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Abstract

We are interested in the homogenization of heat transfer in periodic porous media where the
fluid part is made of long thin parallel cylinders, the diameter of which is of the same order than the
period. The heat is transported by conduction in the solid part of the domain and by conduction,
convection and radiative transfer in the fluid part (the cylinders). A non-local boundary condition
models the radiative heat transfer on the cylinder walls. To obtain the homogenized problem we first
use a formal two-scale asymptotic expansion method. The resulting effective model is a convection-
diffusion equation posed in a homogeneous domain with homogenized coefficients evaluated by
solving so-called cell problems where radiative transfer is taken into account. In a second step we
rigorously justify the homogenization process by using the notion of two-scale convergence. One
feature of this work is that it combines homogenization with a 3D to 2D asymptotic analysis since
the radiative transfer in the limit cell problem is purely two-dimensional. Eventually, we provide
some 3D numerical results in order to show the convergence and the computational advantages of
our homogenization method.

Key words : Periodic homogenization, two-scale convergence, heat transfer.

1 Introduction

We study heat transfer in a very heterogeneous periodic porous medium. Since the ratio of the
heterogeneities period with the characteristic length-scale of the domain, denoted by e, is very small in
practice, a direct numerical simulation of this phenomenon is either out of reach or very time consuming
on any computer (especially in 3D). Therefore, the original heterogeneous problem should be replaced
by an homogeneous averaged (or effective, or homogenized) one. The goal of homogenization theory
[8], [10], [15], [23], |25], [31], [32] is to provide a systematic way of finding such effective problems,
of reconstructing an accurate solution by introducing so-called correctors and of rigorously justifying
such an approximation by establishing convergence theorems and error estimates. The purpose of this
paper is to carry on this program for a model of conductive, convective and radiative heat transfer
in a 3D solid domain, periodically perforated by thin parallel cylinders in which a gas is flowing (see
Figure 1 for a sketch of the geometry). Convection and radiative transfer are taking place only in the
gas which is assumed to be transparent for radiation and with a very small bulk diffusivity. Therefore,
the radiative transfer is modelled by a non-local boundary condition on the cylinder walls.

Although there are many possible physical motivations for this study, we focus on its application
to the nuclear reactor industry and especially to the so-called gas-cooled reactors [19] which are a
promising concept for the 4th generation reactors. The periodic porous medium in our study is the
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core of such a gas-cooled reactor. It is typically made of many prismatic blocks of graphite in which are
inserted the nuclear fuel compact. Each block is periodically perforated by many small channels where
the coolant (Helium) flows (the number of these gas cylinders is of the order of 10% at least). Although
the solid matrix of the porous medium is itself heterogeneous (a mixture of graphite and of nuclear
materials), we simplify the exposition by assuming it is already homogenized and thus homogeneous.
The analysis would not be much more complicated otherwise but certainly less clear for the reader.
In other words, we assume that the only source of heterogeneities is coming from the geometry of the
porous medium which is a fine mixture of solid and fluid parts. Since the total number of cylinders is
very large and their diameter is very small compared to the size of the core, the numerical simulation
of this problem requires a very fine mesh and thus a very expensive computational cost for a real
geometry of a reactor core (all the more since the radiative transfer is modelled by an integral operator
yielding dense discretization matrices). Therefore, our goal is to find a simpler homogenized model in
an equivalent continuous domain and, specifically, to give a clear definition of the resulting effective
parameters as well as a detailed reconstruction of an approximate solution (involving local correctors
that take into account the geometry variation).

A similar study, in a simplified 2D setting, has previously appeared in [3]. In this reference, the
2D domain was a cross section of the reactor core (perpendicular to the cylinders) so that the fluid
part was a periodic collection of isolated disks. Furthermore, convection and diffusion were neglected
in the gas. Therefore, the main novelties of the present paper is, first, to take into account convection
and diffusion in the fluid, second and most importantly, to consider a porous medium perforated by
cylinders instead of disks. This last generalization is not at all a simple extension of the previous results
of [3]. It turns out that [3| can easily be extended to a periodic distribution of spherical holes in 3D. On
the contrary, in the case of cylinders, since periodicity takes place only in the transverse directions and
the holes are not isolated, but rather connected, in the axial direction, a new phenomenon takes place
which corresponds to a dimension reduction for the radiative operator from 3D to 2D. In other words,
our asymptotic analysis is not only a problem of homogenization but also of singular perturbation.
The issue of dimension reduction is well-known in solid mechanics, where it is a basic ingredient to
deduce plate or shell models from 3D elasticity when the thickness of the structure is going to zero (see
e.g. [14]). Here, the reason for this dimension reduction is that, in the homogenization process, the
cylinders become infinitely long compared to their diameter (which goes to zero): thus, at a microscopic
scale the 3D radiative operator is asymptotically invariant along the axis of these cylinders and, in
the limit, degenerates to a 2D radiative operator. Furthermore, some radiations are escaping from the
cylinders by their extremities: asymptotically it yields an additional vertical homogenized diffusivity
which was, of course, not seen in the 2D setting of [3]. Overall our homogenized model is new, quite
surprising and not intuitive, even in light of [3].

There are a number of other previous contributions on the homogenization of radiative transfer
which all correspond to different geometries or scalings of various parameters [6], [7], [9], [13]. Let us also
mention that there is a huge literature on the homogenization in perforated domains or porous media
(see [23] and references therein, [16], [18] for the case of non-linear Neumann boundary conditions).

The paper is organized as follows. In Section 2, we give a precise definition of the geometry and
of the heat transfer model, see (8). In particular we discuss our scaling assumptions in terms of the
small parameter e. Furthermore, various properties of the radiative operator are recalled. It is an
integral operator, the kernel of which is called the view factor (it amounts to quantify how a point on
the cylinder wall is illuminated by the other points on this surface). A key ingredient for the sequel is
proved in Lemma 2.1: an asymptotic expansion of the 3D view factor, integrated along the cylinder
axis, is established in terms of the 2D view factor. Section 3 is devoted to the formal method of two-
scale asymptotic expansions applied to our problem. Its main result is Proposition 3.1 which gives the
precise form of the homogenized problem. Furthermore, it also furnishes the so-called cell problems
which define the corrector term for the homogenized solution. It is at the basis of a reconstruction
process for an accurate and detailed approximate solution. We emphasize that the application of the
formal method of two-scale asymptotic expansions is not standard for two reasons. First, to minimize
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the number of required terms in the resulting cascade of equations, we rely on a variant of the method,
suggested by J.-L. Lions [26], which amounts to introduce an ansatz in the variational formulation
rather than in the strong form of the equations. Second, we must combine this ansatz with the
dimension reduction argument for the radiative operator as given by the technical Lemma 2.1. Section
4 provides a rigorous mathematical justification of the homogenization process by using the method
of two-scale convergence [1], [30]. Our main result is Theorem 4.2 which confirms the statement of
Proposition 3.1. A formal generalization to the non-linear case is briefly sketched in Section 5. Indeed,
our mathematical rigorous justification holds true only for a linear model so we choose to expose this
setting. However, the true physical model of radiative transfer is non-linear since the emitted radiations
are following Stefan-Boltzmann law of proportionality to the 4th power of temperature. Taking into
account this non-linearity is not difficult for the formal method of two-scale asymptotic expansions.
Thus we give the homogenized and cell problems in this case too, all the more since all our numerical
computations are performed in this non-linear setting. In Section 6, we present some numerical results
for data corresponding to gas-cooled reactors. In particular we show that the error between the exact
and reconstructed solutions, as a function of the small parameter ¢, is as expected of order 1 or 1/2,
depending on the choice of norm.

2 Setting of the problem

The goal of this section is to define the geometry of the periodic porous medium and to introduce the
model of conductive, convective and radiative heat transfer.

2.1 Geometry

For simplicity we consider a rectangular open set ) = H?ZI(O, L;) where L; > 0 are positive lengths.
It is however essential that the domain €2 be a cylinder with axis in the third direction, namely that
its geometry is invariant by translation along x3. The rectangular basis H?Zl(O,Lj) is periodically
divided in N (e) small cells (Ac;)i—1..n(c), €ach of them being equal, up to a translation and rescaling
by a factor €, to the same unit periodicity cell A = H§:1(0,lj) with I; > 0. By construction, the
domain €2 is periodic in the two first directions and is invariant by translation in the third one. To
avoid unnecessary complications with boundary layers (and because this is the case in the physical
problem which motivates this study) we assume that the sequence of small positive parameters €, going
to zero, is such that the basis of £ is made up of entire cells only, namely L;/(el;) is an integer for
any j = 1,2. The cell A is decomposed in two parts: the holes A" occupied by a fluid (see Figures 1
and 2) and the solid matrix A®. We denote by ~ the boundary between A% and A¥. Then, we define

the fluid domain Q" as the cylindrical domain with basis composed by the collection of Af? ; and the

solid domain Q7 as the cylindrical domain with basis composed by the collection of Ai ;» where Afj;s
are the translated and rescaled version of A>3 for i = 1...N(e) (similar to the correspondence between

Ac; and A). In summary we have
N(e) N(e) N(e)

OF = [ J AL x(0,Ly), Q2=0\0F = [JAZ; x(0,L3), 7e=|]J%eir Te=rx(0,L).
i=1 i=1 i=1

For each plane cell A ;, the center of mass xlO,i of the boundary -, ; is defined by

A (5" — ah;)ds' = 0. (1)

€,1

For any point z = (x1,72,23) € R3, we denote by 2’ its two first components in R? such that
r = (2/,23). We introduce the linear projection operator P from R?® to R? and its adjoint, the



Homogenization of a Heat Transfer Problem 4

extension operator E from R? to R3, defined by

U1 v v U1
P | v :<1> and E<1>: va | . (2)
() V2
0
Eventually, we denote by Vs the 2D gradient operator which we shall often identify to its extension
EV . Similarly, for a 3D vector field F'(z, z3) we shall use the notation div,/ F for div,(PF).
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o o o
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()
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() ()
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€ 4’ ' .

Figure 2: 2D reference cell for a gas cooled reactor core

2.2 Governing equations

There is a vast literature on heat transfer and we refer the interested reader to [12], [27], [33] for an
introduction to the modelling of radiative transfer. We denote by T, the temperature in the domain
Q) which can be decomposed as

T — { TS in QF,

TF  in QF,
where T¢ is continuous through the interface T'..

Convection takes place only in the thin vertical cylinders Q" occupied by the fluid. We thus

introduce a given fluid velocity
/

Vo) =V(z,=) i Qf,

where the continuous vector field V (z,%/), defined in A x €, is periodic with respect to 3’ and satisfies
the two incompressibility constraints

div,V =0 and div,,/V =0 in A¥, and V-n =0on v
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where 7 is the unit outward normal (from A® to AF) on 7. A typical example of such a velocity field
is V= (V(x3,y), Va(a',y)) with V' = (V1,V5), divyy V' =0 and V' -n =0 on ~.

The thermal diffusion is assumed to be much smaller in the fluid than in the solid. More precisely
we assume that it is of order 1 in Q2 and of order € in QF. The conductivity tensor is thus defined by

KS5(z)=KS(z,%) in QS
Ke(z)=1 "¢ el < 3
(@) { eKl'(z) = eKF(2, L) in QF, )

where K% (x,y), K B (z,y’) are periodic symmetric positive definite tensors defined in the unit cell Y,
satisfying

3
Yo € R, VY € A, VzeQ, apf?< Z Kf]’.s(a:,y/)vivj < Blv|?,
i,j=1
for some constants 0 < a < 3. The choice of the € scaling in (3) is made in order to have a dominant
convection in the fluid part at the macroscopic scale. However, at the microscopic scale the convection
and the diffusion are balanced as will be clear later.

The fluid is assumed to be almost transparent, so that heat can also be transported by radiative
transfer in Qf. This radiative effect is modelled by a non local boundary condition on the interface T’
between QF and Qf . More precisely, in addition to the continuity of temperature we write a balance
of heat fluxes on the interface

TS =TF and - KSVTS n=—ek!VvTF -n+2G(TF) onT., (4)
€
where ¢ > 0 is a given positive constant and G, is the radiative operator defined by
G (Te)(s) =Tc(s) — / Te(z)F(s,x)dr = (Id — ()Te(s) Vs €T, (5)
Fe,i

with

DW= [ Pl )

The scaling ¢! in front of the radiative operator G, in (4) is chosen because it yields a perfect balance,
in the limit as € goes to zero, between the bulk heat conduction and the surface radiative transfer (this
scaling was first proposed in [3] and is due to the fact that the operator (Id — (.) has a non-trivial
kernel, see Lemma 2.1). In (6) F' is the so-called view factor (see [27], [24], [22]). The view factor
F(s,z) is a geometrical quantity between two different points s and z of the same cylinder I'c;. Its
explicit formula for surfaces enclosing convex domains is in 3D

ng - (s —x)ng - (x — s)

F(s,) = F2(s,a) = B0 e R,

where n, denotes the unit normal at the point z. In 2D the view factor is
ny - (8" — a)nf - (&' — )
2’wl _ S/’3

F(s,x):= F*P(s 2') =

and the operator in (6) is denoted by ¢?P. Some useful properties of the view factor are given below
in Lemma 2.1.

For simplicity we assume that the only heat source is a bulk density of thermal sources in the solid
part, f € L?(Q), f > 0 and the external boundary condition is a simple Dirichlet condition. Eventually,
the governing equations of our model are

( —div(KSVT®) = f in Q°

—div(eKI'VTE) + V.- VT =0 in QF
~KSVTS n = —eKFVTF n+ 2G(TF) onT. 8)

5 =T1F ‘ on I'

T. =0 on 0f2.
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Proposition 2.1. The boundary value problem (8) admits a unique solution T, in H(S2).

PrOOF This is a classical result (see [3] if necessary) by application of the Lax-Milgram lemma. The
main point is that the operator G, is self-adjoint and non-negative, as stated in Lemma 2.1 below. g

Remark 2.1. The solution of (8) satisfies the mazimum principle, namely f > 0 in Q implies that
T. >0 in Q (see [33]). However, we shall not use this property in the sequel.

Remark 2.2. The radiation operator introduced in (5) is a linear operator: this is clearly a simplifying
assumption. Actually, the true physical radiation operator is non-linear and defined, on each I'c;, 1 <
i < Nfe), by

Ge(Te) = e(Id — ¢)(Id — (1 = e)¢e) " (TY). (9)
where C 1s the operator defined by (6). To simplify the exposition, we focus on the case of so-called
black walls, i.e., we assume that the emissivity is e = 1 (we can find in [7] a study of this kind

of problems when the emissivity depends on the radiation frequency). However, our analysis can be
extended straightforwardly to the other cases 0 < e < 1 (see e.g. [20]). The formal two-scale asymptotic
expansion method can also be extended to the above non-linear operator, at the price of more tedious
computations [20]. However, the rigorous justification of the homogenization process is, for the moment,
available only for the linearized form of the radiation operator. Therefore we content ourselves in
exposing the homogenization process for the linear case. Nevertheless, in Section 5 we indicate how
our results can be gemeralized to the above non-linear setting. Furthermore, our numerical results in
Section 6 are obtained in the non-linear case which is more realistic from a physical point of view.

2.3 Properties of the view factor

We recall and establish some useful properties of the view factor that we will use later.

Lemma 2.1. For points x and s belonging to the same cylinder I'c ;, the view factor F'(s,x) satisfies

1.
F(s,z) >0, F(s,x)=F(x,s), (10)

/ F* (s 2")ds' =1,
.

€,1

3. as an operator from L? into itself,

16l < 1, (11)
4.
/ / (' — xg,i)F2D(s/,m')dx'ds' =0,
Yeyi / Veyi
5.
ker(Id — (?P) =R, (12)
6. the radiative operator G is self-adjoint on LQ(FE,Z') and non-negative in the sense that

/ Ge(f) fds>0 VY fe L*T.,), (13)
Fe,i
7. for any given s3 € (0, L),

L 62
| P satn = P ) + 05, (14)
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8. for any function g € C3(0, L) with compact support in (0, L),

2

L r_ g
| a2 s,y = PP ) (g(s0) + 5L s0) + O(@), (15)
0

where any 0 < p < 3 is admissible and ¢g"” denotes the second derivative of g. Furthermore, for
any function f € L>°(0, L), we have

L L L
/ / f(wg)g(s;g)F?’D(s,a:)dxgds;g = F2D(s/,x')(/ f(x3)g(zs)dxs
o Jo 0

1

L
gl =P [ pen @)das +0@). (16)

Remark 2.3. The surface I'c; of each cylinder is not closed (it is only the lateral boundary and the
two end cross-sections are missing). Therefore, the second property of Lemma 2.1 does not hold in 3D,
namely

/ F3P(s' a)ds' # 1.
Fe,i

Remark 2.4. The asymptotic properties (14) can be physically interpreted by saying that in a thin and
long cylinder the 3D view factor are well approximated by the 2D view factor, upon vertical integration.

Since the surface I'c; is open at its extremities, there is some leakage of the radiated energy. The
asymptotic property (15) and (16) take into account the quantification of this leakage which corresponds
to a diffusive corrector term in the x3 direction (remember that |z’ — s'|? is of the order of €2).

PRrROOF The six first properties are classical and may be found in [20]. The proof of (14) follows from
a change of variables and a Taylor expansion. At this point, the assumption that s3 does not depend
on € and is different from the two end points 0 and L is crucial. Indeed, because the cylinder I'¢; is
vertical, we have ng, = ng,, = 0 and

I:/L ng - (s — x)ng -4(x—s)dx3:ng-(s’—xl’)ngl-z(lx’—s’) /L 1 das.
0 e — 5] (@ — ) o (1, wan)
|$/ _ S/|2
By the change of variables
z:x3_83, where o= |2’ — |, (17)
o

and integration, we obtain

2 L— S3 —S83

I _F2D / / h 79N h
22 (= - )

where hj(z) is the primitive of the previous integrand given by

B (2) = = (ZQi -+ arctan(z)) . (18)

By Taylor expansion we get

—1—2 +0(z73) when z — +o0,
hi(z) = (19)
—g +0(z7%) when z — —cc.



Homogenization of a Heat Transfer Problem 8

Since |2’ — 8’| = O(e), s3 = O(L) and F?P(s' 2') = O(e™!), we deduce (14).

The proof of (15) is a little more difficult although the strategy is the same. Let us notice that the
assumption of compact support for g allows us to avoid difficulties coming from the case when s3 =0
or s3 = L. By the same change of variables (17) we obtain

~

L

2 g(s3 + az) 2
_ 3D _ 22D 1 _ 22D 1 g
I—/O o(e3) F*P (s, 2)drs = = F (w,s)/A = SFP T

—s3 L—s
where the domain of integration A is given by A = [—3, 2

|. Remark that @ = O(e). By using

a Taylor expansion in a neighbourhood of s3, we have

1
g(s3 + az) = g(s3) + azg'(s3) + 50422’29”(83) + 0(a?2%),

and I becomes
T=1+1I+I3+14 (20)
where, hi(z) being given by (18),

L = 9(33)/A ﬁdz _ 9(23) (hl(L ;83) . hl(__‘%)> _ 9(83) (7T+O(a3)).

On the other hand we get

b= ag'(s0) [ s = oo/ (o0) (a0 - () = 2o,
a? 22 a? —s —s o?
h= G s0) [ s = a0 () < (D)) = S o) (4 O(@)),

where we performed a Taylor expansion of hy(z) and hs(z) which are the primitives of the previous
integrands in Iy and I3, respectively, given by

ho(2) = % <%> L hg(z) = % <% + arctan(z)> .

The last integral in (20) is of order O(€?) for any 0 < p < 3 because

L] < Co? /A ﬁdz < Co? <h4(L oy m(%"’)) |
where hy(z) is the primitive of the previous integrand given by
hya(z) = % <log(z2 +1)+ . i22> . (21)
By a Taylor expansion of (21) when z — +o00 we get
|I;] < CaPllogal < Ca? VO0<p<3.
Hence the result (15) since & = O(e). Eventually, (16) is immediate using (15). m

Remark 2.5. If the function f is smooth, by integration by parts (16) becomes

L L L
| [ sestsr P s arads, = 1P ([ fangtan)drs
0 0 0

L
— %\x'—s'\z/o f’(xg)g'(xg)dmg—i-(’)(ep)). (22)

Actually, (22) can be proved directly with different smoothness assumptions: it holds true for f and g
of class C2, one of them being with compact support.
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3 Two-scale asymptotic expansion

The homogenized problem can be obtained heuristically by the method of two-scale asymptotic ex-
pansion [10], [15], [31]. This method is based on the periodic assumption on the geometry of the
porous medium. However here, because the radiative operator is only 2D periodic, we shall introduce
a microscopic variable 3’ which is merely a 2D variable (in the plane perpendicular to the cylinders).
Of course, denoting the space variable x = (2/, x3), the fast and slow variables are related by y' = 2/ /e.
The radiative operator is creating an additional difficulty: since the fluid part is made of thin and long
cylinders, the 3D view factors will asymptotically be replaced by the 2D view factors (see Lemma 2.1).
Therefore, our problem is not only an homogenization problem but it is also a singularly perturbed
one. It can be compared to the dimension reduction issue in solid mechanics, i.e., how a plate or shell
model can be deduced from a 3D elasticity one (see e.g. [14]).

The starting point of the method of two-scale asymptotic expansion is to assume that the solution
T. of problem (8) is given by the series

/ /

x x
Te = To(w) + ¢ Ti(w, —) + €2 Ty(x, —)+ O(e®) (23)
where, for i = 1,2, y — T;(z,y’) is A-periodic and

T3 (z,y')  in Qx A5,

24
TF(z,y') in Qx AL, (24)

Ti(z,y') = {
with the continuity condition at the interface, T)°(z,y’) = TF (z,y') on v = OAS NOAF. As in the
classical examples of homogenization, we assume that the first term of the asymptotic expansion Tj
depends only on the macroscopic variable x. As usual this property can be established by the same

development as below if we had assumed rather that Ty = Ty(z,v').
Introducing (23) in the equations (8) of the model, we deduce the main result of this section.

Proposition 3.1. Under assumption (23), the zero-order term Ty of the expansion for the solution T,
of (8) is the solution of the homogenized problem

{ —div(K*(2)VTy(x)) + V*(z) - VIy(z) =0 f(z) inQ (25)

To(x) =0 on 09

with the porosity factor @ = |AS| /|A|, the homogenized conductivity tensor K* given by its entries, for
j? k = 17 27 37

@) = o | [ RS Vel /) e+ Vo iy

to / (1d — ) (wf (2. y') + y) WS (2. 3) + y;)dy’
:

2

+ 5 / / F2D(s',y’)]s/ — 9/ |2dy'ds’ 8i30ks3 (26)
v Jy

and o vertical homogenized velocity given by
Vi) == | Vi) esdy,
Al Jar

C2D

where 18 the unit cell view factor operator defined by

P(w)(s') = / F20(s 3 Yol )y’

o
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and, for j =1,2,3, wi(z,y’) (equal to w}s in A% and to wf in AT') is the solution of the 2D cell problem

—div, P [KS(Q;, y)(ej + Vs (x, ))] =0 in AS
—div, P [KF(x,y')(ej + vy,wf(x,y'))} + V(2. - (¢ + VywF(a,y)) =0 in AF
~P[KS(@.y)e; + Vywf @y)] -n = old = P @i (@.1) + ) ony 7
Say) =ufley)  ony
Y — w](x, y') s A -periodic,
where P 1is the 3D to 2D projection operator defined by (2). Furthermore, Ty is given by
> 0Ty
Ti(e,y) = Y wiwy) ). (28)

=1 !

Remark 3.1. As usual in homogenization, the cell problem (27) is a partial differential equation with
respect to y' where x plays the role of a parameter. It is proved to be well-posed in Lemma 3.1 below.
We emphasize that the cell problem in A can be decoupled as two successive sub-problems in A°
and AT respectively. First, we solve a cell problem in A° using the non local boundary condition on
v, independently of what happens in A¥'. Second, we solve a cell problem in AY with the continuity
boundary condition on ~y yielding a Dirichlet boundary condition. In particular, the homogenized tensor

K* depends only on AS.

Remark 3.2. The homogenized tensor K* has an extra contribution (26) for its 3,3 entry depending
merely on the view factor and not on the cell solutions. It arises from the leakage of the radiative
energy at both ends of each cylinder T'c; (which are not closed as explained in Remark 2.4). This
loss of radiative energy at the cylinders extremities yields this additional azial (or vertical) thermal
diffusion. For circular cross-section cylinders (namely v is a circle), we can explicitly compute

16
//F2D(sl,y/)]8/ — /' |Pdy'ds’ = Em’?’ where 1 is the radius of .

On the other hand, since Pez =0 and (Id — (*P)ys = 0, the solution w3 is a constant (with respect to

Y3
y') for any cell geometry. This implies that K3 ;(v) = K;3(x) =0 for j = 1,2 and

1
K3 3(x) = m( Kz, y)dy' + — //sz s, y) y'|2dy’d8')-

Remark 3.3. As usual in homogenization, Proposition 3.1 gives a complete characterization of the
/

two first terms To(x) + €T (z, x_) of the ansatz (23). With such an approzimation, not only do we have
€

a correct estimate of the temperature T.(x) but also of its gradient (or of the heat fluz) since it implies
/

VT (x) = VIy(x) + VT (x, ) (in this last formula the corrector V, /Ty is of order 1 and can not be
ignored).

The proof of Proposition 3.1 shall require the consideration of the second order corrector T but
we are not interested in its precise evaluation since it is much smaller and negligible in the numerical
examples.

PROOF of Proposition 3.1

All the difficulties are concentrated on the radiation term in which simplifications must necessarily
take place because it is formally dominating as € goes to zero. Consequently, instead of using the formal
method of two scale asymptotic expansions in the strong form of problem (8), which is complicated
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because of the non-local boundary condition (the radiation term), we follow the lead of [3] (based
on an original idea of J.-L. Lions [26]) and use a two scale asymptotic expansion in the variational
formulation of (8), taking advantage of its symmetry. This trick allows us to truncate the ansatz at a
lower order term and considerably simplifies the computations.

The variational formulation of problem (8) is: find 7. € H}(£2) such that

ae(T., ¢c) = Le(¢e) for any ¢, € HE (Q), (29)
where
ae(T., ¢c) = / KS(2)VT.(xz) - Vo (z)dr + € / KE(2)VT.(z) - Vo (z)dzx
Qs Qf
+f Vi) Vo)t + / GT) @) ()i
and

Le(¢e) = e f(@)¢e(x)dx.

We choose ¢ of the same form as T, in (23) (but without remainder term)

xl /

T
be(z) = do(x) + € P (2, =) + € galw, —) (30)
with smooth functions ¢o(x) and ¢;(z,y’), i = 1,2, being A-periodic in 3’ and such that

, ¢ (z,y')  in Qx A5,
gbz(x,y): r . F
¢ (z,y) InQxA”.

We also assume that ¢g(x) and ¢;(x,y’) have compact support in = € .
Inserting the ansatz (23) and (30) in the variational formulation (29) yields

a(To, T1, do, ¢1) + ea* (To, T1, Tz, G0, b1, P2) = LO(o, ¢1) + €L (¢o, 61, p2) + O(€). (31)

The non-conventional strategy of the proof is the following: not only we identify the zero-order term
a® = L° but we also use the first-order identity a' = L. The zero-order identity, a®(Tp, T1, do, 1) =
L%(¢o, #1), allows us to find the homogenized problem for Ty in € and the cell problem for T in
Q x AS. The first-order identity a'(Tp, T1, Tb, ¢o, ¢1, d2) = L' (¢o, ¢1,d2) yields the cell problem for
TF in Q x A¥. We emphasize that it is crucial, for the identification of the first-order term, that
the test functions (¢;)i=o0,1,2 have compact supports. Indeed, in view of Lemma 2.1, the 3D to 2D
asymptotic of the view factor has a sufficiently small remainder term only for compactly supported
test functions.

For the sake of clarity we divide the proof in three steps. The first step is devoted to the ansatz for
the convection and diffusion terms. The second one focuses on the radiation term, while the third one
combines these various terms to deduce the cell and homogenized problems by identifying equations
of the same order in powers of e.

We now give the details of the proof. We rewrite the variational formulation(29) as

ae(Tea ¢e) = a’EC’(T€’ ¢e) + afad(Te, gbe) = LE(¢E)

where

al(T.,pe) = KS5(z)VT.(x) - Ve (z)dz + € KE(2)VT.(x) - Ve (x)dz
Qs af

afad(TeaQSE) = %Z/ G (Te)(x)pe(x)dx.
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Step 1 : Expansion of af — L
This is a standard calculation. Plugging the ansatz (23) and (30) we obtain

C
a — L=

KS[(VoTo + VyTh) - (Vado + Vyér)] + / Ve (VaTp + Yy T1) o

Q3 QF

+e K2 [(VaT1 + VyT) - (Vado + Vydr) + (Var + Vo) - (VT + VyT1)] + (33)

Q2

KE(VoTo+ VyTh) - (Vago + Vi) + / Ve [(VaT1 + VyTa) o + (Vo To + VyT1) b1

QF QF

- /QS Fldo +ed1) + O(€%)

where all functions are evaluated at (x,2’/¢). Using Lemma 3.2 below, we deduce

A|(af — Le) =
/Q s KS(w,y')(VxTo(x) + VT (x’y/) - (Vaoo(z) + Vyf¢1(x,y’))dy'dx
—i—/Q/AF V(x,y') - VoTo(x)po(z)dy' dx — /Q/AS F(2)do(x)dy' dz

*4/ KS(2,y/) [(VaTi (@) + Vy Ta(a, ') - (Vado(@) + Vo (2,y))
QJAS

+ (Va1 (2,9) + Vya(x,y) - (VaTo(x) + VyTi(z,y"))] dy' d (34)
+ / K (2, y)(VoTo(z) + VyTi(2,y) - (Vedo(z) + Vyor(z,y))dy da
Q JAF

+//'mewmﬂmywww+W%@wmmm+Vﬂuawmmymww
QJAF

—//f@@mem
QJAS
+(9(62)

Step 2 : Expansion of af%?

A similar expansion in the 2D setting was carried out in [3]. However, the present 3D configuration
is different since, the fluid holes being thin long cylinder, there is also a 3D to 2D transition (which
did not occur in [3]) taking place. The purpose of this second step is to write a Taylor expansion of
the radiation operator, up to second order,

aftd = a4 cai®! + O(e) (33)

Fortunately, as we shall see later, the term a}%? does play any role in the definition of the corrector T}
in AT, Therefore, we don’t need to evaluate a{“d which, of course, significantly reduces the amount of
tedious calculations. The radiation term is given by

N(e)

Rad_z
A, = c

i=1

/F Te(x)¢e(z)dz — /F /F F(x,8)T.(x)p(s)dxds | . (36)
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In the ansatz (23) and (30) we make a Taylor expansion around each center of mass x;,; of each
boundary ;. To simplify the notations, we drop the label ¢ and denote by zf, each w'ol We also
denote (2’ — z()) by eh’ and (s" — x)) by €l’. Thus we get

/

T.(z) = Tolxg,x3)+e (Vx/TO(xf), x3) - b + Ty (zp, %, x3)> + €2T\2,6($) + (9(63) (37)

/

de(s) = o(xg,s3) + € (Vz/qﬁo(m’o, s3) -1 + ¢1(xp, S? 83)> + Eda(s) + O() (38)

where

/ /

~ 1 €T xT
T e(x) = §vz/vz/To(xg, x3)h - W + VT (x, — x3) - W+ To(x), - x3)

-~ 1 s’ s’
¢27E(8) - §vx’vx’¢0(x67 83)l/ . ll + vm’¢1(x67 :7 83) . l/ + ¢2(‘T67 ?7 83)

The precise form of the terms fg,e and 52,5 is not important since the O(e?)-order terms will disappear
by simplification as we shall see later. Using (37) and (38), we obtain

Te(w)¢e(s) = (T¢)o(x3, 53) + e(Th)1(w, 8) + *(TP)a(w, 5) + O(e?).

where

(Tp)o(xs,s3) = o(ah, s3)To(xh, z3)

(To)1(x,s) = dolzp,s3)VaeTo(zy, x3) - B + To(zp, £3)Vardo(xg, s3) - I

/ /

X S
+  ¢o(x, s3)T1 (o, - 3) + ¢1(, = s3)To(z, x3)

8/ /

X ~ —~
(Tg)2(z,s) = <751(95/0a?83)T1(95/07?79€3)+T2,e<750(9€6a83)+¢2,5T0(9€6,963)

/

+  Vaudo(zp, s3) - I'VuTo(zp, s3) - B + ¢1(zp, z 53)VaTo(xp, s3) - b
€

x/

+ T (zp, :,$3)Vx'¢0($6a s3) - U

Since the test functions ¢; have compact support in €2, we can use formula (16) of Lemma 2.1 (or
formula (22) of Remark 2.5) for the 3D to 2D asymptotic behavior of the view factor. Thus we deduce

Ls
/r /Fe,i(TQS)O(x?”Sg)F(S’x)dex:/yeyi 5 F2D(3/,x/)/0 (Td)o(x3, x3)drs

" 090
31‘3

1 o7,
-3 / F2P(s' 2|2’ — & ($6,$3)8—0($6,$3)d$3 + [Yei[FO(eP1),
5 T3

2 e,i Y Ve,i 0

with 0 < p < 3. Then, since |y ;| = €|y,

% (/FEZ (T'p)o(z3,23)ds — /Fm /Fm (Tgb)o(xg,s;:,)F(s,x)dsdx)

1 ) OT,
=— / F2P (s 2|z — &2 ﬂ(36'0,363)—0(uvlo,gzc;»,)clang + [7]2O(eP).
26 Ve,i VY Veyi 0 axg

31‘3
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A similar computation, taking into account the various symmetry properties of the view factor, yields

1
€ </F, (TP (x,x)ds — /F, /F, €(T¢)1(x,s)F(s,x)dsdm> =0(), (40)
and

: </r wonais— [ [ o S)F(s,x)dsdx)

Ls s s !
=€ / o1 (g, —, x3) | T (2, —, o3) — / Ty (g, —,wg)F2D(s',x/)dx/ ds'dxs
0 Ye,i € € Ye,i €
L3
+ / / (Vardo(zh, z3) - ) VuTo(xy, x3) - |1/ — / W F?P(s' 2')dx'| ds'dxs (41)
0 Ye,i Ye,i

/ /
Tl(xf),%,xg)—/ Tl(xf),%,wg)F2D(s/,x’)dm' ds'dx3

€,1

L3
+/ Vﬂ(ﬁo(&%,%g) i
0 Ve,i

L3 /
+/ &1 (zp, S—,xg)VI/To(x{),xg,)- [l’ —/ h'FZD(S',x')dx'] ds'dacg) + O(e%).
0 Ye,i € Ve, i

n (40) and (41), we do not give the explicit form of the remainder terms (including the diffusive term
coming from the 3D to 2D limit in the view factor) which are negligible after rescaling and summation
over all cells as soon as they are of order O(e?) with ¢ > 2.

Thus Lemma 3.2, the changes of variables ¢y’ = 2’ /e and 2’ = s'/e in (39), (40), (41) and summing
over all cells, yields

; Z/ x)oe(x dac—/ / VF (s, z)dsdz | = al®® + O(eP™2) (42)
with

rad o (1 Do Ty // 2D/ 1 NI N2 3.1 3.0
p— —_— —_ —_— —_— F —
it = (5] G [ [P~y Py

+ /vu% / M@M /M@ﬂﬁnym@@A@%@mx
Y

+ /Vx/To(x)-/gbl(x,y') y’—/ 2 F?P (2 ,y)dz)dy'dx (43)
v

4—/v¢0 /ﬂ /)ﬁW,mwﬁwx
o [ ] fow - -rryome oo,/ )d'dyd

where 0 is the Dirac mass and |A| is the surface measure of A. Remark that the last term in (43) can
also be written

[ [ =) = PP T ey = [ anlany) (- P o)y
Yy

o

Remark 3.4. As already said, in the spirit of our proof we should also compute the next order term

ai® in the asymptotic expansion af* = a4 ea}® + O(e?). The computation of ;e is tedious

and require to carry the expansions of T, and ¢e to one more order in €, a formidable task that is
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not pursued here (similar computations can be found in [4] for a 2D-configuration). Fortunately, the
radiation term contributes merely to the boundary condition for the cell problem in the solid part AS
and does not play any role for the cell problem in the fluid part A¥. Since the first-order terms a', L'
are used to deduce the fluid cell problem, it is perfectly legitimate not to compute a}®.

Step 3 : Identification of the limit variational formulations
The zero-th order ’-term of (31) is

ao(T07T17¢07¢1) - LO(¢07¢1)

which is equivalent to

/ K@) (Vofa) + VyTi(a,y') - (Vadola) + Vypon (2,0 dy/

+ //AF (2,9") - VaTo(z)do(x)dy'dx

o agbo 8T0 / / 20
g F _
+ 5 Qamg 8903 ()2 — o |Pdy'd?

- U/Vz/To(w)'/fﬁl(w,y/) y'—/z’FQD(z’,y')dz’>dy’dx
v

+ /V 1o (x /Tl(x Yy )(y /z'FQD(z',y')dz'>dy'dx
v

+ /v 1o /(h’@h’ /h’@lFQD( ,y)dz)V /To(x)dy' dx

(44)

; /// (v — ) = F2(yf, &) Ti (2, # ) (2, /)2 dy da

_— /Q F(@)do(x)dx

We recognize in (44) the variational formulation of the so-called two-scale limit problem which is a
combination of the homogenized and cell problems (in A® only).
We recover the cell problem in A by taking ¢ = 0 in the limit of the variational formulation (44)

/Q N K3(x,y") (Vo To(z) + VyTi(2,y)) Vyor(z,y)dy' da
+o [ VT /¢1<x D~ [ ZFP )y s
g

+ J/Q A /y(5@’ — ) - FQD(y', N (z, 2y (z, 9 )d2 dy' dz = 0 (45)

The solution T of the above variational formulation is given by (28) in AS where wj = wf (x,y), for

1 < j < 3, are the solutions of the cell problems in the 2D solid media A®

—divy P [KS(JU, y')(ej + Vy/wf(y'))] =0 in AS
—P [K(z,y)(e; + Vywi ()] n = o(Id—*P)(wi()+y;) onvy (46)
Yy = wi(Y) is A- periodic.

J

Remark 3.5. As already said, the macroscopic variable x plays the role of a parameter in (46). There-
fore, for the sake of notational simplicity we shall often forget the dependence on x for the solutions
w;j of the cell problems.



Homogenization of a Heat Transfer Problem 16

To recover the homogenized problem we now substitute ¢ by 0 in (44). We obtain

3
/Q/AS kalKS(x,yf)(Vyfwk(y/)+ek).(vy,wj( )—}—e])ng( )gii( 2)dy dz

" //AFZVK ,y) ( Yo (x)dy'dz

aqbo % z)dx 2D ZI / ZI— N2 5 1 ZI
t 5 ] g @ //F (.9l — ' Payd
oTy, ddo, .,
+ // ;1 (Id — 22 (wi(y )+yk)(w](y)+y])axk( )ax]( x)dy'dx
= |AS| /Q F(@)go(x)dx (47)

which is the variational formulation of the homogenized problem (25) where K* and V* are given by
the formulas of Proposition 3.1.

We now turn to the first order e'-term of (31) which yields the cell problem in Af". Indeed, up to
this point, the zero-th order term of (31) has given the cell problem in A®, as well as the homogenized
problem for Ty in the domain 2. Nonetheless, as we already said in Remark 3.3, we want to compute
everywhere the corrector T3 of the solution T¢, not merely in the solid part. Therefore, we look at the
next, e'-order term of (31)

al(TOaTI,T2a ¢05 Qsla ¢2) = Ll(gbO) gbl, ¢2)

where we shall keep only the terms coming from the fluid part (those coming from the solid part will
contribute to the determination of 75 which we do not pursue here). It is equivalent to

/Q A8 KS('% y/) [ (Vle(.%', y/) + Vy/TQ((L', yl)) : (v$¢0(x) + vy’¢1(x7 y/))

+ (Vatr1(z,y) + Vyoo(z,y)) - (VaTo(z) + VyTi(z,y)) ]d?/dl“

+ / K (2, y) (VaTo(x) + VyTi(z,y)) - (Vedo(z) + Vyori(z,y')) dy'dx
(48)

QJAF
+ AF V((L’, yl) : (val (.%', y/)¢0(x) + V$T0(.%')¢1 (.%', y/) + vy’jjl (.%', y/)¢1 (.%', y/)) dyldl'

rad
+ aq

- /Q/AS f(x)p1(z,y)dy dz

Note that, by virtue of Lemma 3.2, the approximation of an integral on QfF by a double integral on
Q x ASF is of order €2 and thus does not interact with the first order e!-term of (31).

In (48) we take ¢9 = 0 and ¢y = 0 everywhere, and ¢; = 0 in A® only. It thus becomes the
variational formulation of

{ —divy P [KF (2,9 )(VTy + VyT1)] + V(z,y/) - (VoTo + VyTy) = 0 in AP, (49)

T is continuous through ~
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Therefore, the solution 7} of (49) is given by (28) in AT where w; = wf(m,y’), for 1 < j < 3, are the
solutions of the cell problems in A

—div, P [KF(ﬂ:,y/)(ej + Vy/wf(y/))] +V(z,y) - (ej + Vy/wf(y')) =0 in AF
F —,S
w;j = wj onvy  (50)
y wf(y') is A-periodic.
Combining (46) and (50), we get (27). n

Lemma 3.1. Each of the cell problems (27) admits a unique solution, up to a constant, in H#(A)

PROOF First, we recall that each cell problem in A is decoupled into two independents cell problems,
(46) in A¥ with a radiative boundary condition and (50) in A" with a Dirichlet boundary condition.
For ¢ € H#(AS), the variational formulation of (46) is given by

[ K3 a) (V) + ) - Vo) + |- ) @)+ o) =0. (o)
Y

Using (11), we deduce that the bilinear form of (51) is coercive on H#(AS)/R

a(¢,¢) = /AS K5V, ¢-Vyé+ /(Id —*P)po > C”Vy(b”Li(As) = C”¢HH;¢(AS)/R- (52)
g

Furthermore, since (12) implies that (51) holds true when the test function ¢ is a constant, the Fredholm

alternative (see [31]) yields existence and uniqueness in H#(AS )/R (i.e., up to a constant) of the cell

problem (46) solution.

The existence of a unique solution in H# (A of the fluid cell problems (50), with a non-homogeneous
Dirichlet boundary condition, is completely standard for this simple convection-diffusion equation (note
that, for our geometry in Figure 2, the periodic boundary condition does not appear in the fluid cell

S

AF). Of course, since wy 1s defined up to a constant, so is wf , but with the same constant. ]

We recall a classical lemma used in the proof of Proposition 3.1.

Lemma 3.2. For a smooth function f and any integer p > 0 we have

, !
i[O = @ [ - sy
Ve,i ol

e
N(e) .r, 1
ii. 622/ f(xf;,z3)drs = —/f(x)dx+(9(62)
=1 70 ’ Al Ja
Lo feSa = o [ [ seyuarso@)
1. o z, —)dr = N o Sy z,y')dy'dx €

PRrROOF The first formula is immediate by a simple change of variables. For the second one, we perform
a Taylor expansion of f(x') (which is assumed to be C?) around (,; the center of mass of each cell A

f(@' w3) = f(a,23) + (2" = 20,;) Vi f (204, 23) + O(€%) (53)

which becomes by integration in A ;
| 16 mdn’ = A + O

because [Ac;| = €*[A| and [ (@' —x;)dz’ = 0. After summation, and integration between 0 and L3
in x3, we obtain the desired result. The third formula is obtained by using again (53) to get

x/ N(E) Ls , ﬂj, ) O )
- Jdr = 3, —)da'd
QS F f(% 6) X ; /Aff/o f(xo,z,xg, 6) T drs + (6 )

and the final result is a consequence of the first and second formulas. ]
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4 Convergence

The results of the previous section are only formal. They are based on the assumption that the
temperature T, admits the asymptotic expansion (23). Therefore, to complete our study, we need a
rigorous mathematical justification of Proposition 3.1. Here, we prove a convergence result using the
two-scale convergence method [1], [30].

4.1 A priori estimates

To use the two-scale convergence method, we first need to establish some a priori estimates on the
unknown T,.

Proposition 4.1. Let T, be the solution of problem (8). There exists a constant C, not depending on
€, such that

ITell 2(0) + IVTel 1205y + VeVl L2 or) + Vel Tell 2y < C (54)

PrOOF Taking ¢ = T¢ in the variational formulation (29) of (8) we obtain

/ K5\ VT dx + e/ KF|\VT.Pdx +/ Vo VITde + 2 | G(T)Tuds= | fTde. (55)
Qs QF QF € Jr. Qs
Since divV, = 0in QF, V. -n =0 on I'c and T, = 0 on 9%, we have
/ Ve - VI T.dx = 0.
Qf
Furthermore, since G is a positive operator (see Lemma 2.1)
G (T)T.ds > 0.
Le
Consequently, by the coercivity of K., we obtain
IVTlf720s) + €lVTel72i0ry < ClITell L2 (@s)- (56)
Using Lemma 4.1 we deduce
VTl 208y < C. (57)

On the other hand, using Lemma 4.3 and formula (56) yields

1Ty < C[ITdBaqs) + VT
< C[1+ VT 0p)]
< C 1+ Tl 2]

(since € < 1) from which we deduce

|Tell 2y < C- (58)
By (58), and using (56) again, we get
Ve|VTe|l 2y < C (59)
Using (58) and (57) and Lemma 4.2 we deduce
VelTel 2, < C. (60)

Combining (57), (58), (59) and (60) we obtain the desired a priori estimate (54). n
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Lemma 4.1. (see Lemma A.j in [5]) There exists a constant C' > 0, not depending on €, such that
for any function u € H (QF) satisfying u = 0 on 0Q N QS

lull 208y < ClIVull2(qs) -

Lemma 4.2. (see Lemma 4.2.4 in [3]) There exists a constant C > 0, not depending on €, such that

Velullz,) < Clullmos)  Yue HY(Q?). (61)

Lemma 4.3. There exists a constant C' > 0, not depending on €, such that

[ullp2or) < C [Hu||L2(Q§) +elVullpzioy|  Yue HY(Q). (62)

PrRoOOF The proof of Lemma 4.3 is similar to those of the previous lemmas so we content ourselves in
briefly sketching it. We denote by Y = A x (0,1) a 3D unit cell and similarly Y% = A5 x (0,1). By
an obvious rescaling and summation argument, it is enough to prove that there exists a constant C,
not depending on ¢, such that

lulaiyry < C [lulBas) + IVulany|  vue BY(Y). (63)

We prove (63) by contradiction. Indeed, we suppose that it does not hold true, namely there exists a
sequence ¢, € H(Y), for n > 1, such that

1
10nllz2rry =1 and gnlZa(ys) + IVn 30y, < - (64)

Up to a subsequence, ¢,, converges weakly in H(Y) to a limit ¢, and by Rellich theorem this conver-
gence is strong in L2(Y). However, (64) tells us that V¢, converges strongly to 0 in L?(Y’). Therefore,
V¢ = 0 and ¢ is constant in Y. Once again, (64) implies that this constant is zero in Y but this is a
contradiction with the fact that ||¢[| 2y ry = limy, [[¢n |l 2y F) = 1. n

4.2 Two scale convergence

In this section we first recall the notion of two-scale convergence [1], [30]. Here, since there is no
periodicity in the third space direction, we slightly modify the definition of two-scale convergence (these
changes do not affect the proofs in any essential way). Second, we prove a rigorous homogenization
result, using the two-scale convergence method, to confirm the result obtained in the previous section.

Definition 4.1. A bounded sequence u, in L?() is said to two-scale converge to a function ug(z,y') €
L2(2 x A) if there exists a subsequence still denoted by u. such that

lim uE@)w(x,%’)dx:ﬁ /Q /A uo(z, ' V(. )dody (65)

e—0 Q
for any A-periodic test function v (z,y') € L*(Q; Cx(A)).

This notion of "two-scale convergence" makes sense because of the next compactness theorem [1],
[30].

Theorem 4.1. From each bounded sequence u. in L*(Q), we can extract a subsequence and there exists
a limit ug(z,y") € L*(Q x A) such that this subsequence two-scale converges to ug.
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The extension of Theorem 4.1 to bounded sequences in H'(Q) is given next.

Proposition 4.2. From each bounded sequence u. in H'(S), we can extract a subsequence and there
exist two limits ug € H*(Q) and uy(z,y') € L*(Q; H#(A)) such that, for this subsequence, u. converges
weakly to ug in H(Q) and Vue two-scale converges to V ug(x) + Vyui(z,y').

Two-scale convergence can be extended to sequences defined on periodic surfaces [2], [29].

Proposition 4.3. For any sequence u. in L*(T.) such that

€ | |ufdx <C, (66)
Ie

there exist a subsequence, still denoted u., and a limit function ug(z,y') € LQ(Q;LQ(W)) such that u,
two-scale converges to ug in the sense

x

! 1 / / /
Dy = 1 /Q / oz, 4 Yz, o )ddy (67)

€

lim e/eug(x)w(x,

e—0
for any A-periodic test function ¥(z,y') € L*(Q; Cx(7))-

Remark 4.1. If uc is a bounded sequence in H'(S).), then the uniform bound (66) holds true. It is
then easy to check that the two different two-scale limits ug given by Propositions 4.2 and 4.3 coincide

[2]
Our main results in this section is the following.

Theorem 4.2. Let T, be the sequence of solutions of (8). Let Ty(x) be the solution of the homogenized
problem (25) and Ti(x,y') be the first corrector defined by (28). Then T, two-scale converges to Tj
and x2VT, two-scale converges to x°(y')(ViTo(x) + VyTi(z,y')) where x5 (x) = x°(z'/e) is the
characteristic function of Q' and x°(y') that of AS.

PROOF The a priori estimate (54) implies that, up to a subsequence, T, two-scale converges to a
function Ty € HJ () and x2VT. two-scale converges to x°(y')(V.To(x) + V,Ti(z,y')) where Ty €
L2(%; H;E(A)) Furthermore, T, two-scale converges to T on the periodic surface I'¢, in the sense of
Proposition 4.3.

Although we use the same notations, we still have to show that Tj is a solution of the homogenized
problem (25) and that 7y is the first corrector defined by (28). Convergence of the entire sequence
(and not merely of an extracted subsequence) will follow from the uniqueness of the solution of (25).

In a first step, we compute the corrector 7} in terms of V, Ty by choosing the test function ¢.(z) =
/

x
ep1(x,—), where ¢1(x,y’) is any smooth function, compactly supported in = and A-periodic in ¢/, in
€

the variational formulation (29) which becomes (using the self-adjoint character of G¢)

. K3VT, - Vy¢1 +o / T.Ge(¢1) = o(1) (68)
Qs .

where, thanks to the a priori estimate (54), o(1) is a small remainder term going to 0 with e. By virtue

of a lower order truncation of formula (15) in Lemma 2.1, the radiative operator can be approximated

as

Ge(pr) = (Id = ) (1) = (Id — ZP) (1) + O(€).

Then, to pass to the two-scale limit in the radiative term, we rely on Lemma 4.4 below which gives us
a smooth periodic vector-valued function 6(z, ') such that

—divy0(z,y') =0 in AS,

0(z,y') -n=(Id = *P)¢i(z,y’) onn,
Yy — 0(x,y) is A-periodic.
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Furthermore, 6(z,y’) has the same compact support than ¢;(x,y’) with respect to = € Q. However,
since (2P is an integral operator, we usually have a difference between the two terms below

/

2 (00 D)) # (e W = D),

Therefore, we need to use a Taylor expansion of ¢;

x/ / , xl

x
é1(x, :) = ¢1(z0,, :) + (2" = x ;) - Vaerdi (2o, :) + O(e?),

where x; = (.%'672~,$3) and w'OJ is the center of mass of each boundary ~.;, defined by (1). Then, the

following equality holds true

/ /

@2 (6100, ) = (P @n(a0s /M) = )+ (@20 Taonlaos D) = ) + (),

Then, we can rewrite the radiative term in (68) as

/

o [ 26 = [ Lot Dynoe [ (14PN nlos s ) 0 = D)+0(). (69

We can pass to the two-scale limit in the second term in the right hand side of (69) by applying
Proposition 4.3 (replacing y' - V,r¢1(z0,;,y’) by the suitable two-scale test function y' -V, ¢1(x,y') up
to another O(e) error). For the first term, we use a similar Taylor expansion for 6

! ! !
O'/ TeO(xo4, %) n 0/ T.6(x, a:_) ‘n— EO’/ T. <y/ . VJC/H(x,y/)) (v = %) -n~+ O(e)

€

/

- U/Q§ div (Teﬂ(x, %) —eo /F T. <y' : foe(x,yl)>(yl - %) -+ O(e]70)

For the second integral in (70) we can pass to the two-scale limit by another application of Proposition
4.3. Concerning the first integral, we develop

div (Te(x)ﬂ(x, x—,)) = VT.(z) - 0(z, %/) + Te(z)(diva0)(z, x—,),

€ €

and we can pass to the two-scale limit, thanks to Proposition 4.2. All in all, after some integration by
parts, and recalling that ker(Id — ¢(2P) = R, we get

li_)n%a/Fe T.Ge(p1) = ’%’ /Q /AS <0(x,y') (VTIo(z) + VyTi(z,y)) + To(ac)divxe(w,y')>dy'dx
+ ’%’/Q/WTo(w)((Id—CQD)(y’-Vz/¢1(x7y')) —y’-foH(w,y’)>dy’dw

= ﬁ/ﬂ/é’(ﬂc,y’)-n<T1(x,y’)+y’-Vz/To(w))dy’dx
Y

o
= m /Q /(Id - C2D)(¢1(x7 y/)) <T1(.%'7 y/) + y/ . vxlTo(x))dyldx
gl
Therefore, the two-scale limit of (68) is

/Q N Ks(x, Yy (Vo To(x) + VT (x, y)) - Vyoi(z, y)dy'dx

vo [ [a- o)) (i) 4o VaTofa))dy'ds =0
Y
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which is precisely the variational formulation (45) for 7. Therefore, we have proved that

3

0T .
Ti(x,y) = Z a—x:(w)wk(y’) in Q x AS.
k=1

Remark that our convergence proof does not justify formula (28) for T (z,y’) in the fluid part Q x AF.

Remark 4.2. The first step of our proof (which gives formula (28) for Ti(x,y')) was missing in the
proof of Theorem 4.6 in [3]. Our above argument works also in the simpler 2D setting of [3] and is
thus filling this gap.

In a second step, we recover the homogenized problem for T by choosing another test function
¢e(7) in the variational formulation (29) given by

/

3
be(r) = Po(x) + €1 (x, %) with ¢ (z y kz_: ai /

where ¢g € C°(f2) and w; are solutions of the cell problems (27). The variational formulation (29)
becomes

| EEVT - (Vato +Vyé1) e | KIVTL- (Voo +Vyé1)

+/QFV VT.(¢o + €¢1) + /G )(Po + 1) / féo + o(1) (71)

where o(1) is a small remainder term going to 0 with e. Passing to the two-scale limit in all terms,
except the radiative one, is standard (see [1] if necessary). Therefore, we focus only on the radiative
term

7 e+ con =7 [ T6ulon +eon (72)

for which we generalize an argument of [3]. We write a Taylor expansion of ¢, with respect to
the macroscopic variable only, around the center of mass zg; = ($,07,i,$3) of each boundary ~.; (for
conciseness we drop the index i in the sequel)

x’ x’
de(w) = do(x0) + Varo(wo) - (2" — ) + edr(z0, —) + €Vardn(wo, —) - (' = z0)
1
+§fovx/¢o(xo)(x' —xp) - (2' — x)) + O(d).
We go up to second order in this Taylor expansion since, upon dividing by € as in (72) and summing
over all boundaries 7. ;, they Will have a non-zero limit according to Proposition 4.3. Recall that the
solution of the cell problem w3 in the 3 direction is a constant in A® (see Remark 3.2): we can choose

this constant to be zero so that wg(y’) = 0 in A% and thus on the boundary ~y too. Therefore, in the
boundary integral (72) we can write that the test function ¢y is just

2
_ N\ 990
)= Y G0E) on
k=1
without any contribution in the x3 direction. Thus, the radiation term is given by

“Geldn + ep1)(x) = (I — ()60 + ) () = ¢(oc(x) + Yr(e) + alw) + O(0))
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where

Voe@) = —(Id - C)olxo)

€

dede) = L300 | (D) + BT ) Ty (7

2
€ ox
k=1 k

/ /

Poe(r) = (Id—¢) Bvx,vxl%(%) . (2 _6 x() 5 (' — )

9, 090 g (@)
# v ()|

Remark 4.3. At this point, for simplicity we assume that the periodic diffusion coefficients K>¥ and
the velocity V' do not depend on xz. Otherwise, this would add further terms in (73) corresponding to
the x derivatives of the cell solutions wy. Our arguments would still work but we prefer to simplify the
exposition.

The term g is new compared to the 2D setting in [3] (where it was vanishing). Furthermore, the
main additional difficulty with respect to [3] is that we need to approximate the 3D view factor in (.
by the 2D view factor which is appearing in the homogenized limit. For this goal we rely on Lemma
2.1. First, by virtue of (15), for any 0 < p < 3 we have

1 9%¢g

2e2 92 (z0) [ F?P(s',a)|a' — &' |?ds’ + O("?).

Ye,i

¢0,e(9€) -

Second, by a lower order truncation of (15), and since wy does not depend on x3,

,I/

2
rele) = £ 3 G w01 - 22 (s D)+ ) 0

€

and

V2e(w) = %Vm’vm'qﬁo(ﬂﬂo) - (Id - ¢2P) <(x, _6 2o) 2 (' — 336))

€

2 "yl 2
# 3 Vo) (1 - ¢20) (D)) + 0@
k=1

In order to recover continuous functions, we use the following Taylor expansions

d¢o _ % . % (e 2
Gok(a0) = Go(e) = Vargt (o) ~ab) + O(E),
9 ¢o 0o

8—903,(360) = 922 (z) + O(e).
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We get
2 / /12
T/JO,e(x) _ _%38;%0 (x)/WZ FQD(S,,JT/)gdS +(9(€p 2)’
0¢ (9(;5 PR ' xp— o,
vrola) = ‘Z<ax2 Vagoba) o'~ ap)) (1d - 22 (sl D)+ B4 ) o),

bade) = §VaTatnfe)- (1 - ¢27) () )

€ €

2

#2500 (a0 (U D)) + ot
k=1

The leading term of ¢ (z) is precisely an oscillating test function for two-scale convergence

1 0%

Yo.e(z) = o <x %) +O(?)  with do(z.y) = —5 522

@ [ P - 2P ()
gl
The same is true for ¢ ((x) which is also an oscillating test function for two-scale convergence

bacle) =12 (2.2 + 00

with
2

0
Ya(,y) = 5 VarVaoola) - (1d - C*P) (4 © ) DN %0

G ) - (1d = ) ().
Rewriting the radiative term (72) as

% /F T.Ge(¢o + €¢1) = ae/ T <1/1075(w) + Y1,e(x) + Yae(x) + (’)(e)), (75)

€

we can pass to the two-scale limit in the first and third term in the right hand side of (75) by application
of Proposition 4.3. We obtain

82
hmae / Yo T / ¢0 //FQD(y',z')]y’—z'[Qdy'dz'dx. (76)
L iy

and

N(e)
lim oe / o T / To(x / (z,9)dy'dx =0 (77)
e—0 ZZ:; Tei |A| )

because, by the second property of Lemma 2.1, we have f,y o(z,y')dy = 0.

It remains to pass to the limit in the second term of (75) involving v .. Following [3] we use
the classical trick of H-convergence [28| which amounts to make a comparison with the variational
8¢ (recall that ¢ has compact support).

Tk

From (46), after rescaling and integration with respect to x3, we obtain for k = 1,2

9D ¥ T —Tok 0P\ s ! O¢o
o e (e ) () = - [ (D) v (n550).

formulation of the cell problems (46) with the test function T 00



Homogenization of a Heat Transfer Problem 25

which implies

o F€¢1,e($)Ts(9€) = —Z/ ( y W ( ,)+ek>'vx’ (T%> (78)

2 . mp—x 0 x' — af
— o3 [ =) () ) (Vg S 1

It is now possible to pass to the two-scale limit in the right hand side of (78) and, summing up those
limits, we deduce

lim / G(T.)(¢o + €o1)

e—0

— 62% 2D
= o g 3363 //F (v, 2) 22y’ d da
_ i S / I % / ’
T k§:j /ﬂ [ K (e v (v D)+ 00 v, T ) )
2
_ 2 _ 2D / 9o
|A| kzl/ﬂ/(ld ¢ )(wk +yk) x oz, 0

—0 ango 2D
- 7 [ 7y r dy'd2d
1Al Jo, (9x3 // 0,2y — #Pdy'd'da

1
— T/ KS(V:E/TQ + Vy/Tl) . (Vx/(ﬁo + Vy/(ﬁl)dy/dm — / K*TyV 2V g ppda.
Al Ja Jas Q

! A (79)

1
= / K*(x)V,Ty(x) - Vydo(z)dr — A / . KS5(VoTo + VyTi) - (Vaedo + Vydr)dy de
Q QJA

The two last equalities in (79) hold true thanks to the following equivalent formula for the homogenized
conductivity

. 1
Kip(x) = ] [ ¥ K%(z,y)(ej + Vyw$ (z,9)) - exdy’ + U/Ud — P)(Wf (2,y) + yj)yrdy’
Y

which is obtained by a combination of (26) and of the variational formulation of the cell problems.
The two-scale limits of the other terms in the variational formulation (71) are easily obtained

1
lim | KSVT, - (Vaedo + Vyr)de = m/ . K5(VoTo + VyTy) - (Vato + Vydr)dy'dz,
A

e—0 Jos
€

lime [ KIVT.  (Vigo+ Vydi)dz = 0,

e—0 QOF
€

lim Ve - VT (po + €p1)dx = —lim T Ve - (Voo + Vyir)da

e—0 JoF e—0
€

= |A|//AFTO (v, x) - (Vago + Vyor1)dy'dx

= W/Q/AF V(Y x) - ViTo ¢o dy'dz,

by integration by parts and our assumptions on the velocity V. Summing up all those terms we deduce
that the limit of the variational formulation (71) is, up to some integration by parts, the variational
formulation (47) of the homogenized problem. n
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Remark 4.4. In the course of the proof of Theorem 4.2 we use in an essential way the fact that the
boundary condition on 0X) is of Dirichlet type. For example, it was crucial that the test function had
a compact support (at least in x3) to apply Lemma 2.1 on the 3D to 2D reduction of the view factor.
We do not know if the convergence proof can be extended to the case of Neumann boundary conditions.

We now state and prove a technical result which was required in the previous proof.

Lemma 4.4. Let ¢1(x,y') be a smooth function, compactly supported in x € Q and A-periodic in y'.
There exists at least one smooth vector-valued function 6(z,y') (with values in R?) such that

—divy0(z,y') =0 in AS,
0(x,y') -n=(Id—*P)p1(z,y) on 7, (80)
y — 0(x,y) is A-periodic.

PROOF It is enough to look for a solution under the form 6(z,y’) = Vyn(z,y’). To solve the 2D
elliptic equation for 7 (in H#(AS )/R), corresponding to (80), we just have to check the compatibility
condition of the data (or Fredholm alternative). By virtue of the second property of Lemma 2.1 we
can check that, indeed,

/W(Id_ PV (z,y)dy' = /¢1(m’y/)dy/ _/

/FQD(y,aSI)%(w,y')dy’ds’ =0.
v vJy

There is no uniqueness of the solution 6(z,y’) to which we can add any solenoidal field with zero
normal trace. m

4.3 Strong convergence

Our main result, Theorem 4.2, gives only a weak convergence (or two-scale convergence) of the se-
quences T, and V7.. The goal of our next result is to improve this weak convergence into a strong
one. As usual in homogenization theory it requires some additional smoothness assumptions. More
precisely, we need Ty (x,z’/€) to belong to the space H'(2) (but not to be uniformly bounded). This
is true, of course, if T (x,y’) is a smooth function of (x,y). In view of formula (28) for 77, it is enough
that either the homogenized solution Ty(z) or the cell solutions wy(y’) be smooth. To establish our
strong convergence result we rely on the usual energy convergence trick (as described in [1] in the
context of two-scale convergence) which is inspired from the notion of I'-convergence [17].

Theorem 4.3. Assuming that Ty (z,y’) is smooth enough and denoting by Xf the characteristic func-
/

tion of the solid part Q7 the sequence | VT.(x) — VTy(x) — VT (z, x_)> X2 converges strongly to
€

zero in L2(Q)? and the sequence (T.(x) — To(x)) converges strongly to zero in L*(Q).

/

PrROOF We develop the "energy" of the difference Te(z) — To(z) — €11 (x, JU—) and we get, using the
€
energy equality (55)

/KES dﬂ:+e/ KF
Qg QF

+2 [ 6 (1) =@~ D) ) (10 = Do) - i, D) ) o= [ Ty

€ €

+/ K;g dx—i—e/ KF
0g Qf

+2 [ 6o (i) + e D) (7o) + €0, D)) do =22 [ 6o (o) + i, D)) T

2 2

dz

/

V() - Vo) - Vy iz, =)

/

V() - VTo(x) - VyTi(e, =)

2 2

dzx

/

V(@) + Vy i, =)

/

V(@) + Vy Tix, =)

€ €

2 [ KSVI.(z)- (VTO(x) + VT () f)) dz — 2
€

/
KFVT.(2) - <VT0(33) + VyTi(z, w—)) dzx
Qs ‘

Qf
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Using the coercivity condition of Kes " on the left hand side, as well as the positivity of the operator
G., and passing to the two scale limit in the right hand side of (81) we obtain an upper bound for

. 2 . 2
O‘ll_r)% (VT = VT, - Vy/Tl)X5HL2(Q) + O‘ll_,n%e (VT = VT - Vy/Tl)XfHB(Q)
Then, a combination of Lemmas 4.1 and 4.3 yields a bound for
lim [|Te —To — eTh|72(q) -

We now have to prove that these upper bounds are all zero, i.e., that the two-scale limit of the right
hand side of (81) vanishes.
Indeed, by virtue of (42) and (79) we have

i, [ 6. (10 + ) (o) + 0.2

e—0 T,

g < 1 aTO 8T0

=— = | =—(x)=—(x)dx F2P (2 )2 — o |Pdy'dZ’
(3 G @ g [ [ PPy Py

" / / (VorTo(x) -y + Ti(z,y) (Id = CP) (T (2, y) + VorTo(x) - y)dy'dz
QJy

1

= *(z )2 dr — —
= [ K@) 9 e - o

// K5(,y) |VaTo(z) + VyTi(2,y')|* dy' de
QJAS

and

/

lim 5 G. <T0(x)+eT1(x,?)> T.(2)dx = /Q K*(2) |V To(2)|? da:

1
- / Ks(x, v) ‘VwTo(x) + VT (x, y')‘2 dy'dx
Al Jo Jas
Passing to the two scales limit in the right hand side of (81) yields
- [ K @VLT@) - VTo(w)ds +0 [ f@)Ta)ds
Q Q

which is equal to zero thanks to the variational formulation of the homogenized problem (25). Hence
the result. [

5 Non-linear case

As already discussed in Remark 2.2, the true physical problem involves a non-linear radiation operator,
defined by formula (9) instead of (5). The study of the linear case was a simplifying assumption in
order to rigorously prove the convergence of the homogenization process. However, the formal method
of two-scale asymptotic expansion is perfectly valid in the non-linear case too (see [3] and [20] if
necessary). In this section we give, without proofs, the homogenization result in the non-linear case.

When the radiation operator, defined by formula is given by (9) instead of (5), the non-linear
equivalent of Proposition 3.1 is the following.
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Proposition 5.1. Under assumption (23) the leading term Ty is the solution of the homogenized prob-
lem

(82)

—div(K*(z, T3)VTy(x)) + V*(x) - VIo(z) =0 f(z) inQ
To(x) =0 on 082

with the porosity factor § = |AS|/|A|, the homogenized conductivity given by its entries, for j,k =
1,2,3,

e T = o1 | [ /) + D) e+ Vot )

+ 40TH () / G(wr(¥) +ye) (Wi (v) +5)

o

+ 20Tg($)//F2D(S/,y/)|5/ — o/ [*dy'ds’ 63013
Yy

and an homogenized velocity given by

1
Vi== [ V(x,y)- exdy
|A] JaF

where (wj(x,Tg’(w),y’))1<j<3 are the solutions of the cell problems

—div, K (z,9')(ej + Vy w; 2(y)) =0 in A°
—div, K (z,9") (e + Vywl () + V(2,1/) - (¢ + Vywl (y)) =0 in A
~K5(y,23)(e; + Vysz(y')) n=40T3(z) G(w S( "V +yj) onxy (83)
) =wfy)  om
y' — w;(y') is A-periodic,
and Ty is given by
Ty
wi(z, T3 (x),y) = (z). (84)
Z J o 0z

The homogenized problem (82) is a non-linear convection-diffusion model where the non-linearity
appears only in the conductivity tensor K* which depends on the third power of the temperature. As
usual in homogenization, the cell problems are linearized, depending on the value of the macroscopic
temperature at each macroscopic point x.

6 Numerical results

In this section we describe some numerical experiments to study the asymptotic behaviour of the heat
transfer model (8) in the non-linear case, i.e., when the radiation operator is defined as in Remark
2.2. Our goal is to show the efficiency of our proposed homogenization procedure, to validate it by
comparing the reconstructed solution of the homogenized model with the numerical solution of the
exact model (8) for smaller and smaller values of € and to exhibit a numerical rate of convergence
in terms of e. While the computations in [3] were restricted to the 2D setting, here we perform 3D
numerical simulations of (8). All computations have been done with the finite element code CAST3M
[11] developed at the French Atomic and Alternative Energy Commission (CEA).



Homogenization of a Heat Transfer Problem 29

6.1 Changing variables for the numerical simulation

Usually, in homogenization theory, we solve a problem in a fixed domain ) with cells of size €, which
tends to 0 (see Figure 3). However, in practice for our nuclear reactor problem, the sizes of the
gas cylinders and cell assemblies are fixed by manufacturing constraints. Therefore, following [3], we
proceed differently: we fix the size of the periodical cell (independent of €) and we increase the total
number of cells, i.e., the size of the global domain which is of order e~'. In other words, instead of
using the macroscopic space variable = € €, we use the microscopic space variable y = x/e. In this new
frame of reference, all periodicity cells are of unit size and the computational domain is e "' which is

increasing as € goes to 0 (see Figure 4).

® o) ® ® ® .o.o.o.o
® ® ® e o o o
o o ® o o e o (o |o
. . o ® @ o ® o L
" o o .Q........”'
. o @ ® ® e o (o |o

[ ] ] [ ] .0.0....
OO

Figure 4: Rescaled process of homogenization with constant periodicity cell and increasing domain
O=c10

If the fixed domain is denoted by 2 = ?ZI(O,Lj), our rescaled computational domain is Q=
10 = H?:1(0,Lj/€)7 where there exist integers N; such that L;/e = N;{;, for j = 1,2 (so that only

entire cells belong to SAZ) For any function u(x) defined on €, we introduce the rescaled function u(y),
defined on €2 by

u(y) = u(ey) = u(x), (85)

which satisfies V,u(y) = e(Vyu)(ey) = eVyu(x). All quantities defined in Q are denoted with a hat™
and, for simplicity, we drop the dependence on €. For example, we define the conductivity tensor K as

= { B0 =) D 36)

KF(y) = eKP(ey,y) in QF,

and the fluid velocity R N
V(y) = eViey,y') in QF. (87)
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We also define QS , Qr , T and 69 by the same change of variables relating €2 and Q. In this new frame
of reference, problem (8) becomes

( —div(ﬁVﬁ) —e2f in O
—div(KFVT) +V VT, =0 in OF
—f(\SVﬁ n = —I/(FVZA’E -n+ O’G(ﬁ4) onT (88)
ZA’E =0 on 9
AE is continuous through T.

The homogenized problem (82) becomes

—diV([?*(?oB)Vﬁ) + eV VT, =€é0f inQ, (89)
TE =0 on O5).
Furthermore, we also define
— x 3 aﬁ
Ti(w) = eTi(en.y') = N, 2) = 30 G2 @n(v) (90)
i=1 7"

where ﬁ is purposely scaled as € so that the e-factor disappears in the last equality of (90). Finally,
the homogenization approximation T,(x) ~ Ty(x) + €I1(x,z/€) becomes

T(y) ~ Toly) +Ti(y). (91)

d
Since a factor €2 appears when changing variables y = /¢ in the L?-norms, we compute relative errors
between the exact and reconstructed solutions in the sequel. The relative errors are invariant by our
change of variables

T.(@) - (Ty(@) + Ta(a, 2))|

€

T(y) - M) + Tiw))|

12(Q) ‘ L2(9)

@ - o], %)
and
|[v7:2) = @@ + D D)y, VR - V0 + T, o
VT 20 |20 5,

6.2 Algorithm and computational parameters

We first give our methodology for the numerical simulations of the homogenization process.
1. Solve the 3 cell problems (83) for a range of values of T (see Figure 5).

2. Compute the homogenized conductivity (as a function of temperature) and the homogenized
velocity.

3. Solve the homogenized problem (82) by a fixed point algorithm (see Figure 7).

T, ,
0; (y)wi(y').

3
4. Compute the corrector fl(y) = Z
i=1

5. Reconstruct an approximate solution: Ty(y) 4+ T1(y) (see Figure 7).
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We now give our computational parameters for a reference computation corresponding to € = ¢g =
i. The geometry corresponds to a cross-section of a typical fuel assembly for a gas-cooled nuclear

reactor (see [20] for further reference). The domain is = ¢ 10 = H;’ZI(O, Lj/e), with L3 = 0.025m
and, for j = 1,2, Lj/e = N;j{; where N; = 3, No = 4 and ¢; = 0.04m, {2 = 0.07m. Each periodicity
cell contains 2 hollow cylinders (holes) (see Figure 1), the radius of which is equal to 0.0035m. The
emissivity of the holes boundaries is equal to e = 1. The thermal source f is set to zero (we refer to [21]
for other computations, including ones with f 2 0). We enforce periodic boundary conditions in the x
direction and non-homogeneous Dirichlet boundary conditions in the other directions which are given
by ﬁ(y) = €(3200y; + 400y2) + 800 on the boundaries corresponding to yo = 0, yo = La/e€, y3 = 0 and
y3 = Ls/e. This boundary condition depends on ¢, as a function of y, in such way that, as a function
of z = ey, it is independent of .
The physical values of the isotropic conductivity are 30Wm ' K~! in the solid part and 0.3Wm 1K !

in the fluid part. Since it is much smaller in the fluid than in the solid, we decided to scale it by ¢, see
(3) and (86). In other words, the conductivity tensor defined in (86) takes the values

p_l30wWmTKT i 0,
N 0.3 Wm~ K- in QF.

On a similar token, the physical value of the fluid velocity (assumed to be constant and parallel to the
cylinders axis) is 80ms~!. By the scaling of (87), the numerical value of the velocity is

0
V=120 ms L.
=80
0
Remark that it is only for the reference computation ¢y = 1/4 that K and V are equal to their physical

values. While the rescaled coefficients K¥(y) and V(y) are varying with ¢, the original coefficients
K¥(z) and V(x) are independent of . The fact that the numerical values of K¥ and V are not the
physical ones for € # ¢y = 1/4 is not a problem, since our convergence study (as € goes to 0) is purely
a numerical verification of our mathematical result.

As explained in Section 6.1 we shall check numerically the convergence of the homogenization
process when € goes to zero, or more precisely when the number of cells goes to infinity. We thus
compare the solution 7. of (8) (obtained by a costly numerical computation) with the homogenized
reconstructed solution Ty(y)+7} (y) (which is much cheaper to compute). Furthermore, we shall obtain
speed of convergences for the relative errors (92) and (93) plotted in Figures 11 and 12. To avoid an
excessive computational burden, we have chosen periodic boundary condition in the x1 direction which
implies that it is not necessary to add cells in the xy direction. Therefore, N1 = 3 is fixed and we
simply add cells in the xo direction, increasing Ny from 4 to 10 with a unit step. In other words, we

define
1

Ny’

Note that the vertical size of €} is L3 /e, which is thus increasing as e goes to zero.

All computations are performed with rectangular @ finite elements (4 nodes in 2D, 8 nodes in 3D).
A boundary integral method is used for the radiative term (which involves a dense matrix coupling all
nodes on the surface enclosing a fluid part). The typical number of nodes for the 2D cell problem is
1 027 (from which 72 are on the radiative boundary «); it is 6 336 for the 3D homogenized problem
(which has no radiative term); it is 96 480 for the original problem (8) with € = ¢y = % (from which
6 912 are on the radiative boundary I';).

€

6.3 Simulation results

In Figure 5 we plot the solutions of the cell problems (83) for an homogenized temperature Ty = 800K .
Recall that, in the non linear case, the solutions of the cell problems depend on the macroscopic
temperature. We recognize that wgg is a constant in Figure 5 (right).
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-9.74E-05

w3

Figure 5: Solutions of the cell problems for Ty = 800K

The cell solutions allow us to evaluate the homogenized conductivity which turns out to numerically
be a diagonal tensor (at least for temperatures Ty < 1F+ 05K with a precision on 14 digits). However,
for larger (extreme) temperatures, K* is not any longer a diagonal tensor [3]. The diagonal entries of
K* are plotted on Figure 6 and two typical values are

- 25.907 0. 0. ~ 49.801 0. 0.
K*(Ty =50K) = | o. 25.914 0. . K*(Ty =20000K) = [ o. 49.781 0.
0. 0. 30.05 0. 0. 3680.7

The homogenized velocity is a simple volume average, equal to
R 0
V=1 0 ms~L.
15.134
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Figure 6: Homogenized conductivities as a function of the macroscopic temperature: K7, (top left),
K3, (top right), K3, (bottom).

By a fixed point algorithm (the homogenized conductivity K* is evaluated with the previous iterate
for the temperature), we solve the homogenized problem (it requires of the order of 5 iterates). By a
Newton method we solve also the direct model (8) (it requires of the order of 15 iterates). In Figure
7 we plot the direct, homogenized and reconstructed solutions computed for a value of € = ¢y = 1/4,
as well as the error between the direct and reconstructed temperature. The error is clearly small and
mostly concentrated on the domain boundaries. The moduli of the temperature gradients are displayed
on Figure 8. Clearly the reconstructed solution TO + T is a much better approximation of the true
solution 7, than the mere homogenized solution To The error on the temperature gradient is larger
and again concentrated on the domain boundaries (this is consistent with the presence of boundary
layers not taken into account in our asymptotic analysis).
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Figure 7: Solutions in Q
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Notice on Figure 7 that the reconstructed temperature is slightly fluctuating on the boundary yo = 0
while the true solution is linear. This is due to the fact that the corrector fl does not satisfy a Dirichlet
boundary condition. This well-known effect in homogenization can be corrected by introducing further
terms, called boundary layers [8], [10]. We shall not dwell on this issue, all the more since other
boundary layers are involved in our approximation. Indeed, the dimension reduction which applies to
the radiative operator (which is truly 3D in the direct model (8) and only 2D in the cell problems)
certainly generates boundary layers close to the top and bottom boundaries y3 = 0 and y3 = L3/e.
Nevertheless, if we plot the solutions in a smaller domain A (which is obtained from Q by removing
one row of cells close to each boundary face normal to the x5 direction and a layer of thickness 0.025m
at the top and bottom faces) we obtain a better agreement between Ty + T and T, (see Figure 9) and
between V(Ty 4+ T}) and V7, (see Figure 10).
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Figure 9: Solutions in the reduced domain A

Now, to check the convergence of our homogenization process and to obtain a numerical speed of
convergence, we display in Figures 11 and 12, as a function of € on a log-log plot, the relative errors
(92) and (93) related to temperature ERR(T) and temperature gradient FRR(VT). We compare
these errors with the slopes of € and /e. This has to be compared with the classical error estimate for
a pure diffusion problem (without radiative transfer) as given in [10]

'ERR(T)A e -@w -+ B e o
’ ‘i(y)‘p(ﬁ) )
R [V7.0) - (V@) + VAW ey o

' HVﬁ(y)‘ L2(Q) )

Our errors ERR(T') and ERR(VT) are in accordance with those theoretically predicted for a pure
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Figure 10: Modules of the solution gradients in the reduced domain A

diffusion problem, namely they behave like € and /€, respectively. In particular, it implies that the
additional boundary layers caused by the dimension reduction effect (due to the radiative term) have
an impact on the error compararable or smaller than that the homogenization boundary layers.

Even for moderate-size computations, like the ones in this section, the gain in memory and CPU
time for our homogenization method is enormous compared to a direct simulation. This is a well-
known fact in the homogenization of diffusion problem but the gain is all the more extreme because
of the radiative transfer involved in our model. Indeed, the direct model (8) involves a 3D radiative
transfer operator which implies that full matrices connecting all nodes on the surface of one cylinder
have to be stored and inverted (of course they are coupled through the diffusive rigidity matrix in the
solid part). Typically, one Newton iteration in our reference computation takes about 80 min on a
computer which has a memory of 37.2GB and 12 processors with CPU = 2.67GHz. On the other
hand, the cell problems (27) are merely 2D, so very cheap to solve (typically, one solution for a given
temperature Ty takes 18.FE — 04 min with the same computer), and the homogenized problem (82)
features no radiative term (one Newton iteration in our reference computation takes 12.E — 02 min
with the same computer). Therefore, our algorithm of Subsection 6.2 is very competitive and is able
to treat very large cases, like a full nuclear core computation.
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