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Homogenization of a Condutive, Convetive and Radiative HeatTransfer Problem in a Heterogeneous Domain∗Grégoire Allaire† and Zakaria Habibi ‡Marh 12, 2012AbstratWe are interested in the homogenization of heat transfer in periodi porous media where the�uid part is made of long thin parallel ylinders, the diameter of whih is of the same order than theperiod. The heat is transported by ondution in the solid part of the domain and by ondution,onvetion and radiative transfer in the �uid part (the ylinders). A non-loal boundary onditionmodels the radiative heat transfer on the ylinder walls. To obtain the homogenized problem we �rstuse a formal two-sale asymptoti expansion method. The resulting e�etive model is a onvetion-di�usion equation posed in a homogeneous domain with homogenized oe�ients evaluated bysolving so-alled ell problems where radiative transfer is taken into aount. In a seond step werigorously justify the homogenization proess by using the notion of two-sale onvergene. Onefeature of this work is that it ombines homogenization with a 3D to 2D asymptoti analysis sinethe radiative transfer in the limit ell problem is purely two-dimensional. Eventually, we providesome 3D numerial results in order to show the onvergene and the omputational advantages ofour homogenization method.Key words : Periodi homogenization, two-sale onvergene, heat transfer.1 IntrodutionWe study heat transfer in a very heterogeneous periodi porous medium. Sine the ratio of theheterogeneities period with the harateristi length-sale of the domain, denoted by ǫ, is very small inpratie, a diret numerial simulation of this phenomenon is either out of reah or very time onsumingon any omputer (espeially in 3D). Therefore, the original heterogeneous problem should be replaedby an homogeneous averaged (or e�etive, or homogenized) one. The goal of homogenization theory[8℄, [10℄, [15℄, [23℄, [25℄, [31℄, [32℄ is to provide a systemati way of �nding suh e�etive problems,of reonstruting an aurate solution by introduing so-alled orretors and of rigorously justifyingsuh an approximation by establishing onvergene theorems and error estimates. The purpose of thispaper is to arry on this program for a model of ondutive, onvetive and radiative heat transferin a 3D solid domain, periodially perforated by thin parallel ylinders in whih a gas is �owing (seeFigure 1 for a sketh of the geometry). Convetion and radiative transfer are taking plae only in thegas whih is assumed to be transparent for radiation and with a very small bulk di�usivity. Therefore,the radiative transfer is modelled by a non-loal boundary ondition on the ylinder walls.Although there are many possible physial motivations for this study, we fous on its appliationto the nulear reator industry and espeially to the so-alled gas-ooled reators [19℄ whih are apromising onept for the 4th generation reators. The periodi porous medium in our study is the
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Homogenization of a Heat Transfer Problem 2ore of suh a gas-ooled reator. It is typially made of many prismati bloks of graphite in whih areinserted the nulear fuel ompat. Eah blok is periodially perforated by many small hannels wherethe oolant (Helium) �ows (the number of these gas ylinders is of the order of 104 at least). Althoughthe solid matrix of the porous medium is itself heterogeneous (a mixture of graphite and of nulearmaterials), we simplify the exposition by assuming it is already homogenized and thus homogeneous.The analysis would not be muh more ompliated otherwise but ertainly less lear for the reader.In other words, we assume that the only soure of heterogeneities is oming from the geometry of theporous medium whih is a �ne mixture of solid and �uid parts. Sine the total number of ylinders isvery large and their diameter is very small ompared to the size of the ore, the numerial simulationof this problem requires a very �ne mesh and thus a very expensive omputational ost for a realgeometry of a reator ore (all the more sine the radiative transfer is modelled by an integral operatoryielding dense disretization matries). Therefore, our goal is to �nd a simpler homogenized model inan equivalent ontinuous domain and, spei�ally, to give a lear de�nition of the resulting e�etiveparameters as well as a detailed reonstrution of an approximate solution (involving loal orretorsthat take into aount the geometry variation).A similar study, in a simpli�ed 2D setting, has previously appeared in [3℄. In this referene, the2D domain was a ross setion of the reator ore (perpendiular to the ylinders) so that the �uidpart was a periodi olletion of isolated disks. Furthermore, onvetion and di�usion were negletedin the gas. Therefore, the main novelties of the present paper is, �rst, to take into aount onvetionand di�usion in the �uid, seond and most importantly, to onsider a porous medium perforated byylinders instead of disks. This last generalization is not at all a simple extension of the previous resultsof [3℄. It turns out that [3℄ an easily be extended to a periodi distribution of spherial holes in 3D. Onthe ontrary, in the ase of ylinders, sine periodiity takes plae only in the transverse diretions andthe holes are not isolated, but rather onneted, in the axial diretion, a new phenomenon takes plaewhih orresponds to a dimension redution for the radiative operator from 3D to 2D. In other words,our asymptoti analysis is not only a problem of homogenization but also of singular perturbation.The issue of dimension redution is well-known in solid mehanis, where it is a basi ingredient todedue plate or shell models from 3D elastiity when the thikness of the struture is going to zero (seee.g. [14℄). Here, the reason for this dimension redution is that, in the homogenization proess, theylinders beome in�nitely long ompared to their diameter (whih goes to zero): thus, at a mirosopisale the 3D radiative operator is asymptotially invariant along the axis of these ylinders and, inthe limit, degenerates to a 2D radiative operator. Furthermore, some radiations are esaping from theylinders by their extremities: asymptotially it yields an additional vertial homogenized di�usivitywhih was, of ourse, not seen in the 2D setting of [3℄. Overall our homogenized model is new, quitesurprising and not intuitive, even in light of [3℄.There are a number of other previous ontributions on the homogenization of radiative transferwhih all orrespond to di�erent geometries or salings of various parameters [6℄, [7℄, [9℄, [13℄. Let us alsomention that there is a huge literature on the homogenization in perforated domains or porous media(see [23℄ and referenes therein, [16℄, [18℄ for the ase of non-linear Neumann boundary onditions).The paper is organized as follows. In Setion 2, we give a preise de�nition of the geometry andof the heat transfer model, see (8). In partiular we disuss our saling assumptions in terms of thesmall parameter ǫ. Furthermore, various properties of the radiative operator are realled. It is anintegral operator, the kernel of whih is alled the view fator (it amounts to quantify how a point onthe ylinder wall is illuminated by the other points on this surfae). A key ingredient for the sequel isproved in Lemma 2.1: an asymptoti expansion of the 3D view fator, integrated along the ylinderaxis, is established in terms of the 2D view fator. Setion 3 is devoted to the formal method of two-sale asymptoti expansions applied to our problem. Its main result is Proposition 3.1 whih gives thepreise form of the homogenized problem. Furthermore, it also furnishes the so-alled ell problemswhih de�ne the orretor term for the homogenized solution. It is at the basis of a reonstrutionproess for an aurate and detailed approximate solution. We emphasize that the appliation of theformal method of two-sale asymptoti expansions is not standard for two reasons. First, to minimize



Homogenization of a Heat Transfer Problem 3the number of required terms in the resulting asade of equations, we rely on a variant of the method,suggested by J.-L. Lions [26℄, whih amounts to introdue an ansatz in the variational formulationrather than in the strong form of the equations. Seond, we must ombine this ansatz with thedimension redution argument for the radiative operator as given by the tehnial Lemma 2.1. Setion4 provides a rigorous mathematial justi�ation of the homogenization proess by using the methodof two-sale onvergene [1℄, [30℄. Our main result is Theorem 4.2 whih on�rms the statement ofProposition 3.1. A formal generalization to the non-linear ase is brie�y skethed in Setion 5. Indeed,our mathematial rigorous justi�ation holds true only for a linear model so we hoose to expose thissetting. However, the true physial model of radiative transfer is non-linear sine the emitted radiationsare following Stefan-Boltzmann law of proportionality to the 4th power of temperature. Taking intoaount this non-linearity is not di�ult for the formal method of two-sale asymptoti expansions.Thus we give the homogenized and ell problems in this ase too, all the more sine all our numerialomputations are performed in this non-linear setting. In Setion 6, we present some numerial resultsfor data orresponding to gas-ooled reators. In partiular we show that the error between the exatand reonstruted solutions, as a funtion of the small parameter ǫ, is as expeted of order 1 or 1/2,depending on the hoie of norm.2 Setting of the problemThe goal of this setion is to de�ne the geometry of the periodi porous medium and to introdue themodel of ondutive, onvetive and radiative heat transfer.2.1 GeometryFor simpliity we onsider a retangular open set Ω =
∏3

j=1(0, Lj) where Lj > 0 are positive lengths.It is however essential that the domain Ω be a ylinder with axis in the third diretion, namely thatits geometry is invariant by translation along x3. The retangular basis ∏2
j=1(0, Lj) is periodiallydivided in N(ǫ) small ells (Λǫ,i)i=1...N(ǫ), eah of them being equal, up to a translation and resalingby a fator ǫ, to the same unit periodiity ell Λ =

∏2
j=1(0, lj) with lj > 0. By onstrution, thedomain Ω is periodi in the two �rst diretions and is invariant by translation in the third one. Toavoid unneessary ompliations with boundary layers (and beause this is the ase in the physialproblem whih motivates this study) we assume that the sequene of small positive parameters ǫ, goingto zero, is suh that the basis of Ω is made up of entire ells only, namely Lj/(ǫlj) is an integer forany j = 1, 2. The ell Λ is deomposed in two parts: the holes ΛF oupied by a �uid (see Figures 1and 2) and the solid matrix ΛS . We denote by γ the boundary between ΛS and ΛF . Then, we de�nethe �uid domain ΩF

ǫ as the ylindrial domain with basis omposed by the olletion of ΛF
ǫ,i and thesolid domain ΩS

ǫ as the ylindrial domain with basis omposed by the olletion of ΛS
ǫ,i, where ΛF,S

ǫ,iare the translated and resaled version of ΛF,S for i = 1...N(ǫ) (similar to the orrespondene between
Λǫ,i and Λ). In summary we have
ΩF

ǫ =

N(ǫ)⋃

i=1

ΛF
ǫ,i × (0, L3), ΩS

ǫ = Ω \ ΩF
ǫ =

N(ǫ)⋃

i=1

ΛS
ǫ,i × (0, L3), γǫ =

N(ǫ)⋃

i=1

γǫ,i, Γǫ = γǫ × (0, L3).For eah plane ell Λǫ,i, the enter of mass x′0,i of the boundary γǫ,i is de�ned by
∫

γǫ,i

(s′ − x′0,i)ds
′ = 0. (1)For any point x = (x1, x2, x3) ∈ R3, we denote by x′ its two �rst omponents in R2 suh that

x = (x′, x3). We introdue the linear projetion operator P from R3 to R2 and its adjoint, the



Homogenization of a Heat Transfer Problem 4extension operator E from R2 to R3, de�ned by
P



v1
v2
v3


 =

(
v1
v2

) and E

(
v1
v2

)
=



v1
v2
0


 . (2)Eventually, we denote by ∇x′ the 2D gradient operator whih we shall often identify to its extension

E∇x′ . Similarly, for a 3D vetor �eld F (x′, x3) we shall use the notation divx′F for divx(PF ).

Figure 1: Periodi domain for a gas ooled reator ore
Figure 2: 2D referene ell for a gas ooled reator ore2.2 Governing equationsThere is a vast literature on heat transfer and we refer the interested reader to [12℄, [27℄, [33℄ for anintrodution to the modelling of radiative transfer. We denote by Tǫ the temperature in the domain

Ω whih an be deomposed as
Tǫ =

{
T S

ǫ in ΩS
ǫ ,

TF
ǫ in ΩF

ǫ ,where Tǫ is ontinuous through the interfae Γǫ.Convetion takes plae only in the thin vertial ylinders ΩF
ǫ oupied by the �uid. We thusintrodue a given �uid veloity

Vǫ(x) = V (x,
x′

ǫ
) in ΩF

ǫ ,where the ontinuous vetor �eld V (x, y′), de�ned in ΛF ×Ω, is periodi with respet to y′ and satis�esthe two inompressibility onstraints
divxV = 0 and divy′V = 0 in ΛF , and V · n = 0 on γ



Homogenization of a Heat Transfer Problem 5where n is the unit outward normal (from ΛS to ΛF ) on γ. A typial example of suh a veloity �eldis V = (V ′(x3, y
′), V3(x

′, y′)) with V ′ = (V1, V2), divy′V ′ = 0 and V ′ · n = 0 on γ.The thermal di�usion is assumed to be muh smaller in the �uid than in the solid. More preiselywe assume that it is of order 1 in ΩS
ǫ and of order ǫ in ΩF

ǫ . The ondutivity tensor is thus de�ned by
Kǫ(x) =

{
KS

ǫ (x) = KS(x, x′

ǫ ) in ΩS
ǫ ,

ǫKF
ǫ (x) = ǫKF (x, x′

ǫ ) in ΩF
ǫ ,

(3)where KS(x, y′),KF (x, y′) are periodi symmetri positive de�nite tensors de�ned in the unit ell Y ,satisfying
∀v ∈ R3, ∀ y′ ∈ Λ, ∀ x ∈ Ω, α|v|2 ≤

3∑

i,j=1

KF,S
i,j (x, y′)vivj ≤ β|v|2,for some onstants 0 < α ≤ β. The hoie of the ǫ saling in (3) is made in order to have a dominantonvetion in the �uid part at the marosopi sale. However, at the mirosopi sale the onvetionand the di�usion are balaned as will be lear later.The �uid is assumed to be almost transparent, so that heat an also be transported by radiativetransfer in ΩF

ǫ . This radiative e�et is modelled by a non loal boundary ondition on the interfae Γǫbetween ΩF
ǫ and ΩS

ǫ . More preisely, in addition to the ontinuity of temperature we write a balaneof heat �uxes on the interfae
T S

ǫ = TF
ǫ and −KS

ǫ ∇T S
ǫ · n = −ǫKF

ǫ ∇TF
ǫ · n+

σ

ǫ
Gǫ(T

F
ǫ ) on Γǫ, (4)where σ > 0 is a given positive onstant and Gǫ is the radiative operator de�ned by

Gǫ(Tǫ)(s) = Tǫ(s) −
∫

Γǫ,i

Tǫ(x)F (s, x)dx = (Id− ζǫ)Tǫ(s) ∀ s ∈ Γǫ,i, (5)with
ζǫ(f)(s) =

∫

Γǫ,i

F (s, x)f(x)dx. (6)The saling ǫ−1 in front of the radiative operator Gǫ in (4) is hosen beause it yields a perfet balane,in the limit as ǫ goes to zero, between the bulk heat ondution and the surfae radiative transfer (thissaling was �rst proposed in [3℄ and is due to the fat that the operator (Id − ζǫ) has a non-trivialkernel, see Lemma 2.1). In (6) F is the so-alled view fator (see [27℄, [24℄, [22℄). The view fator
F (s, x) is a geometrial quantity between two di�erent points s and x of the same ylinder Γǫ,i. Itsexpliit formula for surfaes enlosing onvex domains is in 3D

F (s, x) := F 3D(s, x) =
nx · (s− x)ns · (x− s)

π|x− s|4 ,where nz denotes the unit normal at the point z. In 2D the view fator is
F (s, x) := F 2D(s′, x′) =

n′x · (s′ − x′)n′s · (x′ − s′)

2|x′ − s′|3and the operator in (6) is denoted by ζ2D
ǫ . Some useful properties of the view fator are given belowin Lemma 2.1.For simpliity we assume that the only heat soure is a bulk density of thermal soures in the solidpart, f ∈ L2(Ω), f ≥ 0 and the external boundary ondition is a simple Dirihlet ondition. Eventually,the governing equations of our model are





−div(KS
ǫ ∇T S

ǫ ) = f in ΩS
ǫ

−div(ǫKF
ǫ ∇TF

ǫ ) + Vǫ · ∇TF
ǫ = 0 in ΩF

ǫ

−KS
ǫ ∇T S

ǫ · n = −ǫKF
ǫ ∇TF

ǫ · n+
σ

ǫ
Gǫ(T

F
ǫ ) on Γǫ

T S
ǫ = TF

ǫ on Γǫ

Tǫ = 0 on ∂Ω.

(8)



Homogenization of a Heat Transfer Problem 6Proposition 2.1. The boundary value problem (8) admits a unique solution Tǫ in H1
0 (Ω).Proof This is a lassial result (see [3℄ if neessary) by appliation of the Lax-Milgram lemma. Themain point is that the operator Gǫ is self-adjoint and non-negative, as stated in Lemma 2.1 below. �Remark 2.1. The solution of (8) satis�es the maximum priniple, namely f ≥ 0 in Ω implies that

Tǫ ≥ 0 in Ω (see [33℄). However, we shall not use this property in the sequel.Remark 2.2. The radiation operator introdued in (5) is a linear operator: this is learly a simplifyingassumption. Atually, the true physial radiation operator is non-linear and de�ned, on eah Γǫ,i, 1 ≤
i ≤ N(ǫ), by

Gǫ(Tǫ) = e(Id− ζǫ)(Id− (1 − e)ζǫ)
−1(T 4

ǫ ). (9)where ζǫ is the operator de�ned by (6). To simplify the exposition, we fous on the ase of so-alledblak walls, i.e., we assume that the emissivity is e = 1 (we an �nd in [7℄ a study of this kindof problems when the emissivity depends on the radiation frequeny). However, our analysis an beextended straightforwardly to the other ases 0 < e < 1 (see e.g. [20℄). The formal two-sale asymptotiexpansion method an also be extended to the above non-linear operator, at the prie of more tediousomputations [20℄. However, the rigorous justi�ation of the homogenization proess is, for the moment,available only for the linearized form of the radiation operator. Therefore we ontent ourselves inexposing the homogenization proess for the linear ase. Nevertheless, in Setion 5 we indiate howour results an be generalized to the above non-linear setting. Furthermore, our numerial results inSetion 6 are obtained in the non-linear ase whih is more realisti from a physial point of view.2.3 Properties of the view fatorWe reall and establish some useful properties of the view fator that we will use later.Lemma 2.1. For points x and s belonging to the same ylinder Γǫ,i, the view fator F (s, x) satis�es1.
F (s, x) ≥ 0, F (s, x) = F (x, s), (10)2. ∫

γǫ,i

F 2D(s′, x′)ds′ = 1,3. as an operator from L2 into itself,
‖ζǫ‖ ≤ 1, (11)4. ∫

γǫ,i

∫

γǫ,i

(x′ − x′0,i)F
2D(s′, x′)dx′ds′ = 0,5.

ker(Id− ζ2D
ǫ ) = R, (12)6. the radiative operator Gǫ is self-adjoint on L2(Γǫ,i) and non-negative in the sense that

∫

Γǫ,i

Gǫ(f) f ds ≥ 0 ∀ f ∈ L2(Γǫ,i), (13)7. for any given s3 ∈ (0, L),
∫ L

0
F 3D(s, x)dx3 = F 2D(s′, x′) + O(

ǫ2

L3
), (14)



Homogenization of a Heat Transfer Problem 78. for any funtion g ∈ C3(0, L) with ompat support in (0, L),
∫ L

0
g(x3)F

3D(s, x)dx3 = F 2D(s′, x′)
(
g(s3) +

|x′ − s′|2
2

g′′(s3) + O(ǫp)
)
, (15)where any 0 < p < 3 is admissible and g′′ denotes the seond derivative of g. Furthermore, forany funtion f ∈ L∞(0, L), we have

∫ L

0

∫ L

0
f(x3)g(s3)F

3D(s, x)dx3ds3 = F 2D(s′, x′)
( ∫ L

0
f(x3)g(x3)dx3

+
1

2
|x′ − s′|2

∫ L

0
f(x3)g

′′(x3)dx3 + O(ǫp)
)
. (16)Remark 2.3. The surfae Γǫ,i of eah ylinder is not losed (it is only the lateral boundary and thetwo end ross-setions are missing). Therefore, the seond property of Lemma 2.1 does not hold in 3D,namely ∫

Γǫ,i

F 3D(s′, x′)ds′ 6= 1.Remark 2.4. The asymptoti properties (14) an be physially interpreted by saying that in a thin andlong ylinder the 3D view fator are well approximated by the 2D view fator, upon vertial integration.Sine the surfae Γǫ,i is open at its extremities, there is some leakage of the radiated energy. Theasymptoti property (15) and (16) take into aount the quanti�ation of this leakage whih orrespondsto a di�usive orretor term in the x3 diretion (remember that |x′ − s′|2 is of the order of ǫ2).Proof The six �rst properties are lassial and may be found in [20℄. The proof of (14) follows froma hange of variables and a Taylor expansion. At this point, the assumption that s3 does not dependon ǫ and is di�erent from the two end points 0 and L is ruial. Indeed, beause the ylinder Γǫ,i isvertial, we have ns3
= nx3

= 0 and
I =

∫ L

0

nx · (s− x)ns · (x− s)

π|x− s|4 dx3 =
n′x · (s′ − x′)n′s · (x′ − s′)

π(x′ − s′)4

∫ L

0

1
(

1 +
(x3 − s3)

2

|x′ − s′|2
)2dx3.By the hange of variables

z =
x3 − s3
α

, where α = |x′ − s′|, (17)and integration, we obtain
I =

2

π
F 2D(s′, x′)

(
h1(

L− s3
|x′ − s′|) − h1(

−s3
|x′ − s′|)

)where h1(z) is the primitive of the previous integrand given by
h1(z) =

1

2

(
z

z2 + 1
+ arctan(z)

)
. (18)By Taylor expansion we get

h1(z) =





+
π

2
+ O(z−3) when z → +∞,

−π
2

+ O(z−3) when z → −∞.
(19)



Homogenization of a Heat Transfer Problem 8Sine |x′ − s′| = O(ǫ), s3 = O(L) and F 2D(s′, x′) = O(ǫ−1), we dedue (14).The proof of (15) is a little more di�ult although the strategy is the same. Let us notie that theassumption of ompat support for g allows us to avoid di�ulties oming from the ase when s3 = 0or s3 = L. By the same hange of variables (17) we obtain
I =

∫ L

0
g(x3)F

3D(s, x)dx3 =
2

π
F 2D(x′, s′)

∫

∆

g(s3 + αz)

(1 + z2)2
dz =

2

π
F 2D(x′, s′)Î ,where the domain of integration ∆ is given by ∆ = [

−s3
α
,
L− s3
α

]. Remark that α = O(ǫ). By usinga Taylor expansion in a neighbourhood of s3, we have
g(s3 + αz) = g(s3) + αzg′(s3) +

1

2
α2z2g′′(s3) + O(α3z3),and Î beomes

Î = I1 + I2 + I3 + I4, (20)where, h1(z) being given by (18),
I1 = g(s3)

∫

∆

1

(1 + z2)2
dz =

g(s3)

2

(
h1(

L− s3
α

) − h1(
−s3
α

)

)
=
g(s3)

2

(
π + O(α3)

)
.On the other hand we get

I2 = αg′(s3)

∫

∆

z

(1 + z2)2
dz = αg′(s3)

(
h2(

L− s3
α

) − h2(
−s3
α

)

)
=

αg′(s3)

2
O(α2),

I3 =
α2

2
g′′(s3)

∫

D

z2

(1 + z2)2
dz =

α2

2
g′′(s3)

(
h3(

L− s3
α

) − h3(
−s3
α

)

)
=

α2

4
g′′(s3) (π + O(α)) ,where we performed a Taylor expansion of h2(z) and h3(z) whih are the primitives of the previousintegrands in I2 and I3, respetively, given by

h2(z) =
1

2

( −1

z2 + 1

)
, h3(z) =

1

2

( −z
z2 + 1

+ arctan(z)

)
.The last integral in (20) is of order O(ǫp) for any 0 < p < 3 beause

|I4| ≤ Cα3

∫

∆

z3

(1 + z2)2
dz ≤ Cα3

(
h4(

L− s3
α

) − h4(
−s3
α

)

)
,where h4(z) is the primitive of the previous integrand given by

h4(z) =
1

2

(
log(z2 + 1) +

1

1 + z2

)
. (21)By a Taylor expansion of (21) when z → ±∞ we get

|I4| ≤ Cα3| log α| ≤ Cαp ∀ 0 < p < 3.Hene the result (15) sine α = O(ǫ). Eventually, (16) is immediate using (15). �Remark 2.5. If the funtion f is smooth, by integration by parts (16) beomes
∫ L

0

∫ L

0
f(x3)g(s3)F

3D(s, x)dx3ds3 = F 2D(s′, x′)
( ∫ L

0
f(x3)g(x3)dx3

− 1

2
|x′ − s′|2

∫ L

0
f ′(x3)g

′(x3)dx3 + O(ǫp)
)
. (22)Atually, (22) an be proved diretly with di�erent smoothness assumptions: it holds true for f and gof lass C2, one of them being with ompat support.



Homogenization of a Heat Transfer Problem 93 Two-sale asymptoti expansionThe homogenized problem an be obtained heuristially by the method of two-sale asymptoti ex-pansion [10℄, [15℄, [31℄. This method is based on the periodi assumption on the geometry of theporous medium. However here, beause the radiative operator is only 2D periodi, we shall introduea mirosopi variable y′ whih is merely a 2D variable (in the plane perpendiular to the ylinders).Of ourse, denoting the spae variable x = (x′, x3), the fast and slow variables are related by y′ = x′/ǫ.The radiative operator is reating an additional di�ulty: sine the �uid part is made of thin and longylinders, the 3D view fators will asymptotially be replaed by the 2D view fators (see Lemma 2.1).Therefore, our problem is not only an homogenization problem but it is also a singularly perturbedone. It an be ompared to the dimension redution issue in solid mehanis, i.e., how a plate or shellmodel an be dedued from a 3D elastiity one (see e.g. [14℄).The starting point of the method of two-sale asymptoti expansion is to assume that the solution
Tǫ of problem (8) is given by the series

Tǫ = T0(x) + ǫ T1(x,
x′

ǫ
) + ǫ2 T2(x,

x′

ǫ
) + O(ǫ3) (23)where, for i = 1, 2, y′ → Ti(x, y

′) is Λ-periodi and
Ti(x, y

′) =

{
T S

i (x, y′) in Ω × ΛS ,

TF
i (x, y′) in Ω × ΛF ,

(24)with the ontinuity ondition at the interfae, T S
i (x, y′) = TF

i (x, y′) on γ = ∂ΛS ∩ ∂ΛF . As in thelassial examples of homogenization, we assume that the �rst term of the asymptoti expansion T0depends only on the marosopi variable x. As usual this property an be established by the samedevelopment as below if we had assumed rather that T0 ≡ T0(x, y
′).Introduing (23) in the equations (8) of the model, we dedue the main result of this setion.Proposition 3.1. Under assumption (23), the zero-order term T0 of the expansion for the solution Tǫof (8) is the solution of the homogenized problem

{
−div(K∗(x)∇T0(x)) + V ∗(x) · ∇T0(x) = θ f(x) in Ω

T0(x) = 0 on ∂Ω
(25)with the porosity fator θ = |ΛS | / |Λ|, the homogenized ondutivity tensor K∗ given by its entries, for

j, k = 1, 2, 3,
K∗

j,k(x) =
1

|Λ|

[∫

ΛS

KS(x, y′)(ej + ∇y′ωS
j (x, y′)) · (ek + ∇y′ωS

k (x, y′))dy′

+ σ

∫

γ
(Id− ζ2D)(ωS

k (x, y′) + yk)(ω
S
j (x, y′) + yj)dy

′

+
σ

2

∫

γ

∫

γ
F 2D(s′, y′)|s′ − y′|2dy′ds′ δj3δk3

] (26)and a vertial homogenized veloity given by
V ∗(x) =

e3
|Λ|

∫

ΛF

V (x, y′) · e3dy′,where ζ2D is the unit ell view fator operator de�ned by
ζ2D(ω)(s′) =

∫

γ
F 2D(s′, y′)ω(y′)dy′



Homogenization of a Heat Transfer Problem 10and, for j = 1, 2, 3, ωj(x, y
′) (equal to ωS

j in ΛS and to ωF
j in ΛF ) is the solution of the 2D ell problem





−divy′P
[
KS(x, y′)(ej + ∇y′ωS

j (x, y′))
]

= 0 in ΛS

−divy′P
[
KF (x, y′)(ej + ∇y′ωF

j (x, y′))
]

+ V (x, y′) · (ej + ∇y′ωF
j (x, y′)) = 0 in ΛF

−P
[
KS(x, y′)(ej + ∇y′ωS

j (x, y′))
]
· n = σ(Id − ζ2D) (ωS

j (x, y′) + yj) on γ
ωF

j (x, y′) = ωS
j (x, y′) on γ

y′ 7→ ωj(x, y
′) is Λ-periodi, (27)

where P is the 3D to 2D projetion operator de�ned by (2). Furthermore, T1 is given by
T1(x, y

′) =

3∑

j=1

ωj(x, y
′)
∂T0

∂xj
(x). (28)Remark 3.1. As usual in homogenization, the ell problem (27) is a partial di�erential equation withrespet to y′ where x plays the role of a parameter. It is proved to be well-posed in Lemma 3.1 below.We emphasize that the ell problem in Λ an be deoupled as two suessive sub-problems in ΛSand ΛF respetively. First, we solve a ell problem in ΛS using the non loal boundary ondition on

γ, independently of what happens in ΛF . Seond, we solve a ell problem in ΛF with the ontinuityboundary ondition on γ yielding a Dirihlet boundary ondition. In partiular, the homogenized tensor
K∗ depends only on ΛS.Remark 3.2. The homogenized tensor K∗ has an extra ontribution (26) for its 3, 3 entry dependingmerely on the view fator and not on the ell solutions. It arises from the leakage of the radiativeenergy at both ends of eah ylinder Γǫ,i (whih are not losed as explained in Remark 2.4). Thisloss of radiative energy at the ylinders extremities yields this additional axial (or vertial) thermaldi�usion. For irular ross-setion ylinders (namely γ is a irle), we an expliitly ompute

∫

γ

∫

γ
F 2D(s′, y′)|s′ − y′|2dy′ds′ =

16

3
πr3 where r is the radius of γ.On the other hand, sine Pe3 = 0 and (Id− ζ2D)y3 = 0, the solution ωS

3 is a onstant (with respet to
y′) for any ell geometry. This implies that K∗

3,j(x) = K∗
j,3(x) = 0 for j = 1, 2 and

K∗
3,3(x) =

1

|Λ|

(∫

ΛS

KS(x, y′)dy′ +
σ

2

∫

γ

∫

γ
F 2D(s′, y′)|s′ − y′|2dy′ds′

)
.Remark 3.3. As usual in homogenization, Proposition 3.1 gives a omplete haraterization of thetwo �rst terms T0(x)+ ǫT1(x,

x′

ǫ
) of the ansatz (23). With suh an approximation, not only do we havea orret estimate of the temperature Tǫ(x) but also of its gradient (or of the heat �ux) sine it implies

∇Tǫ(x) ≈ ∇T0(x) +∇y′T1(x,
x′

ǫ
) (in this last formula the orretor ∇y′T1 is of order 1 and an not beignored).The proof of Proposition 3.1 shall require the onsideration of the seond order orretor T2 butwe are not interested in its preise evaluation sine it is muh smaller and negligible in the numerialexamples.Proof of Proposition 3.1All the di�ulties are onentrated on the radiation term in whih simpli�ations must neessarilytake plae beause it is formally dominating as ǫ goes to zero. Consequently, instead of using the formalmethod of two sale asymptoti expansions in the strong form of problem (8), whih is ompliated



Homogenization of a Heat Transfer Problem 11beause of the non-loal boundary ondition (the radiation term), we follow the lead of [3℄ (basedon an original idea of J.-L. Lions [26℄) and use a two sale asymptoti expansion in the variationalformulation of (8), taking advantage of its symmetry. This trik allows us to trunate the ansatz at alower order term and onsiderably simpli�es the omputations.The variational formulation of problem (8) is: �nd Tǫ ∈ H1
0 (Ωǫ) suh that

aǫ(Tǫ, φǫ) = Lǫ(φǫ) for any φǫ ∈ H1
0 (Ωǫ), (29)where

aǫ(Tǫ, φǫ) =

∫

ΩS
ǫ

KS
ǫ (x)∇Tǫ(x) · ∇φǫ(x)dx+ ǫ

∫

ΩF
ǫ

KF
ǫ (x)∇Tǫ(x) · ∇φǫ(x)dx

+

∫

ΩF
ǫ

Vǫ(x) · ∇Tǫ(x)φǫ(x)dx+
σ

ǫ

∫

Γǫ

Gǫ(Tǫ)(x)φǫ(x)dxand
Lǫ(φǫ) =

∫

ΩS
ǫ

f(x)φǫ(x)dx.We hoose φǫ of the same form as Tǫ in (23) (but without remainder term)
φǫ(x) = φ0(x) + ǫ φ1(x,

x′

ǫ
) + ǫ2 φ2(x,

x′

ǫ
) (30)with smooth funtions φ0(x) and φi(x, y

′), i = 1, 2, being Λ-periodi in y′ and suh that
φi(x, y

′) =

{
φS

i (x, y′) in Ω × ΛS ,

φF
i (x, y′) in Ω × ΛF .We also assume that φ0(x) and φi(x, y

′) have ompat support in x ∈ Ω.Inserting the ansatz (23) and (30) in the variational formulation (29) yields
a0(T0, T1, φ0, φ1) + ǫa1(T0, T1, T2, φ0, φ1, φ2) = L0(φ0, φ1) + ǫL1(φ0, φ1, φ2) + O(ǫ2). (31)The non-onventional strategy of the proof is the following: not only we identify the zero-order term

a0 = L0 but we also use the �rst-order identity a1 = L1. The zero-order identity, a0(T0, T1, φ0, φ1) =
L0(φ0, φ1), allows us to �nd the homogenized problem for T0 in Ω and the ell problem for T S

1 in
Ω × ΛS . The �rst-order identity a1(T0, T1, T2, φ0, φ1, φ2) = L1(φ0, φ1, φ2) yields the ell problem for
TF

1 in Ω × ΛF . We emphasize that it is ruial, for the identi�ation of the �rst-order term, thatthe test funtions (φi)i=0,1,2 have ompat supports. Indeed, in view of Lemma 2.1, the 3D to 2Dasymptoti of the view fator has a su�iently small remainder term only for ompatly supportedtest funtions.For the sake of larity we divide the proof in three steps. The �rst step is devoted to the ansatz forthe onvetion and di�usion terms. The seond one fouses on the radiation term, while the third oneombines these various terms to dedue the ell and homogenized problems by identifying equationsof the same order in powers of ǫ.We now give the details of the proof. We rewrite the variational formulation(29) as
aǫ(Tǫ, φǫ) = aC

ǫ (Tǫ, φǫ) + aRad
ǫ (Tǫ, φǫ) = Lǫ(φǫ)where

aC
ǫ (Tǫ, φǫ) =

∫

ΩS
ǫ

KS
ǫ (x)∇Tǫ(x) · ∇φǫ(x)dx + ǫ

∫

ΩF
ǫ

KF
ǫ (x)∇Tǫ(x) · ∇φǫ(x)dx

+

∫

ΩF
ǫ

Vǫ(x) · ∇Tǫ(x)φǫ(x)dx

aRad
ǫ (Tǫ, φǫ) =

σ

ǫ

N(ǫ)∑

i=1

∫

Γǫ,i

Gǫ(Tǫ)(x)φǫ(x)dx.

(32)



Homogenization of a Heat Transfer Problem 12Step 1 : Expansion of aC
ǫ − LǫThis is a standard alulation. Plugging the ansatz (23) and (30) we obtain

aC
ǫ − Lǫ =

∫

ΩS
ǫ

KS
ǫ [(∇xT0 + ∇y′T1) · (∇xφ0 + ∇y′φ1)] +

∫

ΩF
ǫ

Vǫ · (∇xT0 + ∇y′T1)φ0

+ǫ

[∫

ΩS
ǫ

KS
ǫ

[
(∇xT1 + ∇y′T2) · (∇xφ0 + ∇y′φ1) + (∇xφ1 + ∇y′φ2) · (∇xT0 + ∇y′T1)

]
+

∫

ΩF
ǫ

KF
ǫ (∇xT0 + ∇y′T1) · (∇xφ0 + ∇y′φ1) +

∫

ΩF
ǫ

Vǫ ·
[
(∇xT1 + ∇y′T2)φ0 + (∇xT0 + ∇y′T1)φ1

]
]

−
∫

ΩS
ǫ

f(φ0 + ǫφ1) + O(ǫ2)

(33)
where all funtions are evaluated at (x, x′/ǫ). Using Lemma 3.2 below, we dedue

|Λ|(aC
ǫ − Lǫ) =

∫

Ω

∫

ΛS

KS(x, y′)(∇xT0(x) + ∇y′T1(x, y
′) · (∇xφ0(x) + ∇y′φ1(x, y

′))dy′dx

+

∫

Ω

∫

ΛF

V (x, y′) · ∇xT0(x)φ0(x)dy
′dx−

∫

Ω

∫

ΛS

f(x)φ0(x)dy
′dx

+ǫ

[∫

Ω

∫

ΛS

KS(x, y′)
[
(∇xT1(x, y

′) + ∇y′T2(x, y
′)) · (∇xφ0(x) + ∇y′φ1(x, y

′))

+ (∇xφ1(x, y
′) + ∇y′φ2(x, y

′)) · (∇xT0(x) + ∇y′T1(x, y
′))
]
dy′dx

+

∫

Ω

∫

ΛF

KF (x, y′)(∇xT0(x) + ∇y′T1(x, y
′)) · (∇xφ0(x) + ∇y′φ1(x, y

′))dy′dx

+

∫

Ω

∫

ΛF

V (x, y′) · [∇xT1(x, y
′)φ0(x) + ∇xT0(x)φ1(x, y

′) + ∇y′T1(x, y
′)φ1(x, y

′)]dy′dx

−
∫

Ω

∫

ΛS

f(x)φ1(x, y
′)dy′dx

]

+O(ǫ2).

(34)

Step 2 : Expansion of aRad
ǫA similar expansion in the 2D setting was arried out in [3℄. However, the present 3D on�gurationis di�erent sine, the �uid holes being thin long ylinder, there is also a 3D to 2D transition (whihdid not our in [3℄) taking plae. The purpose of this seond step is to write a Taylor expansion ofthe radiation operator, up to seond order,

aRad
ǫ = arad

0 + ǫarad
1 + O(ǫ2) (35)Fortunately, as we shall see later, the term arad

1 does play any role in the de�nition of the orretor T1in ΛF . Therefore, we don't need to evaluate arad
1 whih, of ourse, signi�antly redues the amount oftedious alulations. The radiation term is given by

aRad
ǫ =

σ

ǫ

N(ǫ)∑

i=1

[∫

Γǫ,i

Tǫ(x)φǫ(x)dx−
∫

Γǫ,i

∫

Γǫ,i

F (x, s)Tǫ(x)φǫ(s)dxds

]
. (36)



Homogenization of a Heat Transfer Problem 13In the ansatz (23) and (30) we make a Taylor expansion around eah enter of mass x′0,i of eahboundary γǫ,i. To simplify the notations, we drop the label i and denote by x′0 eah x′0,i. We alsodenote (x′ − x′0) by ǫh′ and (s′ − x′0) by ǫl′. Thus we get
Tǫ(x) = T0(x

′
0, x3) + ǫ

(
∇x′T0(x

′
0, x3) · h′ + T1(x

′
0,
x′

ǫ
, x3)

)
+ ǫ2T̂2,ǫ(x) + O(ǫ3) (37)

φǫ(s) = φ0(x
′
0, s3) + ǫ

(
∇x′φ0(x

′
0, s3) · l′ + φ1(x

′
0,
s′

ǫ
, s3)

)
+ ǫ2φ̂2,ǫ(s) + O(ǫ3) (38)where

T̂2,ǫ(x) =
1

2
∇x′∇x′T0(x

′
0, x3)h

′ · h′ + ∇x′T1(x
′
0,
x′

ǫ
, x3) · h′ + T2(x

′
0,
x′

ǫ
, x3)

φ̂2,ǫ(s) =
1

2
∇x′∇x′φ0(x

′
0, s3)l

′ · l′ + ∇x′φ1(x
′
0,
s′

ǫ
, s3) · l′ + φ2(x

′
0,
s′

ǫ
, s3)The preise form of the terms T̂2,ǫ and φ̂2,ǫ is not important sine the O(ǫ2)-order terms will disappearby simpli�ation as we shall see later. Using (37) and (38), we obtain

Tǫ(x)φǫ(s) = (Tφ)0(x3, s3) + ǫ(Tφ)1(x, s) + ǫ2(Tφ)2(x, s) + O(ǫ3).where
(Tφ)0(x3, s3) = φ0(x

′
0, s3)T0(x

′
0, x3)

(Tφ)1(x, s) = φ0(x
′
0, s3)∇x′T0(x

′
0, x3) · h′ + T0(x

′
0, x3)∇x′φ0(x

′
0, s3) · l′

+ φ0(x
′
0, s3)T1(x

′
0,
x′

ǫ
, x3) + φ1(x

′
0,
s′

ǫ
, s3)T0(x

′
0, x3)

(Tφ)2(x, s) = φ1(x
′
0,
s′

ǫ
, s3)T1(x

′
0,
x′

ǫ
, x3) + T̂2,ǫφ0(x

′
0, s3) + φ̂2,ǫT0(x

′
0, x3)

+ ∇x′φ0(x
′
0, s3) · l′∇x′T0(x

′
0, s3) · h′ + φ1(x

′
0,
s′

ǫ
, s3)∇x′T0(x

′
0, s3) · h′

+ T1(x
′
0,
x′

ǫ
, x3)∇x′φ0(x

′
0, s3) · l′Sine the test funtions φi have ompat support in Ω, we an use formula (16) of Lemma 2.1 (orformula (22) of Remark 2.5) for the 3D to 2D asymptoti behavior of the view fator. Thus we dedue

∫

Γǫ,i

∫

Γǫ,i

(Tφ)0(x3, s3)F (s, x)dsdx =

∫

γǫ,i

∫

γǫ,i

F 2D(s′, x′)

∫ L3

0
(Tφ)0(x3, x3)dx3

−1

2

∫

γǫ,i

∫

γǫ,i

F 2D(s′, x′)|x′ − s′|2
∫ L3

0

∂φ0

∂x3
(x′0, x3)

∂T0

∂x3
(x′0, x3)dx3 + |γǫ,i|2O(ǫp−1),with 0 < p < 3. Then, sine |γǫ,i| = ǫ|γ|,

1

ǫ

(∫

Γǫ,i

(Tφ)0(x3, x3)ds−
∫

Γǫ,i

∫

Γǫ,i

(Tφ)0(x3, s3)F (s, x)dsdx

)

=
1

2ǫ

∫

γǫ,i

∫

γǫ,i

F 2D(s′, x′)|x′ − s′|2
∫ L3

0

∂φ0

∂x3
(x′0, x3)

∂T0

∂x3
(x′0, x3)dx3 + |γ|2O(ǫp).

(39)



Homogenization of a Heat Transfer Problem 14A similar omputation, taking into aount the various symmetry properties of the view fator, yields
1

ǫ

(∫

Γǫ,i

ǫ(Tφ)1(x, x)ds −
∫

Γǫ,i

∫

Γǫ,i

ǫ(Tφ)1(x, s)F (s, x)dsdx

)
= O(ǫ3), (40)and

1

ǫ

(∫

Γǫ,i

ǫ2(Tφ)2(x, x)ds −
∫

Γǫ,i

∫

Γǫ,i

ǫ2(Tφ)2(x, s)F (s, x)dsdx

)

= ǫ

(∫ L3

0

∫

γǫ,i

φ1(x
′
0,
s′

ǫ
, x3)

[
T1(x

′
0,
s′

ǫ
, x3) −

∫

γǫ,i

T1(x
′
0,
x′

ǫ
, x3)F

2D(s′, x′)dx′

]
ds′dx3

+

∫ L3

0

∫

γǫ,i

(∇x′φ0(x
′
0, x3) · l′)∇x′T0(x

′
0, x3) ·

[
l′ −

∫

γǫ,i

h′F 2D(s′, x′)dx′

]
ds′dx3

+

∫ L3

0

∫

γǫ,i

∇x′φ0(x
′
0, x3) · l′

[
T1(x

′
0,
s′

ǫ
, x3) −

∫

γǫ,i

T1(x
′
0,
x′

ǫ
, x3)F

2D(s′, x′)dx′

]
ds′dx3

+

∫ L3

0

∫

γǫ,i

φ1(x
′
0,
s′

ǫ
, x3)∇x′T0(x

′
0, x3) ·

[
l′ −

∫

γǫ,i

h′F 2D(s′, x′)dx′

]
ds′dx3

)
+ O(ǫ3).

(41)
In (40) and (41), we do not give the expliit form of the remainder terms (inluding the di�usive termoming from the 3D to 2D limit in the view fator) whih are negligible after resaling and summationover all ells as soon as they are of order O(ǫq) with q > 2.Thus Lemma 3.2, the hanges of variables y′ = x′/ǫ and z′ = s′/ǫ in (39), (40), (41) and summingover all ells, yields

σ

ǫ




N(ǫ)∑

i=1

∫

Γǫ,i

Tǫ(x)φǫ(x)dx−
∫

Γǫ,i

∫

Γǫ,i

Tǫ(x)φǫ(s)F (s, x)dsdx


 = arad

0 + O(ǫp−2) (42)with
arad

0 =
σ

|Λ|

(
1

2

∫

Ω

∂φ0

∂x3
(x)

∂T0

∂x3
(x)dx

∫

γ

∫

γ
F 2D(z′, y′)|z′ − y′|2dy′dz′

+

∫

Ω
∇x′φ0(x) ·

∫

γ

(
h′ ⊗ h′ −

∫

γ
h′ ⊗ l′F 2D(z′, y′)dz′

)
dy′∇x′T0(x)dx

+

∫

Ω
∇x′T0(x) ·

∫

γ
φ1(x, y

′)
(
y′ −

∫

γ
z′F 2D(z′, y′)dz′

)
dy′dx

+

∫

Ω
∇x′φ0(x) ·

∫

γ
T1(x, y

′)
(
y′ −

∫

γ
z′F 2D(z′, y′)dz′

)
dy′dx

+

∫

Ω

∫

γ

∫

γ
(δ(y′ − z′) − F 2D(y′, z′))T1(x, z

′)φ1(x, y
′)dz′dy′dx

)

(43)
where δ is the Dira mass and |Λ| is the surfae measure of Λ. Remark that the last term in (43) analso be written

∫

γ

∫

γ
(δ(y′ − z′) − F 2D(y′, z′))T1(x, z

′)φ1(x, y
′)dz′dy′ =

∫

γ
φ1(x, y

′)
(
(Id− ζ2D)T1

)
(x, y′)dy′.Remark 3.4. As already said, in the spirit of our proof we should also ompute the next order term

arad
1 in the asymptoti expansion aRad

ǫ = arad
0 + ǫarad

1 + O(ǫ2). The omputation of arad
1 is tediousand require to arry the expansions of Tǫ and φǫ to one more order in ǫ, a formidable task that is



Homogenization of a Heat Transfer Problem 15not pursued here (similar omputations an be found in [4℄ for a 2D-on�guration). Fortunately, theradiation term ontributes merely to the boundary ondition for the ell problem in the solid part ΛSand does not play any role for the ell problem in the �uid part ΛF . Sine the �rst-order terms a1, L1are used to dedue the �uid ell problem, it is perfetly legitimate not to ompute arad
1 .Step 3 : Identi�ation of the limit variational formulationsThe zero-th order ǫ0-term of (31) is

a0(T0, T1, φ0, φ1) = L0(φ0, φ1)whih is equivalent to
∫

Ω

∫

ΛS

KS(x, y′)(∇xT0(x) + ∇y′T1(x, y
′) · (∇xφ0(x) + ∇y′φ1(x, y

′))dy′dx

+

∫

Ω

∫

ΛF

V (x, y′) · ∇xT0(x)φ0(x)dy
′dx

+
σ

2

∫

Ω

∂φ0

∂x3
(x)

∂T0

∂x3
(x)dx

∫

γ

∫

γ
F 2D(z′, y′)|z′ − y′|2dy′dz′

+ σ

∫

Ω
∇x′T0(x) ·

∫

γ
φ1(x, y

′)
(
y′ −

∫

γ
z′F 2D(z′, y′)dz′

)
dy′dx

+ σ

∫

Ω
∇x′φ0(x) ·

∫

γ
T1(x, y

′)
(
y′ −

∫

γ
z′F 2D(z′, y′)dz′

)
dy′dx

+ σ

∫

Ω
∇x′φ0(x) ·

∫

γ

(
h′ ⊗ h′ −

∫

γ
h′ ⊗ l′F 2D(z′, y′)dz′

)
∇x′T0(x)dy

′dx

+ σ

∫

Ω

∫

γ

∫

γ
(δ(y′ − z′) − F 2D(y′, z′))T1(x, z

′)φ1(x, y
′)dz′dy′dx

= |ΛS |
∫

Ω
f(x)φ0(x)dx

(44)
We reognize in (44) the variational formulation of the so-alled two-sale limit problem whih is aombination of the homogenized and ell problems (in ΛS only).We reover the ell problem in ΛS by taking φ0 = 0 in the limit of the variational formulation (44)

∫

Ω

∫

ΛS

KS(x, y′)(∇xT0(x) + ∇y′T1(x, y
′)) · ∇y′φ1(x, y

′)dy′dx

+ σ

∫

Ω
∇x′T0(x) ·

∫

γ
φ1(x, y

′)(y′ −
∫

γ
z′F 2D(z′, y′)dz′)dy′dx

+ σ

∫

Ω

∫

γ

∫

γ
(δ(y′ − z′) − F 2D(y′, z′))T1(x, z

′)φ1(x, y
′)dz′dy′dx = 0 (45)The solution T1 of the above variational formulation is given by (28) in ΛS where ωj ≡ ωS

j (x, y′), for
1 ≤ j ≤ 3, are the solutions of the ell problems in the 2D solid media ΛS





−divy′P
[
KS(x, y′)(ej + ∇y′ωS

j (y′))
]

= 0 in ΛS

−P
[
K(x, y′)(ej + ∇y′ωS

j (y′))
]
· n = σ(Id− ζ2D)(ωS

j (y′) + yj) on γ
y′ 7→ ωS

j (y′) is Λ- periodi. (46)Remark 3.5. As already said, the marosopi variable x plays the role of a parameter in (46). There-fore, for the sake of notational simpliity we shall often forget the dependene on x for the solutions
ωj of the ell problems.



Homogenization of a Heat Transfer Problem 16To reover the homogenized problem we now substitute φ1 by 0 in (44). We obtain
∫

Ω

∫

ΛS

3∑

k,j=1

KS(x, y′)(∇y′ωk(y
′) + ek) · (∇y′ωj(y

′) + ej)
∂T0

∂xk
(x)

∂φ0

∂xj
(x)dy′dx

+

∫

Ω

∫

ΛF

3∑

k=1

VK(x, y′)
∂T0

∂xk
(x)φ0(x)dy

′dx

+
σ

2

∫

Ω

∂φ0

∂x3
(x)

∂T0

∂x3
(x)dx

∫

γ

∫

γ
F 2D(z′, y′)|z′ − y′|2dy′dz′

+ σ

∫

Ω

∫

γ

3∑

k,j=1

(Id− ζ2D)(ωk(y
′) + yk)(ωj(y

′) + yj)
∂T0

∂xk
(x)

∂φ0

∂xj
(x)dy′dx

= |ΛS |
∫

Ω
f(x)φ0(x)dx (47)whih is the variational formulation of the homogenized problem (25) where K∗ and V ∗ are given bythe formulas of Proposition 3.1.We now turn to the �rst order ǫ1-term of (31) whih yields the ell problem in ΛF . Indeed, up tothis point, the zero-th order term of (31) has given the ell problem in ΛS, as well as the homogenizedproblem for T0 in the domain Ω. Nonetheless, as we already said in Remark 3.3, we want to omputeeverywhere the orretor T1 of the solution Tǫ, not merely in the solid part. Therefore, we look at thenext, ǫ1-order term of (31)

a1(T0, T1, T2, φ0, φ1, φ2) = L1(φ0, φ1, φ2)where we shall keep only the terms oming from the �uid part (those oming from the solid part willontribute to the determination of T2 whih we do not pursue here). It is equivalent to
∫

Ω

∫

ΛS

KS(x, y′)
[ (

∇xT1(x, y
′) + ∇y′T2(x, y

′)
)
·
(
∇xφ0(x) + ∇y′φ1(x, y

′)
)

+
(
∇xφ1(x, y

′) + ∇y′φ2(x, y
′)
)
·
(
∇xT0(x) + ∇y′T1(x, y

′)
) ]
dy′dx

+

∫

Ω

∫

ΛF

KF (x, y′)
(
∇xT0(x) + ∇y′T1(x, y

′)
)
·
(
∇xφ0(x) + ∇y′φ1(x, y

′)
)
dy′dx

+

∫

Ω

∫

ΛF

V (x, y′) ·
(
∇xT1(x, y

′)φ0(x) + ∇xT0(x)φ1(x, y
′) + ∇y′T1(x, y

′)φ1(x, y
′)
)
dy′dx

+ arad
1

=

∫

Ω

∫

ΛS

f(x)φ1(x, y
′)dy′dx

(48)
Note that, by virtue of Lemma 3.2, the approximation of an integral on ΩS,F

ǫ by a double integral on
Ω × ΛS,F is of order ǫ2 and thus does not interat with the �rst order ǫ1-term of (31).In (48) we take φ0 ≡ 0 and φ2 ≡ 0 everywhere, and φ1 = 0 in ΛS only. It thus beomes thevariational formulation of

{
−divy′P

[
KF (x, y′)(∇T0 + ∇y′T1)

]
+ V (x, y′) · (∇xT0 + ∇y′T1) = 0 in ΛF ,
T1 is ontinuous through γ. (49)



Homogenization of a Heat Transfer Problem 17Therefore, the solution T1 of (49) is given by (28) in ΛF where ωj ≡ ωF
j (x, y′), for 1 ≤ j ≤ 3, are thesolutions of the ell problems in ΛF





−divy′P
[
KF (x, y′)(ej + ∇y′ωF

j (y′))
]
+ V (x, y′) · (ej + ∇y′ωF

j (y′)) = 0 in ΛF

ωF
j = ωS

j on γ
y′ 7→ ωF

j (y′) is Λ-periodi. (50)Combining (46) and (50), we get (27). �Lemma 3.1. Eah of the ell problems (27) admits a unique solution, up to a onstant, in H1
#(Λ).Proof First, we reall that eah ell problem in Λ is deoupled into two independents ell problems,(46) in ΛS with a radiative boundary ondition and (50) in ΛF with a Dirihlet boundary ondition.For φ ∈ H1

#(ΛS), the variational formulation of (46) is given by
∫

ΛS

KS(x, y′)
(
∇y′ωS

i (y′) + ei
)
· ∇y′φ(y′) +

∫

γ
(Id− ζ2D)

(
ωS

i (y′) + y′i
)
φ(y′) = 0. (51)Using (11), we dedue that the bilinear form of (51) is oerive on H1

#(ΛS)/R

a(φ, φ) =

∫

ΛS

KS∇y′φ · ∇y′φ+

∫

γ
(Id− ζ2D)φφ ≥ C‖∇yφ‖L2

#
(ΛS) ≡ C‖φ‖H1

#
(ΛS)/R

. (52)Furthermore, sine (12) implies that (51) holds true when the test funtion φ is a onstant, the Fredholmalternative (see [31℄) yields existene and uniqueness in H1
#(ΛS)/R (i.e., up to a onstant) of the ellproblem (46) solution.The existene of a unique solution inH1

#(ΛF ) of the �uid ell problems (50), with a non-homogeneousDirihlet boundary ondition, is ompletely standard for this simple onvetion-di�usion equation (notethat, for our geometry in Figure 2, the periodi boundary ondition does not appear in the �uid ell
ΛF ). Of ourse, sine ωS

j is de�ned up to a onstant, so is ωF
j , but with the same onstant. �We reall a lassial lemma used in the proof of Proposition 3.1.Lemma 3.2. For a smooth funtion f and any integer p ≥ 0 we have

i.

∫

γǫ,i

f(
x′

ǫ
)(x′k − x′0,k)

pdx′ = ǫ1+p

∫

γ
f(y′)(y′k − y′0,k)

pdy′

ii. ǫ2
N(ǫ)∑

i=1

∫ L3

0
f(x′0,i, x3)dx3 =

1

|Λ|

∫

Ω
f(x)dx+ O(ǫ2)

iii.

∫

ΩS,F
ǫ

f(x,
x′

ǫ
)dx =

1

|Λ|

∫

Ω

∫

ΛS,F

f(x, y′)dy′dx+ O(ǫ2)Proof The �rst formula is immediate by a simple hange of variables. For the seond one, we performa Taylor expansion of f(x′) (whih is assumed to be C2) around x′0,i the enter of mass of eah ell Λǫ,i

f(x′, x3) = f(x′0,i, x3) + (x′ − x′0,i)∇x′f(x′0,i, x3) + O(ǫ2) (53)whih beomes by integration in Λǫ,i∫

Λǫ,i

f(x′, x3)dx
′ = ǫ2|Λ|f(x′0,i, x3) + O(ǫ4)beause |Λǫ,i| = ǫ2|Λ| and ∫Λǫ,i

(x′ − x′0,i)dx
′ = 0. After summation, and integration between 0 and L3in x3, we obtain the desired result. The third formula is obtained by using again (53) to get

∫

ΩS,F
ǫ

f(x,
x′

ǫ
)dx =

N(ǫ)∑

i=1

∫

ΛS,F
ǫ,i

∫ L3

0
f(x′0,i, x3,

x′

ǫ
)dx′dx3 + O(ǫ2)and the �nal result is a onsequene of the �rst and seond formulas. �



Homogenization of a Heat Transfer Problem 184 ConvergeneThe results of the previous setion are only formal. They are based on the assumption that thetemperature Tǫ admits the asymptoti expansion (23). Therefore, to omplete our study, we need arigorous mathematial justi�ation of Proposition 3.1. Here, we prove a onvergene result using thetwo-sale onvergene method [1℄, [30℄.4.1 A priori estimatesTo use the two-sale onvergene method, we �rst need to establish some a priori estimates on theunknown Tǫ.Proposition 4.1. Let Tǫ be the solution of problem (8). There exists a onstant C, not depending on
ǫ, suh that

‖Tǫ‖L2(Ω) + ‖∇Tǫ‖L2(ΩS
ǫ ) +

√
ǫ‖∇Tǫ‖L2(ΩF

ǫ ) +
√
ǫ‖Tǫ‖L2(Γǫ) ≤ C (54)Proof Taking φǫ = Tǫ in the variational formulation (29) of (8) we obtain

∫

ΩS
ǫ

KS
ǫ |∇Tǫ|2dx+ ǫ

∫

ΩF
ǫ

KF
ǫ |∇Tǫ|2dx+

∫

ΩF
ǫ

Vǫ · ∇TǫTǫdx+
σ

ǫ

∫

Γǫ

Gǫ(Tǫ)Tǫds =

∫

ΩS
ǫ

fTǫdx . (55)Sine divVǫ = 0 in ΩF
ǫ , Vǫ · n = 0 on Γǫ and Tǫ = 0 on ∂Ω, we have

∫

ΩF
ǫ

Vǫ · ∇TǫTǫ dx = 0.Furthermore, sine Gǫ is a positive operator (see Lemma 2.1)
∫

Γǫ

Gǫ(Tǫ)Tǫ ds ≥ 0.Consequently, by the oerivity of Kǫ, we obtain
‖∇Tǫ‖2

L2(ΩS
ǫ ) + ǫ‖∇Tǫ‖2

L2(ΩF
ǫ ) ≤ C‖Tǫ‖L2(ΩS

ǫ ). (56)Using Lemma 4.1 we dedue
‖∇Tǫ‖L2(ΩS

ǫ ) ≤ C. (57)On the other hand, using Lemma 4.3 and formula (56) yields
‖Tǫ‖2

L2(Ω) ≤ C
[
‖Tǫ‖2

L2(ΩS
ǫ )

+ ǫ2‖∇Tǫ‖2
L2(Ω)

]

≤ C
[
1 + ǫ‖∇Tǫ‖2

L2(ΩF
ǫ )

]

≤ C
[
1 + ‖Tǫ‖L2(Ω)

](sine ǫ < 1) from whih we dedue
‖Tǫ‖L2(Ω) ≤ C. (58)By (58), and using (56) again, we get

√
ǫ‖∇Tǫ‖L2(ΩF

ǫ ) ≤ C (59)Using (58) and (57) and Lemma 4.2 we dedue
√
ǫ‖Tǫ‖L2(Γǫ) ≤ C. (60)Combining (57), (58), (59) and (60) we obtain the desired a priori estimate (54). �



Homogenization of a Heat Transfer Problem 19Lemma 4.1. (see Lemma A.4 in [5℄) There exists a onstant C > 0, not depending on ǫ, suh thatfor any funtion u ∈ H1(ΩS
ǫ ) satisfying u = 0 on ∂Ω ∩ ∂ΩS

ǫ

‖u‖L2(ΩS
ǫ ) ≤ C‖∇u‖L2(ΩS

ǫ ) .Lemma 4.2. (see Lemma 4.2.4 in [3℄) There exists a onstant C > 0, not depending on ǫ, suh that
√
ǫ‖u‖L2(Γǫ) ≤ C‖u‖H1(ΩS

ǫ ) ∀u ∈ H1(ΩS
ǫ ). (61)Lemma 4.3. There exists a onstant C > 0, not depending on ǫ, suh that

‖u‖L2(ΩF
ǫ ) ≤ C

[
‖u‖L2(ΩS

ǫ ) + ǫ‖∇u‖L2(Ωǫ)

]
∀u ∈ H1(Ω). (62)Proof The proof of Lemma 4.3 is similar to those of the previous lemmas so we ontent ourselves inbrie�y skething it. We denote by Y = Λ× (0, 1) a 3D unit ell and similarly Y F,S = ΛF,S × (0, 1). Byan obvious resaling and summation argument, it is enough to prove that there exists a onstant C,not depending on ǫ, suh that

‖u‖2
L2(Y F ) ≤ C

[
‖u‖2

L2(Y S) + ‖∇u‖2
L2(Y )

]
∀u ∈ H1(Y ). (63)We prove (63) by ontradition. Indeed, we suppose that it does not hold true, namely there exists asequene φn ∈ H1(Y ), for n ≥ 1, suh that

‖φn‖L2(Y F ) = 1 and ‖φn‖2
L2(Y S) + ‖∇φn‖2

L2(Y ) <
1

n
. (64)Up to a subsequene, φn onverges weakly in H1(Y ) to a limit φ, and by Rellih theorem this onver-gene is strong in L2(Y ). However, (64) tells us that ∇φn onverges strongly to 0 in L2(Y ). Therefore,

∇φ = 0 and φ is onstant in Y . One again, (64) implies that this onstant is zero in Y S but this is aontradition with the fat that ‖φ‖L2(Y F ) = limn ‖φn‖L2(Y F ) = 1. �4.2 Two sale onvergeneIn this setion we �rst reall the notion of two-sale onvergene [1℄, [30℄. Here, sine there is noperiodiity in the third spae diretion, we slightly modify the de�nition of two-sale onvergene (thesehanges do not a�et the proofs in any essential way). Seond, we prove a rigorous homogenizationresult, using the two-sale onvergene method, to on�rm the result obtained in the previous setion.De�nition 4.1. A bounded sequene uǫ in L2(Ω) is said to two-sale onverge to a funtion u0(x, y
′) ∈

L2(Ω × Λ) if there exists a subsequene still denoted by uǫ suh that
lim
ǫ→0

∫

Ω
uǫ(x)ψ(x,

x′

ǫ
)dx =

1

|Λ|

∫

Ω

∫

Λ
u0(x, y

′)ψ(x, y′)dxdy′ (65)for any Λ-periodi test funtion ψ(x, y′) ∈ L2(Ω;C#(Λ)).This notion of "two-sale onvergene" makes sense beause of the next ompatness theorem [1℄,[30℄.Theorem 4.1. From eah bounded sequene uǫ in L2(Ω), we an extrat a subsequene and there existsa limit u0(x, y
′) ∈ L2(Ω × Λ) suh that this subsequene two-sale onverges to u0.



Homogenization of a Heat Transfer Problem 20The extension of Theorem 4.1 to bounded sequenes in H1(Ω) is given next.Proposition 4.2. From eah bounded sequene uǫ in H1(Ω), we an extrat a subsequene and thereexist two limits u0 ∈ H1(Ω) and u1(x, y
′) ∈ L2(Ω;H1

#(Λ)) suh that, for this subsequene, uǫ onvergesweakly to u0 in H1(Ω) and ∇uǫ two-sale onverges to ∇xu0(x) + ∇y′u1(x, y
′).Two-sale onvergene an be extended to sequenes de�ned on periodi surfaes [2℄, [29℄.Proposition 4.3. For any sequene uǫ in L2(Γǫ) suh that

ǫ

∫

Γǫ

|uǫ|2dx ≤ C, (66)there exist a subsequene, still denoted uǫ, and a limit funtion u0(x, y
′) ∈ L2(Ω;L2

#(γ)) suh that uǫtwo-sale onverges to u0 in the sense
lim
ǫ→0

ǫ

∫

Γǫ

uǫ(x)ψ(x,
x′

ǫ
)dx =

1

|Λ|

∫

Ω

∫

γ
u0(x, y

′)ψ(x, y′)dxdy′ (67)for any Λ-periodi test funtion ψ(x, y′) ∈ L2(Ω;C#(γ)).Remark 4.1. If uǫ is a bounded sequene in H1(Ωǫ), then the uniform bound (66) holds true. It isthen easy to hek that the two di�erent two-sale limits u0 given by Propositions 4.2 and 4.3 oinide[2℄.Our main results in this setion is the following.Theorem 4.2. Let Tǫ be the sequene of solutions of (8). Let T0(x) be the solution of the homogenizedproblem (25) and T1(x, y
′) be the �rst orretor de�ned by (28). Then Tǫ two-sale onverges to T0and χS

ǫ ∇Tǫ two-sale onverges to χS(y′)(∇xT0(x) + ∇y′T1(x, y
′)) where χS

ǫ (x) = χS(x′/ǫ) is theharateristi funtion of ΩS
ǫ and χS(y′) that of ΛS.Proof The a priori estimate (54) implies that, up to a subsequene, Tǫ two-sale onverges to afuntion T0 ∈ H1

0 (Ω) and χS
ǫ ∇Tǫ two-sale onverges to χS(y′)(∇xT0(x) + ∇yT1(x, y

′)) where T1 ∈
L2(Ω;H1

#(Λ)). Furthermore, Tǫ two-sale onverges to T0 on the periodi surfae Γǫ, in the sense ofProposition 4.3.Although we use the same notations, we still have to show that T0 is a solution of the homogenizedproblem (25) and that T1 is the �rst orretor de�ned by (28). Convergene of the entire sequene(and not merely of an extrated subsequene) will follow from the uniqueness of the solution of (25).In a �rst step, we ompute the orretor T1 in terms of ∇xT0 by hoosing the test funtion φǫ(x) =

ǫφ1(x,
x′

ǫ
), where φ1(x, y

′) is any smooth funtion, ompatly supported in x and Λ-periodi in y′, inthe variational formulation (29) whih beomes (using the self-adjoint harater of Gǫ)
∫

ΩS
ǫ

KS
ǫ ∇Tǫ · ∇y′φ1 + σ

∫

Γǫ

TǫGǫ(φ1) = o(1) (68)where, thanks to the a priori estimate (54), o(1) is a small remainder term going to 0 with ǫ. By virtueof a lower order trunation of formula (15) in Lemma 2.1, the radiative operator an be approximatedas
Gǫ(φ1) = (Id− ζǫ)(φ1) = (Id− ζ2D

ǫ )(φ1) + O(ǫ2).Then, to pass to the two-sale limit in the radiative term, we rely on Lemma 4.4 below whih gives usa smooth periodi vetor-valued funtion θ(x, y′) suh that




−divy′θ(x, y′) = 0 in ΛS ,
θ(x, y′) · n = (Id− ζ2D)φ1(x, y

′) on γ,
y′ → θ(x, y′) is Λ-periodi.



Homogenization of a Heat Transfer Problem 21Furthermore, θ(x, y′) has the same ompat support than φ1(x, y
′) with respet to x ∈ Ω. However,sine ζ2D

ǫ is an integral operator, we usually have a di�erene between the two terms below
ζ2D
ǫ

(
φ1(x,

x′

ǫ
)

)
6=
(
ζ2D(φ1(x, y

′))
)
(y′ =

x′

ǫ
).Therefore, we need to use a Taylor expansion of φ1

φ1(x,
x′

ǫ
) = φ1(x0,i,

x′

ǫ
) + (x′ − x′0,i) · ∇x′φ1(x0,i,

x′

ǫ
) + O(ǫ2),where x0,i = (x′0,i, x3) and x′0,i is the enter of mass of eah boundary γǫ,i, de�ned by (1). Then, thefollowing equality holds true

ζ2D
ǫ

(
φ1(x,

x′

ǫ
)

)
=
(
ζ2D(φ1(x0,i, y

′))
)
(y′ =

x′

ǫ
) + ǫ

(
ζ2D(y′ · ∇x′φ1(x0,i, y

′))
)
(y′ =

x′

ǫ
) + O(ǫ2).Then, we an rewrite the radiative term in (68) as

σ

∫

Γǫ

TǫGǫ(φ1) = σ

∫

Γǫ

Tǫθ(x0,i,
x′

ǫ
)·n+σǫ

∫

Γǫ

Tǫ

(
(Id−ζ2D)(y′ ·∇x′φ1(x0,i, y

′))
)
(y′ =

x′

ǫ
)+O(ǫ). (69)We an pass to the two-sale limit in the seond term in the right hand side of (69) by applyingProposition 4.3 (replaing y′ · ∇x′φ1(x0,i, y

′) by the suitable two-sale test funtion y′ · ∇x′φ1(x, y
′) upto another O(ǫ) error). For the �rst term, we use a similar Taylor expansion for θ

σ

∫

Γǫ

Tǫθ(x0,i,
x′

ǫ
) · n = σ

∫

Γǫ

Tǫθ(x,
x′

ǫ
) · n− ǫσ

∫

Γǫ

Tǫ

(
y′ · ∇x′θ(x, y′)

)
(y′ =

x′

ǫ
) · n+ O(ǫ)

= σ

∫

ΩS
ǫ

div

(
Tǫθ(x,

x′

ǫ

)
− ǫσ

∫

Γǫ

Tǫ

(
y′ · ∇x′θ(x, y′)

)
(y′ =

x′

ǫ
) · n+ O(ǫ).(70)For the seond integral in (70) we an pass to the two-sale limit by another appliation of Proposition4.3. Conerning the �rst integral, we develop

div

(
Tǫ(x)θ(x,

x′

ǫ
)

)
= ∇Tǫ(x) · θ(x,

x′

ǫ
) + Tǫ(x)(divxθ)(x,

x′

ǫ
),and we an pass to the two-sale limit, thanks to Proposition 4.2. All in all, after some integration byparts, and realling that ker(Id− ζ2D

ǫ ) = R, we get
lim
ǫ→0

σ

∫

Γǫ

TǫGǫ(φ1) =
σ

|Λ|

∫

Ω

∫

ΛS

(
θ(x, y′) · (∇T0(x) + ∇y′T1(x, y

′)) + T0(x)divxθ(x, y
′)
)
dy′dx

+
σ

|Λ|

∫

Ω

∫

γ
T0(x)

(
(Id− ζ2D)(y′ · ∇x′φ1(x, y

′)) − y′ · ∇x′θ(x, y′)
)
dy′dx

=
σ

|Λ|

∫

Ω

∫

γ
θ(x, y′) · n

(
T1(x, y

′) + y′ · ∇x′T0(x)
)
dy′dx

=
σ

|Λ|

∫

Ω

∫

γ
(Id− ζ2D)(φ1(x, y

′))
(
T1(x, y

′) + y′ · ∇x′T0(x)
)
dy′dx.Therefore, the two-sale limit of (68) is

∫

Ω

∫

ΛS

KS(x, y′)(∇xT0(x) + ∇y′T1(x, y
′)) · ∇y′φ1(x, y

′)dy′dx

+ σ

∫

Ω

∫

γ
(Id− ζ2D)φ1(x, y

′)
(
T1(x, y

′) + y′ · ∇x′T0(x)
)
dy′dx = 0



Homogenization of a Heat Transfer Problem 22whih is preisely the variational formulation (45) for T1. Therefore, we have proved that
T1(x, y

′) =

3∑

k=1

∂T0

∂xk
(x)ωk(y

′) in Ω × ΛS .Remark that our onvergene proof does not justify formula (28) for T1(x, y
′) in the �uid part Ω×ΛF .Remark 4.2. The �rst step of our proof (whih gives formula (28) for T1(x, y

′)) was missing in theproof of Theorem 4.6 in [3℄. Our above argument works also in the simpler 2D setting of [3℄ and isthus �lling this gap.In a seond step, we reover the homogenized problem for T0 by hoosing another test funtion
φǫ(x) in the variational formulation (29) given by

φǫ(x) = φ0(x) + ǫφ1(x,
x′

ǫ
) with φ1(x, y

′) =

3∑

k=1

∂φ0

∂xk
(x)ωk(y

′)where φ0 ∈ C∞
c (Ω) and ωj are solutions of the ell problems (27). The variational formulation (29)beomes

∫

ΩS
ǫ

KS
ǫ ∇Tǫ · (∇xφ0 + ∇y′φ1) + ǫ

∫

ΩF
ǫ

KF
ǫ ∇Tǫ · (∇φ0 + ∇y′φ1)

+

∫

ΩF
ǫ

Vǫ · ∇Tǫ(φ0 + ǫφ1) +
σ

ǫ

∫

Γǫ

Gǫ(Tǫ)(φ0 + ǫφ1) =

∫

ΩS
ǫ

fφ0 + o(1) (71)where o(1) is a small remainder term going to 0 with ǫ. Passing to the two-sale limit in all terms,exept the radiative one, is standard (see [1℄ if neessary). Therefore, we fous only on the radiativeterm
σ

ǫ

∫

Γǫ

Gǫ(Tǫ)(φ0 + ǫφ1) =
σ

ǫ

∫

Γǫ

TǫGǫ(φ0 + ǫφ1) (72)for whih we generalize an argument of [3℄. We write a Taylor expansion of φǫ, with respet tothe marosopi variable only, around the enter of mass x0,i = (x′0,i, x3) of eah boundary γǫ,i (foroniseness we drop the index i in the sequel)
φǫ(x) = φ0(x0) + ∇x′φ0(x0) · (x′ − x′0) + ǫφ1(x0,

x′

ǫ
) + ǫ∇x′φ1(x0,

x′

ǫ
) · (x′ − x′0)

+
1

2
∇x′∇x′φ0(x0)(x

′ − x′0) · (x′ − x′0) + O(ǫ3).We go up to seond order in this Taylor expansion sine, upon dividing by ǫ as in (72) and summingover all boundaries γǫ,i, they will have a non-zero limit aording to Proposition 4.3. Reall that thesolution of the ell problem ωS
3 in the x3 diretion is a onstant in ΛS (see Remark 3.2): we an hoosethis onstant to be zero so that ωS

3 (y′) = 0 in ΛS and thus on the boundary γ too. Therefore, in theboundary integral (72) we an write that the test funtion φ1 is just
φ1(x, y

′) =

2∑

k=1

∂φ0

∂xk
(x)ωk(y

′) on γ,without any ontribution in the x3 diretion. Thus, the radiation term is given by
1

ǫ
Gǫ(φ0 + ǫφ1)(x) =

1

ǫ
(Id− ζǫ)(φ0 + ǫφ1)(x) = ǫ

(
ψ0,ǫ(x) + ψ1,ǫ(x) + ψ2,ǫ(x) + O(ǫ)

)



Homogenization of a Heat Transfer Problem 23where
ψ0,ǫ(x) =

1

ǫ2
(Id− ζǫ)φ0(x0)

ψ1,ǫ(x) =
1

ǫ

2∑

k=1

(Id− ζǫ)

[(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)
∂φ0

∂xk
(x0)

] (73)
ψ2,ǫ(x) = (Id− ζǫ)

[
1

2
∇x′∇x′φ0(x0) ·

(x′ − x′0)

ǫ
⊗ (x′ − x′0)

ǫ

+
2∑

k=1

∇x′

∂φ0

∂xk
(x0) ·

(
(x′ − x′0)

ǫ
ωk(

x′

ǫ
)

)]
.Remark 4.3. At this point, for simpliity we assume that the periodi di�usion oe�ients KS,F andthe veloity V do not depend on x. Otherwise, this would add further terms in (73) orresponding tothe x derivatives of the ell solutions ωk. Our arguments would still work but we prefer to simplify theexposition.The term ψ0,ǫ is new ompared to the 2D setting in [3℄ (where it was vanishing). Furthermore, themain additional di�ulty with respet to [3℄ is that we need to approximate the 3D view fator in ζǫby the 2D view fator whih is appearing in the homogenized limit. For this goal we rely on Lemma2.1. First, by virtue of (15), for any 0 < p < 3 we have

ψ0,ǫ(x) = − 1

2ǫ2
∂2φ0

∂x2
3

(x0)

∫

γǫ,i

F 2D(s′, x′)|x′ − s′|2ds′ + O(ǫp−2).Seond, by a lower order trunation of (15), and sine ωk does not depend on x3,
ψ1,ǫ(x) =

1

ǫ

2∑

k=1

∂φ0

∂xk
(x0)(Id− ζ2D

ǫ )

(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)
+ O(ǫ)and

ψ2,ǫ(x) =
1

2
∇x′∇x′φ0(x0) · (Id− ζ2D

ǫ )

(
(x′ − x′0)

ǫ
⊗ (x′ − x′0)

ǫ

)

+

2∑

k=1

∇x′

∂φ0

∂xk
(x0) · (Id− ζ2D

ǫ )

(
(x′ − x′0)

ǫ
ωk(

x′

ǫ
)

)
+ O(ǫ2).In order to reover ontinuous funtions, we use the following Taylor expansions

∂φ0

∂xk
(x0) =

∂φ0

∂xk
(x) −∇x′

∂φ0

∂xk
(x) · (x′ − x′0) + O(ǫ2),

∂2φ0

∂x2
3

(x0) =
∂2φ0

∂x2
3

(x) + O(ǫ).
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ψ0,ǫ(x) = −1

2

∂2φ0

∂x2
3

(x)

∫

γǫ,i

F 2D(s′, x′)
|x′ − s′|2

ǫ2
ds′ + O(ǫp−2),

ψ1,ǫ(x) =
1

ǫ

2∑

k=1

(
∂φ0

∂xk
(x) −∇x′

∂φ0

∂xk
(x) · (x′ − x′0)

)
(Id− ζ2D

ǫ )

(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)
+ O(ǫ),

ψ2,ǫ(x) =
1

2
∇x′∇x′φ0(x) · (Id− ζ2D

ǫ )

(
(x′ − x′0)

ǫ
⊗ (x′ − x′0)

ǫ

)

+

2∑

k=1

∇x′

∂φ0

∂xk
(x) · (Id− ζ2D

ǫ )

(
(x′ − x′0)

ǫ
ωk(

x′

ǫ
)

)
+ O(ǫ).The leading term of ψ0,ǫ(x) is preisely an osillating test funtion for two-sale onvergene

ψ0,ǫ(x) = ψ0

(
x,
x′

ǫ

)
+ O(ǫp−2) with ψ0(x, y

′) = −1

2

∂2φ0

∂x2
3

(x)

∫

γ
F 2D(z′, y′)|y′ − z′|2dz′. (74)The same is true for ψ2,ǫ(x) whih is also an osillating test funtion for two-sale onvergene

ψ2,ǫ(x) = ψ2

(
x,
x′

ǫ

)
+ O(ǫ)with

ψ2(x, y
′) =

1

2
∇x′∇x′φ0(x) · (Id− ζ2D)

(
y′ ⊗ y′

)
+

2∑

k=1

∇x′

∂φ0

∂xk
(x) · (Id− ζ2D)

(
y′ωk(y

′)
)
.Rewriting the radiative term (72) as

σ

ǫ

∫

Γǫ

TǫGǫ(φ0 + ǫφ1) = σǫ

∫

Γǫ

Tǫ

(
ψ0,ǫ(x) + ψ1,ǫ(x) + ψ2,ǫ(x) + O(ǫ)

)
, (75)we an pass to the two-sale limit in the �rst and third term in the right hand side of (75) by appliationof Proposition 4.3. We obtain

lim
ǫ→0

σǫ

N(ǫ)∑

i=1

∫

Γǫ,i

ψ0,ǫTǫ =
−σ
2|Λ|

∫

Ω
T0(x)

∂2φ0

∂x2
3

(x)

∫

γ

∫

γ
F 2D(y′, z′)|y′ − z′|2dy′dz′dx. (76)and

lim
ǫ→0

σǫ

N(ǫ)∑

i=1

∫

Γǫ,i

ψ2,ǫTǫ =
σ

|Λ|

∫

Ω
T0(x)

∫

γ
ψ2(x, y

′)dy′dx = 0 (77)beause, by the seond property of Lemma 2.1, we have ∫γ ψ2(x, y
′)dy′ = 0.It remains to pass to the limit in the seond term of (75) involving ψ1,ǫ. Following [3℄ we usethe lassial trik of H-onvergene [28℄ whih amounts to make a omparison with the variationalformulation of the ell problems (46) with the test funtion Tǫ

∂φ0

∂xk
(reall that φ0 has ompat support).From (46), after resaling and integration with respet to x3, we obtain for k = 1, 2

σ

∫

Γǫ

(Id− ζ2D
ǫ )

(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)(
Tǫ
∂φ0

∂xk

)
= −

∫

ΩS
ǫ

KS
ǫ

(
∇y′ωk(

x′

ǫ
) + ek

)
· ∇x′

(
Tǫ
∂φ0

∂xk

)
,
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ǫσ

∫

Γǫ

ψ1,ǫ(x)Tǫ(x) = −
2∑

k=1

∫

ΩS
ǫ

KS
ǫ

(
∇y′ωk(

x′

ǫ
) + ek

)
· ∇x′

(
Tǫ
∂φ0

∂xk

) (78)
− σǫ

2∑

k=1

∫

Γǫ

(Id− ζ2D
ǫ )

(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)(
∇x′

∂φ

∂xk
(x) · x

′ − x′0
ǫ

)
Tǫ.It is now possible to pass to the two-sale limit in the right hand side of (78) and, summing up thoselimits, we dedue

lim
ǫ→0

σ

ǫ

∫

Γǫ

Gǫ(Tǫ)(φ0 + ǫφ1)

=
−σ
2|Λ|

∫

Ω
T0(x)

∂2φ0

∂x2
3

(x)

∫

γ

∫

γ
F 2D(y′, z′)|y′ − z′|2dy′dz′dx

− 1

|Λ|

2∑

k=1

∫

Ω

∫

ΛS

KS(ek + ∇y′ωk(y
′)) ·

(
∇x′(T0

∂φ0

∂xk
)(x) +

∂φ0

∂xk
(x)∇y′T1(x, y

′)

)
dy′dx

− σ

|Λ|

2∑

k=1

∫

Ω

∫

γ
(Id− ζ2D)(ωk + yk)y

′ · ∇x′
∂φ0

∂xk
T0dy

′dx

=
−σ
2|Λ|

∫

Ω
T0(x)

∂2φ0

∂x2
3

(x)

∫

γ

∫

γ
F 2D(y′, z′)|y′ − z′|2dy′dz′dx

− 1

|Λ|

∫

Ω

∫

ΛS

KS(∇x′T0 + ∇y′T1) · (∇x′φ0 + ∇y′φ1)dy
′dx−

∫

Ω
K∗T0∇x′∇x′φ0dx.

=

∫

Ω
K∗(x)∇xT0(x) · ∇xφ0(x)dx− 1

|Λ|

∫

Ω

∫

ΛS

KS(∇xT0 + ∇y′T1) · (∇xφ0 + ∇y′φ1)dy
′dx

(79)
The two last equalities in (79) hold true thanks to the following equivalent formula for the homogenizedondutivity
K∗

j,k(x) =
1

|Λ|

[∫

ΛS

KS(x, y′)(ej + ∇y′ωS
j (x, y′)) · ekdy′ + σ

∫

γ
(Id− ζ2D)(ωS

j (x, y′) + yj)ykdy
′

]whih is obtained by a ombination of (26) and of the variational formulation of the ell problems.The two-sale limits of the other terms in the variational formulation (71) are easily obtained
lim
ǫ→0

∫

ΩS
ǫ

KS
ǫ ∇Tǫ · (∇xφ0 + ∇y′φ1)dx =

1

|Λ|

∫

Ω

∫

ΛS

KS(∇xT0 + ∇y′T1) · (∇xφ0 + ∇y′φ1)dy
′dx,

lim
ǫ→0

ǫ

∫

ΩF
ǫ

KF
ǫ ∇Tǫ · (∇xφ0 + ∇y′φ1)dx = 0,

lim
ǫ→0

∫

ΩF
ǫ

Vǫ · ∇Tǫ(φ0 + ǫφ1)dx = − lim
ǫ→0

∫

ΩF
ǫ

TǫVǫ · (∇xφ0 + ∇y′φ1)dx

= − 1

|Λ|

∫

Ω

∫

ΛF

T0 V (y′, x) · (∇xφ0 + ∇y′φ1)dy
′dx

=
1

|Λ|

∫

Ω

∫

ΛF

V (y′, x) · ∇xT0 φ0 dy
′dx,by integration by parts and our assumptions on the veloity V . Summing up all those terms we deduethat the limit of the variational formulation (71) is, up to some integration by parts, the variationalformulation (47) of the homogenized problem. �



Homogenization of a Heat Transfer Problem 26Remark 4.4. In the ourse of the proof of Theorem 4.2 we use in an essential way the fat that theboundary ondition on ∂Ω is of Dirihlet type. For example, it was ruial that the test funtion hada ompat support (at least in x3) to apply Lemma 2.1 on the 3D to 2D redution of the view fator.We do not know if the onvergene proof an be extended to the ase of Neumann boundary onditions.We now state and prove a tehnial result whih was required in the previous proof.Lemma 4.4. Let φ1(x, y
′) be a smooth funtion, ompatly supported in x ∈ Ω and Λ-periodi in y′.There exists at least one smooth vetor-valued funtion θ(x, y′) (with values in R2) suh that





−divy′θ(x, y′) = 0 in ΛS ,
θ(x, y′) · n = (Id− ζ2D)φ1(x, y

′) on γ,
y′ → θ(x, y′) is Λ-periodi. (80)Proof It is enough to look for a solution under the form θ(x, y′) = ∇y′η(x, y′). To solve the 2Dellipti equation for η (in H1

#(ΛS)/R), orresponding to (80), we just have to hek the ompatibilityondition of the data (or Fredholm alternative). By virtue of the seond property of Lemma 2.1 wean hek that, indeed,
∫

γ
(Id− ζ2D)φ1(x, y

′)dy′ =

∫

γ
φ1(x, y

′)dy′ −
∫

γ

∫

γ
F 2D(y′, s′)φ1(x, y

′)dy′ds′ = 0.There is no uniqueness of the solution θ(x, y′) to whih we an add any solenoidal �eld with zeronormal trae. �4.3 Strong onvergeneOur main result, Theorem 4.2, gives only a weak onvergene (or two-sale onvergene) of the se-quenes Tǫ and ∇Tǫ. The goal of our next result is to improve this weak onvergene into a strongone. As usual in homogenization theory it requires some additional smoothness assumptions. Morepreisely, we need T1(x, x
′/ǫ) to belong to the spae H1(Ω) (but not to be uniformly bounded). Thisis true, of ourse, if T1(x, y
′) is a smooth funtion of (x, y′). In view of formula (28) for T1, it is enoughthat either the homogenized solution T0(x) or the ell solutions ωk(y

′) be smooth. To establish ourstrong onvergene result we rely on the usual energy onvergene trik (as desribed in [1℄ in theontext of two-sale onvergene) whih is inspired from the notion of Γ-onvergene [17℄.Theorem 4.3. Assuming that T1(x, y
′) is smooth enough and denoting by χS

ǫ the harateristi fun-tion of the solid part ΩS
ǫ , the sequene (∇Tǫ(x) −∇T0(x) −∇y′T1(x,

x′

ǫ
)

)
χS

ǫ onverges strongly tozero in L2(Ω)d and the sequene (Tǫ(x) − T0(x)) onverges strongly to zero in L2(Ω).Proof We develop the "energy" of the di�erene Tǫ(x) − T0(x) − ǫT1(x,
x′

ǫ
) and we get, using theenergy equality (55)

∫

ΩS
ǫ

KS
ǫ

∣∣∣∣∇Tǫ(x) −∇T0(x) −∇y′T1(x,
x′

ǫ
)

∣∣∣∣
2

dx+ ǫ

∫

ΩF
ǫ

KF
ǫ

∣∣∣∣∇Tǫ(x) −∇T0(x) −∇y′T1(x,
x′

ǫ
)

∣∣∣∣
2

dx

+
σ

ǫ

∫

Γǫ

Gǫ

(
Tǫ(x) − T0(x) − ǫT1(x,

x′

ǫ
)

)(
Tǫ(x) − T0(x) − ǫT1(x,

x′

ǫ
)

)
dx =

∫

ΩS
ǫ

fǫ(x)Tǫ(x)dx

+

∫

ΩS
ǫ

KS
ǫ

∣∣∣∣∇T0(x) + ∇y′T1(x,
x′

ǫ
)

∣∣∣∣
2

dx+ ǫ

∫

ΩF
ǫ

KF
ǫ

∣∣∣∣∇T0(x) + ∇y′T1(x,
x′

ǫ
)

∣∣∣∣
2

dx

+
σ

ǫ

∫

Γǫ

Gǫ

(
T0(x) + ǫT1(x,

x′

ǫ
)

)(
T0(x) + ǫT1(x,

x′

ǫ
)

)
dx− 2

σ

ǫ

∫

Γǫ

Gǫ

(
T0(x) + ǫT1(x,

x′

ǫ
)

)
Tǫ(x)dx

−2

∫

ΩS
ǫ

KS
ǫ ∇Tǫ(x) ·

(
∇T0(x) + ∇y′T1(x

′,
x

ǫ
)
)
dx− 2ǫ

∫

ΩF
ǫ

KF
ǫ ∇Tǫ(x) ·

(
∇T0(x) + ∇y′T1(x,

x′

ǫ
)

)
dx

(81)



Homogenization of a Heat Transfer Problem 27Using the oerivity ondition of KS,F
ǫ on the left hand side, as well as the positivity of the operator

Gǫ, and passing to the two sale limit in the right hand side of (81) we obtain an upper bound for
α lim

ǫ→0

∥∥(∇Tǫ −∇T0 −∇y′T1)χ
S
ǫ

∥∥2

L2(Ω)
+ α lim

ǫ→0
ǫ
∥∥(∇Tǫ −∇T0 −∇y′T1)χ

F
ǫ

∥∥2

L2(Ω)Then, a ombination of Lemmas 4.1 and 4.3 yields a bound for
lim
ǫ→0

‖Tǫ − T0 − ǫT1‖2
L2(Ω) .We now have to prove that these upper bounds are all zero, i.e., that the two-sale limit of the righthand side of (81) vanishes.Indeed, by virtue of (42) and (79) we have

lim
ǫ→0

∫

Γǫ

Gǫ

(
T0(x) + ǫT1(x,

x′

ǫ
)

)(
T0(x) + ǫT1(x,

x′

ǫ
)

)
dx

=
σ

|Λ|

(
1

2

∫

Ω

∂T0

∂x3
(x)

∂T0

∂x3
(x)dx

∫

γ

∫

γ
F 2D(z′, y′)|z′ − y′|2dy′dz′

+

∫

Ω

∫

γ

(
∇x′T0(x) · y + T1(x, y

′)
)
(Id− ζ2D)(T1(x, y

′) + ∇x′T0(x) · y)dy′dx

=

∫

Ω
K∗(x) |∇xT0(x)|2 dx− 1

|Λ|

∫

Ω

∫

ΛS

KS(x, y′)
∣∣∇xT0(x) + ∇y′T1(x, y

′)
∣∣2 dy′dxand

lim
ǫ→0

∫

Γǫ

Gǫ

(
T0(x) + ǫT1(x,

x′

ǫ
)

)
Tǫ(x)dx =

∫

Ω
K∗(x) |∇xT0(x)|2 dx

− 1

|Λ|

∫

Ω

∫

ΛS

KS(x, y′)
∣∣∇xT0(x) + ∇y′T1(x, y

′)
∣∣2 dy′dxPassing to the two sales limit in the right hand side of (81) yields

−
∫

Ω
K∗(x)∇xT0(x) · ∇xT0(x)dx+ θ

∫

Ω
f(x)T0(x)dxwhih is equal to zero thanks to the variational formulation of the homogenized problem (25). Henethe result. �5 Non-linear aseAs already disussed in Remark 2.2, the true physial problem involves a non-linear radiation operator,de�ned by formula (9) instead of (5). The study of the linear ase was a simplifying assumption inorder to rigorously prove the onvergene of the homogenization proess. However, the formal methodof two-sale asymptoti expansion is perfetly valid in the non-linear ase too (see [3℄ and [20℄ ifneessary). In this setion we give, without proofs, the homogenization result in the non-linear ase.When the radiation operator, de�ned by formula is given by (9) instead of (5), the non-linearequivalent of Proposition 3.1 is the following.



Homogenization of a Heat Transfer Problem 28Proposition 5.1. Under assumption (23) the leading term T0 is the solution of the homogenized prob-lem
{

−div(K∗(x, T 3
0 )∇T0(x)) + V ∗(x) · ∇T0(x) = θ f(x) in Ω

T0(x) = 0 on ∂Ω
(82)with the porosity fator θ = |ΛS | / |Λ|, the homogenized ondutivity given by its entries, for j, k =

1, 2, 3,
K∗

j,k(x, T
3
0 ) =

1

|Λ|

[∫

ΛS

KS(x, y′)(ej + ∇yωj(y
′)) · (ek + ∇yωk(y

′))dy′

+ 4σT 3
0 (x)

∫

γ
G(ωk(y

′) + yk)(ωj(y
′) + yj)

+ 2σT 3
0 (x)

∫

γ

∫

γ
F 2D(s′, y′)|s′ − y′|2dy′ds′ δj3δk3

]and an homogenized veloity given by
V ∗

k =
1

|Λ|

∫

ΛF

V (x, y′) · ekdy′where (ωj(x, T
3
0 (x), y′)

)
1≤j≤3

are the solutions of the ell problems




−divyK
S(x, y′)(ej + ∇yω

S
j (y′)) = 0 in ΛS

−divyK
F (x, y′)(ej + ∇yω

F
j (y′)) + V (x, y′) · (ej + ∇yω

F
j (y′)) = 0 in ΛF

−KS(y′, x3)(ej + ∇yω
S
j (y′)) · n = 4σT 3

0 (x)G(ωS
j (y′) + yj) on γ

ωF
j (y′) = ωS

j (y′) on γ
y′ 7→ ωj(y

′) is Λ-periodi, (83)and T1 is given by
T1(x, y

′) =
3∑

j=1

ωj(x, T
3
0 (x), y′)

∂T0

∂xj
(x). (84)The homogenized problem (82) is a non-linear onvetion-di�usion model where the non-linearityappears only in the ondutivity tensor K∗ whih depends on the third power of the temperature. Asusual in homogenization, the ell problems are linearized, depending on the value of the marosopitemperature at eah marosopi point x.6 Numerial resultsIn this setion we desribe some numerial experiments to study the asymptoti behaviour of the heattransfer model (8) in the non-linear ase, i.e., when the radiation operator is de�ned as in Remark2.2. Our goal is to show the e�ieny of our proposed homogenization proedure, to validate it byomparing the reonstruted solution of the homogenized model with the numerial solution of theexat model (8) for smaller and smaller values of ǫ and to exhibit a numerial rate of onvergenein terms of ǫ. While the omputations in [3℄ were restrited to the 2D setting, here we perform 3Dnumerial simulations of (8). All omputations have been done with the �nite element ode CAST3M[11℄ developed at the Frenh Atomi and Alternative Energy Commission (CEA).



Homogenization of a Heat Transfer Problem 296.1 Changing variables for the numerial simulationUsually, in homogenization theory, we solve a problem in a �xed domain Ω with ells of size ǫ, whihtends to 0 (see Figure 3). However, in pratie for our nulear reator problem, the sizes of thegas ylinders and ell assemblies are �xed by manufaturing onstraints. Therefore, following [3℄, weproeed di�erently: we �x the size of the periodial ell (independent of ǫ) and we inrease the totalnumber of ells, i.e., the size of the global domain whih is of order ǫ−1. In other words, instead ofusing the marosopi spae variable x ∈ Ω, we use the mirosopi spae variable y = x/ǫ. In this newframe of referene, all periodiity ells are of unit size and the omputational domain is ǫ−1Ω whih isinreasing as ǫ goes to 0 (see Figure 4).

Figure 3: Standard homogenization in a �xed domain Ω

Figure 4: Resaled proess of homogenization with onstant periodiity ell and inreasing domain
Ω̂ = ǫ−1ΩIf the �xed domain is denoted by Ω =
∏3

j=1(0, Lj), our resaled omputational domain is Ω̂ =

ǫ−1Ω =
∏3

j=1(0, Lj/ǫ), where there exist integers Nj suh that Lj/ǫ = Njℓj, for j = 1, 2 (so that onlyentire ells belong to Ω̂). For any funtion u(x) de�ned on Ω, we introdue the resaled funtion û(y),de�ned on Ω̂ by
û(y) = u(ǫy) = u(x), (85)whih satis�es ∇yû(y) = ǫ(∇xu)(ǫy) = ǫ∇xu(x). All quantities de�ned in Ω̂ are denoted with a hat̂and, for simpliity, we drop the dependene on ǫ. For example, we de�ne the ondutivity tensor K̂ as

K̂(y) =

{
K̂S(y) = KS(ǫy, y′) in Ω̂S ,

K̂F (y) = ǫKF (ǫy, y′) in Ω̂F ,
(86)and the �uid veloity

V̂ (y) = ǫV (ǫy, y′) in Ω̂F . (87)



Homogenization of a Heat Transfer Problem 30We also de�ne Ω̂S , Ω̂F , Γ̂ and ∂Ω̂ by the same hange of variables relating Ω and Ω̂. In this new frameof referene, problem (8) beomes




−div(K̂S∇T̂ǫ) = ǫ2f̂ in Ω̂S

−div(K̂F∇T̂ǫ) + V̂ · ∇T̂ǫ = 0 in Ω̂F

−K̂S∇T̂ǫ · n = −K̂F∇T̂ǫ · n+ σG(T̂ǫ
4
) on Γ̂

T̂ǫ = 0 on ∂Ω̂

T̂ǫ is ontinuous through Γ̂. (88)
The homogenized problem (82) beomes

{
−div(K̂∗(T̂0

3
)∇T̂0) + ǫV̂ ∗ · ∇T̂0 = ǫ2θf̂ in Ω̂,

T̂0 = 0 on ∂Ω̂. (89)Furthermore, we also de�ne
T̂1(y) = ǫT1(ǫy, y

′) = ǫT1(x,
x′

ǫ
) =

3∑

i=1

∂T̂0

∂yi
(y)ωi(y

′) (90)where T̂1 is purposely saled as ǫ so that the ǫ-fator disappears in the last equality of (90). Finally,the homogenization approximation Tǫ(x) ≃ T0(x) + ǫT1(x, x/ǫ) beomes
T̂ǫ(y) ≃ T̂0(y) + T̂1(y). (91)Sine a fator ǫ d

2 appears when hanging variables y = x/ǫ in the L2-norms, we ompute relative errorsbetween the exat and reonstruted solutions in the sequel. The relative errors are invariant by ourhange of variables
∥∥∥Tǫ(x) − (T0(x) + ǫT1(x,

x

ǫ
))
∥∥∥

L2(Ω)

‖Tǫ(x)‖L2(Ω)

=

∥∥∥T̂ǫ(y) − (T̂0(y) + T̂1(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

(92)and
∥∥∥∇Tǫ(x) −∇(T0(x) + ǫT1(x,

x

ǫ
))
∥∥∥

L2(Ω)

‖∇Tǫ(x)‖L2(Ω)

=

∥∥∥∇T̂ǫ(y) −∇(T̂0(y) + T̂1(y))
∥∥∥

L2(bΩ)∥∥∥∇T̂ǫ(y)
∥∥∥

L2(bΩ)

. (93)6.2 Algorithm and omputational parametersWe �rst give our methodology for the numerial simulations of the homogenization proess.1. Solve the 3 ell problems (83) for a range of values of T̂0 (see Figure 5).2. Compute the homogenized ondutivity (as a funtion of temperature) and the homogenizedveloity.3. Solve the homogenized problem (82) by a �xed point algorithm (see Figure 7).4. Compute the orretor T̂1(y) =

3∑

i=1

∂T̂0

∂yi
(y)ωi(y

′).5. Reonstrut an approximate solution: T̂0(y) + T̂1(y) (see Figure 7).



Homogenization of a Heat Transfer Problem 31We now give our omputational parameters for a referene omputation orresponding to ǫ = ǫ0 =
1
4 . The geometry orresponds to a ross-setion of a typial fuel assembly for a gas-ooled nulearreator (see [20℄ for further referene). The domain is Ω̂ = ǫ−1Ω =

∏3
j=1(0, Lj/ǫ), with L3 = 0.025mand, for j = 1, 2, Lj/ǫ = Njℓj where N1 = 3, N2 = 4 and ℓ1 = 0.04m, ℓ2 = 0.07m. Eah periodiityell ontains 2 hollow ylinders (holes) (see Figure 1), the radius of whih is equal to 0.0035m. Theemissivity of the holes boundaries is equal to e = 1. The thermal soure f is set to zero (we refer to [21℄for other omputations, inluding ones with f 6= 0). We enfore periodi boundary onditions in the x1diretion and non-homogeneous Dirihlet boundary onditions in the other diretions whih are givenby T̂ǫ(y) = ǫ(3200y1 +400y2)+800 on the boundaries orresponding to y2 = 0, y2 = L2/ǫ, y3 = 0 and

y3 = L3/ǫ. This boundary ondition depends on ǫ, as a funtion of y, in suh way that, as a funtionof x = ǫy, it is independent of ǫ.The physial values of the isotropi ondutivity are 30Wm−1K−1 in the solid part and 0.3Wm−1K−1in the �uid part. Sine it is muh smaller in the �uid than in the solid, we deided to sale it by ǫ, see(3) and (86). In other words, the ondutivity tensor de�ned in (86) takes the values
K̂ =

{
30 Wm−1K−1 in Ω̂S,
ǫ
ǫ0

0.3 Wm−1K−1 in Ω̂F .On a similar token, the physial value of the �uid veloity (assumed to be onstant and parallel to theylinders axis) is 80ms−1. By the saling of (87), the numerial value of the veloity is
V̂ =




0
0
ǫ
ǫ0

80


ms−1.Remark that it is only for the referene omputation ǫ0 = 1/4 that K̂ and V̂ are equal to their physialvalues. While the resaled oe�ients K̂F (y) and V̂ (y) are varying with ǫ, the original oe�ients

KF (x) and V (x) are independent of ǫ. The fat that the numerial values of K̂F and V̂ are not thephysial ones for ǫ 6= ǫ0 = 1/4 is not a problem, sine our onvergene study (as ǫ goes to 0) is purelya numerial veri�ation of our mathematial result.As explained in Setion 6.1 we shall hek numerially the onvergene of the homogenizationproess when ǫ goes to zero, or more preisely when the number of ells goes to in�nity. We thusompare the solution T̂ǫ of (8) (obtained by a ostly numerial omputation) with the homogenizedreonstruted solution T̂0(y)+T̂1(y) (whih is muh heaper to ompute). Furthermore, we shall obtainspeed of onvergenes for the relative errors (92) and (93) plotted in Figures 11 and 12. To avoid anexessive omputational burden, we have hosen periodi boundary ondition in the x1 diretion whihimplies that it is not neessary to add ells in the x1 diretion. Therefore, N1 = 3 is �xed and wesimply add ells in the x2 diretion, inreasing N2 from 4 to 10 with a unit step. In other words, wede�ne
ǫ =

1

N2
.Note that the vertial size of Ω̂ is L3/ǫ, whih is thus inreasing as ǫ goes to zero.All omputations are performed with retangular Q1 �nite elements (4 nodes in 2D, 8 nodes in 3D).A boundary integral method is used for the radiative term (whih involves a dense matrix oupling allnodes on the surfae enlosing a �uid part). The typial number of nodes for the 2D ell problem is

1 027 (from whih 72 are on the radiative boundary γ); it is 6 336 for the 3D homogenized problem(whih has no radiative term); it is 96 480 for the original problem (8) with ǫ = ǫ0 = 1
4 (from whih

6 912 are on the radiative boundary Γǫ).6.3 Simulation resultsIn Figure 5 we plot the solutions of the ell problems (83) for an homogenized temperature T0 = 800K.Reall that, in the non linear ase, the solutions of the ell problems depend on the marosopitemperature. We reognize that ωS
3 is a onstant in Figure 5 (right).
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Figure 5: Solutions of the ell problems for T0 = 800KThe ell solutions allow us to evaluate the homogenized ondutivity whih turns out to numeriallybe a diagonal tensor (at least for temperatures T0 ≤ 1E+05K with a preision on 14 digits). However,for larger (extreme) temperatures, K̂∗ is not any longer a diagonal tensor [3℄. The diagonal entries of
K̂∗ are plotted on Figure 6 and two typial values are
K̂∗(T0 = 50K) =




25.907 0. 0.
0. 25.914 0.
0. 0. 30.05


 , K̂∗(T0 = 20000K) =




49.801 0. 0.
0. 49.781 0.
0. 0. 3680.7


 .The homogenized veloity is a simple volume average, equal to

V̂ ∗ =




0
0
15.134


ms−1.
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Figure 6: Homogenized ondutivities as a funtion of the marosopi temperature: K∗
11 (top left),

K∗
22 (top right), K∗

33 (bottom).By a �xed point algorithm (the homogenized ondutivity K̂∗ is evaluated with the previous iteratefor the temperature), we solve the homogenized problem (it requires of the order of 5 iterates). By aNewton method we solve also the diret model (8) (it requires of the order of 15 iterates). In Figure7 we plot the diret, homogenized and reonstruted solutions omputed for a value of ǫ = ǫ0 = 1/4,as well as the error between the diret and reonstruted temperature. The error is learly small andmostly onentrated on the domain boundaries. The moduli of the temperature gradients are displayedon Figure 8. Clearly the reonstruted solution T̂0 + T̂1 is a muh better approximation of the truesolution T̂ǫ than the mere homogenized solution T̂0. The error on the temperature gradient is largerand again onentrated on the domain boundaries (this is onsistent with the presene of boundarylayers not taken into aount in our asymptoti analysis).
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Figure 7: Solutions in Ω̂

Figure 8: Modules of the solution gradients in Ω̂



Homogenization of a Heat Transfer Problem 35Notie on Figure 7 that the reonstruted temperature is slightly �utuating on the boundary y2 = 0while the true solution is linear. This is due to the fat that the orretor T̂1 does not satisfy a Dirihletboundary ondition. This well-known e�et in homogenization an be orreted by introduing furtherterms, alled boundary layers [8℄, [10℄. We shall not dwell on this issue, all the more sine otherboundary layers are involved in our approximation. Indeed, the dimension redution whih applies tothe radiative operator (whih is truly 3D in the diret model (8) and only 2D in the ell problems)ertainly generates boundary layers lose to the top and bottom boundaries y3 = 0 and y3 = L3/ǫ.Nevertheless, if we plot the solutions in a smaller domain ∆̂ (whih is obtained from Ω̂ by removingone row of ells lose to eah boundary fae normal to the x2 diretion and a layer of thikness 0.025mat the top and bottom faes) we obtain a better agreement between T̂0 + T̂1 and T̂ǫ (see Figure 9) andbetween ∇(T̂0 + T̂1) and ∇T̂ǫ (see Figure 10).

Figure 9: Solutions in the redued domain ∆̂Now, to hek the onvergene of our homogenization proess and to obtain a numerial speed ofonvergene, we display in Figures 11 and 12, as a funtion of ǫ on a log-log plot, the relative errors(92) and (93) related to temperature ERR(T ) and temperature gradient ERR(∇T ). We omparethese errors with the slopes of ǫ and √
ǫ. This has to be ompared with the lassial error estimate fora pure di�usion problem (without radiative transfer) as given in [10℄





ERR(T )bΩ
=

∥∥∥T̂ǫ(y) − (T̂0(y) + T̂1(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

≤ Cǫ,

ERR(∇T )bΩ
=

∥∥∥∇T̂ǫ(y) − (∇T̂0(x) + ∇T̂1(y))
∥∥∥

L2(bΩ)∥∥∥∇T̂ǫ(y)
∥∥∥

L2(bΩ)

≤ C
√
ǫ.Our errors ERR(T ) and ERR(∇T ) are in aordane with those theoretially predited for a pure
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Figure 10: Modules of the solution gradients in the redued domain ∆̂di�usion problem, namely they behave like ǫ and √
ǫ, respetively. In partiular, it implies that theadditional boundary layers aused by the dimension redution e�et (due to the radiative term) havean impat on the error ompararable or smaller than that the homogenization boundary layers.Even for moderate-size omputations, like the ones in this setion, the gain in memory and CPUtime for our homogenization method is enormous ompared to a diret simulation. This is a well-known fat in the homogenization of di�usion problem but the gain is all the more extreme beauseof the radiative transfer involved in our model. Indeed, the diret model (8) involves a 3D radiativetransfer operator whih implies that full matries onneting all nodes on the surfae of one ylinderhave to be stored and inverted (of ourse they are oupled through the di�usive rigidity matrix in thesolid part). Typially, one Newton iteration in our referene omputation takes about 80 min on aomputer whih has a memory of 37.2GB and 12 proessors with CPU = 2.67GHz. On the otherhand, the ell problems (27) are merely 2D, so very heap to solve (typially, one solution for a giventemperature T0 takes 18.E − 04 min with the same omputer), and the homogenized problem (82)features no radiative term (one Newton iteration in our referene omputation takes 12.E − 02 minwith the same omputer). Therefore, our algorithm of Subsetion 6.2 is very ompetitive and is ableto treat very large ases, like a full nulear ore omputation.
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Figure 11: Relative error (92) for the temperature

Figure 12: Relative error (93) for the temperature gradient
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