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Homogenization of a Condu
tive, Conve
tive and Radiative HeatTransfer Problem in a Heterogeneous Domain∗Grégoire Allaire† and Zakaria Habibi ‡Mar
h 12, 2012Abstra
tWe are interested in the homogenization of heat transfer in periodi
 porous media where the�uid part is made of long thin parallel 
ylinders, the diameter of whi
h is of the same order than theperiod. The heat is transported by 
ondu
tion in the solid part of the domain and by 
ondu
tion,
onve
tion and radiative transfer in the �uid part (the 
ylinders). A non-lo
al boundary 
onditionmodels the radiative heat transfer on the 
ylinder walls. To obtain the homogenized problem we �rstuse a formal two-s
ale asymptoti
 expansion method. The resulting e�e
tive model is a 
onve
tion-di�usion equation posed in a homogeneous domain with homogenized 
oe�
ients evaluated bysolving so-
alled 
ell problems where radiative transfer is taken into a

ount. In a se
ond step werigorously justify the homogenization pro
ess by using the notion of two-s
ale 
onvergen
e. Onefeature of this work is that it 
ombines homogenization with a 3D to 2D asymptoti
 analysis sin
ethe radiative transfer in the limit 
ell problem is purely two-dimensional. Eventually, we providesome 3D numeri
al results in order to show the 
onvergen
e and the 
omputational advantages ofour homogenization method.Key words : Periodi
 homogenization, two-s
ale 
onvergen
e, heat transfer.1 Introdu
tionWe study heat transfer in a very heterogeneous periodi
 porous medium. Sin
e the ratio of theheterogeneities period with the 
hara
teristi
 length-s
ale of the domain, denoted by ǫ, is very small inpra
ti
e, a dire
t numeri
al simulation of this phenomenon is either out of rea
h or very time 
onsumingon any 
omputer (espe
ially in 3D). Therefore, the original heterogeneous problem should be repla
edby an homogeneous averaged (or e�e
tive, or homogenized) one. The goal of homogenization theory[8℄, [10℄, [15℄, [23℄, [25℄, [31℄, [32℄ is to provide a systemati
 way of �nding su
h e�e
tive problems,of re
onstru
ting an a

urate solution by introdu
ing so-
alled 
orre
tors and of rigorously justifyingsu
h an approximation by establishing 
onvergen
e theorems and error estimates. The purpose of thispaper is to 
arry on this program for a model of 
ondu
tive, 
onve
tive and radiative heat transferin a 3D solid domain, periodi
ally perforated by thin parallel 
ylinders in whi
h a gas is �owing (seeFigure 1 for a sket
h of the geometry). Conve
tion and radiative transfer are taking pla
e only in thegas whi
h is assumed to be transparent for radiation and with a very small bulk di�usivity. Therefore,the radiative transfer is modelled by a non-lo
al boundary 
ondition on the 
ylinder walls.Although there are many possible physi
al motivations for this study, we fo
us on its appli
ationto the nu
lear rea
tor industry and espe
ially to the so-
alled gas-
ooled rea
tors [19℄ whi
h are apromising 
on
ept for the 4th generation rea
tors. The periodi
 porous medium in our study is the
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Homogenization of a Heat Transfer Problem 2
ore of su
h a gas-
ooled rea
tor. It is typi
ally made of many prismati
 blo
ks of graphite in whi
h areinserted the nu
lear fuel 
ompa
t. Ea
h blo
k is periodi
ally perforated by many small 
hannels wherethe 
oolant (Helium) �ows (the number of these gas 
ylinders is of the order of 104 at least). Althoughthe solid matrix of the porous medium is itself heterogeneous (a mixture of graphite and of nu
learmaterials), we simplify the exposition by assuming it is already homogenized and thus homogeneous.The analysis would not be mu
h more 
ompli
ated otherwise but 
ertainly less 
lear for the reader.In other words, we assume that the only sour
e of heterogeneities is 
oming from the geometry of theporous medium whi
h is a �ne mixture of solid and �uid parts. Sin
e the total number of 
ylinders isvery large and their diameter is very small 
ompared to the size of the 
ore, the numeri
al simulationof this problem requires a very �ne mesh and thus a very expensive 
omputational 
ost for a realgeometry of a rea
tor 
ore (all the more sin
e the radiative transfer is modelled by an integral operatoryielding dense dis
retization matri
es). Therefore, our goal is to �nd a simpler homogenized model inan equivalent 
ontinuous domain and, spe
i�
ally, to give a 
lear de�nition of the resulting e�e
tiveparameters as well as a detailed re
onstru
tion of an approximate solution (involving lo
al 
orre
torsthat take into a

ount the geometry variation).A similar study, in a simpli�ed 2D setting, has previously appeared in [3℄. In this referen
e, the2D domain was a 
ross se
tion of the rea
tor 
ore (perpendi
ular to the 
ylinders) so that the �uidpart was a periodi
 
olle
tion of isolated disks. Furthermore, 
onve
tion and di�usion were negle
tedin the gas. Therefore, the main novelties of the present paper is, �rst, to take into a

ount 
onve
tionand di�usion in the �uid, se
ond and most importantly, to 
onsider a porous medium perforated by
ylinders instead of disks. This last generalization is not at all a simple extension of the previous resultsof [3℄. It turns out that [3℄ 
an easily be extended to a periodi
 distribution of spheri
al holes in 3D. Onthe 
ontrary, in the 
ase of 
ylinders, sin
e periodi
ity takes pla
e only in the transverse dire
tions andthe holes are not isolated, but rather 
onne
ted, in the axial dire
tion, a new phenomenon takes pla
ewhi
h 
orresponds to a dimension redu
tion for the radiative operator from 3D to 2D. In other words,our asymptoti
 analysis is not only a problem of homogenization but also of singular perturbation.The issue of dimension redu
tion is well-known in solid me
hani
s, where it is a basi
 ingredient todedu
e plate or shell models from 3D elasti
ity when the thi
kness of the stru
ture is going to zero (seee.g. [14℄). Here, the reason for this dimension redu
tion is that, in the homogenization pro
ess, the
ylinders be
ome in�nitely long 
ompared to their diameter (whi
h goes to zero): thus, at a mi
ros
opi
s
ale the 3D radiative operator is asymptoti
ally invariant along the axis of these 
ylinders and, inthe limit, degenerates to a 2D radiative operator. Furthermore, some radiations are es
aping from the
ylinders by their extremities: asymptoti
ally it yields an additional verti
al homogenized di�usivitywhi
h was, of 
ourse, not seen in the 2D setting of [3℄. Overall our homogenized model is new, quitesurprising and not intuitive, even in light of [3℄.There are a number of other previous 
ontributions on the homogenization of radiative transferwhi
h all 
orrespond to di�erent geometries or s
alings of various parameters [6℄, [7℄, [9℄, [13℄. Let us alsomention that there is a huge literature on the homogenization in perforated domains or porous media(see [23℄ and referen
es therein, [16℄, [18℄ for the 
ase of non-linear Neumann boundary 
onditions).The paper is organized as follows. In Se
tion 2, we give a pre
ise de�nition of the geometry andof the heat transfer model, see (8). In parti
ular we dis
uss our s
aling assumptions in terms of thesmall parameter ǫ. Furthermore, various properties of the radiative operator are re
alled. It is anintegral operator, the kernel of whi
h is 
alled the view fa
tor (it amounts to quantify how a point onthe 
ylinder wall is illuminated by the other points on this surfa
e). A key ingredient for the sequel isproved in Lemma 2.1: an asymptoti
 expansion of the 3D view fa
tor, integrated along the 
ylinderaxis, is established in terms of the 2D view fa
tor. Se
tion 3 is devoted to the formal method of two-s
ale asymptoti
 expansions applied to our problem. Its main result is Proposition 3.1 whi
h gives thepre
ise form of the homogenized problem. Furthermore, it also furnishes the so-
alled 
ell problemswhi
h de�ne the 
orre
tor term for the homogenized solution. It is at the basis of a re
onstru
tionpro
ess for an a

urate and detailed approximate solution. We emphasize that the appli
ation of theformal method of two-s
ale asymptoti
 expansions is not standard for two reasons. First, to minimize



Homogenization of a Heat Transfer Problem 3the number of required terms in the resulting 
as
ade of equations, we rely on a variant of the method,suggested by J.-L. Lions [26℄, whi
h amounts to introdu
e an ansatz in the variational formulationrather than in the strong form of the equations. Se
ond, we must 
ombine this ansatz with thedimension redu
tion argument for the radiative operator as given by the te
hni
al Lemma 2.1. Se
tion4 provides a rigorous mathemati
al justi�
ation of the homogenization pro
ess by using the methodof two-s
ale 
onvergen
e [1℄, [30℄. Our main result is Theorem 4.2 whi
h 
on�rms the statement ofProposition 3.1. A formal generalization to the non-linear 
ase is brie�y sket
hed in Se
tion 5. Indeed,our mathemati
al rigorous justi�
ation holds true only for a linear model so we 
hoose to expose thissetting. However, the true physi
al model of radiative transfer is non-linear sin
e the emitted radiationsare following Stefan-Boltzmann law of proportionality to the 4th power of temperature. Taking intoa

ount this non-linearity is not di�
ult for the formal method of two-s
ale asymptoti
 expansions.Thus we give the homogenized and 
ell problems in this 
ase too, all the more sin
e all our numeri
al
omputations are performed in this non-linear setting. In Se
tion 6, we present some numeri
al resultsfor data 
orresponding to gas-
ooled rea
tors. In parti
ular we show that the error between the exa
tand re
onstru
ted solutions, as a fun
tion of the small parameter ǫ, is as expe
ted of order 1 or 1/2,depending on the 
hoi
e of norm.2 Setting of the problemThe goal of this se
tion is to de�ne the geometry of the periodi
 porous medium and to introdu
e themodel of 
ondu
tive, 
onve
tive and radiative heat transfer.2.1 GeometryFor simpli
ity we 
onsider a re
tangular open set Ω =
∏3

j=1(0, Lj) where Lj > 0 are positive lengths.It is however essential that the domain Ω be a 
ylinder with axis in the third dire
tion, namely thatits geometry is invariant by translation along x3. The re
tangular basis ∏2
j=1(0, Lj) is periodi
allydivided in N(ǫ) small 
ells (Λǫ,i)i=1...N(ǫ), ea
h of them being equal, up to a translation and res
alingby a fa
tor ǫ, to the same unit periodi
ity 
ell Λ =

∏2
j=1(0, lj) with lj > 0. By 
onstru
tion, thedomain Ω is periodi
 in the two �rst dire
tions and is invariant by translation in the third one. Toavoid unne
essary 
ompli
ations with boundary layers (and be
ause this is the 
ase in the physi
alproblem whi
h motivates this study) we assume that the sequen
e of small positive parameters ǫ, goingto zero, is su
h that the basis of Ω is made up of entire 
ells only, namely Lj/(ǫlj) is an integer forany j = 1, 2. The 
ell Λ is de
omposed in two parts: the holes ΛF o

upied by a �uid (see Figures 1and 2) and the solid matrix ΛS . We denote by γ the boundary between ΛS and ΛF . Then, we de�nethe �uid domain ΩF

ǫ as the 
ylindri
al domain with basis 
omposed by the 
olle
tion of ΛF
ǫ,i and thesolid domain ΩS

ǫ as the 
ylindri
al domain with basis 
omposed by the 
olle
tion of ΛS
ǫ,i, where ΛF,S

ǫ,iare the translated and res
aled version of ΛF,S for i = 1...N(ǫ) (similar to the 
orresponden
e between
Λǫ,i and Λ). In summary we have
ΩF

ǫ =

N(ǫ)⋃

i=1

ΛF
ǫ,i × (0, L3), ΩS

ǫ = Ω \ ΩF
ǫ =

N(ǫ)⋃

i=1

ΛS
ǫ,i × (0, L3), γǫ =

N(ǫ)⋃

i=1

γǫ,i, Γǫ = γǫ × (0, L3).For ea
h plane 
ell Λǫ,i, the 
enter of mass x′0,i of the boundary γǫ,i is de�ned by
∫

γǫ,i

(s′ − x′0,i)ds
′ = 0. (1)For any point x = (x1, x2, x3) ∈ R3, we denote by x′ its two �rst 
omponents in R2 su
h that

x = (x′, x3). We introdu
e the linear proje
tion operator P from R3 to R2 and its adjoint, the



Homogenization of a Heat Transfer Problem 4extension operator E from R2 to R3, de�ned by
P



v1
v2
v3


 =

(
v1
v2

) and E

(
v1
v2

)
=



v1
v2
0


 . (2)Eventually, we denote by ∇x′ the 2D gradient operator whi
h we shall often identify to its extension

E∇x′ . Similarly, for a 3D ve
tor �eld F (x′, x3) we shall use the notation divx′F for divx(PF ).

Figure 1: Periodi
 domain for a gas 
ooled rea
tor 
ore
Figure 2: 2D referen
e 
ell for a gas 
ooled rea
tor 
ore2.2 Governing equationsThere is a vast literature on heat transfer and we refer the interested reader to [12℄, [27℄, [33℄ for anintrodu
tion to the modelling of radiative transfer. We denote by Tǫ the temperature in the domain

Ω whi
h 
an be de
omposed as
Tǫ =

{
T S

ǫ in ΩS
ǫ ,

TF
ǫ in ΩF

ǫ ,where Tǫ is 
ontinuous through the interfa
e Γǫ.Conve
tion takes pla
e only in the thin verti
al 
ylinders ΩF
ǫ o

upied by the �uid. We thusintrodu
e a given �uid velo
ity

Vǫ(x) = V (x,
x′

ǫ
) in ΩF

ǫ ,where the 
ontinuous ve
tor �eld V (x, y′), de�ned in ΛF ×Ω, is periodi
 with respe
t to y′ and satis�esthe two in
ompressibility 
onstraints
divxV = 0 and divy′V = 0 in ΛF , and V · n = 0 on γ



Homogenization of a Heat Transfer Problem 5where n is the unit outward normal (from ΛS to ΛF ) on γ. A typi
al example of su
h a velo
ity �eldis V = (V ′(x3, y
′), V3(x

′, y′)) with V ′ = (V1, V2), divy′V ′ = 0 and V ′ · n = 0 on γ.The thermal di�usion is assumed to be mu
h smaller in the �uid than in the solid. More pre
iselywe assume that it is of order 1 in ΩS
ǫ and of order ǫ in ΩF

ǫ . The 
ondu
tivity tensor is thus de�ned by
Kǫ(x) =

{
KS

ǫ (x) = KS(x, x′

ǫ ) in ΩS
ǫ ,

ǫKF
ǫ (x) = ǫKF (x, x′

ǫ ) in ΩF
ǫ ,

(3)where KS(x, y′),KF (x, y′) are periodi
 symmetri
 positive de�nite tensors de�ned in the unit 
ell Y ,satisfying
∀v ∈ R3, ∀ y′ ∈ Λ, ∀ x ∈ Ω, α|v|2 ≤

3∑

i,j=1

KF,S
i,j (x, y′)vivj ≤ β|v|2,for some 
onstants 0 < α ≤ β. The 
hoi
e of the ǫ s
aling in (3) is made in order to have a dominant
onve
tion in the �uid part at the ma
ros
opi
 s
ale. However, at the mi
ros
opi
 s
ale the 
onve
tionand the di�usion are balan
ed as will be 
lear later.The �uid is assumed to be almost transparent, so that heat 
an also be transported by radiativetransfer in ΩF

ǫ . This radiative e�e
t is modelled by a non lo
al boundary 
ondition on the interfa
e Γǫbetween ΩF
ǫ and ΩS

ǫ . More pre
isely, in addition to the 
ontinuity of temperature we write a balan
eof heat �uxes on the interfa
e
T S

ǫ = TF
ǫ and −KS

ǫ ∇T S
ǫ · n = −ǫKF

ǫ ∇TF
ǫ · n+

σ

ǫ
Gǫ(T

F
ǫ ) on Γǫ, (4)where σ > 0 is a given positive 
onstant and Gǫ is the radiative operator de�ned by

Gǫ(Tǫ)(s) = Tǫ(s) −
∫

Γǫ,i

Tǫ(x)F (s, x)dx = (Id− ζǫ)Tǫ(s) ∀ s ∈ Γǫ,i, (5)with
ζǫ(f)(s) =

∫

Γǫ,i

F (s, x)f(x)dx. (6)The s
aling ǫ−1 in front of the radiative operator Gǫ in (4) is 
hosen be
ause it yields a perfe
t balan
e,in the limit as ǫ goes to zero, between the bulk heat 
ondu
tion and the surfa
e radiative transfer (thiss
aling was �rst proposed in [3℄ and is due to the fa
t that the operator (Id − ζǫ) has a non-trivialkernel, see Lemma 2.1). In (6) F is the so-
alled view fa
tor (see [27℄, [24℄, [22℄). The view fa
tor
F (s, x) is a geometri
al quantity between two di�erent points s and x of the same 
ylinder Γǫ,i. Itsexpli
it formula for surfa
es en
losing 
onvex domains is in 3D

F (s, x) := F 3D(s, x) =
nx · (s− x)ns · (x− s)

π|x− s|4 ,where nz denotes the unit normal at the point z. In 2D the view fa
tor is
F (s, x) := F 2D(s′, x′) =

n′x · (s′ − x′)n′s · (x′ − s′)

2|x′ − s′|3and the operator in (6) is denoted by ζ2D
ǫ . Some useful properties of the view fa
tor are given belowin Lemma 2.1.For simpli
ity we assume that the only heat sour
e is a bulk density of thermal sour
es in the solidpart, f ∈ L2(Ω), f ≥ 0 and the external boundary 
ondition is a simple Diri
hlet 
ondition. Eventually,the governing equations of our model are





−div(KS
ǫ ∇T S

ǫ ) = f in ΩS
ǫ

−div(ǫKF
ǫ ∇TF

ǫ ) + Vǫ · ∇TF
ǫ = 0 in ΩF

ǫ

−KS
ǫ ∇T S

ǫ · n = −ǫKF
ǫ ∇TF

ǫ · n+
σ

ǫ
Gǫ(T

F
ǫ ) on Γǫ

T S
ǫ = TF

ǫ on Γǫ

Tǫ = 0 on ∂Ω.

(8)



Homogenization of a Heat Transfer Problem 6Proposition 2.1. The boundary value problem (8) admits a unique solution Tǫ in H1
0 (Ω).Proof This is a 
lassi
al result (see [3℄ if ne
essary) by appli
ation of the Lax-Milgram lemma. Themain point is that the operator Gǫ is self-adjoint and non-negative, as stated in Lemma 2.1 below. �Remark 2.1. The solution of (8) satis�es the maximum prin
iple, namely f ≥ 0 in Ω implies that

Tǫ ≥ 0 in Ω (see [33℄). However, we shall not use this property in the sequel.Remark 2.2. The radiation operator introdu
ed in (5) is a linear operator: this is 
learly a simplifyingassumption. A
tually, the true physi
al radiation operator is non-linear and de�ned, on ea
h Γǫ,i, 1 ≤
i ≤ N(ǫ), by

Gǫ(Tǫ) = e(Id− ζǫ)(Id− (1 − e)ζǫ)
−1(T 4

ǫ ). (9)where ζǫ is the operator de�ned by (6). To simplify the exposition, we fo
us on the 
ase of so-
alledbla
k walls, i.e., we assume that the emissivity is e = 1 (we 
an �nd in [7℄ a study of this kindof problems when the emissivity depends on the radiation frequen
y). However, our analysis 
an beextended straightforwardly to the other 
ases 0 < e < 1 (see e.g. [20℄). The formal two-s
ale asymptoti
expansion method 
an also be extended to the above non-linear operator, at the pri
e of more tedious
omputations [20℄. However, the rigorous justi�
ation of the homogenization pro
ess is, for the moment,available only for the linearized form of the radiation operator. Therefore we 
ontent ourselves inexposing the homogenization pro
ess for the linear 
ase. Nevertheless, in Se
tion 5 we indi
ate howour results 
an be generalized to the above non-linear setting. Furthermore, our numeri
al results inSe
tion 6 are obtained in the non-linear 
ase whi
h is more realisti
 from a physi
al point of view.2.3 Properties of the view fa
torWe re
all and establish some useful properties of the view fa
tor that we will use later.Lemma 2.1. For points x and s belonging to the same 
ylinder Γǫ,i, the view fa
tor F (s, x) satis�es1.
F (s, x) ≥ 0, F (s, x) = F (x, s), (10)2. ∫

γǫ,i

F 2D(s′, x′)ds′ = 1,3. as an operator from L2 into itself,
‖ζǫ‖ ≤ 1, (11)4. ∫

γǫ,i

∫

γǫ,i

(x′ − x′0,i)F
2D(s′, x′)dx′ds′ = 0,5.

ker(Id− ζ2D
ǫ ) = R, (12)6. the radiative operator Gǫ is self-adjoint on L2(Γǫ,i) and non-negative in the sense that

∫

Γǫ,i

Gǫ(f) f ds ≥ 0 ∀ f ∈ L2(Γǫ,i), (13)7. for any given s3 ∈ (0, L),
∫ L

0
F 3D(s, x)dx3 = F 2D(s′, x′) + O(

ǫ2

L3
), (14)



Homogenization of a Heat Transfer Problem 78. for any fun
tion g ∈ C3(0, L) with 
ompa
t support in (0, L),
∫ L

0
g(x3)F

3D(s, x)dx3 = F 2D(s′, x′)
(
g(s3) +

|x′ − s′|2
2

g′′(s3) + O(ǫp)
)
, (15)where any 0 < p < 3 is admissible and g′′ denotes the se
ond derivative of g. Furthermore, forany fun
tion f ∈ L∞(0, L), we have

∫ L

0

∫ L

0
f(x3)g(s3)F

3D(s, x)dx3ds3 = F 2D(s′, x′)
( ∫ L

0
f(x3)g(x3)dx3

+
1

2
|x′ − s′|2

∫ L

0
f(x3)g

′′(x3)dx3 + O(ǫp)
)
. (16)Remark 2.3. The surfa
e Γǫ,i of ea
h 
ylinder is not 
losed (it is only the lateral boundary and thetwo end 
ross-se
tions are missing). Therefore, the se
ond property of Lemma 2.1 does not hold in 3D,namely ∫

Γǫ,i

F 3D(s′, x′)ds′ 6= 1.Remark 2.4. The asymptoti
 properties (14) 
an be physi
ally interpreted by saying that in a thin andlong 
ylinder the 3D view fa
tor are well approximated by the 2D view fa
tor, upon verti
al integration.Sin
e the surfa
e Γǫ,i is open at its extremities, there is some leakage of the radiated energy. Theasymptoti
 property (15) and (16) take into a

ount the quanti�
ation of this leakage whi
h 
orrespondsto a di�usive 
orre
tor term in the x3 dire
tion (remember that |x′ − s′|2 is of the order of ǫ2).Proof The six �rst properties are 
lassi
al and may be found in [20℄. The proof of (14) follows froma 
hange of variables and a Taylor expansion. At this point, the assumption that s3 does not dependon ǫ and is di�erent from the two end points 0 and L is 
ru
ial. Indeed, be
ause the 
ylinder Γǫ,i isverti
al, we have ns3
= nx3

= 0 and
I =

∫ L

0

nx · (s− x)ns · (x− s)

π|x− s|4 dx3 =
n′x · (s′ − x′)n′s · (x′ − s′)

π(x′ − s′)4

∫ L

0

1
(

1 +
(x3 − s3)

2

|x′ − s′|2
)2dx3.By the 
hange of variables

z =
x3 − s3
α

, where α = |x′ − s′|, (17)and integration, we obtain
I =

2

π
F 2D(s′, x′)

(
h1(

L− s3
|x′ − s′|) − h1(

−s3
|x′ − s′|)

)where h1(z) is the primitive of the previous integrand given by
h1(z) =

1

2

(
z

z2 + 1
+ arctan(z)

)
. (18)By Taylor expansion we get

h1(z) =





+
π

2
+ O(z−3) when z → +∞,

−π
2

+ O(z−3) when z → −∞.
(19)



Homogenization of a Heat Transfer Problem 8Sin
e |x′ − s′| = O(ǫ), s3 = O(L) and F 2D(s′, x′) = O(ǫ−1), we dedu
e (14).The proof of (15) is a little more di�
ult although the strategy is the same. Let us noti
e that theassumption of 
ompa
t support for g allows us to avoid di�
ulties 
oming from the 
ase when s3 = 0or s3 = L. By the same 
hange of variables (17) we obtain
I =

∫ L

0
g(x3)F

3D(s, x)dx3 =
2

π
F 2D(x′, s′)

∫

∆

g(s3 + αz)

(1 + z2)2
dz =

2

π
F 2D(x′, s′)Î ,where the domain of integration ∆ is given by ∆ = [

−s3
α
,
L− s3
α

]. Remark that α = O(ǫ). By usinga Taylor expansion in a neighbourhood of s3, we have
g(s3 + αz) = g(s3) + αzg′(s3) +

1

2
α2z2g′′(s3) + O(α3z3),and Î be
omes

Î = I1 + I2 + I3 + I4, (20)where, h1(z) being given by (18),
I1 = g(s3)

∫

∆

1

(1 + z2)2
dz =

g(s3)

2

(
h1(

L− s3
α

) − h1(
−s3
α

)

)
=
g(s3)

2

(
π + O(α3)

)
.On the other hand we get

I2 = αg′(s3)

∫

∆

z

(1 + z2)2
dz = αg′(s3)

(
h2(

L− s3
α

) − h2(
−s3
α

)

)
=

αg′(s3)

2
O(α2),

I3 =
α2

2
g′′(s3)

∫

D

z2

(1 + z2)2
dz =

α2

2
g′′(s3)

(
h3(

L− s3
α

) − h3(
−s3
α

)

)
=

α2

4
g′′(s3) (π + O(α)) ,where we performed a Taylor expansion of h2(z) and h3(z) whi
h are the primitives of the previousintegrands in I2 and I3, respe
tively, given by

h2(z) =
1

2

( −1

z2 + 1

)
, h3(z) =

1

2

( −z
z2 + 1

+ arctan(z)

)
.The last integral in (20) is of order O(ǫp) for any 0 < p < 3 be
ause

|I4| ≤ Cα3

∫

∆

z3

(1 + z2)2
dz ≤ Cα3

(
h4(

L− s3
α

) − h4(
−s3
α

)

)
,where h4(z) is the primitive of the previous integrand given by

h4(z) =
1

2

(
log(z2 + 1) +

1

1 + z2

)
. (21)By a Taylor expansion of (21) when z → ±∞ we get

|I4| ≤ Cα3| log α| ≤ Cαp ∀ 0 < p < 3.Hen
e the result (15) sin
e α = O(ǫ). Eventually, (16) is immediate using (15). �Remark 2.5. If the fun
tion f is smooth, by integration by parts (16) be
omes
∫ L

0

∫ L

0
f(x3)g(s3)F

3D(s, x)dx3ds3 = F 2D(s′, x′)
( ∫ L

0
f(x3)g(x3)dx3

− 1

2
|x′ − s′|2

∫ L

0
f ′(x3)g

′(x3)dx3 + O(ǫp)
)
. (22)A
tually, (22) 
an be proved dire
tly with di�erent smoothness assumptions: it holds true for f and gof 
lass C2, one of them being with 
ompa
t support.



Homogenization of a Heat Transfer Problem 93 Two-s
ale asymptoti
 expansionThe homogenized problem 
an be obtained heuristi
ally by the method of two-s
ale asymptoti
 ex-pansion [10℄, [15℄, [31℄. This method is based on the periodi
 assumption on the geometry of theporous medium. However here, be
ause the radiative operator is only 2D periodi
, we shall introdu
ea mi
ros
opi
 variable y′ whi
h is merely a 2D variable (in the plane perpendi
ular to the 
ylinders).Of 
ourse, denoting the spa
e variable x = (x′, x3), the fast and slow variables are related by y′ = x′/ǫ.The radiative operator is 
reating an additional di�
ulty: sin
e the �uid part is made of thin and long
ylinders, the 3D view fa
tors will asymptoti
ally be repla
ed by the 2D view fa
tors (see Lemma 2.1).Therefore, our problem is not only an homogenization problem but it is also a singularly perturbedone. It 
an be 
ompared to the dimension redu
tion issue in solid me
hani
s, i.e., how a plate or shellmodel 
an be dedu
ed from a 3D elasti
ity one (see e.g. [14℄).The starting point of the method of two-s
ale asymptoti
 expansion is to assume that the solution
Tǫ of problem (8) is given by the series

Tǫ = T0(x) + ǫ T1(x,
x′

ǫ
) + ǫ2 T2(x,

x′

ǫ
) + O(ǫ3) (23)where, for i = 1, 2, y′ → Ti(x, y

′) is Λ-periodi
 and
Ti(x, y

′) =

{
T S

i (x, y′) in Ω × ΛS ,

TF
i (x, y′) in Ω × ΛF ,

(24)with the 
ontinuity 
ondition at the interfa
e, T S
i (x, y′) = TF

i (x, y′) on γ = ∂ΛS ∩ ∂ΛF . As in the
lassi
al examples of homogenization, we assume that the �rst term of the asymptoti
 expansion T0depends only on the ma
ros
opi
 variable x. As usual this property 
an be established by the samedevelopment as below if we had assumed rather that T0 ≡ T0(x, y
′).Introdu
ing (23) in the equations (8) of the model, we dedu
e the main result of this se
tion.Proposition 3.1. Under assumption (23), the zero-order term T0 of the expansion for the solution Tǫof (8) is the solution of the homogenized problem

{
−div(K∗(x)∇T0(x)) + V ∗(x) · ∇T0(x) = θ f(x) in Ω

T0(x) = 0 on ∂Ω
(25)with the porosity fa
tor θ = |ΛS | / |Λ|, the homogenized 
ondu
tivity tensor K∗ given by its entries, for

j, k = 1, 2, 3,
K∗

j,k(x) =
1

|Λ|

[∫

ΛS

KS(x, y′)(ej + ∇y′ωS
j (x, y′)) · (ek + ∇y′ωS

k (x, y′))dy′

+ σ

∫

γ
(Id− ζ2D)(ωS

k (x, y′) + yk)(ω
S
j (x, y′) + yj)dy

′

+
σ

2

∫

γ

∫

γ
F 2D(s′, y′)|s′ − y′|2dy′ds′ δj3δk3

] (26)and a verti
al homogenized velo
ity given by
V ∗(x) =

e3
|Λ|

∫

ΛF

V (x, y′) · e3dy′,where ζ2D is the unit 
ell view fa
tor operator de�ned by
ζ2D(ω)(s′) =

∫

γ
F 2D(s′, y′)ω(y′)dy′



Homogenization of a Heat Transfer Problem 10and, for j = 1, 2, 3, ωj(x, y
′) (equal to ωS

j in ΛS and to ωF
j in ΛF ) is the solution of the 2D 
ell problem





−divy′P
[
KS(x, y′)(ej + ∇y′ωS

j (x, y′))
]

= 0 in ΛS

−divy′P
[
KF (x, y′)(ej + ∇y′ωF

j (x, y′))
]

+ V (x, y′) · (ej + ∇y′ωF
j (x, y′)) = 0 in ΛF

−P
[
KS(x, y′)(ej + ∇y′ωS

j (x, y′))
]
· n = σ(Id − ζ2D) (ωS

j (x, y′) + yj) on γ
ωF

j (x, y′) = ωS
j (x, y′) on γ

y′ 7→ ωj(x, y
′) is Λ-periodi
, (27)

where P is the 3D to 2D proje
tion operator de�ned by (2). Furthermore, T1 is given by
T1(x, y

′) =

3∑

j=1

ωj(x, y
′)
∂T0

∂xj
(x). (28)Remark 3.1. As usual in homogenization, the 
ell problem (27) is a partial di�erential equation withrespe
t to y′ where x plays the role of a parameter. It is proved to be well-posed in Lemma 3.1 below.We emphasize that the 
ell problem in Λ 
an be de
oupled as two su

essive sub-problems in ΛSand ΛF respe
tively. First, we solve a 
ell problem in ΛS using the non lo
al boundary 
ondition on

γ, independently of what happens in ΛF . Se
ond, we solve a 
ell problem in ΛF with the 
ontinuityboundary 
ondition on γ yielding a Diri
hlet boundary 
ondition. In parti
ular, the homogenized tensor
K∗ depends only on ΛS.Remark 3.2. The homogenized tensor K∗ has an extra 
ontribution (26) for its 3, 3 entry dependingmerely on the view fa
tor and not on the 
ell solutions. It arises from the leakage of the radiativeenergy at both ends of ea
h 
ylinder Γǫ,i (whi
h are not 
losed as explained in Remark 2.4). Thisloss of radiative energy at the 
ylinders extremities yields this additional axial (or verti
al) thermaldi�usion. For 
ir
ular 
ross-se
tion 
ylinders (namely γ is a 
ir
le), we 
an expli
itly 
ompute

∫

γ

∫

γ
F 2D(s′, y′)|s′ − y′|2dy′ds′ =

16

3
πr3 where r is the radius of γ.On the other hand, sin
e Pe3 = 0 and (Id− ζ2D)y3 = 0, the solution ωS

3 is a 
onstant (with respe
t to
y′) for any 
ell geometry. This implies that K∗

3,j(x) = K∗
j,3(x) = 0 for j = 1, 2 and

K∗
3,3(x) =

1

|Λ|

(∫

ΛS

KS(x, y′)dy′ +
σ

2

∫

γ

∫

γ
F 2D(s′, y′)|s′ − y′|2dy′ds′

)
.Remark 3.3. As usual in homogenization, Proposition 3.1 gives a 
omplete 
hara
terization of thetwo �rst terms T0(x)+ ǫT1(x,

x′

ǫ
) of the ansatz (23). With su
h an approximation, not only do we havea 
orre
t estimate of the temperature Tǫ(x) but also of its gradient (or of the heat �ux) sin
e it implies

∇Tǫ(x) ≈ ∇T0(x) +∇y′T1(x,
x′

ǫ
) (in this last formula the 
orre
tor ∇y′T1 is of order 1 and 
an not beignored).The proof of Proposition 3.1 shall require the 
onsideration of the se
ond order 
orre
tor T2 butwe are not interested in its pre
ise evaluation sin
e it is mu
h smaller and negligible in the numeri
alexamples.Proof of Proposition 3.1All the di�
ulties are 
on
entrated on the radiation term in whi
h simpli�
ations must ne
essarilytake pla
e be
ause it is formally dominating as ǫ goes to zero. Consequently, instead of using the formalmethod of two s
ale asymptoti
 expansions in the strong form of problem (8), whi
h is 
ompli
ated



Homogenization of a Heat Transfer Problem 11be
ause of the non-lo
al boundary 
ondition (the radiation term), we follow the lead of [3℄ (basedon an original idea of J.-L. Lions [26℄) and use a two s
ale asymptoti
 expansion in the variationalformulation of (8), taking advantage of its symmetry. This tri
k allows us to trun
ate the ansatz at alower order term and 
onsiderably simpli�es the 
omputations.The variational formulation of problem (8) is: �nd Tǫ ∈ H1
0 (Ωǫ) su
h that

aǫ(Tǫ, φǫ) = Lǫ(φǫ) for any φǫ ∈ H1
0 (Ωǫ), (29)where

aǫ(Tǫ, φǫ) =

∫

ΩS
ǫ

KS
ǫ (x)∇Tǫ(x) · ∇φǫ(x)dx+ ǫ

∫

ΩF
ǫ

KF
ǫ (x)∇Tǫ(x) · ∇φǫ(x)dx

+

∫

ΩF
ǫ

Vǫ(x) · ∇Tǫ(x)φǫ(x)dx+
σ

ǫ

∫

Γǫ

Gǫ(Tǫ)(x)φǫ(x)dxand
Lǫ(φǫ) =

∫

ΩS
ǫ

f(x)φǫ(x)dx.We 
hoose φǫ of the same form as Tǫ in (23) (but without remainder term)
φǫ(x) = φ0(x) + ǫ φ1(x,

x′

ǫ
) + ǫ2 φ2(x,

x′

ǫ
) (30)with smooth fun
tions φ0(x) and φi(x, y

′), i = 1, 2, being Λ-periodi
 in y′ and su
h that
φi(x, y

′) =

{
φS

i (x, y′) in Ω × ΛS ,

φF
i (x, y′) in Ω × ΛF .We also assume that φ0(x) and φi(x, y

′) have 
ompa
t support in x ∈ Ω.Inserting the ansatz (23) and (30) in the variational formulation (29) yields
a0(T0, T1, φ0, φ1) + ǫa1(T0, T1, T2, φ0, φ1, φ2) = L0(φ0, φ1) + ǫL1(φ0, φ1, φ2) + O(ǫ2). (31)The non-
onventional strategy of the proof is the following: not only we identify the zero-order term

a0 = L0 but we also use the �rst-order identity a1 = L1. The zero-order identity, a0(T0, T1, φ0, φ1) =
L0(φ0, φ1), allows us to �nd the homogenized problem for T0 in Ω and the 
ell problem for T S

1 in
Ω × ΛS . The �rst-order identity a1(T0, T1, T2, φ0, φ1, φ2) = L1(φ0, φ1, φ2) yields the 
ell problem for
TF

1 in Ω × ΛF . We emphasize that it is 
ru
ial, for the identi�
ation of the �rst-order term, thatthe test fun
tions (φi)i=0,1,2 have 
ompa
t supports. Indeed, in view of Lemma 2.1, the 3D to 2Dasymptoti
 of the view fa
tor has a su�
iently small remainder term only for 
ompa
tly supportedtest fun
tions.For the sake of 
larity we divide the proof in three steps. The �rst step is devoted to the ansatz forthe 
onve
tion and di�usion terms. The se
ond one fo
uses on the radiation term, while the third one
ombines these various terms to dedu
e the 
ell and homogenized problems by identifying equationsof the same order in powers of ǫ.We now give the details of the proof. We rewrite the variational formulation(29) as
aǫ(Tǫ, φǫ) = aC

ǫ (Tǫ, φǫ) + aRad
ǫ (Tǫ, φǫ) = Lǫ(φǫ)where

aC
ǫ (Tǫ, φǫ) =

∫

ΩS
ǫ

KS
ǫ (x)∇Tǫ(x) · ∇φǫ(x)dx + ǫ

∫

ΩF
ǫ

KF
ǫ (x)∇Tǫ(x) · ∇φǫ(x)dx

+

∫

ΩF
ǫ

Vǫ(x) · ∇Tǫ(x)φǫ(x)dx

aRad
ǫ (Tǫ, φǫ) =

σ

ǫ

N(ǫ)∑

i=1

∫

Γǫ,i

Gǫ(Tǫ)(x)φǫ(x)dx.

(32)



Homogenization of a Heat Transfer Problem 12Step 1 : Expansion of aC
ǫ − LǫThis is a standard 
al
ulation. Plugging the ansatz (23) and (30) we obtain

aC
ǫ − Lǫ =

∫

ΩS
ǫ

KS
ǫ [(∇xT0 + ∇y′T1) · (∇xφ0 + ∇y′φ1)] +

∫

ΩF
ǫ

Vǫ · (∇xT0 + ∇y′T1)φ0

+ǫ

[∫

ΩS
ǫ

KS
ǫ

[
(∇xT1 + ∇y′T2) · (∇xφ0 + ∇y′φ1) + (∇xφ1 + ∇y′φ2) · (∇xT0 + ∇y′T1)

]
+

∫

ΩF
ǫ

KF
ǫ (∇xT0 + ∇y′T1) · (∇xφ0 + ∇y′φ1) +

∫

ΩF
ǫ

Vǫ ·
[
(∇xT1 + ∇y′T2)φ0 + (∇xT0 + ∇y′T1)φ1

]
]

−
∫

ΩS
ǫ

f(φ0 + ǫφ1) + O(ǫ2)

(33)
where all fun
tions are evaluated at (x, x′/ǫ). Using Lemma 3.2 below, we dedu
e

|Λ|(aC
ǫ − Lǫ) =

∫

Ω

∫

ΛS

KS(x, y′)(∇xT0(x) + ∇y′T1(x, y
′) · (∇xφ0(x) + ∇y′φ1(x, y

′))dy′dx

+

∫

Ω

∫

ΛF

V (x, y′) · ∇xT0(x)φ0(x)dy
′dx−

∫

Ω

∫

ΛS

f(x)φ0(x)dy
′dx

+ǫ

[∫

Ω

∫

ΛS

KS(x, y′)
[
(∇xT1(x, y

′) + ∇y′T2(x, y
′)) · (∇xφ0(x) + ∇y′φ1(x, y

′))

+ (∇xφ1(x, y
′) + ∇y′φ2(x, y

′)) · (∇xT0(x) + ∇y′T1(x, y
′))
]
dy′dx

+

∫

Ω

∫

ΛF

KF (x, y′)(∇xT0(x) + ∇y′T1(x, y
′)) · (∇xφ0(x) + ∇y′φ1(x, y

′))dy′dx

+

∫

Ω

∫

ΛF

V (x, y′) · [∇xT1(x, y
′)φ0(x) + ∇xT0(x)φ1(x, y

′) + ∇y′T1(x, y
′)φ1(x, y

′)]dy′dx

−
∫

Ω

∫

ΛS

f(x)φ1(x, y
′)dy′dx

]

+O(ǫ2).

(34)

Step 2 : Expansion of aRad
ǫA similar expansion in the 2D setting was 
arried out in [3℄. However, the present 3D 
on�gurationis di�erent sin
e, the �uid holes being thin long 
ylinder, there is also a 3D to 2D transition (whi
hdid not o

ur in [3℄) taking pla
e. The purpose of this se
ond step is to write a Taylor expansion ofthe radiation operator, up to se
ond order,

aRad
ǫ = arad

0 + ǫarad
1 + O(ǫ2) (35)Fortunately, as we shall see later, the term arad

1 does play any role in the de�nition of the 
orre
tor T1in ΛF . Therefore, we don't need to evaluate arad
1 whi
h, of 
ourse, signi�
antly redu
es the amount oftedious 
al
ulations. The radiation term is given by

aRad
ǫ =

σ

ǫ

N(ǫ)∑

i=1

[∫

Γǫ,i

Tǫ(x)φǫ(x)dx−
∫

Γǫ,i

∫

Γǫ,i

F (x, s)Tǫ(x)φǫ(s)dxds

]
. (36)



Homogenization of a Heat Transfer Problem 13In the ansatz (23) and (30) we make a Taylor expansion around ea
h 
enter of mass x′0,i of ea
hboundary γǫ,i. To simplify the notations, we drop the label i and denote by x′0 ea
h x′0,i. We alsodenote (x′ − x′0) by ǫh′ and (s′ − x′0) by ǫl′. Thus we get
Tǫ(x) = T0(x

′
0, x3) + ǫ

(
∇x′T0(x

′
0, x3) · h′ + T1(x

′
0,
x′

ǫ
, x3)

)
+ ǫ2T̂2,ǫ(x) + O(ǫ3) (37)

φǫ(s) = φ0(x
′
0, s3) + ǫ

(
∇x′φ0(x

′
0, s3) · l′ + φ1(x

′
0,
s′

ǫ
, s3)

)
+ ǫ2φ̂2,ǫ(s) + O(ǫ3) (38)where

T̂2,ǫ(x) =
1

2
∇x′∇x′T0(x

′
0, x3)h

′ · h′ + ∇x′T1(x
′
0,
x′

ǫ
, x3) · h′ + T2(x

′
0,
x′

ǫ
, x3)

φ̂2,ǫ(s) =
1

2
∇x′∇x′φ0(x

′
0, s3)l

′ · l′ + ∇x′φ1(x
′
0,
s′

ǫ
, s3) · l′ + φ2(x

′
0,
s′

ǫ
, s3)The pre
ise form of the terms T̂2,ǫ and φ̂2,ǫ is not important sin
e the O(ǫ2)-order terms will disappearby simpli�
ation as we shall see later. Using (37) and (38), we obtain

Tǫ(x)φǫ(s) = (Tφ)0(x3, s3) + ǫ(Tφ)1(x, s) + ǫ2(Tφ)2(x, s) + O(ǫ3).where
(Tφ)0(x3, s3) = φ0(x

′
0, s3)T0(x

′
0, x3)

(Tφ)1(x, s) = φ0(x
′
0, s3)∇x′T0(x

′
0, x3) · h′ + T0(x

′
0, x3)∇x′φ0(x

′
0, s3) · l′

+ φ0(x
′
0, s3)T1(x

′
0,
x′

ǫ
, x3) + φ1(x

′
0,
s′

ǫ
, s3)T0(x

′
0, x3)

(Tφ)2(x, s) = φ1(x
′
0,
s′

ǫ
, s3)T1(x

′
0,
x′

ǫ
, x3) + T̂2,ǫφ0(x

′
0, s3) + φ̂2,ǫT0(x

′
0, x3)

+ ∇x′φ0(x
′
0, s3) · l′∇x′T0(x

′
0, s3) · h′ + φ1(x

′
0,
s′

ǫ
, s3)∇x′T0(x

′
0, s3) · h′

+ T1(x
′
0,
x′

ǫ
, x3)∇x′φ0(x

′
0, s3) · l′Sin
e the test fun
tions φi have 
ompa
t support in Ω, we 
an use formula (16) of Lemma 2.1 (orformula (22) of Remark 2.5) for the 3D to 2D asymptoti
 behavior of the view fa
tor. Thus we dedu
e

∫

Γǫ,i

∫

Γǫ,i

(Tφ)0(x3, s3)F (s, x)dsdx =

∫

γǫ,i

∫

γǫ,i

F 2D(s′, x′)

∫ L3

0
(Tφ)0(x3, x3)dx3

−1

2

∫

γǫ,i

∫

γǫ,i

F 2D(s′, x′)|x′ − s′|2
∫ L3

0

∂φ0

∂x3
(x′0, x3)

∂T0

∂x3
(x′0, x3)dx3 + |γǫ,i|2O(ǫp−1),with 0 < p < 3. Then, sin
e |γǫ,i| = ǫ|γ|,

1

ǫ

(∫

Γǫ,i

(Tφ)0(x3, x3)ds−
∫

Γǫ,i

∫

Γǫ,i

(Tφ)0(x3, s3)F (s, x)dsdx

)

=
1

2ǫ

∫

γǫ,i

∫

γǫ,i

F 2D(s′, x′)|x′ − s′|2
∫ L3

0

∂φ0

∂x3
(x′0, x3)

∂T0

∂x3
(x′0, x3)dx3 + |γ|2O(ǫp).

(39)



Homogenization of a Heat Transfer Problem 14A similar 
omputation, taking into a

ount the various symmetry properties of the view fa
tor, yields
1

ǫ

(∫

Γǫ,i

ǫ(Tφ)1(x, x)ds −
∫

Γǫ,i

∫

Γǫ,i

ǫ(Tφ)1(x, s)F (s, x)dsdx

)
= O(ǫ3), (40)and

1

ǫ

(∫

Γǫ,i

ǫ2(Tφ)2(x, x)ds −
∫

Γǫ,i

∫

Γǫ,i

ǫ2(Tφ)2(x, s)F (s, x)dsdx

)

= ǫ

(∫ L3

0

∫

γǫ,i

φ1(x
′
0,
s′

ǫ
, x3)

[
T1(x

′
0,
s′

ǫ
, x3) −

∫

γǫ,i

T1(x
′
0,
x′

ǫ
, x3)F

2D(s′, x′)dx′

]
ds′dx3

+

∫ L3

0

∫

γǫ,i

(∇x′φ0(x
′
0, x3) · l′)∇x′T0(x

′
0, x3) ·

[
l′ −

∫

γǫ,i

h′F 2D(s′, x′)dx′

]
ds′dx3

+

∫ L3

0

∫

γǫ,i

∇x′φ0(x
′
0, x3) · l′

[
T1(x

′
0,
s′

ǫ
, x3) −

∫

γǫ,i

T1(x
′
0,
x′

ǫ
, x3)F

2D(s′, x′)dx′

]
ds′dx3

+

∫ L3

0

∫

γǫ,i

φ1(x
′
0,
s′

ǫ
, x3)∇x′T0(x

′
0, x3) ·

[
l′ −

∫

γǫ,i

h′F 2D(s′, x′)dx′

]
ds′dx3

)
+ O(ǫ3).

(41)
In (40) and (41), we do not give the expli
it form of the remainder terms (in
luding the di�usive term
oming from the 3D to 2D limit in the view fa
tor) whi
h are negligible after res
aling and summationover all 
ells as soon as they are of order O(ǫq) with q > 2.Thus Lemma 3.2, the 
hanges of variables y′ = x′/ǫ and z′ = s′/ǫ in (39), (40), (41) and summingover all 
ells, yields

σ

ǫ




N(ǫ)∑

i=1

∫

Γǫ,i

Tǫ(x)φǫ(x)dx−
∫

Γǫ,i

∫

Γǫ,i

Tǫ(x)φǫ(s)F (s, x)dsdx


 = arad

0 + O(ǫp−2) (42)with
arad

0 =
σ

|Λ|

(
1

2

∫

Ω

∂φ0

∂x3
(x)

∂T0

∂x3
(x)dx

∫

γ

∫

γ
F 2D(z′, y′)|z′ − y′|2dy′dz′

+

∫

Ω
∇x′φ0(x) ·

∫

γ

(
h′ ⊗ h′ −

∫

γ
h′ ⊗ l′F 2D(z′, y′)dz′

)
dy′∇x′T0(x)dx

+

∫

Ω
∇x′T0(x) ·

∫

γ
φ1(x, y

′)
(
y′ −

∫

γ
z′F 2D(z′, y′)dz′

)
dy′dx

+

∫

Ω
∇x′φ0(x) ·

∫

γ
T1(x, y

′)
(
y′ −

∫

γ
z′F 2D(z′, y′)dz′

)
dy′dx

+

∫

Ω

∫

γ

∫

γ
(δ(y′ − z′) − F 2D(y′, z′))T1(x, z

′)φ1(x, y
′)dz′dy′dx

)

(43)
where δ is the Dira
 mass and |Λ| is the surfa
e measure of Λ. Remark that the last term in (43) 
analso be written

∫

γ

∫

γ
(δ(y′ − z′) − F 2D(y′, z′))T1(x, z

′)φ1(x, y
′)dz′dy′ =

∫

γ
φ1(x, y

′)
(
(Id− ζ2D)T1

)
(x, y′)dy′.Remark 3.4. As already said, in the spirit of our proof we should also 
ompute the next order term

arad
1 in the asymptoti
 expansion aRad

ǫ = arad
0 + ǫarad

1 + O(ǫ2). The 
omputation of arad
1 is tediousand require to 
arry the expansions of Tǫ and φǫ to one more order in ǫ, a formidable task that is
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omputations 
an be found in [4℄ for a 2D-
on�guration). Fortunately, theradiation term 
ontributes merely to the boundary 
ondition for the 
ell problem in the solid part ΛSand does not play any role for the 
ell problem in the �uid part ΛF . Sin
e the �rst-order terms a1, L1are used to dedu
e the �uid 
ell problem, it is perfe
tly legitimate not to 
ompute arad
1 .Step 3 : Identi�
ation of the limit variational formulationsThe zero-th order ǫ0-term of (31) is

a0(T0, T1, φ0, φ1) = L0(φ0, φ1)whi
h is equivalent to
∫

Ω

∫

ΛS

KS(x, y′)(∇xT0(x) + ∇y′T1(x, y
′) · (∇xφ0(x) + ∇y′φ1(x, y

′))dy′dx

+

∫

Ω

∫

ΛF

V (x, y′) · ∇xT0(x)φ0(x)dy
′dx

+
σ

2

∫

Ω

∂φ0

∂x3
(x)

∂T0

∂x3
(x)dx

∫

γ

∫

γ
F 2D(z′, y′)|z′ − y′|2dy′dz′

+ σ

∫

Ω
∇x′T0(x) ·

∫

γ
φ1(x, y

′)
(
y′ −

∫

γ
z′F 2D(z′, y′)dz′

)
dy′dx

+ σ

∫

Ω
∇x′φ0(x) ·

∫

γ
T1(x, y

′)
(
y′ −

∫

γ
z′F 2D(z′, y′)dz′

)
dy′dx

+ σ

∫

Ω
∇x′φ0(x) ·

∫

γ

(
h′ ⊗ h′ −

∫

γ
h′ ⊗ l′F 2D(z′, y′)dz′

)
∇x′T0(x)dy

′dx

+ σ

∫

Ω

∫

γ

∫

γ
(δ(y′ − z′) − F 2D(y′, z′))T1(x, z

′)φ1(x, y
′)dz′dy′dx

= |ΛS |
∫

Ω
f(x)φ0(x)dx

(44)
We re
ognize in (44) the variational formulation of the so-
alled two-s
ale limit problem whi
h is a
ombination of the homogenized and 
ell problems (in ΛS only).We re
over the 
ell problem in ΛS by taking φ0 = 0 in the limit of the variational formulation (44)

∫

Ω

∫

ΛS

KS(x, y′)(∇xT0(x) + ∇y′T1(x, y
′)) · ∇y′φ1(x, y

′)dy′dx

+ σ

∫

Ω
∇x′T0(x) ·

∫

γ
φ1(x, y

′)(y′ −
∫

γ
z′F 2D(z′, y′)dz′)dy′dx

+ σ

∫

Ω

∫

γ

∫

γ
(δ(y′ − z′) − F 2D(y′, z′))T1(x, z

′)φ1(x, y
′)dz′dy′dx = 0 (45)The solution T1 of the above variational formulation is given by (28) in ΛS where ωj ≡ ωS

j (x, y′), for
1 ≤ j ≤ 3, are the solutions of the 
ell problems in the 2D solid media ΛS





−divy′P
[
KS(x, y′)(ej + ∇y′ωS

j (y′))
]

= 0 in ΛS

−P
[
K(x, y′)(ej + ∇y′ωS

j (y′))
]
· n = σ(Id− ζ2D)(ωS

j (y′) + yj) on γ
y′ 7→ ωS

j (y′) is Λ- periodi
. (46)Remark 3.5. As already said, the ma
ros
opi
 variable x plays the role of a parameter in (46). There-fore, for the sake of notational simpli
ity we shall often forget the dependen
e on x for the solutions
ωj of the 
ell problems.



Homogenization of a Heat Transfer Problem 16To re
over the homogenized problem we now substitute φ1 by 0 in (44). We obtain
∫

Ω

∫

ΛS

3∑

k,j=1

KS(x, y′)(∇y′ωk(y
′) + ek) · (∇y′ωj(y

′) + ej)
∂T0

∂xk
(x)

∂φ0

∂xj
(x)dy′dx

+

∫

Ω

∫

ΛF

3∑

k=1

VK(x, y′)
∂T0

∂xk
(x)φ0(x)dy

′dx

+
σ

2

∫

Ω

∂φ0

∂x3
(x)

∂T0

∂x3
(x)dx

∫

γ

∫

γ
F 2D(z′, y′)|z′ − y′|2dy′dz′

+ σ

∫

Ω

∫

γ

3∑

k,j=1

(Id− ζ2D)(ωk(y
′) + yk)(ωj(y

′) + yj)
∂T0

∂xk
(x)

∂φ0

∂xj
(x)dy′dx

= |ΛS |
∫

Ω
f(x)φ0(x)dx (47)whi
h is the variational formulation of the homogenized problem (25) where K∗ and V ∗ are given bythe formulas of Proposition 3.1.We now turn to the �rst order ǫ1-term of (31) whi
h yields the 
ell problem in ΛF . Indeed, up tothis point, the zero-th order term of (31) has given the 
ell problem in ΛS, as well as the homogenizedproblem for T0 in the domain Ω. Nonetheless, as we already said in Remark 3.3, we want to 
omputeeverywhere the 
orre
tor T1 of the solution Tǫ, not merely in the solid part. Therefore, we look at thenext, ǫ1-order term of (31)

a1(T0, T1, T2, φ0, φ1, φ2) = L1(φ0, φ1, φ2)where we shall keep only the terms 
oming from the �uid part (those 
oming from the solid part will
ontribute to the determination of T2 whi
h we do not pursue here). It is equivalent to
∫

Ω

∫

ΛS

KS(x, y′)
[ (

∇xT1(x, y
′) + ∇y′T2(x, y

′)
)
·
(
∇xφ0(x) + ∇y′φ1(x, y

′)
)

+
(
∇xφ1(x, y

′) + ∇y′φ2(x, y
′)
)
·
(
∇xT0(x) + ∇y′T1(x, y

′)
) ]
dy′dx

+

∫

Ω

∫

ΛF

KF (x, y′)
(
∇xT0(x) + ∇y′T1(x, y

′)
)
·
(
∇xφ0(x) + ∇y′φ1(x, y

′)
)
dy′dx

+

∫

Ω

∫

ΛF

V (x, y′) ·
(
∇xT1(x, y

′)φ0(x) + ∇xT0(x)φ1(x, y
′) + ∇y′T1(x, y

′)φ1(x, y
′)
)
dy′dx

+ arad
1

=

∫

Ω

∫

ΛS

f(x)φ1(x, y
′)dy′dx

(48)
Note that, by virtue of Lemma 3.2, the approximation of an integral on ΩS,F

ǫ by a double integral on
Ω × ΛS,F is of order ǫ2 and thus does not intera
t with the �rst order ǫ1-term of (31).In (48) we take φ0 ≡ 0 and φ2 ≡ 0 everywhere, and φ1 = 0 in ΛS only. It thus be
omes thevariational formulation of

{
−divy′P

[
KF (x, y′)(∇T0 + ∇y′T1)

]
+ V (x, y′) · (∇xT0 + ∇y′T1) = 0 in ΛF ,
T1 is 
ontinuous through γ. (49)



Homogenization of a Heat Transfer Problem 17Therefore, the solution T1 of (49) is given by (28) in ΛF where ωj ≡ ωF
j (x, y′), for 1 ≤ j ≤ 3, are thesolutions of the 
ell problems in ΛF





−divy′P
[
KF (x, y′)(ej + ∇y′ωF

j (y′))
]
+ V (x, y′) · (ej + ∇y′ωF

j (y′)) = 0 in ΛF

ωF
j = ωS

j on γ
y′ 7→ ωF

j (y′) is Λ-periodi
. (50)Combining (46) and (50), we get (27). �Lemma 3.1. Ea
h of the 
ell problems (27) admits a unique solution, up to a 
onstant, in H1
#(Λ).Proof First, we re
all that ea
h 
ell problem in Λ is de
oupled into two independents 
ell problems,(46) in ΛS with a radiative boundary 
ondition and (50) in ΛF with a Diri
hlet boundary 
ondition.For φ ∈ H1

#(ΛS), the variational formulation of (46) is given by
∫

ΛS

KS(x, y′)
(
∇y′ωS

i (y′) + ei
)
· ∇y′φ(y′) +

∫

γ
(Id− ζ2D)

(
ωS

i (y′) + y′i
)
φ(y′) = 0. (51)Using (11), we dedu
e that the bilinear form of (51) is 
oer
ive on H1

#(ΛS)/R

a(φ, φ) =

∫

ΛS

KS∇y′φ · ∇y′φ+

∫

γ
(Id− ζ2D)φφ ≥ C‖∇yφ‖L2

#
(ΛS) ≡ C‖φ‖H1

#
(ΛS)/R

. (52)Furthermore, sin
e (12) implies that (51) holds true when the test fun
tion φ is a 
onstant, the Fredholmalternative (see [31℄) yields existen
e and uniqueness in H1
#(ΛS)/R (i.e., up to a 
onstant) of the 
ellproblem (46) solution.The existen
e of a unique solution inH1

#(ΛF ) of the �uid 
ell problems (50), with a non-homogeneousDiri
hlet boundary 
ondition, is 
ompletely standard for this simple 
onve
tion-di�usion equation (notethat, for our geometry in Figure 2, the periodi
 boundary 
ondition does not appear in the �uid 
ell
ΛF ). Of 
ourse, sin
e ωS

j is de�ned up to a 
onstant, so is ωF
j , but with the same 
onstant. �We re
all a 
lassi
al lemma used in the proof of Proposition 3.1.Lemma 3.2. For a smooth fun
tion f and any integer p ≥ 0 we have

i.

∫

γǫ,i

f(
x′

ǫ
)(x′k − x′0,k)

pdx′ = ǫ1+p

∫

γ
f(y′)(y′k − y′0,k)

pdy′

ii. ǫ2
N(ǫ)∑

i=1

∫ L3

0
f(x′0,i, x3)dx3 =

1

|Λ|

∫

Ω
f(x)dx+ O(ǫ2)

iii.

∫

ΩS,F
ǫ

f(x,
x′

ǫ
)dx =

1

|Λ|

∫

Ω

∫

ΛS,F

f(x, y′)dy′dx+ O(ǫ2)Proof The �rst formula is immediate by a simple 
hange of variables. For the se
ond one, we performa Taylor expansion of f(x′) (whi
h is assumed to be C2) around x′0,i the 
enter of mass of ea
h 
ell Λǫ,i

f(x′, x3) = f(x′0,i, x3) + (x′ − x′0,i)∇x′f(x′0,i, x3) + O(ǫ2) (53)whi
h be
omes by integration in Λǫ,i∫

Λǫ,i

f(x′, x3)dx
′ = ǫ2|Λ|f(x′0,i, x3) + O(ǫ4)be
ause |Λǫ,i| = ǫ2|Λ| and ∫Λǫ,i

(x′ − x′0,i)dx
′ = 0. After summation, and integration between 0 and L3in x3, we obtain the desired result. The third formula is obtained by using again (53) to get

∫

ΩS,F
ǫ

f(x,
x′

ǫ
)dx =

N(ǫ)∑

i=1

∫

ΛS,F
ǫ,i

∫ L3

0
f(x′0,i, x3,

x′

ǫ
)dx′dx3 + O(ǫ2)and the �nal result is a 
onsequen
e of the �rst and se
ond formulas. �
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eThe results of the previous se
tion are only formal. They are based on the assumption that thetemperature Tǫ admits the asymptoti
 expansion (23). Therefore, to 
omplete our study, we need arigorous mathemati
al justi�
ation of Proposition 3.1. Here, we prove a 
onvergen
e result using thetwo-s
ale 
onvergen
e method [1℄, [30℄.4.1 A priori estimatesTo use the two-s
ale 
onvergen
e method, we �rst need to establish some a priori estimates on theunknown Tǫ.Proposition 4.1. Let Tǫ be the solution of problem (8). There exists a 
onstant C, not depending on
ǫ, su
h that

‖Tǫ‖L2(Ω) + ‖∇Tǫ‖L2(ΩS
ǫ ) +

√
ǫ‖∇Tǫ‖L2(ΩF

ǫ ) +
√
ǫ‖Tǫ‖L2(Γǫ) ≤ C (54)Proof Taking φǫ = Tǫ in the variational formulation (29) of (8) we obtain

∫

ΩS
ǫ

KS
ǫ |∇Tǫ|2dx+ ǫ

∫

ΩF
ǫ

KF
ǫ |∇Tǫ|2dx+

∫

ΩF
ǫ

Vǫ · ∇TǫTǫdx+
σ

ǫ

∫

Γǫ

Gǫ(Tǫ)Tǫds =

∫

ΩS
ǫ

fTǫdx . (55)Sin
e divVǫ = 0 in ΩF
ǫ , Vǫ · n = 0 on Γǫ and Tǫ = 0 on ∂Ω, we have

∫

ΩF
ǫ

Vǫ · ∇TǫTǫ dx = 0.Furthermore, sin
e Gǫ is a positive operator (see Lemma 2.1)
∫

Γǫ

Gǫ(Tǫ)Tǫ ds ≥ 0.Consequently, by the 
oer
ivity of Kǫ, we obtain
‖∇Tǫ‖2

L2(ΩS
ǫ ) + ǫ‖∇Tǫ‖2

L2(ΩF
ǫ ) ≤ C‖Tǫ‖L2(ΩS

ǫ ). (56)Using Lemma 4.1 we dedu
e
‖∇Tǫ‖L2(ΩS

ǫ ) ≤ C. (57)On the other hand, using Lemma 4.3 and formula (56) yields
‖Tǫ‖2

L2(Ω) ≤ C
[
‖Tǫ‖2

L2(ΩS
ǫ )

+ ǫ2‖∇Tǫ‖2
L2(Ω)

]

≤ C
[
1 + ǫ‖∇Tǫ‖2

L2(ΩF
ǫ )

]

≤ C
[
1 + ‖Tǫ‖L2(Ω)

](sin
e ǫ < 1) from whi
h we dedu
e
‖Tǫ‖L2(Ω) ≤ C. (58)By (58), and using (56) again, we get

√
ǫ‖∇Tǫ‖L2(ΩF

ǫ ) ≤ C (59)Using (58) and (57) and Lemma 4.2 we dedu
e
√
ǫ‖Tǫ‖L2(Γǫ) ≤ C. (60)Combining (57), (58), (59) and (60) we obtain the desired a priori estimate (54). �



Homogenization of a Heat Transfer Problem 19Lemma 4.1. (see Lemma A.4 in [5℄) There exists a 
onstant C > 0, not depending on ǫ, su
h thatfor any fun
tion u ∈ H1(ΩS
ǫ ) satisfying u = 0 on ∂Ω ∩ ∂ΩS

ǫ

‖u‖L2(ΩS
ǫ ) ≤ C‖∇u‖L2(ΩS

ǫ ) .Lemma 4.2. (see Lemma 4.2.4 in [3℄) There exists a 
onstant C > 0, not depending on ǫ, su
h that
√
ǫ‖u‖L2(Γǫ) ≤ C‖u‖H1(ΩS

ǫ ) ∀u ∈ H1(ΩS
ǫ ). (61)Lemma 4.3. There exists a 
onstant C > 0, not depending on ǫ, su
h that

‖u‖L2(ΩF
ǫ ) ≤ C

[
‖u‖L2(ΩS

ǫ ) + ǫ‖∇u‖L2(Ωǫ)

]
∀u ∈ H1(Ω). (62)Proof The proof of Lemma 4.3 is similar to those of the previous lemmas so we 
ontent ourselves inbrie�y sket
hing it. We denote by Y = Λ× (0, 1) a 3D unit 
ell and similarly Y F,S = ΛF,S × (0, 1). Byan obvious res
aling and summation argument, it is enough to prove that there exists a 
onstant C,not depending on ǫ, su
h that

‖u‖2
L2(Y F ) ≤ C

[
‖u‖2

L2(Y S) + ‖∇u‖2
L2(Y )

]
∀u ∈ H1(Y ). (63)We prove (63) by 
ontradi
tion. Indeed, we suppose that it does not hold true, namely there exists asequen
e φn ∈ H1(Y ), for n ≥ 1, su
h that

‖φn‖L2(Y F ) = 1 and ‖φn‖2
L2(Y S) + ‖∇φn‖2

L2(Y ) <
1

n
. (64)Up to a subsequen
e, φn 
onverges weakly in H1(Y ) to a limit φ, and by Relli
h theorem this 
onver-gen
e is strong in L2(Y ). However, (64) tells us that ∇φn 
onverges strongly to 0 in L2(Y ). Therefore,

∇φ = 0 and φ is 
onstant in Y . On
e again, (64) implies that this 
onstant is zero in Y S but this is a
ontradi
tion with the fa
t that ‖φ‖L2(Y F ) = limn ‖φn‖L2(Y F ) = 1. �4.2 Two s
ale 
onvergen
eIn this se
tion we �rst re
all the notion of two-s
ale 
onvergen
e [1℄, [30℄. Here, sin
e there is noperiodi
ity in the third spa
e dire
tion, we slightly modify the de�nition of two-s
ale 
onvergen
e (these
hanges do not a�e
t the proofs in any essential way). Se
ond, we prove a rigorous homogenizationresult, using the two-s
ale 
onvergen
e method, to 
on�rm the result obtained in the previous se
tion.De�nition 4.1. A bounded sequen
e uǫ in L2(Ω) is said to two-s
ale 
onverge to a fun
tion u0(x, y
′) ∈

L2(Ω × Λ) if there exists a subsequen
e still denoted by uǫ su
h that
lim
ǫ→0

∫

Ω
uǫ(x)ψ(x,

x′

ǫ
)dx =

1

|Λ|

∫

Ω

∫

Λ
u0(x, y

′)ψ(x, y′)dxdy′ (65)for any Λ-periodi
 test fun
tion ψ(x, y′) ∈ L2(Ω;C#(Λ)).This notion of "two-s
ale 
onvergen
e" makes sense be
ause of the next 
ompa
tness theorem [1℄,[30℄.Theorem 4.1. From ea
h bounded sequen
e uǫ in L2(Ω), we 
an extra
t a subsequen
e and there existsa limit u0(x, y
′) ∈ L2(Ω × Λ) su
h that this subsequen
e two-s
ale 
onverges to u0.



Homogenization of a Heat Transfer Problem 20The extension of Theorem 4.1 to bounded sequen
es in H1(Ω) is given next.Proposition 4.2. From ea
h bounded sequen
e uǫ in H1(Ω), we 
an extra
t a subsequen
e and thereexist two limits u0 ∈ H1(Ω) and u1(x, y
′) ∈ L2(Ω;H1

#(Λ)) su
h that, for this subsequen
e, uǫ 
onvergesweakly to u0 in H1(Ω) and ∇uǫ two-s
ale 
onverges to ∇xu0(x) + ∇y′u1(x, y
′).Two-s
ale 
onvergen
e 
an be extended to sequen
es de�ned on periodi
 surfa
es [2℄, [29℄.Proposition 4.3. For any sequen
e uǫ in L2(Γǫ) su
h that

ǫ

∫

Γǫ

|uǫ|2dx ≤ C, (66)there exist a subsequen
e, still denoted uǫ, and a limit fun
tion u0(x, y
′) ∈ L2(Ω;L2

#(γ)) su
h that uǫtwo-s
ale 
onverges to u0 in the sense
lim
ǫ→0

ǫ

∫

Γǫ

uǫ(x)ψ(x,
x′

ǫ
)dx =

1

|Λ|

∫

Ω

∫

γ
u0(x, y

′)ψ(x, y′)dxdy′ (67)for any Λ-periodi
 test fun
tion ψ(x, y′) ∈ L2(Ω;C#(γ)).Remark 4.1. If uǫ is a bounded sequen
e in H1(Ωǫ), then the uniform bound (66) holds true. It isthen easy to 
he
k that the two di�erent two-s
ale limits u0 given by Propositions 4.2 and 4.3 
oin
ide[2℄.Our main results in this se
tion is the following.Theorem 4.2. Let Tǫ be the sequen
e of solutions of (8). Let T0(x) be the solution of the homogenizedproblem (25) and T1(x, y
′) be the �rst 
orre
tor de�ned by (28). Then Tǫ two-s
ale 
onverges to T0and χS

ǫ ∇Tǫ two-s
ale 
onverges to χS(y′)(∇xT0(x) + ∇y′T1(x, y
′)) where χS

ǫ (x) = χS(x′/ǫ) is the
hara
teristi
 fun
tion of ΩS
ǫ and χS(y′) that of ΛS.Proof The a priori estimate (54) implies that, up to a subsequen
e, Tǫ two-s
ale 
onverges to afun
tion T0 ∈ H1

0 (Ω) and χS
ǫ ∇Tǫ two-s
ale 
onverges to χS(y′)(∇xT0(x) + ∇yT1(x, y

′)) where T1 ∈
L2(Ω;H1

#(Λ)). Furthermore, Tǫ two-s
ale 
onverges to T0 on the periodi
 surfa
e Γǫ, in the sense ofProposition 4.3.Although we use the same notations, we still have to show that T0 is a solution of the homogenizedproblem (25) and that T1 is the �rst 
orre
tor de�ned by (28). Convergen
e of the entire sequen
e(and not merely of an extra
ted subsequen
e) will follow from the uniqueness of the solution of (25).In a �rst step, we 
ompute the 
orre
tor T1 in terms of ∇xT0 by 
hoosing the test fun
tion φǫ(x) =

ǫφ1(x,
x′

ǫ
), where φ1(x, y

′) is any smooth fun
tion, 
ompa
tly supported in x and Λ-periodi
 in y′, inthe variational formulation (29) whi
h be
omes (using the self-adjoint 
hara
ter of Gǫ)
∫

ΩS
ǫ

KS
ǫ ∇Tǫ · ∇y′φ1 + σ

∫

Γǫ

TǫGǫ(φ1) = o(1) (68)where, thanks to the a priori estimate (54), o(1) is a small remainder term going to 0 with ǫ. By virtueof a lower order trun
ation of formula (15) in Lemma 2.1, the radiative operator 
an be approximatedas
Gǫ(φ1) = (Id− ζǫ)(φ1) = (Id− ζ2D

ǫ )(φ1) + O(ǫ2).Then, to pass to the two-s
ale limit in the radiative term, we rely on Lemma 4.4 below whi
h gives usa smooth periodi
 ve
tor-valued fun
tion θ(x, y′) su
h that




−divy′θ(x, y′) = 0 in ΛS ,
θ(x, y′) · n = (Id− ζ2D)φ1(x, y

′) on γ,
y′ → θ(x, y′) is Λ-periodi
.
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ompa
t support than φ1(x, y
′) with respe
t to x ∈ Ω. However,sin
e ζ2D

ǫ is an integral operator, we usually have a di�eren
e between the two terms below
ζ2D
ǫ

(
φ1(x,

x′

ǫ
)

)
6=
(
ζ2D(φ1(x, y

′))
)
(y′ =

x′

ǫ
).Therefore, we need to use a Taylor expansion of φ1

φ1(x,
x′

ǫ
) = φ1(x0,i,

x′

ǫ
) + (x′ − x′0,i) · ∇x′φ1(x0,i,

x′

ǫ
) + O(ǫ2),where x0,i = (x′0,i, x3) and x′0,i is the 
enter of mass of ea
h boundary γǫ,i, de�ned by (1). Then, thefollowing equality holds true

ζ2D
ǫ

(
φ1(x,

x′

ǫ
)

)
=
(
ζ2D(φ1(x0,i, y

′))
)
(y′ =

x′

ǫ
) + ǫ

(
ζ2D(y′ · ∇x′φ1(x0,i, y

′))
)
(y′ =

x′

ǫ
) + O(ǫ2).Then, we 
an rewrite the radiative term in (68) as

σ

∫

Γǫ

TǫGǫ(φ1) = σ

∫

Γǫ

Tǫθ(x0,i,
x′

ǫ
)·n+σǫ

∫

Γǫ

Tǫ

(
(Id−ζ2D)(y′ ·∇x′φ1(x0,i, y

′))
)
(y′ =

x′

ǫ
)+O(ǫ). (69)We 
an pass to the two-s
ale limit in the se
ond term in the right hand side of (69) by applyingProposition 4.3 (repla
ing y′ · ∇x′φ1(x0,i, y

′) by the suitable two-s
ale test fun
tion y′ · ∇x′φ1(x, y
′) upto another O(ǫ) error). For the �rst term, we use a similar Taylor expansion for θ

σ

∫

Γǫ

Tǫθ(x0,i,
x′

ǫ
) · n = σ

∫

Γǫ

Tǫθ(x,
x′

ǫ
) · n− ǫσ

∫

Γǫ

Tǫ

(
y′ · ∇x′θ(x, y′)

)
(y′ =

x′

ǫ
) · n+ O(ǫ)

= σ

∫

ΩS
ǫ

div

(
Tǫθ(x,

x′

ǫ

)
− ǫσ

∫

Γǫ

Tǫ

(
y′ · ∇x′θ(x, y′)

)
(y′ =

x′

ǫ
) · n+ O(ǫ).(70)For the se
ond integral in (70) we 
an pass to the two-s
ale limit by another appli
ation of Proposition4.3. Con
erning the �rst integral, we develop

div

(
Tǫ(x)θ(x,

x′

ǫ
)

)
= ∇Tǫ(x) · θ(x,

x′

ǫ
) + Tǫ(x)(divxθ)(x,

x′

ǫ
),and we 
an pass to the two-s
ale limit, thanks to Proposition 4.2. All in all, after some integration byparts, and re
alling that ker(Id− ζ2D

ǫ ) = R, we get
lim
ǫ→0

σ

∫

Γǫ

TǫGǫ(φ1) =
σ

|Λ|

∫

Ω

∫

ΛS

(
θ(x, y′) · (∇T0(x) + ∇y′T1(x, y

′)) + T0(x)divxθ(x, y
′)
)
dy′dx

+
σ

|Λ|

∫

Ω

∫

γ
T0(x)

(
(Id− ζ2D)(y′ · ∇x′φ1(x, y

′)) − y′ · ∇x′θ(x, y′)
)
dy′dx

=
σ

|Λ|

∫

Ω

∫

γ
θ(x, y′) · n

(
T1(x, y

′) + y′ · ∇x′T0(x)
)
dy′dx

=
σ

|Λ|

∫

Ω

∫

γ
(Id− ζ2D)(φ1(x, y

′))
(
T1(x, y

′) + y′ · ∇x′T0(x)
)
dy′dx.Therefore, the two-s
ale limit of (68) is

∫

Ω

∫

ΛS

KS(x, y′)(∇xT0(x) + ∇y′T1(x, y
′)) · ∇y′φ1(x, y

′)dy′dx

+ σ

∫

Ω

∫

γ
(Id− ζ2D)φ1(x, y

′)
(
T1(x, y

′) + y′ · ∇x′T0(x)
)
dy′dx = 0
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h is pre
isely the variational formulation (45) for T1. Therefore, we have proved that
T1(x, y

′) =

3∑

k=1

∂T0

∂xk
(x)ωk(y

′) in Ω × ΛS .Remark that our 
onvergen
e proof does not justify formula (28) for T1(x, y
′) in the �uid part Ω×ΛF .Remark 4.2. The �rst step of our proof (whi
h gives formula (28) for T1(x, y

′)) was missing in theproof of Theorem 4.6 in [3℄. Our above argument works also in the simpler 2D setting of [3℄ and isthus �lling this gap.In a se
ond step, we re
over the homogenized problem for T0 by 
hoosing another test fun
tion
φǫ(x) in the variational formulation (29) given by

φǫ(x) = φ0(x) + ǫφ1(x,
x′

ǫ
) with φ1(x, y

′) =

3∑

k=1

∂φ0

∂xk
(x)ωk(y

′)where φ0 ∈ C∞
c (Ω) and ωj are solutions of the 
ell problems (27). The variational formulation (29)be
omes

∫

ΩS
ǫ

KS
ǫ ∇Tǫ · (∇xφ0 + ∇y′φ1) + ǫ

∫

ΩF
ǫ

KF
ǫ ∇Tǫ · (∇φ0 + ∇y′φ1)

+

∫

ΩF
ǫ

Vǫ · ∇Tǫ(φ0 + ǫφ1) +
σ

ǫ

∫

Γǫ

Gǫ(Tǫ)(φ0 + ǫφ1) =

∫

ΩS
ǫ

fφ0 + o(1) (71)where o(1) is a small remainder term going to 0 with ǫ. Passing to the two-s
ale limit in all terms,ex
ept the radiative one, is standard (see [1℄ if ne
essary). Therefore, we fo
us only on the radiativeterm
σ

ǫ

∫

Γǫ

Gǫ(Tǫ)(φ0 + ǫφ1) =
σ

ǫ

∫

Γǫ

TǫGǫ(φ0 + ǫφ1) (72)for whi
h we generalize an argument of [3℄. We write a Taylor expansion of φǫ, with respe
t tothe ma
ros
opi
 variable only, around the 
enter of mass x0,i = (x′0,i, x3) of ea
h boundary γǫ,i (for
on
iseness we drop the index i in the sequel)
φǫ(x) = φ0(x0) + ∇x′φ0(x0) · (x′ − x′0) + ǫφ1(x0,

x′

ǫ
) + ǫ∇x′φ1(x0,

x′

ǫ
) · (x′ − x′0)

+
1

2
∇x′∇x′φ0(x0)(x

′ − x′0) · (x′ − x′0) + O(ǫ3).We go up to se
ond order in this Taylor expansion sin
e, upon dividing by ǫ as in (72) and summingover all boundaries γǫ,i, they will have a non-zero limit a

ording to Proposition 4.3. Re
all that thesolution of the 
ell problem ωS
3 in the x3 dire
tion is a 
onstant in ΛS (see Remark 3.2): we 
an 
hoosethis 
onstant to be zero so that ωS

3 (y′) = 0 in ΛS and thus on the boundary γ too. Therefore, in theboundary integral (72) we 
an write that the test fun
tion φ1 is just
φ1(x, y

′) =

2∑

k=1

∂φ0

∂xk
(x)ωk(y

′) on γ,without any 
ontribution in the x3 dire
tion. Thus, the radiation term is given by
1

ǫ
Gǫ(φ0 + ǫφ1)(x) =

1

ǫ
(Id− ζǫ)(φ0 + ǫφ1)(x) = ǫ

(
ψ0,ǫ(x) + ψ1,ǫ(x) + ψ2,ǫ(x) + O(ǫ)

)
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ψ0,ǫ(x) =

1

ǫ2
(Id− ζǫ)φ0(x0)

ψ1,ǫ(x) =
1

ǫ

2∑

k=1

(Id− ζǫ)

[(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)
∂φ0

∂xk
(x0)

] (73)
ψ2,ǫ(x) = (Id− ζǫ)

[
1

2
∇x′∇x′φ0(x0) ·

(x′ − x′0)

ǫ
⊗ (x′ − x′0)

ǫ

+
2∑

k=1

∇x′

∂φ0

∂xk
(x0) ·

(
(x′ − x′0)

ǫ
ωk(

x′

ǫ
)

)]
.Remark 4.3. At this point, for simpli
ity we assume that the periodi
 di�usion 
oe�
ients KS,F andthe velo
ity V do not depend on x. Otherwise, this would add further terms in (73) 
orresponding tothe x derivatives of the 
ell solutions ωk. Our arguments would still work but we prefer to simplify theexposition.The term ψ0,ǫ is new 
ompared to the 2D setting in [3℄ (where it was vanishing). Furthermore, themain additional di�
ulty with respe
t to [3℄ is that we need to approximate the 3D view fa
tor in ζǫby the 2D view fa
tor whi
h is appearing in the homogenized limit. For this goal we rely on Lemma2.1. First, by virtue of (15), for any 0 < p < 3 we have

ψ0,ǫ(x) = − 1

2ǫ2
∂2φ0

∂x2
3

(x0)

∫

γǫ,i

F 2D(s′, x′)|x′ − s′|2ds′ + O(ǫp−2).Se
ond, by a lower order trun
ation of (15), and sin
e ωk does not depend on x3,
ψ1,ǫ(x) =

1

ǫ

2∑

k=1

∂φ0

∂xk
(x0)(Id− ζ2D

ǫ )

(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)
+ O(ǫ)and

ψ2,ǫ(x) =
1

2
∇x′∇x′φ0(x0) · (Id− ζ2D

ǫ )

(
(x′ − x′0)

ǫ
⊗ (x′ − x′0)

ǫ

)

+

2∑

k=1

∇x′

∂φ0

∂xk
(x0) · (Id− ζ2D

ǫ )

(
(x′ − x′0)

ǫ
ωk(

x′

ǫ
)

)
+ O(ǫ2).In order to re
over 
ontinuous fun
tions, we use the following Taylor expansions

∂φ0

∂xk
(x0) =

∂φ0

∂xk
(x) −∇x′

∂φ0

∂xk
(x) · (x′ − x′0) + O(ǫ2),

∂2φ0

∂x2
3

(x0) =
∂2φ0

∂x2
3

(x) + O(ǫ).
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ψ0,ǫ(x) = −1

2

∂2φ0

∂x2
3

(x)

∫

γǫ,i

F 2D(s′, x′)
|x′ − s′|2

ǫ2
ds′ + O(ǫp−2),

ψ1,ǫ(x) =
1

ǫ

2∑

k=1

(
∂φ0

∂xk
(x) −∇x′

∂φ0

∂xk
(x) · (x′ − x′0)

)
(Id− ζ2D

ǫ )

(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)
+ O(ǫ),

ψ2,ǫ(x) =
1

2
∇x′∇x′φ0(x) · (Id− ζ2D

ǫ )

(
(x′ − x′0)

ǫ
⊗ (x′ − x′0)

ǫ

)

+

2∑

k=1

∇x′

∂φ0

∂xk
(x) · (Id− ζ2D

ǫ )

(
(x′ − x′0)

ǫ
ωk(

x′

ǫ
)

)
+ O(ǫ).The leading term of ψ0,ǫ(x) is pre
isely an os
illating test fun
tion for two-s
ale 
onvergen
e

ψ0,ǫ(x) = ψ0

(
x,
x′

ǫ

)
+ O(ǫp−2) with ψ0(x, y

′) = −1

2

∂2φ0

∂x2
3

(x)

∫

γ
F 2D(z′, y′)|y′ − z′|2dz′. (74)The same is true for ψ2,ǫ(x) whi
h is also an os
illating test fun
tion for two-s
ale 
onvergen
e

ψ2,ǫ(x) = ψ2

(
x,
x′

ǫ

)
+ O(ǫ)with

ψ2(x, y
′) =

1

2
∇x′∇x′φ0(x) · (Id− ζ2D)

(
y′ ⊗ y′

)
+

2∑

k=1

∇x′

∂φ0

∂xk
(x) · (Id− ζ2D)

(
y′ωk(y

′)
)
.Rewriting the radiative term (72) as

σ

ǫ

∫

Γǫ

TǫGǫ(φ0 + ǫφ1) = σǫ

∫

Γǫ

Tǫ

(
ψ0,ǫ(x) + ψ1,ǫ(x) + ψ2,ǫ(x) + O(ǫ)

)
, (75)we 
an pass to the two-s
ale limit in the �rst and third term in the right hand side of (75) by appli
ationof Proposition 4.3. We obtain

lim
ǫ→0

σǫ

N(ǫ)∑

i=1

∫

Γǫ,i

ψ0,ǫTǫ =
−σ
2|Λ|

∫

Ω
T0(x)

∂2φ0

∂x2
3

(x)

∫

γ

∫

γ
F 2D(y′, z′)|y′ − z′|2dy′dz′dx. (76)and

lim
ǫ→0

σǫ

N(ǫ)∑

i=1

∫

Γǫ,i

ψ2,ǫTǫ =
σ

|Λ|

∫

Ω
T0(x)

∫

γ
ψ2(x, y

′)dy′dx = 0 (77)be
ause, by the se
ond property of Lemma 2.1, we have ∫γ ψ2(x, y
′)dy′ = 0.It remains to pass to the limit in the se
ond term of (75) involving ψ1,ǫ. Following [3℄ we usethe 
lassi
al tri
k of H-
onvergen
e [28℄ whi
h amounts to make a 
omparison with the variationalformulation of the 
ell problems (46) with the test fun
tion Tǫ

∂φ0

∂xk
(re
all that φ0 has 
ompa
t support).From (46), after res
aling and integration with respe
t to x3, we obtain for k = 1, 2

σ

∫

Γǫ

(Id− ζ2D
ǫ )

(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)(
Tǫ
∂φ0

∂xk

)
= −

∫

ΩS
ǫ

KS
ǫ

(
∇y′ωk(

x′

ǫ
) + ek

)
· ∇x′

(
Tǫ
∂φ0

∂xk

)
,
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h implies
ǫσ

∫

Γǫ

ψ1,ǫ(x)Tǫ(x) = −
2∑

k=1

∫

ΩS
ǫ

KS
ǫ

(
∇y′ωk(

x′

ǫ
) + ek

)
· ∇x′

(
Tǫ
∂φ0

∂xk

) (78)
− σǫ

2∑

k=1

∫

Γǫ

(Id− ζ2D
ǫ )

(
ωk(

x′

ǫ
) +

xk − x0,k

ǫ

)(
∇x′

∂φ

∂xk
(x) · x

′ − x′0
ǫ

)
Tǫ.It is now possible to pass to the two-s
ale limit in the right hand side of (78) and, summing up thoselimits, we dedu
e

lim
ǫ→0

σ

ǫ

∫

Γǫ

Gǫ(Tǫ)(φ0 + ǫφ1)

=
−σ
2|Λ|

∫

Ω
T0(x)

∂2φ0

∂x2
3

(x)

∫

γ

∫

γ
F 2D(y′, z′)|y′ − z′|2dy′dz′dx

− 1

|Λ|

2∑

k=1

∫

Ω

∫

ΛS

KS(ek + ∇y′ωk(y
′)) ·

(
∇x′(T0

∂φ0

∂xk
)(x) +

∂φ0

∂xk
(x)∇y′T1(x, y

′)

)
dy′dx

− σ

|Λ|

2∑

k=1

∫

Ω

∫

γ
(Id− ζ2D)(ωk + yk)y

′ · ∇x′
∂φ0

∂xk
T0dy

′dx

=
−σ
2|Λ|

∫

Ω
T0(x)

∂2φ0

∂x2
3

(x)

∫

γ

∫

γ
F 2D(y′, z′)|y′ − z′|2dy′dz′dx

− 1

|Λ|

∫

Ω

∫

ΛS

KS(∇x′T0 + ∇y′T1) · (∇x′φ0 + ∇y′φ1)dy
′dx−

∫

Ω
K∗T0∇x′∇x′φ0dx.

=

∫

Ω
K∗(x)∇xT0(x) · ∇xφ0(x)dx− 1

|Λ|

∫

Ω

∫

ΛS

KS(∇xT0 + ∇y′T1) · (∇xφ0 + ∇y′φ1)dy
′dx

(79)
The two last equalities in (79) hold true thanks to the following equivalent formula for the homogenized
ondu
tivity
K∗

j,k(x) =
1

|Λ|

[∫

ΛS

KS(x, y′)(ej + ∇y′ωS
j (x, y′)) · ekdy′ + σ

∫

γ
(Id− ζ2D)(ωS

j (x, y′) + yj)ykdy
′

]whi
h is obtained by a 
ombination of (26) and of the variational formulation of the 
ell problems.The two-s
ale limits of the other terms in the variational formulation (71) are easily obtained
lim
ǫ→0

∫

ΩS
ǫ

KS
ǫ ∇Tǫ · (∇xφ0 + ∇y′φ1)dx =

1

|Λ|

∫

Ω

∫

ΛS

KS(∇xT0 + ∇y′T1) · (∇xφ0 + ∇y′φ1)dy
′dx,

lim
ǫ→0

ǫ

∫

ΩF
ǫ

KF
ǫ ∇Tǫ · (∇xφ0 + ∇y′φ1)dx = 0,

lim
ǫ→0

∫

ΩF
ǫ

Vǫ · ∇Tǫ(φ0 + ǫφ1)dx = − lim
ǫ→0

∫

ΩF
ǫ

TǫVǫ · (∇xφ0 + ∇y′φ1)dx

= − 1

|Λ|

∫

Ω

∫

ΛF

T0 V (y′, x) · (∇xφ0 + ∇y′φ1)dy
′dx

=
1

|Λ|

∫

Ω

∫

ΛF

V (y′, x) · ∇xT0 φ0 dy
′dx,by integration by parts and our assumptions on the velo
ity V . Summing up all those terms we dedu
ethat the limit of the variational formulation (71) is, up to some integration by parts, the variationalformulation (47) of the homogenized problem. �



Homogenization of a Heat Transfer Problem 26Remark 4.4. In the 
ourse of the proof of Theorem 4.2 we use in an essential way the fa
t that theboundary 
ondition on ∂Ω is of Diri
hlet type. For example, it was 
ru
ial that the test fun
tion hada 
ompa
t support (at least in x3) to apply Lemma 2.1 on the 3D to 2D redu
tion of the view fa
tor.We do not know if the 
onvergen
e proof 
an be extended to the 
ase of Neumann boundary 
onditions.We now state and prove a te
hni
al result whi
h was required in the previous proof.Lemma 4.4. Let φ1(x, y
′) be a smooth fun
tion, 
ompa
tly supported in x ∈ Ω and Λ-periodi
 in y′.There exists at least one smooth ve
tor-valued fun
tion θ(x, y′) (with values in R2) su
h that





−divy′θ(x, y′) = 0 in ΛS ,
θ(x, y′) · n = (Id− ζ2D)φ1(x, y

′) on γ,
y′ → θ(x, y′) is Λ-periodi
. (80)Proof It is enough to look for a solution under the form θ(x, y′) = ∇y′η(x, y′). To solve the 2Dellipti
 equation for η (in H1

#(ΛS)/R), 
orresponding to (80), we just have to 
he
k the 
ompatibility
ondition of the data (or Fredholm alternative). By virtue of the se
ond property of Lemma 2.1 we
an 
he
k that, indeed,
∫

γ
(Id− ζ2D)φ1(x, y

′)dy′ =

∫

γ
φ1(x, y

′)dy′ −
∫

γ

∫

γ
F 2D(y′, s′)φ1(x, y

′)dy′ds′ = 0.There is no uniqueness of the solution θ(x, y′) to whi
h we 
an add any solenoidal �eld with zeronormal tra
e. �4.3 Strong 
onvergen
eOur main result, Theorem 4.2, gives only a weak 
onvergen
e (or two-s
ale 
onvergen
e) of the se-quen
es Tǫ and ∇Tǫ. The goal of our next result is to improve this weak 
onvergen
e into a strongone. As usual in homogenization theory it requires some additional smoothness assumptions. Morepre
isely, we need T1(x, x
′/ǫ) to belong to the spa
e H1(Ω) (but not to be uniformly bounded). Thisis true, of 
ourse, if T1(x, y
′) is a smooth fun
tion of (x, y′). In view of formula (28) for T1, it is enoughthat either the homogenized solution T0(x) or the 
ell solutions ωk(y

′) be smooth. To establish ourstrong 
onvergen
e result we rely on the usual energy 
onvergen
e tri
k (as des
ribed in [1℄ in the
ontext of two-s
ale 
onvergen
e) whi
h is inspired from the notion of Γ-
onvergen
e [17℄.Theorem 4.3. Assuming that T1(x, y
′) is smooth enough and denoting by χS

ǫ the 
hara
teristi
 fun
-tion of the solid part ΩS
ǫ , the sequen
e (∇Tǫ(x) −∇T0(x) −∇y′T1(x,

x′

ǫ
)

)
χS

ǫ 
onverges strongly tozero in L2(Ω)d and the sequen
e (Tǫ(x) − T0(x)) 
onverges strongly to zero in L2(Ω).Proof We develop the "energy" of the di�eren
e Tǫ(x) − T0(x) − ǫT1(x,
x′

ǫ
) and we get, using theenergy equality (55)

∫

ΩS
ǫ

KS
ǫ

∣∣∣∣∇Tǫ(x) −∇T0(x) −∇y′T1(x,
x′

ǫ
)

∣∣∣∣
2

dx+ ǫ

∫

ΩF
ǫ

KF
ǫ

∣∣∣∣∇Tǫ(x) −∇T0(x) −∇y′T1(x,
x′

ǫ
)

∣∣∣∣
2

dx

+
σ

ǫ

∫

Γǫ

Gǫ

(
Tǫ(x) − T0(x) − ǫT1(x,

x′

ǫ
)

)(
Tǫ(x) − T0(x) − ǫT1(x,

x′

ǫ
)

)
dx =

∫

ΩS
ǫ

fǫ(x)Tǫ(x)dx

+

∫

ΩS
ǫ

KS
ǫ

∣∣∣∣∇T0(x) + ∇y′T1(x,
x′

ǫ
)

∣∣∣∣
2

dx+ ǫ

∫

ΩF
ǫ

KF
ǫ

∣∣∣∣∇T0(x) + ∇y′T1(x,
x′

ǫ
)

∣∣∣∣
2

dx

+
σ

ǫ

∫

Γǫ

Gǫ

(
T0(x) + ǫT1(x,

x′

ǫ
)

)(
T0(x) + ǫT1(x,

x′

ǫ
)

)
dx− 2

σ

ǫ

∫

Γǫ

Gǫ

(
T0(x) + ǫT1(x,

x′

ǫ
)

)
Tǫ(x)dx

−2

∫

ΩS
ǫ

KS
ǫ ∇Tǫ(x) ·

(
∇T0(x) + ∇y′T1(x

′,
x

ǫ
)
)
dx− 2ǫ

∫

ΩF
ǫ

KF
ǫ ∇Tǫ(x) ·

(
∇T0(x) + ∇y′T1(x,

x′

ǫ
)

)
dx

(81)
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oer
ivity 
ondition of KS,F
ǫ on the left hand side, as well as the positivity of the operator

Gǫ, and passing to the two s
ale limit in the right hand side of (81) we obtain an upper bound for
α lim

ǫ→0

∥∥(∇Tǫ −∇T0 −∇y′T1)χ
S
ǫ

∥∥2

L2(Ω)
+ α lim

ǫ→0
ǫ
∥∥(∇Tǫ −∇T0 −∇y′T1)χ

F
ǫ

∥∥2

L2(Ω)Then, a 
ombination of Lemmas 4.1 and 4.3 yields a bound for
lim
ǫ→0

‖Tǫ − T0 − ǫT1‖2
L2(Ω) .We now have to prove that these upper bounds are all zero, i.e., that the two-s
ale limit of the righthand side of (81) vanishes.Indeed, by virtue of (42) and (79) we have

lim
ǫ→0

∫

Γǫ

Gǫ

(
T0(x) + ǫT1(x,

x′

ǫ
)

)(
T0(x) + ǫT1(x,

x′

ǫ
)

)
dx

=
σ

|Λ|

(
1

2

∫

Ω

∂T0

∂x3
(x)

∂T0

∂x3
(x)dx

∫

γ

∫

γ
F 2D(z′, y′)|z′ − y′|2dy′dz′

+

∫

Ω

∫

γ

(
∇x′T0(x) · y + T1(x, y

′)
)
(Id− ζ2D)(T1(x, y

′) + ∇x′T0(x) · y)dy′dx

=

∫

Ω
K∗(x) |∇xT0(x)|2 dx− 1

|Λ|

∫

Ω

∫

ΛS

KS(x, y′)
∣∣∇xT0(x) + ∇y′T1(x, y

′)
∣∣2 dy′dxand

lim
ǫ→0

∫

Γǫ

Gǫ

(
T0(x) + ǫT1(x,

x′

ǫ
)

)
Tǫ(x)dx =

∫

Ω
K∗(x) |∇xT0(x)|2 dx

− 1

|Λ|

∫

Ω

∫

ΛS

KS(x, y′)
∣∣∇xT0(x) + ∇y′T1(x, y

′)
∣∣2 dy′dxPassing to the two s
ales limit in the right hand side of (81) yields

−
∫

Ω
K∗(x)∇xT0(x) · ∇xT0(x)dx+ θ

∫

Ω
f(x)T0(x)dxwhi
h is equal to zero thanks to the variational formulation of the homogenized problem (25). Hen
ethe result. �5 Non-linear 
aseAs already dis
ussed in Remark 2.2, the true physi
al problem involves a non-linear radiation operator,de�ned by formula (9) instead of (5). The study of the linear 
ase was a simplifying assumption inorder to rigorously prove the 
onvergen
e of the homogenization pro
ess. However, the formal methodof two-s
ale asymptoti
 expansion is perfe
tly valid in the non-linear 
ase too (see [3℄ and [20℄ ifne
essary). In this se
tion we give, without proofs, the homogenization result in the non-linear 
ase.When the radiation operator, de�ned by formula is given by (9) instead of (5), the non-linearequivalent of Proposition 3.1 is the following.



Homogenization of a Heat Transfer Problem 28Proposition 5.1. Under assumption (23) the leading term T0 is the solution of the homogenized prob-lem
{

−div(K∗(x, T 3
0 )∇T0(x)) + V ∗(x) · ∇T0(x) = θ f(x) in Ω

T0(x) = 0 on ∂Ω
(82)with the porosity fa
tor θ = |ΛS | / |Λ|, the homogenized 
ondu
tivity given by its entries, for j, k =

1, 2, 3,
K∗

j,k(x, T
3
0 ) =

1

|Λ|

[∫

ΛS

KS(x, y′)(ej + ∇yωj(y
′)) · (ek + ∇yωk(y

′))dy′

+ 4σT 3
0 (x)

∫

γ
G(ωk(y

′) + yk)(ωj(y
′) + yj)

+ 2σT 3
0 (x)

∫

γ

∫

γ
F 2D(s′, y′)|s′ − y′|2dy′ds′ δj3δk3

]and an homogenized velo
ity given by
V ∗

k =
1

|Λ|

∫

ΛF

V (x, y′) · ekdy′where (ωj(x, T
3
0 (x), y′)

)
1≤j≤3

are the solutions of the 
ell problems




−divyK
S(x, y′)(ej + ∇yω

S
j (y′)) = 0 in ΛS

−divyK
F (x, y′)(ej + ∇yω

F
j (y′)) + V (x, y′) · (ej + ∇yω

F
j (y′)) = 0 in ΛF

−KS(y′, x3)(ej + ∇yω
S
j (y′)) · n = 4σT 3

0 (x)G(ωS
j (y′) + yj) on γ

ωF
j (y′) = ωS

j (y′) on γ
y′ 7→ ωj(y

′) is Λ-periodi
, (83)and T1 is given by
T1(x, y

′) =
3∑

j=1

ωj(x, T
3
0 (x), y′)

∂T0

∂xj
(x). (84)The homogenized problem (82) is a non-linear 
onve
tion-di�usion model where the non-linearityappears only in the 
ondu
tivity tensor K∗ whi
h depends on the third power of the temperature. Asusual in homogenization, the 
ell problems are linearized, depending on the value of the ma
ros
opi
temperature at ea
h ma
ros
opi
 point x.6 Numeri
al resultsIn this se
tion we des
ribe some numeri
al experiments to study the asymptoti
 behaviour of the heattransfer model (8) in the non-linear 
ase, i.e., when the radiation operator is de�ned as in Remark2.2. Our goal is to show the e�
ien
y of our proposed homogenization pro
edure, to validate it by
omparing the re
onstru
ted solution of the homogenized model with the numeri
al solution of theexa
t model (8) for smaller and smaller values of ǫ and to exhibit a numeri
al rate of 
onvergen
ein terms of ǫ. While the 
omputations in [3℄ were restri
ted to the 2D setting, here we perform 3Dnumeri
al simulations of (8). All 
omputations have been done with the �nite element 
ode CAST3M[11℄ developed at the Fren
h Atomi
 and Alternative Energy Commission (CEA).



Homogenization of a Heat Transfer Problem 296.1 Changing variables for the numeri
al simulationUsually, in homogenization theory, we solve a problem in a �xed domain Ω with 
ells of size ǫ, whi
htends to 0 (see Figure 3). However, in pra
ti
e for our nu
lear rea
tor problem, the sizes of thegas 
ylinders and 
ell assemblies are �xed by manufa
turing 
onstraints. Therefore, following [3℄, wepro
eed di�erently: we �x the size of the periodi
al 
ell (independent of ǫ) and we in
rease the totalnumber of 
ells, i.e., the size of the global domain whi
h is of order ǫ−1. In other words, instead ofusing the ma
ros
opi
 spa
e variable x ∈ Ω, we use the mi
ros
opi
 spa
e variable y = x/ǫ. In this newframe of referen
e, all periodi
ity 
ells are of unit size and the 
omputational domain is ǫ−1Ω whi
h isin
reasing as ǫ goes to 0 (see Figure 4).

Figure 3: Standard homogenization in a �xed domain Ω

Figure 4: Res
aled pro
ess of homogenization with 
onstant periodi
ity 
ell and in
reasing domain
Ω̂ = ǫ−1ΩIf the �xed domain is denoted by Ω =
∏3

j=1(0, Lj), our res
aled 
omputational domain is Ω̂ =

ǫ−1Ω =
∏3

j=1(0, Lj/ǫ), where there exist integers Nj su
h that Lj/ǫ = Njℓj, for j = 1, 2 (so that onlyentire 
ells belong to Ω̂). For any fun
tion u(x) de�ned on Ω, we introdu
e the res
aled fun
tion û(y),de�ned on Ω̂ by
û(y) = u(ǫy) = u(x), (85)whi
h satis�es ∇yû(y) = ǫ(∇xu)(ǫy) = ǫ∇xu(x). All quantities de�ned in Ω̂ are denoted with a hat̂and, for simpli
ity, we drop the dependen
e on ǫ. For example, we de�ne the 
ondu
tivity tensor K̂ as

K̂(y) =

{
K̂S(y) = KS(ǫy, y′) in Ω̂S ,

K̂F (y) = ǫKF (ǫy, y′) in Ω̂F ,
(86)and the �uid velo
ity

V̂ (y) = ǫV (ǫy, y′) in Ω̂F . (87)



Homogenization of a Heat Transfer Problem 30We also de�ne Ω̂S , Ω̂F , Γ̂ and ∂Ω̂ by the same 
hange of variables relating Ω and Ω̂. In this new frameof referen
e, problem (8) be
omes




−div(K̂S∇T̂ǫ) = ǫ2f̂ in Ω̂S

−div(K̂F∇T̂ǫ) + V̂ · ∇T̂ǫ = 0 in Ω̂F

−K̂S∇T̂ǫ · n = −K̂F∇T̂ǫ · n+ σG(T̂ǫ
4
) on Γ̂

T̂ǫ = 0 on ∂Ω̂

T̂ǫ is 
ontinuous through Γ̂. (88)
The homogenized problem (82) be
omes

{
−div(K̂∗(T̂0

3
)∇T̂0) + ǫV̂ ∗ · ∇T̂0 = ǫ2θf̂ in Ω̂,

T̂0 = 0 on ∂Ω̂. (89)Furthermore, we also de�ne
T̂1(y) = ǫT1(ǫy, y

′) = ǫT1(x,
x′

ǫ
) =

3∑

i=1

∂T̂0

∂yi
(y)ωi(y

′) (90)where T̂1 is purposely s
aled as ǫ so that the ǫ-fa
tor disappears in the last equality of (90). Finally,the homogenization approximation Tǫ(x) ≃ T0(x) + ǫT1(x, x/ǫ) be
omes
T̂ǫ(y) ≃ T̂0(y) + T̂1(y). (91)Sin
e a fa
tor ǫ d

2 appears when 
hanging variables y = x/ǫ in the L2-norms, we 
ompute relative errorsbetween the exa
t and re
onstru
ted solutions in the sequel. The relative errors are invariant by our
hange of variables
∥∥∥Tǫ(x) − (T0(x) + ǫT1(x,

x

ǫ
))
∥∥∥

L2(Ω)

‖Tǫ(x)‖L2(Ω)

=

∥∥∥T̂ǫ(y) − (T̂0(y) + T̂1(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

(92)and
∥∥∥∇Tǫ(x) −∇(T0(x) + ǫT1(x,

x

ǫ
))
∥∥∥

L2(Ω)

‖∇Tǫ(x)‖L2(Ω)

=

∥∥∥∇T̂ǫ(y) −∇(T̂0(y) + T̂1(y))
∥∥∥

L2(bΩ)∥∥∥∇T̂ǫ(y)
∥∥∥

L2(bΩ)

. (93)6.2 Algorithm and 
omputational parametersWe �rst give our methodology for the numeri
al simulations of the homogenization pro
ess.1. Solve the 3 
ell problems (83) for a range of values of T̂0 (see Figure 5).2. Compute the homogenized 
ondu
tivity (as a fun
tion of temperature) and the homogenizedvelo
ity.3. Solve the homogenized problem (82) by a �xed point algorithm (see Figure 7).4. Compute the 
orre
tor T̂1(y) =

3∑

i=1

∂T̂0

∂yi
(y)ωi(y

′).5. Re
onstru
t an approximate solution: T̂0(y) + T̂1(y) (see Figure 7).



Homogenization of a Heat Transfer Problem 31We now give our 
omputational parameters for a referen
e 
omputation 
orresponding to ǫ = ǫ0 =
1
4 . The geometry 
orresponds to a 
ross-se
tion of a typi
al fuel assembly for a gas-
ooled nu
learrea
tor (see [20℄ for further referen
e). The domain is Ω̂ = ǫ−1Ω =

∏3
j=1(0, Lj/ǫ), with L3 = 0.025mand, for j = 1, 2, Lj/ǫ = Njℓj where N1 = 3, N2 = 4 and ℓ1 = 0.04m, ℓ2 = 0.07m. Ea
h periodi
ity
ell 
ontains 2 hollow 
ylinders (holes) (see Figure 1), the radius of whi
h is equal to 0.0035m. Theemissivity of the holes boundaries is equal to e = 1. The thermal sour
e f is set to zero (we refer to [21℄for other 
omputations, in
luding ones with f 6= 0). We enfor
e periodi
 boundary 
onditions in the x1dire
tion and non-homogeneous Diri
hlet boundary 
onditions in the other dire
tions whi
h are givenby T̂ǫ(y) = ǫ(3200y1 +400y2)+800 on the boundaries 
orresponding to y2 = 0, y2 = L2/ǫ, y3 = 0 and

y3 = L3/ǫ. This boundary 
ondition depends on ǫ, as a fun
tion of y, in su
h way that, as a fun
tionof x = ǫy, it is independent of ǫ.The physi
al values of the isotropi
 
ondu
tivity are 30Wm−1K−1 in the solid part and 0.3Wm−1K−1in the �uid part. Sin
e it is mu
h smaller in the �uid than in the solid, we de
ided to s
ale it by ǫ, see(3) and (86). In other words, the 
ondu
tivity tensor de�ned in (86) takes the values
K̂ =

{
30 Wm−1K−1 in Ω̂S,
ǫ
ǫ0

0.3 Wm−1K−1 in Ω̂F .On a similar token, the physi
al value of the �uid velo
ity (assumed to be 
onstant and parallel to the
ylinders axis) is 80ms−1. By the s
aling of (87), the numeri
al value of the velo
ity is
V̂ =




0
0
ǫ
ǫ0

80


ms−1.Remark that it is only for the referen
e 
omputation ǫ0 = 1/4 that K̂ and V̂ are equal to their physi
alvalues. While the res
aled 
oe�
ients K̂F (y) and V̂ (y) are varying with ǫ, the original 
oe�
ients

KF (x) and V (x) are independent of ǫ. The fa
t that the numeri
al values of K̂F and V̂ are not thephysi
al ones for ǫ 6= ǫ0 = 1/4 is not a problem, sin
e our 
onvergen
e study (as ǫ goes to 0) is purelya numeri
al veri�
ation of our mathemati
al result.As explained in Se
tion 6.1 we shall 
he
k numeri
ally the 
onvergen
e of the homogenizationpro
ess when ǫ goes to zero, or more pre
isely when the number of 
ells goes to in�nity. We thus
ompare the solution T̂ǫ of (8) (obtained by a 
ostly numeri
al 
omputation) with the homogenizedre
onstru
ted solution T̂0(y)+T̂1(y) (whi
h is mu
h 
heaper to 
ompute). Furthermore, we shall obtainspeed of 
onvergen
es for the relative errors (92) and (93) plotted in Figures 11 and 12. To avoid anex
essive 
omputational burden, we have 
hosen periodi
 boundary 
ondition in the x1 dire
tion whi
himplies that it is not ne
essary to add 
ells in the x1 dire
tion. Therefore, N1 = 3 is �xed and wesimply add 
ells in the x2 dire
tion, in
reasing N2 from 4 to 10 with a unit step. In other words, wede�ne
ǫ =

1

N2
.Note that the verti
al size of Ω̂ is L3/ǫ, whi
h is thus in
reasing as ǫ goes to zero.All 
omputations are performed with re
tangular Q1 �nite elements (4 nodes in 2D, 8 nodes in 3D).A boundary integral method is used for the radiative term (whi
h involves a dense matrix 
oupling allnodes on the surfa
e en
losing a �uid part). The typi
al number of nodes for the 2D 
ell problem is

1 027 (from whi
h 72 are on the radiative boundary γ); it is 6 336 for the 3D homogenized problem(whi
h has no radiative term); it is 96 480 for the original problem (8) with ǫ = ǫ0 = 1
4 (from whi
h

6 912 are on the radiative boundary Γǫ).6.3 Simulation resultsIn Figure 5 we plot the solutions of the 
ell problems (83) for an homogenized temperature T0 = 800K.Re
all that, in the non linear 
ase, the solutions of the 
ell problems depend on the ma
ros
opi
temperature. We re
ognize that ωS
3 is a 
onstant in Figure 5 (right).
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Figure 5: Solutions of the 
ell problems for T0 = 800KThe 
ell solutions allow us to evaluate the homogenized 
ondu
tivity whi
h turns out to numeri
allybe a diagonal tensor (at least for temperatures T0 ≤ 1E+05K with a pre
ision on 14 digits). However,for larger (extreme) temperatures, K̂∗ is not any longer a diagonal tensor [3℄. The diagonal entries of
K̂∗ are plotted on Figure 6 and two typi
al values are
K̂∗(T0 = 50K) =




25.907 0. 0.
0. 25.914 0.
0. 0. 30.05


 , K̂∗(T0 = 20000K) =




49.801 0. 0.
0. 49.781 0.
0. 0. 3680.7


 .The homogenized velo
ity is a simple volume average, equal to

V̂ ∗ =




0
0
15.134


ms−1.
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Figure 6: Homogenized 
ondu
tivities as a fun
tion of the ma
ros
opi
 temperature: K∗
11 (top left),

K∗
22 (top right), K∗

33 (bottom).By a �xed point algorithm (the homogenized 
ondu
tivity K̂∗ is evaluated with the previous iteratefor the temperature), we solve the homogenized problem (it requires of the order of 5 iterates). By aNewton method we solve also the dire
t model (8) (it requires of the order of 15 iterates). In Figure7 we plot the dire
t, homogenized and re
onstru
ted solutions 
omputed for a value of ǫ = ǫ0 = 1/4,as well as the error between the dire
t and re
onstru
ted temperature. The error is 
learly small andmostly 
on
entrated on the domain boundaries. The moduli of the temperature gradients are displayedon Figure 8. Clearly the re
onstru
ted solution T̂0 + T̂1 is a mu
h better approximation of the truesolution T̂ǫ than the mere homogenized solution T̂0. The error on the temperature gradient is largerand again 
on
entrated on the domain boundaries (this is 
onsistent with the presen
e of boundarylayers not taken into a

ount in our asymptoti
 analysis).
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Figure 7: Solutions in Ω̂

Figure 8: Modules of the solution gradients in Ω̂
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e on Figure 7 that the re
onstru
ted temperature is slightly �u
tuating on the boundary y2 = 0while the true solution is linear. This is due to the fa
t that the 
orre
tor T̂1 does not satisfy a Diri
hletboundary 
ondition. This well-known e�e
t in homogenization 
an be 
orre
ted by introdu
ing furtherterms, 
alled boundary layers [8℄, [10℄. We shall not dwell on this issue, all the more sin
e otherboundary layers are involved in our approximation. Indeed, the dimension redu
tion whi
h applies tothe radiative operator (whi
h is truly 3D in the dire
t model (8) and only 2D in the 
ell problems)
ertainly generates boundary layers 
lose to the top and bottom boundaries y3 = 0 and y3 = L3/ǫ.Nevertheless, if we plot the solutions in a smaller domain ∆̂ (whi
h is obtained from Ω̂ by removingone row of 
ells 
lose to ea
h boundary fa
e normal to the x2 dire
tion and a layer of thi
kness 0.025mat the top and bottom fa
es) we obtain a better agreement between T̂0 + T̂1 and T̂ǫ (see Figure 9) andbetween ∇(T̂0 + T̂1) and ∇T̂ǫ (see Figure 10).

Figure 9: Solutions in the redu
ed domain ∆̂Now, to 
he
k the 
onvergen
e of our homogenization pro
ess and to obtain a numeri
al speed of
onvergen
e, we display in Figures 11 and 12, as a fun
tion of ǫ on a log-log plot, the relative errors(92) and (93) related to temperature ERR(T ) and temperature gradient ERR(∇T ). We 
omparethese errors with the slopes of ǫ and √
ǫ. This has to be 
ompared with the 
lassi
al error estimate fora pure di�usion problem (without radiative transfer) as given in [10℄





ERR(T )bΩ
=

∥∥∥T̂ǫ(y) − (T̂0(y) + T̂1(y))
∥∥∥

L2(bΩ)∥∥∥T̂ǫ(y)
∥∥∥

L2(bΩ)

≤ Cǫ,

ERR(∇T )bΩ
=

∥∥∥∇T̂ǫ(y) − (∇T̂0(x) + ∇T̂1(y))
∥∥∥

L2(bΩ)∥∥∥∇T̂ǫ(y)
∥∥∥

L2(bΩ)

≤ C
√
ǫ.Our errors ERR(T ) and ERR(∇T ) are in a

ordan
e with those theoreti
ally predi
ted for a pure
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Figure 10: Modules of the solution gradients in the redu
ed domain ∆̂di�usion problem, namely they behave like ǫ and √
ǫ, respe
tively. In parti
ular, it implies that theadditional boundary layers 
aused by the dimension redu
tion e�e
t (due to the radiative term) havean impa
t on the error 
ompararable or smaller than that the homogenization boundary layers.Even for moderate-size 
omputations, like the ones in this se
tion, the gain in memory and CPUtime for our homogenization method is enormous 
ompared to a dire
t simulation. This is a well-known fa
t in the homogenization of di�usion problem but the gain is all the more extreme be
auseof the radiative transfer involved in our model. Indeed, the dire
t model (8) involves a 3D radiativetransfer operator whi
h implies that full matri
es 
onne
ting all nodes on the surfa
e of one 
ylinderhave to be stored and inverted (of 
ourse they are 
oupled through the di�usive rigidity matrix in thesolid part). Typi
ally, one Newton iteration in our referen
e 
omputation takes about 80 min on a
omputer whi
h has a memory of 37.2GB and 12 pro
essors with CPU = 2.67GHz. On the otherhand, the 
ell problems (27) are merely 2D, so very 
heap to solve (typi
ally, one solution for a giventemperature T0 takes 18.E − 04 min with the same 
omputer), and the homogenized problem (82)features no radiative term (one Newton iteration in our referen
e 
omputation takes 12.E − 02 minwith the same 
omputer). Therefore, our algorithm of Subse
tion 6.2 is very 
ompetitive and is ableto treat very large 
ases, like a full nu
lear 
ore 
omputation.
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Figure 11: Relative error (92) for the temperature

Figure 12: Relative error (93) for the temperature gradient
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