
∂tKε(t, x, ξ) +A∗,ε

Θ Kε(t, x, ξ) = 0, (t, ξ) ∈ (0, T ) × Ω,

Kε(t, x, ξ) = 0, (t, ξ) ∈ (0, T ) × (Γ− ∪ Γ+),

Kε(0, x, ξ) = δ(x − ξ), ξ ∈ Ω,

(3.12)
A∗,ε

Θ v = −div
(
aΘ

(x
ε

)
∇v

)
− 1

ε
bΘ

(x
ε

)
· ∇v.30



Sin
e bΘ is divergen
e-free, A∗,ε
Θ di�ers from Aε

Θ by the sign in front of the �rst-order term. For any ξ ∈ Ω, Kε solves the dire
t problem with respe
t to (t, x),but sin
e we are interested in the asymptoti
s of Kε w.r.t ξ, we prefer to interpretit from the very beginning as a solution of adjoint problem (3.12).We study the asymptoti
 behaviour of Kε, as ε → 0, and then from (3.11)derive the asymptoti
s for vε.3.2.1 Asymptoti
 behaviour of Kε(t, x, ξ)As in the proof of Theorem 2.1, instead of analyzing dire
tly Kε, we 
onsider thedi�eren
e
Vε(t, x, ξ) = Φε(t, x, ξ) −Kε(t, x, ξ),where Φε is the fundamental solution in R

d, that is, for any x ∈ R
d, Φε solvesthe problem





̺Θ

(ξ
ε

)
∂tΦε +A∗,ε

Θ Φε = 0, (t, ξ) ∈ (0, T ) × R
d,

Φε(0, x, ξ) = δ(x− ξ), ξ ∈ R
d.In this way, for all x ∈ Ω, Vε satis�es the problem





̺Θ

(ξ
ε

)
∂tVε(t, x, ξ) +A∗,ε

Θ Vε(t, x, ξ) = 0, (t, ξ) ∈ (0, T ) × Ω,

Vε(t, x, ξ) = Φε(t, x, ξ), (t, ξ) ∈ (0, T ) × (Γ− ∪ Γ+),

Vε(0, x, ξ) = 0, ξ ∈ Ω.

(3.13)We emphasize that Vε is a regular fun
tion of ξ, for x su
h that xd 6= ±1.The asymptoti
s of Φε is easier to establish. First, we introdu
e its zero-orderapproximation Φ0(t, x, ξ), the fundamental solution of the e�e
tive problem




∂tΦ0 = divξ(a
eff∇ξΦ0), (t, ξ) ∈ (0, T ) × R

d,

Φ0(0, x, ξ) = δ(x − ξ), ξ ∈ R
dwith aeff given by

aeff
ij =

∫

Y

(aΘ
ij(y) + aΘ

ik(y)∂yk
Nj(y) − bΘi (y)Nj(y) + βΘ

j ρΘNj(y)) dy

=

∫

Y

(aΘ
ij(η) + aΘ

ik(η)∂yk
N∗

j (η) + bΘi (η)N∗
j (η) − βΘ

j ρΘN
∗
j (η)) dη.

(3.14)The ve
tor fun
tions N and N∗ solve the following 
ell problems (dire
t andadjoint, respe
tively)




−div(aΘ∇Ni) + bΘ · ∇Ni = ∂yj
aΘ

ij(y) − bΘi (y) + βΘ
i , in Y,

y 7→ Ni Y − periodi
; (3.15)




−div(aΘ∇N∗
i ) − bΘ · ∇N∗

i = ∂yj
aΘ

ij(y) + bΘi (y) − βΘ
i , in Y,

y 7→ N∗
i Y − periodi
. (3.16)31



Noti
e that, although the above 
ell problems (3.15) and (3.16) are of the sametype as (2.23) and (2.24), they 
ontain additional βΘ
i term on the right-hand side.Observe that, by the very de�nition of βΘ, the 
ompatibility 
onditions for (3.15)and (3.16) are satis�ed.We further introdu
e the se
ond-order 
orre
tor fun
tions N2

ij, N
2∗
ij , solutionsof 




AΘN
2
ij = ∂yk

(aΘ
kiNj) + aΘ

ik∂yk
Nj + aΘ

ij

−bΘi Nj + βΘ
i ρΘNj − aeff

ij ρΘ, in Y,
y 7→ N2

ij is periodi
; (3.17)




A∗
ΘN

2∗
ij = ∂yk

(aΘ
kiN

∗
j ) + aΘ

ik∂yk
N∗

j + aΘ
ij

+bΘi N
∗
j − βΘ

i ρΘN
∗
j − aeff

ij ρΘ, in Y,
y 7→ N2∗

ij is periodi
, (3.18)where AΘ and A∗
Θ are de�ned by (2.12) and (2.13), respe
tively.Then we de�ne the �rst- and se
ond-order approximations of Φε

Φε
1

(
t, x, ξ̃

)
= Φ0

(
t, x, ξ̃

)
+εN

(x
ε

)
·∇xΦ0

(
t, x, ξ̃

)
+εN∗

(ξ
ε

)
·∇eξ

Φ0

(
t, x, ξ̃

)
, (3.19)

Φε
2

(
t, x, ξ̃

)
= Φε

1

(
t, x, ξ̃

)
+ ε2N2

ij

(x
ε

)
∂xi

∂xj
Φ0(t, x, ξ̃)

+ε2N2∗
ij

(ξ
ε

)
∂ξi
∂ξj

Φ0(t, x, ξ̃) + ε2Ni

(x
ε

)
N∗

j

(ξ
ε

)
∂xi

∂ξj
Φ0(t, x1, ξ̃),

(3.20)where ξ̃ is the moving 
oordinate de�ned by
ξ̃ = ξ +

βΘ

ε
t. (3.21)Remark 3.3. The variables x and ξ being dual, the moving 
oordinate for x isde�ned with the opposite velo
ity, namely

x̃ = x− βΘ

ε
t.By the same te
hniques, as in [1℄, one 
an proveLemma 3.1. Assume that 
onditions (A1)-(A2) are ful�lled. Then, for x, ξ ∈

R
d and t ≥ ε2, the estimate holds

∣∣∣Φε(t, x, ξ) − Φε
k

(
t, x, ξ +

βΘ

ε
t
)∣∣∣ ≤ C

εk+1

t(d+k+1)/2
, k = 0, 1, 2,where βΘ is de�ned by (3.8).Turning ba
k to Vε, its zero-order approximation is V0, de�ned for any x ∈ Ω,as a solution of the homogenized problem





∂tV0 = divξ(a
eff∇ξV0), (t, ξ) ∈ (0, T ) × Ω,

V0(t, x, ξ) = Φ0(t, x, ξ), (t, ξ) ∈ (0, T ) × (Γ− ∪ Γ+),

V0(0, x, ξ) = 0, ξ ∈ Ω.32



Note that V0(t, x, ξ) ∈ C∞([0, T ] × Ω × Ω) and for (t, ξ) ∈ [0, T ] × Ω one has
|∂k

t ∂
l
x ∂

m
ξ V0(t, x, ξ)| ≤

C

dist(K, (Γ− ∪ Γ+))2k+l+m+d
, x ∈ K ⋐ Ω.The �rst-order approximation of Vε is de�ned by

V ε
1 (t, x, ξ) = V0

(
t, x, ξ̃

)
+ εNj

(x
ε

)
∂xj

V0

(
t, x, ξ̃

)

+εN∗
j

(ξ
ε

)
∂ξj
V0

(
t, x, ξ̃

)
+ ε V1

(
t, x, ξ̃

)
+ ε V ε

bl(t, x, ξ),

(3.22)where ξ̃ is the moving 
oordinate de�ned by (3.21), and V1, V ε
bl are de�ned below.A higher order asymptoti
 expansion for Vε takes the form

Wε

(
t, x, ξ

)
= V ε

1 (t, x, ξ) + ε2 V ε
2 (t, x, ξ) + ε2 ϕε

bl(t, x, ξ) + ε3 ψε
bl(t, x, ξ) (3.23)with

V ε
2 (t, x, ξ) = N2

ij(x/ε) ∂xi
∂xj

V0(t, x, ξ̃)

+N2∗
ij (ξ/ε) ∂ξi

∂ξj
V0(t, x, ξ̃) +Ni(x/ε)N

∗
j (ξ/ε) ∂xi

∂ξj
V0(t, x, ξ̃)

+Ni(x/ε) ∂xi
V1(t, x, ξ̃) +N∗

i (ξ/ε) ∂ξi
V1(t, x, ξ̃).

(3.24)In order to de�ne V1 and the �rst boundary layer 
orre
tor V ε
bl, we 
onsiderauxiliary problems in semi-in�nite 
ylinders G

∓ = (0, 1]d−1 × (0,∓∞):




A∗
Θv

± = 0, η ∈ G
∓,

v±(η′, 0) = −N∗
d (η′, 0),

η′ 7→ v±(η′, ηd) is (0, 1]d−1 − periodi
. (3.25)Sin
e βd = 0, su
h fun
tions v± exist, are uniquely de�ned and stabilize to some
onstants v̂± at an exponential rate, as ηd → ∓∞ (see [22℄):
|v±(η′, ηd) − v̂±| ≤ C0 e

−γ |ηd|, C0, γ > 0;

‖∇v+‖L2((n−1,n)×Q) ≤ C e−γ n, ∀n < 0,

‖∇v−‖L2((n,n+1)×Q) ≤ C e−γ n, ∀n > 0.

(3.26)The �rst boundary layer 
orre
tor is given by
V ε

bl(t, x, ξ) =
[
v−

(ξ′
ε
,
ξd + 1

ε

)
− v̂−

]
∂ξd

(V0 − Φ0)
(
t, x, ξ − βΘ

ε
t
)∣∣∣

ξd=−1

+
[
v+

(ξ′
ε
,
ξd − 1

ε

)
− v̂+

]
∂ξd

(V0 − Φ0)
(
t, x, ξ − βΘ

ε
t
)∣∣∣

ξd=1
. (3.27)Then, V1, for x ∈ Ω, is de�ned as the solution of





∂tV1 = divξ(a
eff ∇ξV1) + F (t, x, ξ), (t, ξ) ∈ (0, T ) × Ω,

V1(t, x, ξ) = v̂± ∂ξd
(V0 − Φ0)(t, x, ξ), (t, ξ) ∈ (0, T ) × Γ±,

V1(0, x, ξ) = 0, ξ ∈ Ω,

(3.28)33



where
F (t, x, ξ) = ∂ξk

∂ξi
∂ξj
V0(t, x, ξ)

∫

Y

[
aΘ

kl∂ηl
N2∗

ij

+ aΘ
ijN

∗
k + bΘk N

2∗
ij − βΘ

k ρΘN
2∗
ij − aeff

ij ρΘN
∗
k

]
dη.The se
ond boundary layer 
orre
tor ϕε

bl is de�ned as follows
ϕε

bl(t, x, ξ)

=
[
ϕ−

k

(ξ′
ε
,
ξd + 1

ε

)
− ϕ̂−

k

]
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=−1

)

+
[
ϕ+

k

(ξ′
ε
,
ξd − 1

ε

)
− ϕ̂+

k

]
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=1

)
.Remark that, sin
e βΘ

d = 0, we have ξd = ξ̃d and the above de�nition makes sensewhen we enfor
e ξd = −1. The fun
tions ϕ±
k solve nonhomogeneous problems





A∗
Θϕ

±
k = ∂ηi

(aΘ
ik(v± − v̂±)) + aΘ

ik ∂ηi
v±

+(bΘk − βΘ
k ρΘ)(v± − v̂±), η ∈ G

∓,

ϕ±
k (η′, 0) = 0,

η′ 7→ ϕ±
k (η′, ηd) is (0, 1]d−1 − periodi
.The right-hand side of the above equation, due to (3.26), is an exponentiallyde
aying fun
tion. Sin
e βΘ

d = 0, the fun
tions ϕ±
k exist, are uniquely de�nedand stabilize to some 
onstants ϕ̂±

k at an exponential rate, as ηd → ±∞ (see [22℄).The 
orre
tor ϕε
bl is introdu
ed to 
ompensate the terms of order ε0 whi
h willappear on the right-hand side after substituting V ε

bl into the original equation.The last boundary layer 
orre
tor ψε
bl is de�ned by

ψε
bl(t, x, ξ)

=
[
ψ−

ik

(ξ′
ε
,
ξd + 1

ε

)
− ψ̂−

ik

]
∂ξi
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=−1

)

+
[
ψ+

ik

(ξ′
ε
,
ξd − 1

ε

)
− ψ̂+

ik

]
∂ξi
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=1

)
.The fun
tions ψ±

ik solve nonhomogeneous problems




A∗
Θψ

±
ik = (aΘ

ik − aeff
ikρΘ)(v± − v̂±) + ∂ηi

(aΘ
ij(ϕ

±
k − ϕ̂k

±))

+aΘ
ij∂ηj

ϕ±
k + (bΘi − βΘ

i )(ϕ±
k − ϕ̂k

±), η ∈ G
∓,

ψ±
ik(η

′, 0) = 0,

η′ 7→ ψ±
ik(η

′, ηd) is (0, 1]d−1 − periodi
.The right-hand side of the above equation is again an exponentially de
ayingfun
tion. Thus, the fun
tions ψ±
ik exist, are uniquely de�ned and stabilize tosome 
onstants ψ̂±

j at an exponential rate, as ηd → ∓∞. The boundary layer
orre
tor ψε
bl is designed in order to 
ompensate the terms of order ε on the right-hand side of equation (3.13) whi
h 
omes from V ε

bl and ϕε
bl being substituted intothis equation. 34



This 
ompletes the 
onstru
tion of the formal expansion. We pro
eed with itsjusti�
ation. Re
all that the fun
tions V1 and V ε
bl are introdu
ed to satisfy theboundary 
onditions on Γ± up to se
ond order in ε, while the purpose of V ε

2 , ϕ
ε
bland ψε

bl is to guarantee the required a

ura
y, and the latter terms will not showup in the �nal result.Proposition 3.1. Let V ε
1 be the �rst-order approximation of Vε de�ned by (3.22).Then, for x su
h that xd ∈ I ⋐ (−1, 1) and for t ≥ 0, we have

∫

Ω

|Vε − V ε
1 |2 dx ≤ C ε4 (3.29)with the 
onstant C depending only on dist(x,Γ− ∪ Γ+),Λ and d.Proof. Let us substitute ansatz (3.23) into (3.13) and 
ompute the dis
repan
y

ρε
Θ∂t(Wε − Vε) +A∗,ε

Θ (Wε − Vε)

= εR1

(
t, x, ξ̃; y, η

)
+ εdivη(a

Θ(η)∇eξ
V2(t, x, ξ̃; y, η))

∣∣∣
y= x

ε
,η= ξ

ε

+ε2R2

(
t, x, ξ̃; η

)
+ ε3R3

(
t, x, ξ̃; η

)∣∣∣
y= x

ε
,η= ξ

ε

,

(3.30)where ξ̃ is the moving 
oordinate de�ned by (3.21) and
R1

(
t, x, ξ̃; y, η

)
= −ρΘ(η)∂tV1(t, x, ξ̃) − ρΘ(η)N∗

j (η)∂t∂ξj
V0(t, x, ξ̃)

−ρΘ(η)Nj(y)∂t∂xj
V0(t, x, ξ̃) − ρΘ(η)βΘ

j ∂eξj
V2(t, x, ξ̃; y, η)

+divξ(a
Θ(η)∇ηV2(t, x, ξ̃; y, η)) + divξ(a

Θ(η)∇ξ(N
∗(η) · ∇ξV0(t, x, ξ̃))

+divξ(a
Θ(η)∇ξ(N(y) · ∇xV0(t, x, ξ̃)) + divξ(a

Θ(η)∇ξV1(t, x, ξ̃))

+bΘj (η)∂ξj
V2(t, x, ξ̃; y, η),and
R2

(
t, x, ξ̃; η

)
=

{
(aeff

ij − aΘ
ij(η))(ϕk(η) − ϕ̂k)

−∂ηj
(aΘ

jl(η)(ψik(η) − ψ̂ik)) − aΘ
jl(η)∂ηl

ψik(η)

+(βΘ
j − bΘj (η))(ψik(η) − ψ̂ik)

}

×∂ξj
∂ξi
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=1

)
;

R3

(
t, x, ξ̃; η

)
= (ρΘ(η)aeff

jl − aΘ
jl)(ψik(η) − ψ̂ik)

×∂ξl
∂ξj
∂ξi
∂ξk

(
∂ξd

(V0 − Φ0)
(
t, x, ξ̃

)∣∣∣
ξd=1

)
.Noti
e that, in view of (3.24) and (3.28),

∫

Y

R1

(
t, x, ξ̃; y, η

)
dη = 0.Thus, there exists χ(

t, x, ξ̃; y, η
), periodi
 in η, su
h that

−divηχ = R1

(
t, x, ξ̃; y, η

)
.35



Consequently,
R1

(
t, x, ξ̃; y,

ξ

ε

)
= −εdivξχ

(
t, x, ξ̃; y,

ξ

ε

)
+ εdivξχ

(
t, x, ξ̃; y, η

)∣∣∣
η= ξ

ε

.It is easy to see that, for su�
iently small ε,
∫

Ω

[
χ
(
t, x, ξ̃; y,

ξ

ε

)]2
dξ ≤ C

∫

Ω

∫

Y

[
R1

(
t, x, ξ; y, η

)]2
dη dξwith the 
onstant C independent of ε. To estimate the norm on the right-handside of the last inequality, we noti
e that ea
h term in R1 is a produ
t of the form

F (y, η) ∂r
t ∂

m
ξj
V0(t, x, ξ̃)with a bounded periodi
 fun
tion F (y, η). It is a 
lassi
al matter to show thatthe derivatives V0 are exponentially de
reasing at in�nity. Consequently,

∫

Ω

[
χ
(
t, x, ξ̃; y,

ξ

ε

)]2
dξ ≤ Cfor xd ∈ I. Then, multiplying equation (3.30) by Wε − Vε, integrating by partstaking into a

ount (3.7), the exponential de
ay of boundary layers and of V0, weobtain ∫

Ω

|Wε − Vε|2 dξ ≤ C ε4, t ≥ 0. (3.31)Note that due to the presen
e of the boundary layer 
orre
tors, the boundary
onditions on Γ+ ∩ Γ− in (3.13) are satis�ed up to the se
ond order in ε. Itremains to noti
e that for t ≥ 0 and x ∈ Ω su
h that xd ∈ I ⋐ (−1, 1)

∫

Ω

|Wε(t, x, ξ) − V ε
1 (t, x, ξ)|2dξ ≤ C ε4,where V ε

1 is the �rst-order approximation of Vε de�ned by (3.22). Combining thelast two estimates �nishes the proof of Proposition 3.1.Combining the previous estimates on the aproximations of Φε (Lemma 3.1)and of Vε (Proposition 3.1), we dedu
e similar result for the asymptoti
s of theGreen fun
tion Kε(t, x, ξ). We do not give the proofs of the two lemmas belowsin
e they are very similar to their 
ounterpart given in Se
tion 2 in the 
ase ofa rod.Lemma 3.2. Assume that 
onditions (A1) − (A2) are satis�ed. Let Kε be theGreen fun
tion solving (3.12). For t ≥ t0 > 0 and x ∈ Ω su
h that xd ∈ I ⋐

(−1, 1), we have
∫

Ω

|Kε(t, x, ξ) −Kε
1

(
t, x, ξ +

βΘ

ε
t
)
|2dξ ≤ C ε4,36



where Kε
1 is a �rst-order approximation of Kε given by

Kε
1

(
t, x, ξ̃

)
= K0

(
t, x, ξ̃

)
+ εN

(x
ε

)
· ∇xK0

(
t, x, ξ̃

)

+εN
(ξ
ε

)
· ∇ξK0

(
t, x, ξ̃

)
+ εK1(t, x, ξ̃) − ε V ε

bl(t, x, ξ̃),
(3.32)

ξ̃ is the moving 
oordinate de�ned by (3.21), K0 = Φ0 − V0 is the Green fun
-tion of the e�e
tive problem (3.9), N,N∗ are the 
ell solutions of (3.15), (3.16),respe
tively, V ε
bl is de�ned by (3.27) and K1(t, x, ξ) = −V1(t, x, ξ) with V1 thesolution of (3.28).Lemma 3.3. Denote by I+, I− 
ompa
t subsets of (−1, 1] and [−1, 1), respe
-tively. Let 
onditions (A1) − (A2) be ful�lled. Then, for x, ξ ∈ Ω su
h that

xd ∈ I+, ξd ∈ I−, and t ≥ t0 > 0, the following estimate holds true:
|Kε(t, x, ξ) −Kε

1

(
t, x− βΘ

ε
t, ξ

)
| ≤ C ε2, (3.33)with the 
onstant C depending on I+, I−,Λ, d and independent of ε.3.2.2 Asymptoti
s of uε(t, x)Re
all that vε as a solution of (3.4), is represented in terms of the Green fun
tion

Kε by (3.11). Obviously,
vε(t, x) =

∫

Ω

Kε
1

(
t, x− βΘ

ε
t, ξ

)
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ

+

∫

Ω

(
Kε(t, x, ξ) −Kε

1

(
t, x− βΘ

ε
t, ξ

))
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ,

(3.34)where Kε
1 is the �rst order approximation of Kε given by (3.32). Suppose thatthe initial fun
tion is su
h that u0(x

′,−1) 6= 0. The 
ase u0(x
′,−1) = · · · =

∂k−1
ξd

u0(x
′,−1) = 0, ∂k

ξd
u0(x

′,−1) 6= 0 
an be 
onsidered similarly. With the helpof Lemma 3.3 we estimate the se
ond integral in (3.34).
∣∣∣
∫

Ω

(
Kε(t, x, ξ) −Kε

1

(
t, x− βΘ

ε
t, ξ

))
u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε dξ
∣∣∣

≤ C ε3
∫

Rd−1

|u0(ξ
′,−1)| dξ′

+∞∫

0

e−Θzd dzd ≤ C ε3.To 
omplete the proof it remains to 
ompute the asymptoti
 behavior of the �rstintegral in (3.34). Denote
vε
0(ξ) = u0(ξ) p

−1
Θ

(ξ
ε

)
e−

Θ (ξd+1)

ε .
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Then, by de�nition (3.32) of Kε
1 ,

∫

Ω

Kε
1(t, x, ξ) vε

0(ξ) dξ =

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

+ε

∫

Ω

N∗
j

(ξ
ε

)
∂ξj
K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

+ε

∫

Ω

v−
(ξ′
ε
,
ξd + 1

ε

)
∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

vε
0(ξ) dξ

+ε

∫

Ω

Nj

(x
ε

)
∂xj

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

+ε

∫

Ω

(
K1

(
t, x− βΘ

ε
t, ξ

)
− v̂− ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

)
vε
0(ξ) dξ

+ε

∫

Ω

(
v+

(ξ′
ε
,
ξd − 1

ε

)
− v̂+ ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=1

)
vε
0(ξ) dξ.

(3.35)
Noti
e that K0

(
t, x− βΘ

ε t, ξ
)

= K0

(
t, x, ξ+ βΘ

ε t
) sin
e βΘ

d = 0 and Ω is boundedonly in the xd-dire
tion. Expanding K0 and u0 into Taylor series with respe
t to
ξd, for t ≥ t0 > 0, we obtain

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

=

∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
1∫

−1

(ξd + 1) p−1
Θ

(ξ
ε

)
e−

Θ(ξd+1)

ε dξd +O(ε3)

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
+∞∫

0

zd p
−1
Θ

(ξ′
ε
, zd

)
e−Θzddzd +O(ε3).The fun
tion

ψ(ζ ′) =

+∞∫

0

zd p
−1
Θ

(
ζ ′, zd

)
e−Θzddzd,is (0, 1]d−1-periodi
 and belongs to H1((0, 1]d−1). By the 
lassi
al mean-valuetheorem, we dedu
e the asymptoti
 behavior of the �rst term in (3.35)

∫

Ω

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
∫

(0,1]d−1

+∞∫

0

zd p
−1
Θ (z′, zd) e

−Θzddzd dz
′ +O(ε3).38



By similar arguments, the other terms in (3.35) admit the representations
∫

Ω

N∗
j

(ξ
ε

)
∂ξj
K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
∫

(0,1]d−1

+∞∫

0

N∗
d (z) p−1

Θ (z) e−Θzddzd dz
′ +O(ε3)and ∫

Ω

v−
(ξ′
ε
,
ξd + 1

ε

)
∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)
vε
0(ξ) dξ

= ε2
∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′

×
∫

(0,1]d−1

+∞∫

0

v−(z) p−1
Θ (z) e−Θzddzd dz

′ +O(ε3).Noti
ing that K1

∣∣
ξd=−1

= v̂−∂ξd
K0

∣∣
ξd=−1

, and ∂xj
K0

∣∣
ξd=−1

= 0, one 
an seethat the last three integrals in (3.35) are of order ε3. We emphasize that, in viewof (3.26), the terms 
ontaining boundary layer 
orre
tors near Γ+ are negligible.Finally,
vε(t, x) = ε2M

∫

Rd−1

u0(ξ
′,−1) ∂ξd

K0

(
t, x− βΘ

ε
t, ξ

)∣∣∣
ξd=−1

dξ′ +O(ε3),where the 
onstant M is given by (3.10). This 
ompletes the proof of Theorem3.1. �As already said in Remark 3.2, Theorem 3.1 provides only the leading termof the asymptoti
s of uε. However, due to the presen
e of the exponentiallylarge fa
tor eΘ(xd+1)/ε, we are mostly interested in the asymptoti
s of uε in a ε-neighbourhood of Γ+, where uε is maximum and where both, the leading and the
orre
tor terms (in
luding the boundary layer 
orre
tor) are of the same order.In Theorem 3.2 below we 
onstru
t the 
orre
tor terms for uε, that improvessigni�
antly the asymptoti
s of uε in the vi
inity of Γ+ and, therefore, makes theresult of Theorem 3.1 
omplete.Let us de�ne the �rst-order approximation for uε by
U ε(t, x) = u

(
t, x− βΘ

ε
t
)

+ εNk

(x
ε

)
∂xk

u
(
t, x− βΘ

ε
t
)

+εu1

(
t, x− βΘ

ε
t
)

+ ε
[
v+
∗

(x′
ε
,
xd − 1

ε

)
− v̂+

∗

]
∂x1u

(
t, x− βΘ

ε
t
)∣∣∣

xd=1
.

(3.36)Here u(t, x) is the solution of the homogenized problem (3.9), N solves (3.15).The boundary layer 
orre
tor v+
∗ (y) are de�ned similarly to v+(y) (see (3.27)),39



ex
ept for the fa
t that the adjoint operator is repla
ed with the dire
t one.Namely, v+
∗ solves the following problem in G

− = (0, 1]d−1 × (−∞, 0):




AΘv
+
∗ = 0, y ∈ G

−,

v+
∗ (y′, 0) = −Nd(y

′, 0),

y′ 7→ v+
∗ (y′, yd) is (0, 1]d−1 − periodi
.Sin
e βd = 0, there exists a unique bounded solution v+

∗ and it stabilizes to some
onstant v̂+
∗ at an exponential rate, as yd → −∞.The fun
tion u1(t, x) in (3.36) solves the following problem




∂tu1 = div(aeff ∇u1) + F (t, x), (t, x) ∈ (0, T ) × Ω,

u1(t, x) = v̂+
∗ ∂xd

u(t, x), (t, x) ∈ (0, T ) × (Γ− ∪ Γ+),

u1(0, x) = 0, x ∈ Ω,where
F (t, x) = ∂xk

∂xi
∂xj

u(t, x)

∫

Y

[
aΘ

kl∂ηl
N2

ij

+ aΘ
ijNk − bΘk N

2
ij + βΘ

k ρΘN
2
ij − aeff

ij ρΘNk

]
dη.Theorem 3.2. Let the assumptions of Theorem 3.1 be ful�lled. The re�nedasymptoti
s of the solution uε of problem (3.1), for t ≥ t0 > 0 and x ∈ Ω, takesthe form

uε(t, x) = ε2 e−
λ1(Θ)t

ε2 e
Θ(xd+1)

ε pΘ

(x
ε

) [
U ε(t, x) +Rε(t, x)

]
,where U ε is given by(3.36), and, for some 
onstant C = C(Λ, d), the remainderterm satis�es the estimate

|Rε(t, x)| ≤ C ε(1 − xd),whi
h is uniform for t ≥ t0 > 0, x ∈ Ω.The proof of Theorem 3.2 is similar to that of Theorem 2.3 in the 
ase of arod. We leave it to the reader.A
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