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Abstract

We investigate a system of partial differential equations modeling supercritical multicompo-

nent reactive fluids. These equations involve nonideal fluid thermodynamics, nonideal chemistry

as well as multicomponent diffusion fluxes driven by chemical potential gradients. Only local

symmetrization of the resulting system of partial differential equations may be achieved because

of thermodynamic instabilities even though the entropy function is globally defined. Local sym-

metrized forms are explicitly evaluated in terms of the inverse of the chemical potential Hessian

and local normal forms lead to global existence and asymptotic stability of equilibrium states as

well as decay estimates. We also discuss the deficiency of the resulting system of partial differential

equations at thermodynamically unstable states typically associated with nonideal fluids.

1 Introduction

Supercritical reactive fluids arise in laboratory experiments and engineering applications like for in-
stance Ariane’s rocket engines [12, 46]. This is a strong motivation for investigating the mathemat-
ical structure of supercritical fluid models with chemical reactions. The mathematical structure of
hyperbolic-parabolic symmetrizable systems of partial differential equations modeling single species
fluids has already been investigated by many authors [44, 32, 82, 50, 71, 52, 18, 29, 9, 74]. Mathemat-
ical models for multicomponent ideal fluid mixtures with chemical kinetics of mass action type have
also been analyzed in various frameworks [38, 34, 39, 30, 48, 57], but, to the authors’ knowledge, the
situation of supercritical reactive fluids is analyzed here for the first time.

The system of partial differential equations modeling supercritical multicomponent reactive fluids is
first discussed. Governing equations for dense fluid mixtures may generally be derived from the thermo-
dynamics of irreversible processes [61, 62, 67, 20], from statistical mechanics [49, 3, 63], from nonequi-
librium statistical thermodynamics [54], as well as from the kinetic theory of dense gases [5, 6, 56]. The
conservation equations, the thermodynamics, the chemical production rates and the transport fluxes
are presented. Nonideal thermodynamics are often built from pressure laws by assuming a Gibbsian
structure and compatibility with perfect gases at low densities and such a construction has recently
been investigated mathematically [40]. The nonideal chemical production rates are deduced from sta-
tistical thermodynamics and are directly expressed in terms of chemical potentials [59, 60, 54, 43, 40].
These rates are compatible with the symmetric forms of rates of progress derived from the kinetic
theory of dilute reactive gases [27, 34]. The transport fluxes are deduced from various macroscopic or
molecular theories [62, 67, 20, 54, 5, 6, 56] and are driven by chemical potential gradients. Nonidealities
in transport fluxes are notably important to prevent unphysical diffusion in dense cold fluids [43, 41].
The resulting nonideal fluid model is shown to satisfy the second principle of thermodynamics, that
is, entropy production due to transport fluxes and chemistry are both shown to be nonnegative. As a
typical exemple, the nonideal thermodynamics built from the Soave-Redlich-Kwong cubic equation of
state, often used to model supercritical flames [70, 43], is discussed.

An important aspect of nonideal thermodynamics is the existence of thermodynamic instabilities
which may be of thermal, mechanical, or chemical origin [40]. Instabilities of mechanical origin typically
correspond to single species—or chemically frozen—liquid-vapor phase changes and are avoided at
sufficiently high pressure. At supercritical pressure, one may indeed continuously transform a fluid
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from a liquid-like state into a gas-like state [43]. On the other hand, the instabilities of chemical origin
correspond to phase separation at sufficiently—supercritical— high pressure and low temperature [43].
Mixtures of Hydrogen and Nitrogen may split for instance between two phases at temperatures below
100 K and pressures above 100 atm as established experimentally [81, 28], and these thermodynamic
instabilities of chemical origin have been well reproduced computationally by using the Soave Redlich
Kwong equation of state [40, 43]. From a mathematical point of view, these unstable points are
associated with a change of sign of entropy Hessian eigenvalues.

We investigate symmetrized forms of the resulting system of partial differential equations. Existence
of a symmetrized form is related to the existence of a mathematical entropy compatible with convective
terms, dissipative terms and source terms. This mathematical entropy is taken to be the opposite of
the physical entropy per unit volume. However, the open sets where thermodynamics is admissible—in
particular where the entropy Hessian is definite—are bounded by thermodynamically unstable states
for nonideal fluids. The set where the conservative variable may range is thus not anymore convex—like
for perfect gases—and different states may correspond to the same entropic variable, i.e., to the same
thermal variables and chemical potentials. As a consequence, even though there exists a mathematical
entropy function σ and a symmetrizing variable v = (∂uσ)

t defined for all admissible states of the
conservative variable u, the corresponding map u → v is not anymore globally one to one—unlike for
ideal fluids—because of thermodynamic instabilities. This symmetrizing change of variable is only
locally invertible for such nonideal thermodynamics. Similarly, the normal change of variable are only
locally invertible but this property is sufficient to rewrite locally the system into a normal form, that
this, in the form of a symmetric hyperbolic-parabolic composite system.

The symmetrized forms associated with supercritical reactive fluids are evaluated in terms of the
inverse of the Gibbs functions derivatives ∂ρj

Gi, 1 6 i, j 6 n, where Gi is the Gibbs function of the ith
species per unit mass and ρj the partial density of the jth species. We establish the dissipative structure
of the linearized normal form around constant equilibrium states as well as stability conditions on the
source term, i.e., the chemical entropy production is nonnegative and the source term lies in the range of
its derivative at equilibrium. As a consequence, we obtain global existence results, asymptotic stability
of stationary states and decay estimates towards the equilibrium states in all space dimensions for
multicomponent dense fluid models including arbitrary complex chemistry as well as detailed nonideal
transport fluxes. These results extends previous work associated with ideal gas mixtures and mass
action type chemical kinetics [38] and apply in particular to metastable states such as undercooled
vapor or superheated liquids.

We finally investigate how are transformed the mathematical properties of the system of partial
differential equations at thermodynamic unstable states. We specifically consider a single fluid at a
mechanical thermodynamic unstable point and a binary mixture at a chemical thermodynamic unsta-
ble point. In both situations, the normal forms degenerate whereas the rescaled normal forms remain
hyperbolic and their dissipative subsystems remain symmetrizable and parabolic in the sense of Petro-
vsky. However, these rescaled normal forms are not anymore symmetrizable, and more fundamentally,
the Shizuta-Kawashima condition does not hold anymore at thermodynamically unstable points so
that they are not strictly dissipative. In other words, it is the global system structure which presents
a deficiency at thermodynamically unstable states and pure compression waves remain undamped.

The system of partial differential equations modeling supercritical fluids is presented in Section 2.
Symmetrization, existence of an entropy, and normal forms are investigated in Section 3 for an abstract
system. These results are applied to supercritical reactive fluids in Section 4. Finally, the deficiency of
the system of partial differential equations at thermodynamic unstable points is studied in Section 5.

2 Supercritical fluids

We present in this section the system of equations modeling supercritical multicomponent reactive
fluids. We also discuss entropy production, thermodynamic instabilities as well a typical cubic equation
of state often used for high pressure fluids.

2.1 Governing equations

2.1.1 Conservation laws

We denote by S = {1, . . . , n} the species indexing set, n the number of species, ρi the mass density of
the ith species, and mi the molar mass of the ith species. The mass conservation equation for the ith
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species may be written
∂tρi +∇·(ρiv) +∇·F i = miωi, i ∈ S, (2.1)

where v denotes the velocity of the mixture, F i the mass diffusion flux and ωi the molar production
rate of the ith species. Bold symbols are used for vector or tensor quantities in the physical space Rd

where d is the dimension of the physical model under consideration so that for instance v = (v1, . . . , vd)
t

and ∇ = (∂1, . . . , ∂d)
t. The momentum conservation equation can be written in the form

∂t(ρv) +∇·(ρv⊗v + PId) +∇·Π = 0, (2.2)

where ρ =
∑

i∈S
ρi is the mass density of the mixture, P the pressure, Id the unit tensor in Rd, and

Π the viscous tensor. Finally, the energy conservation equation reads

∂t(E + 1
2ρv·v) +∇·

(
(E + 1

2ρv·v + P)v
)
+∇·(Q+Π·v) = 0, (2.3)

where E is the internal energy per unit volume and Q the heat flux. These equations have to be
completed by relations expressing the thermodynamic properties like E and P , the chemical production
rates ωi, i ∈ S, and the transport fluxes F i, i ∈ S, Π and Q.

2.1.2 Historical derivation

The general equations governing nonideal gas mixtures with expressions for multicomponent fluxes in
terms of chemical potential gradients and temperature gradients—with proper symmetry properties of
the transport coefficients—have first been derived from the thermodynamic of irreversible processes
by Meixner [61, 62] and Prigogine [67, 20]. The equations for dense fluids have then been obtained in
the framework of statistical mechanics by Irwing and Kirkwood [49] and for dense fluid mixtures by
Bearman and Kirkwood [3] and Mori [63]. The governing equations and the multicomponent fluxes
have also been obtained by Keizer [54] from nonequilibrium statistical thermodynamics.

The kinetic theory of gases has been very well developed for dilute gas mixtures but the resulting
equation of state is that of perfect gases [83, 80, 13, 31, 22]. A kinetic theory of dense gases has
first been developed by Enskog for rigid spheres and extended by Thorne to binary mixtures [13, 31].
The advantage of the rigid sphere model is that collisions are instantaneous so that the probability of
simultaneous multiple encounters is negligible. The principal transport mechanism in dense gases is
then that of collisional transfer at variance with dilute gases where it is free molecular flow. However,
it has been found by Bajaras et al. [2] that the results of the Enskog-Thorne theory—and of its
straightforward extensions—are not compatible with the thermodynamics of irreversible processes.
A modified form of Enskog equation has then been introduced by Van Beijeren and Ernst [5] and
the resulting dense fluid gas mixture kinetic theory [6] has been shown to be compatible with the
thermodynamics of irreversible processes. The corresponding Chapman-Enskog procedure has next
been performed by Kurochkin et al. [56]. More general theories of dense gases have been based on
multiple velocity distribution functions and on the BBGKY hierarchy of equations [13, 31]. Formal
expressions have notably been derived for a single gas, assuming that the two-particle distribution
function is time-independent [31]. To the authors’ knowledge, however, a general kinetic theory of
dense polyatomic reactive gas mixtures is still missing.

2.2 Thermodynamics

2.2.1 Dense fluid thermodynamics

We denote by S the entropy per unit volume, E the energy per unit volume, and P the pres-
sure. The thermodynamic framework is presented by using the usual thermodynamic variables z =
(ρ1, . . . , ρn, T )

t and u = (ρ1, . . . , ρn, E)t where ρ1, . . . , ρn denotes the species mass per unit volume and
T the absolute temperature. These variables z and u are essentially the thermodynamic components
of the natural variable z and of the conservative variable u introduced later in Section 2.8. We denote
by ∂ the derivation operator with respect to the variable u and by ∂̃ the derivation operator with
respect to the variable z . The integer κ ∈ N, κ > 3, denotes the regularity class of thermodynamic
functions.

Definition 2.1. Let E, P, and S be Cκ functions of the variable z = (ρ1, . . . , ρn, T )
t defined on a

simply connected open set Oz ⊂ (0,∞)n+1. These functions are said to define a thermodynamics when
Properties (T1)-(T4) hold.
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(T 1) The map z → u is a Cκ diffeomorphism from the set Oz onto an open set Ou .

(T 2) For any z ∈ Oz , defining Gi = ∂̃ρi
E − T ∂̃ρi

S, i ∈ S, we have the volumetric Gibbs’ relation

TdS = −
∑

i∈S

Gidρi + dE , (2.4)

and the constraint
∑

i∈S
ρiGi = E + P − TS.

(T 3) For any z ∈ Oz , the Hessian matrix ∂2uu S is negative definite.

(T 4) For any (y1, . . . , yn, T ) ∈ (0,∞)n+1, such that
∑

i∈S
yi = 1, there exists ρm > 0 such that

zρ = (ρy1, . . . , ρyn, T )
t ∈ Oz for 0 < ρ < ρm. Moreover, we have the compatibility conditions

lim
ρ→0

E(zρ)− Epg(zρ)

ρ
= 0, lim

ρ→0

P(zρ)− Ppg(zρ)

ρ
= 0, lim

ρ→0

S(zρ)− Spg(zρ)

ρ
= 0,

where the superscript pg denotes the thermodynamics properties of perfect gas mixtures.

Property (T1) is associated with the natural change of variables traditionally encountered in ther-
modynamics and temperature as well as species densities are naturally assumed to be positive in the
model with Oz ⊂ (0,+∞)n+1. Property (T2) is Gibbs’ relation in terms of volumetric densities with
a simplified definition of the species Gibbs functions Gi, i ∈ S. There is also a constraint associated
with Gibbs’ relation (2.4) in terms of S, E , and ρ1, . . . , ρn, since these variables are volumetric [40].
Property (T3) is the natural thermodynamic stability condition since, from the second principle, the
evolution of an isolated system tends to maximize its entropy. The entropy of a stable isolated system
should thus be a concave function of its composition variables and internal energy. Whenever it is not
the case, the system loses its homogeneity and splits between two or more phases in order to reach
equilibrium. In particular, the open set Oz may have a complex shape because of real gas effects and
thermodynamic instabilities at high pressure and low temperature. The open set Ou is also simply
connected like Oz from (T1) allowing a unique determination of entropy. Property (T4) is finally the
compatibility condition with perfect gases since for small ρ we must recover the perfect gas regime.
Note that division by ρ is required since as ρ → 0 all volumetric densities as well as both P and Ppg

go to zero. The compatibility with perfect gases must naturally be written in term of densities and it
is mathematically absurd to formulate such compatibility it in terms of extensive absolute quantities.

Remark 2.2. Since z → u is a diffeomorphism, we may equally define the thermodynamics with
functions T (u ), P(u ) and S(u ) such that (T1)-(T4) are satisfied.

Supercritical fluid thermodynamics are generally built from equations of states and such a con-
struction has been investigated mathematically [40]. In particular, unlike with classical fluid thermo-
dynamics, the domain of validity is restricted by thermodynamic instabilities at low temperature and
high pressure [43].

2.2.2 Perfect gases

The perfect gas pressure Ppg associated with Property (T4) is given by

Ppg = RT
∑

i∈S

ρi
mi

, (2.5)

and the corresponding energy per unit volume Epg is in the form

Epg =
∑

i∈S

ρie
pg

i , epgi = esti +

∫ T

T st

cpgvi (θ) dθ, (2.6)

where epgi denotes the perfect gas internal energy per unit mass of the ith species, T st the standard
temperature, esti the energy of formation at temperature T st per unit mass of the ith species, and cpgvi
the perfect gas specific heat per unit mass of the ith species. The entropy per unit volume Spg in (T4)
is given by

Spg =
∑

i∈S

ρiSpg

i , Spg

i = ssti +

∫ T

T st

cpgvi (θ)

θ
dθ − RT

mi
log

ρi
miγst

, (2.7)
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where ssti is the formation entropy of the ith species at the standard temperature T st and standard
pressure pst, and γst = pst/RT st is the standard concentration. The enthalpy Hpg = Epg +Ppg, Gibbs
function Gpg = Epg + Ppg − TSpg, and free energy Fpg = Epg − TSpg are then easily evaluated. The
assumptions required for perfect gases (PG) may be written [40, 34]

(PG) The formation energies esti , i ∈ S, and entropies ssti , i ∈ S, are real constants. The species
mass per unit mole mi, i ∈ S, and the gas constant R are positive constants. The species heat
per unit mass cpgvi , i ∈ S, are C∞ functions over [0,∞), and there exist constants cv and cv
such that 0 < cv 6 cpgvi 6 cv for all T > 0 and i ∈ S.

The extension up to zero temperature of specific heats, energies and enthalpies is commonly used
in thermodynamics. The specific heats that are considered remain bounded away from zero since we
consider perfect gases governed by Boltzmann statistics [34]. In the following proposition we investigate
the mathematical properties of ideal gas mixture thermodynamics where of course (T4) is trivial.

Proposition 2.3. The energy per unit volume Epg, the pressure Ppg, and the entropy per unit volume
Spg, are C∞ functions defined on the open set Opg

z = (0,∞)n+1 which satisfy (T1)-(T4). Moreover we
have

Opg

u = {u = (u1, . . . , un, uE)
t with u1 > 0, . . . , un > 0, uE >

∑

i∈S

u ie
0
i },

where e0i denotes the energy of the ith species at zero temperature e0i = esti −
∫ T st

0 cpgvi (θ) dθ, i ∈ S.

Proof. The proof is straightforward and we refer to [34].

2.2.3 The mass fraction variables

Thermodynamic functionals in terms of the variables (ρ1, . . . , ρn, T )
t or (ρ, y2, . . . , yn, T )

t do not have
homogeneity properties. In order to have homogeneous functionals, it is necessary to use the variable
(ν, y1, . . . , yn, T )

t where ν = 1/ρ is the volume per unit mass, ρ =
∑

i∈S
ρi, and yi = ρi/ρ is the mass

fraction of the ith species. Assuming that the mass fractions are independent [40] and defining

e(ν, y1, . . . , yn, T ) = νE
(y1
ν
, . . . ,

yn
ν
, T
)
,

p(ν, y1, . . . , yn, T ) = P
(y1
ν
, . . . ,

yn
ν
, T
)
,

and
s(ν, y1, . . . , yn, T ) = νS

(y1
ν
, . . . ,

yn
ν
, T
)
,

then s and e are indeed 1-homogeneous and p is 0-homogeneous with respect to ν, y1, . . . , yn [40].
With such independent mass fractions, the mass constraint

∑
k∈S

yk = 1 must be recovered from the
governing equations and boundary conditions [34, 40]. The mathematical structure of the corresponding
mass based thermodynamic properties e, p, and s is fully described in [40] as well as the equivalence
with (T1)-(T4).

2.3 Chemical production rates

We present in this section the mathematical structure of nonideal chemical production rates [40]. The
mathematical structure of chemical kinetics has notably been investigated—generally for homogeneous
systems and kinetics of mass action type—by Aris [1], Wei [84], Shapiro and Shapley [72], Pousin [68],
Krambeck [55], Giovangigli and Massot [34, 38, 39], and that of nonideal chemical production rates
has recently been investigated by the authors [40].

2.3.1 Nonideal rates

We consider an arbitrary complex reaction mechanism with nr reactions involving n species which may
be written symbolically ∑

i∈S

νfijMi ⇄
∑

i∈S

νbijMi, j ∈ R, (2.8)
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where νfij and νbij denote the forward and backward stoichiometric coefficients of the ith species in
the jth reaction, Mi the symbol of the molecule of the ith species, and R = {1, . . . , nr} the reaction
indexing set. All chemical reactions are reversible and the number of reactions nr > 1 is arbitrary. We
are indeed interested in elementary chemical reactions which effectively take place in the fluid mixtures,
and elementary reactions are always reversible [34].

The molar production rate of the ith species ωi is given by [59, 60, 54]

ωi =
∑

j∈R

(νbij − νfij)τj , (2.9)

where τj denotes the rate of progress of the jth reaction. The proper form for the rate of progress of
the jth reaction τj is deduced from statistical physics [59, 60, 54]

τj = κsj

(
exp
(∑

i∈S

νfijµi

)
− exp

(∑

i∈S

νbijµi

))
, (2.10)

where κsj is the symmetric reaction constant of the jth reaction, µi = miGi/RT the reduced molar
chemical potentials of the ith species, and Gi the Gibbs function per unit mass of the ith species.

These nonideal rates of progress have first been derived by Marcelin from chemical and statistical
physics considerations [59, 60]. They have been rederived by Keizer in the framework of an extended
statistical theory of nonequilibrium processes [54]. This form for rates of progress insures that entropy
production due to chemical reactions is nonnegative and is compatible with traditional nonidealities
used to estimate equilibrium constants [19, 45]. They are also compatible with the symmetric forms
of rates of progress derived from the kinetic theory of dilute reactive gases [34, 27, 43]. Note that
these rates are expressed in terms of chemical potentials, so that they are only defined where the
corresponding thermodynamics is defined.

2.3.2 Mathematical structure

The species of the mixture are assumed to be constituted by atoms and we denote by ail the number of
lth atom in the ith species, A = {1, . . . , na} the set of atom indices, and na > 1 the number of atoms—
or elements—in the mixture. It is convenient to introduce a vector notation in order to investigate
the mathematical structure of the chemical production rates. The forward and backward reaction
vectors νfj and νbj of the jth reaction are defined by νfj = (νf1j , . . . , ν

f
nj)

t and νbj = (νb1j , . . . , ν
b
nj)

t,

and the global reaction vector by νj = νbj − νfj . The atomic vectors al, l ∈ A, are similarly given by
al = (a1l, . . . , anl)

t, the unit vector by 1I = (1, . . . , 1)t, and the reduced chemical potentials vector by
µ = (µ1, . . . , µn)

t, where µi = miGi/RT , i ∈ S. The Euclidean scalar product between x, y ∈ R
n is

denoted by 〈x, y〉 and the orthogonal complement of a linear subspace E ⊂ Rn is denoted by E⊥. The
production vector ω is defined by ω = (ω1, . . . , ωn)

t so that we have the vector relation ω =
∑

j∈R
τjνj

with τj = κsj
(
exp〈µ, νfj〉 − exp〈µ, νbj 〉

)
, j ∈ R. The vector spaces spanned by the reaction vectors and

the atomic vectors are denoted by R and A, respectively

R = span{ νi, i ∈ R }, A = span{ al, l ∈ A },

and we denote by M the diagonal matrix M = diag(m1, . . . ,mn). The mathematical assumptions
associated with the chemical production rates are the following.

(C1) The stoichiometric coefficients νfkj and νbkj, k ∈ S, j ∈ R, and the atomic coefficients akl,
k ∈ S, l ∈ A, are nonnegative integers. The atomic vectors al, l ∈ A, and the reaction vectors
νj, j ∈ R, satisfy the atom conservation relations

〈νbj , al〉 − 〈νfj , al〉 = 〈νj , al〉 = 0, j ∈ R, l ∈ A.

(C2) The atom masses m̃l, l ∈ A, are positive constants, and the species molar masses mk, k ∈ S,
are given by

mk =
∑

l∈A

m̃l akl, k ∈ S.

(C3) The symmetric rate constants κsj, j ∈ R, are C∞ positive functions of T > 0.
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The reaction and atomic vector spaces are thus such that R ⊂ A⊥ and A ⊂ R⊥ from (C1). For
realistic complex chemistry networks, the number of chemical reactions is always much larger than the
number of chemical species and one usually has R = A⊥. In other words, in practical situations, the
chemical reactions vectors νj , j ∈ R, are spanning the largest possible space. When this is not the
case, one has simply to use the space R⊥ instead of A [55].

Remark 2.4. The atoms vectors al, l ∈ A, may be assumed to be linearly independent. When this is
not the case, it is first necessary to eliminate linearly dependent atomic vectors.

Assuming that Properties (T1)-(T4), (PG), and (C1)-(C3) hold, the resulting chemical production
rates, which involve the chemical potentials µi, i ∈ S, are thus defined over the open set Oz . From
atom conservation and the definition of species masses, we now deduce the mass conservation property.

Lemma 2.5. The vector of chemical production rates ω is such that ω ∈ R and Mω ∈ MR. Moreover,
the unity vector satisfies 1I ∈ (MR)⊥ so that we have the total mass conservation relation 〈1I,Mω〉 =∑

k∈S
mkωk = 0.

Proof. We deduce from (C1)-(C3) that 1I =
∑

l∈A
m̃lM

−1al so that 1I ∈ (MR)⊥. Moreover, ω ∈ R
since ω =

∑
j∈R

τjνj and thus Mω ∈ MR and finally 〈Mω, 1I〉 = 0.

2.4 Transport fluxes

2.4.1 General structure

A remarkable aspect of transport fluxes in nonideal gases is that they are directly expressed in terms of
temperature gradients and chemical potential gradients. In the absence of forces acting on the species,
the species mass and heat fluxes are in the form

F i = −
∑

j∈S

Lij∇

(Gj

T

)
− Lie∇

(
− 1

T

)
, i ∈ S, (2.11)

Q = −
∑

j∈S

Lej∇

(Gj

T

)
− Lee∇

(
− 1

T

)
, (2.12)

where Lij , i, j ∈ S∪{e}, are the mass and heat transport coefficients which depend on the local state z
of the fluid, Gj the Gibbs function of the jth species per unit mass and T the absolute temperature.

On the other hand, the viscous tensor is in the form

Π = −κ(∇·v)Id − η
(
∇v + (∇v)t − 2

d (∇·v)Id
)
, (2.13)

where κ denotes the effective volume viscosity, η the shear viscosity, and Id the identity matrix in
d dimensions. Actually, the full viscous tensor Π ′ is a matrix of dimension d′ = 3 in the form
Π ′ = −κ′ ∇·v I3−η

(
∇v+(∇v)t− 2

3∇·v I3
)
involving the physical volume viscosity κ′ and a coefficient

2/3 instead of the coefficient 2/d in (2.13) since d′ = 3 is the dimension of the velocity phase space of
the corresponding kinetic model. However, we may assume that the spatial dimension of the model
d has been reduced, that is, the equations are considered in R

d with d ≤ d′ = 3, independently from
the kinetic velocity fluctuations which are always three dimensional. If we denote by Π the upper left
block of size d of Π ′, that is, the useful part of Π ′, we may rewrite Π in the form [35]

Π = −
(
κ′ + ( 2d − 2

3 )η
)
∇·v Id − η

(
∇v + (∇v)t − 2

d∇·v Id
)
. (2.14)

Therefore, using a coeefficient 2/d instead of 2/3 in the coefficient of the viscous tensor in (2.13) is
equivalent to increasing the physical volume viscosity κ′ by the amount 2η (d′−d)/d′d = 2η (3−d)/3d.
We have directly written the viscous tensor in the form (2.13) for convenience with the effective volume
viscosity κ = κ′ + 2η (3− d)/3d. We will assume in particular in the following that κ is positive when
d = 1 keeping in mind that ∇v + (∇v)t − 2

d∇·v Id then vanishes. Note incidentally that the volume
viscosity of polyatomic gases is positive and its impact on fast flows has been established in [8].

The mathematical properties of the transport coefficients are the following.

(Tr1) The matrix L and the coefficients η and κ are Cκ functions of z ∈ Oz .
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(Tr2) The matrix L defined by

L =




L11 · · · L1n L1e

...
. . .

...
...

Ln1 · · · Lnn Lne

Le1 · · · Len Lee


 , (2.15)

is symmetric positive semi-definite and has nullspace N(L) = R (1I, 0)t, where 1I ∈ Rn and

1I =
(
1, . . . , 1

)t
. The coefficient η is positive, the coefficient κ is nonnegative and is positive

when d = 1.

From an historical point of view, to the authors’ knowledge, the expressions (2.11)(2.12) associated
with nonideal gas mixtures—taking into account the symmetry of the transport matrix—have first
been written in the framework of thermodynamics of irreversible processes by Meixner [61, 62] and
later by Prigogine [67, 20]. Similar expressions had been written previously by Eckart [21] but only
for ideal gas mixtures and without symmetry properties of the transport coefficients. The expressions
(2.11)(2.12) have then been rederived in various frameworks, in particular by Bearman and Kirkwood
[3] (only partially) and Mori [63] with statistical mechanics, by Keizer [54] in the framework of nonequi-
librium statistical thermodynamics, and by Van Beijeren and Ernst [6] and Kurochkin et al. [56] in the
framework of the kinetic theory of dense gases, thanks to a modified form of Enskog equation [5].

2.4.2 Heat and mass diffusion coefficients

The heat and mass diffusion fluxes F i, i ∈ S, and Q may be rewritten in a more classical form than
(2.11)(2.12) by defining high pressure multicomponent transport coefficients. To this aim, we first

introduce the modified matrix L̂ = AtLA where

L̂ =




L̂11 · · · L̂1n L̂1e

...
. . .

...
...

L̂n1 · · · L̂nn L̂ne

L̂e1 · · · L̂en L̂ee


 , A =




−h1
In

...
−hn

0 · · · 0 1


 , (2.16)

and In denotes the identity matrix in Rn. The high pressure multicomponent diffusion coefficients Dij ,

i, j ∈ S, thermal diffusion coefficients θi, i ∈ S, and partial thermal conductivity λ̂ are then defined
by [56]

Dij ,=
RL̂ij

ρyiyjm
, i, j ∈ S, θi =

L̂ie

ρyiT
=

L̂ei

ρyiT
, i ∈ S, λ̂ =

L̂ee

T 2
. (2.17)

We may also introduce the gradient at constant temperature (∇µj)T of the reduced chemical potential
µj = mjGj/RT and the generalized diffusion driving force dj = xj(∇µj)T , so that

xj∇µj = dj −
xjmjhj
RT 2

∇T, j ∈ S.

In these relations xj = myj/mj is the mole fraction of the jth species and m the molar mass of the
mixture m = (

∑
i∈S

yi)/(
∑

i∈S
yi/mi). Using the high pressure coefficients and the diffusion driving

forces, the fluxes F i, i ∈ S, and Q may be rewritten in the familiar form

F i = −
∑

j∈S

ρyiDijdj − ρyiθi∇ lnT, i ∈ S, (2.18)

Q = −ρRT
m

∑

j∈S

θjdj − λ̂∇T +
∑

i∈S

hiF i. (2.19)

The high pressure symmetric multicomponent diffusion coefficients Dij , i, j ∈ S, introduced by
Kurochkin [56], generalize the symmetric coefficients introduced for dilute gases by Waldmann [83,
80, 13]. On the contrary, Hirschfelder, Curtiss, and Bird have artificially destroyed the natural sym-
metries of transport models as discussed by Van de Ree [80].

The multicomponent diffusion matrix D = (Dij)i,j∈S, the vector θ = (θ1, . . . , θn)
t of thermal

diffusion coefficients and the partial thermal conductivity λ̂ satisfy the following properties where we
denote by y = (y1, . . . , yn)

t the mass fraction vector.
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Proposition 2.6. Assume that Properties (T1)-(T4) and (PG) hold and assume that L ∈ Rn+1,n+1 is

symmetric positive semi-definite with N(L) = R (1I, 0)t. Let L̂ = AtLA where A is given by (2.16) and
define the high pressure coefficients with (2.17). Then the matrix D is symmetric positive semi-definite

with nullspace N(D) = Ry, θ ∈ y⊥, and λ̂ > 0.

Proof. Since L̂ = AtLA and A is invertible we obtain that L̂ is symmetric positive semi-definite and
that N(L̂) = A−1N(L). Since (1I, 0)t = A(1I, 0)t we deduce that N(L̂) = R (1I, 0)t.

It is next easily established from (2.17) that

L̂ =
ρm

R




y21D11 · · · y1ynD1n
RTy1

m
θ1

...
. . .

...
...

yny1Dn1 · · · y2nDnn
RTyn

m
θn

RTy1

m θ1 · · · RTyn

m θn
RT 2

ρm λ̂



, (2.20)

and since L̂(1I, 0)t = 0 we obtain that Dy = 0 and 〈θ, y〉 = 0. From the symmetry of L̂ we also deduce
that D is symmetric. In addition, for any x̺ = (x1, . . . , xn)

t ∈ Rn, letting Y = diag(y1, . . . , yn) and

x̂ = (Y−1x̺, 0)
t, we have (ρm/R)〈L̂ x̂, x̂〉 = 〈D x̺, x̺〉 so thatD is positive semi-definite andN(D) = Ry

since Y−1y = 1I. Finally, fn+1 = (0, . . . , 0, 1)t is not in N(L̂) so that 〈L̂fn+1, fn+1〉 > 0 and λ̂ > 0.

Various mathematical properties of the transport coefficients D, λ̂ and θ are discussed in [33, 26, 38,
34]. Evaluating the transport coefficients generally requires to solve transport linear systems derived
from the kinetic theory of gases [22, 56, 78]. These coefficients may also conveniently be evaluated from
convergent series arising from iterative solution of the transport linear systems [22, 23, 24, 25, 26, 36, 43].

2.4.3 Alternative formulation

An alternative form—similar to that of dilute gas mixtures—is also possible by introducing the high
pressure thermal diffusion ratios χi, i ∈ S, and thermal conductivity λ [62, 56, 13]. The corresponding
expressions of the mass and heat diffusion fluxes in terms of χ and λ are more practical from a
mathematical point of view as well as a computational point of view than the corresponding expressions
in terms of θ and λ̂ [23].

Definition 2.7. Keep the assumptions of Proposition 2.6. There exists a unique vector of thermal
diffusion ratios χ such that θ = Dχ and 〈χ, 1I〉 = 0. The thermal conductivity is then defined by

λ = λ̂− ρR
m
〈Dχ,χ〉.

Proof. From Proposition 2.6 we know that D is symmetric positive semi-definite, N(D) = Ry, and
that 〈θ, y〉 = 0. Since D is symmetric, we also obtain that R(D) = y⊥ so that θ ∈ R(D) and there
exists x ∈ Rn such that Dx = θ. We may next consider x + ty and there exists a unique t such that
〈x+ ty, 1I〉 = 0 since 〈y, 1I〉 = 1 and letting χ = x+ ty we have Dχ = θ and 〈χ, 1I〉 = 0. Finally, if there
are two such thermal diffusion vectors χ and χ′, they satisfy D(χ−χ′) = 0 and 〈1I, χ−χ′〉 = 0 so that
χ− χ′ ∈ N(D) ∩ 1I⊥ = {0} and χ′ = χ.

The transport fluxes may then be rewritten

F i = −
∑

j∈S

ρyiDij

(
dj + χj∇ lnT

)
, i ∈ S, (2.21)

Q =
∑

j∈S

RT

m

χj

yj
F j − λ∇T +

∑

i∈S

hiF i. (2.22)

It is then convenient to express the matrix L̂ directly in terms of the matrix D, the thermal diffusion
ratios χ and the thermal conductivity λ.

Corollary 2.8. Assume that the equivalent properties of Proposition 2.6 hold and define

L̂ =

(
Y RT

m χ
0 1

)
=

(
In

RT
m χ

0 1

)(
Y 0
0 1

)
. (2.23)
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Then L̂ is given by

L̂ =
ρm

R
L̂t

(
D 0

0 RT 2

ρm
λ

)
L̂. (2.24)

Proof. This results from direct calculations using (2.17), θ = Dχ, and λ = λ̂− ρR
m
〈Dχ,χ〉.

Remark 2.9. It is also convenient to introduce the rescaled thermal diffusion ratio of the jth species
χ̃j with χ̃j = χj/xj. These coefficients remain smooth and bounded for zero mole fractions [22, 34].

The mathematical properties of the multicomponent transport matrices L and L̂ are then directly
related to those of the diffusion matrix D and the thermal conductivity λ.

Proposition 2.10. Assume that Properties (T1)-(T4) and (PG) hold. Let L, L̂ ∈ Rn+1,n+1 such that

L̂ = AtLA and let D ∈ Rn,n, χ ∈ Rn, and λ ∈ R such that (2.24) holds. Then the following properties
are equivalent

(i) The matrix L is positive semi-definite with nullspace N(L) = R (1I, 0)t.

(ii) The matrix L̂ is positive semi-definite with nullspace N(L̂) = R (1I, 0)t.

(iii) The matrix D is symmetric positive semi-definite with nullspace N(D) = Ry and λ > 0.

Proof. Since L̂ = AtLA and A is invertible we first obtain that L̂ is symmetric positive semi-definite
if and only if L is symmetric positive semi-definite and that N(L̂) = A−1N(L) and (i) and (ii) are
equivalent since (1I, 0)t = A(1I, 0)t.

Assuming that these properties hold, we may use Proposition 2.7 and write L̂ in the form (2.24).

Introducing x′ =
(
RT
m

Y−1χ,−1
)t

then x′ 6∈ N(L̂) = R(1I, 0)t since its last component is nonzero so

that 〈L̂x′, x′〉 = λT 2 > 0 and λ > 0. We have thus established that (ii) implies (iii) since D = Dt and
N(D) = Ry from Proposition 2.6.

Conversely, assume that (iii) holds. It is then readily obtained from (2.24) that L̂ is symmetric,
and after some algebra, we obtain that for any x = (x1, . . . , xn, xE)

t ∈ Rn+1, letting x̺ = (x1, . . . , xn)
t

〈L̂x, x〉 = ρm

R

〈
D(Yx̺ + RT

m
χxE), (Yx̺ + RT

m
χxE)

〉
+ λT 2x2E .

This in turn implies that N(L̂) = R (1I, 0)t since N(D) = R y, Y1I = y and λ > 0 and we have
established that (iii) implies (ii).

2.5 Entropy production

In this section, we investigate the entropy governing equation as well as the sign of entropy production.
The entropy production term v is decomposed into v = v∇ + vω , where v∇ denotes the variables’
gradients contribution and vω the chemical reactions contribution.

Lemma 2.11. The entropy governing equations may be written in the form

∂tS +∇·(Sv) +∇·
(
−
∑

i∈S

Gi

T
F i +

Q

T

)
= v∇ + vω, (2.25)

where the entropy production due to macroscopic gradients v∇ is in the form

v∇ = −
∑

i∈S

∇

(Gi

T

)
·F i +∇

( 1

T

)
·Q− Π :∇v

T
,

and the entropy production due to chemistry vω reads

vω = − 1

T

∑

k∈S

Gkmkωk = −R〈µ, ω〉.
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Proof. It is easily deduced from Gibbs relation TdS = −∑i∈S
Gidρi + dE that

T
(
∂tS + v·∇S

)
= −

∑

i∈S

Gi

(
∂tρi + v·∇ρi

)
+
(
∂tE + v·∇E

)
. (2.26)

On the other hand, upon multiplying the momentum conservation equation (2.2) by the velocity vector
v we also obtain a governing equation for the kinetic energy 1

2ρv·v which can then be subtracted from
the total energy conservation equation (2.3) to form the following governing equation for the internal
energy E

∂tE + v·∇E = −E∇·v − P∇·v −Π:∇v −∇·Q. (2.27)

Thanks to the internal energy governing equation (2.27) and the species (2.1) governing equations we
obtain with (2.26) that

T
(
∂tS + v·∇S

)
= −

∑

i∈S

Gi

(
−ρi∇·v −∇·F i +miωi

)
−E∇·v − P∇·v −Π :∇v −∇·Q.

Regrouping all terms proportional to ∇·v in the form
(∑

k∈S
ρkGk − E − P

)
∇·v = −TS∇·v this

equation is then rewritten

T
(
∂tS +∇·(Sv)

)
=
∑

i∈S

Gi∇·F i −
∑

i∈S

Gimiωi −Π :∇v −∇·Q.

Using the identities

Gi

T
∇·F i = ∇·

(Gi

T
F i

)
−F i∇·

(Gi

T

)
, − 1

T
∇·Q = −∇·

(Q
T

)
+Q∇·

( 1

T

)
,

we finally directly obtain the entropy conservation equation (2.25).

We denote by v the variable

v =
(G1

T
, . . . ,

Gn

T
,− 1

T

)t
, (2.28)

which essentially represents the thermodynamic part of the entropic symmetrizing variables v investi-
gated in Section 4.2.

Proposition 2.12. The entropy production v∇ associated with the variables’ gradients may be written

v∇ =
∑

i,j∈S∪{e}

Lij∇v i·∇v j +
κ

T
(∇·v)2 + η

2T

∣∣∇v +∇vt − 2
d
∇·vId

∣∣2, (2.29)

where, for any tensor X ∈ Rd,d, |X|2 denotes |X|2 = X :X =
∑

1≤i,j≤d X
2
ij , and this entropy production

v∇ is nonnegative.

Proof. The entropy production term associated with diffusion and heat conduction is directly rewritten
with the help of the matrix L. Similarly, after some tensor manipulations, the term −Π:∇v is easily
rewritten as κ(∇·v)2 + 1

2η|∇v + ∇vt − 2
d
∇·vId|2. Since the matrix L is positive semi-definite, we

conclude that entropy production associated with macroscopic gradients v∇ is nonnegative.

In the following proposition—easily established—we discuss the situation where the entropy pro-
duction associated with heat and mass transfer vanish.

Proposition 2.13. Assume that (T1)-(T4), (PG), and (Tr1)-(Tr2) hold and that κ > 0. Denote by

d̃i, i ∈ S, the linearly dependent diffusion driving forces d̃i = di − yi
∑

j∈S
dj/

∑
k∈S

yk, Then the
following properties are equivalent.

(i) The entropy production v∇ is zero.

(ii) There exists a ∈ Rd such that di = yia, i ∈ S, and ∇v is skew-symmetric.

(iii) We have d̃i = 0, i ∈ S, and ∇v is skew-symmetric.

The most important property associated with the nonideal chemical production rates is that entropy
production is guaranteed to be nonnegative as established in the following proposition. This property
may be used in particular to establish the existence of chemical equilibrium points [40].
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Proposition 2.14. Assume that Properties (T1)-(T4), (PG), and (C1)-(C3) hold and let z ∈ Oz . The
entropy production due to chemical reactions vω is nonnegative and can be written in the form

vω = −R〈µ, ω〉 =
∑

j∈R

Rκsj
(
〈µ, νfj〉 − 〈µ, νbj 〉

) (
exp〈µ, νfj〉 − exp〈µ, νbj 〉

)
. (2.30)

Proof. Rewriting vω in the form vω = −∑j∈R,i∈S
Rµiνijτj =

∑
j∈R

R
〈
µ, νfj − νbj

〉
τj we directly

obtain (2.30) from the expression (2.10) of the nonideal rates τj , j ∈ R due to Marcelin [59, 60].
Finally the right hand side of (2.30) is always nonnegative thanks to (C3) since the exponential map
is increasing.

2.6 Thermodynamic stability

Thermodynamic stability generally may not hold at high pressure and low temperature for nonideal
fluids. In the following proposition, we characterize thermodynamic stability in terms of the derivatives
of the species Gibbs functions Gi, i ∈ S.

Proposition 2.15. Assume that (T1)-(T2) are satisfied and denote by Γ the matrix of size n with coef-

ficients Γkl = ρ∂̃ρk
Gl/T = ρ∂̃ρl

Gk/T . Then, for any z ∈ Oz , the following statements are equivalent :

(i) ∂2uu S is negative definite.

(ii) ∂̃T E > 0 and Γ is positive definite.

Proof. From Gibbs’ relation (2.4) we obtain that

∂ES =
1

T
, ∂ρk

S = −Gk

T
,

and this implies the compatibility relations

∂E
(−Gk

T

)
= ∂ρk

( 1
T

)
. (2.31)

Moreover, for any function f we have the differential relations

∂E f = ∂̃T f ∂ET, ∂̃T f = ∂E f ∂̃T E , (2.32)

∂ρk
f = ∂̃ρk

f+ ∂̃T f ∂ρk
T, ∂̃ρk

f = ∂ρk
f+ ∂E f ∂̃ρk

E . (2.33)

We can now evaluate the volumetric entropy Hessian matrix. We first note that ∂2EES = ∂E(
1
T
) so

that ∂2EES = −∂ET/T 2. Similarly, we have ∂2Eρk
S = ∂ρk

( 1
T ) so that ∂2Eρk

S = −∂ρk
T/T 2. Upon letting

f = T in (2.33) we obtain that ∂ρk
T = −∂ET ∂̃ρk

E and we have established that ∂2Eρk
S = ∂ET ∂̃ρk

E/T 2.

Combining ∂ρk
T = −∂ET ∂̃ρk

E with (2.31) and (2.32), we also deduce that ∂̃T (
Gk

T ) = − ∂̃ρk
E

T 2 . In

addition, from ∂2ρkρl
S = −∂ρk

(Gl

T ) and from (2.33) we deduce that ∂2ρkρl
S = −∂̃ρk

(Gl

T ) − ∂̃T (
Gl

T ) ∂ρk
T

so that ∂2ρkρl
S = − ∂̃ρk

Gl

T − ∂
E
T ∂̃ρk

E ∂̃ρl
E

T 2 , k, l ∈ S. We have thus established that

∂2EES = −∂ET
T 2

, ∂2Eρk
S =

∂ET ∂̃ρk
E

T 2
, k ∈ S, (2.34)

∂2ρkρl
S = −

∂̃ρk
Gl

T
−
∂ET ∂̃ρk

E ∂̃ρl
E

T 2
, k, l ∈ S. (2.35)

Denoting fE = (−∂̃ρ1
E , . . . ,−∂̃ρn

E , 1)t we obtain that for any x = (x1, . . . , xn, xE)
t ∈ Rn+1

〈
(∂2uuS) x, x

〉
= −1

ρ

〈
Γ x̺, x̺

〉
− ∂ET

〈fE , x〉2
T 2

, (2.36)

where Γkl = ρ∂̃ρk
Gl/T , k, l ∈ S and x̺ = (x1, . . . , xn)

t.
Assume now that ∂2uuS is negative definite. Upon selecting first a vector x with xE = 1 and

x̺ = (0, . . . , 0)t we obtain that ∂ET > 0 so that ∂̃TE = (1/∂ET ) > 0. Similarly, selecting any nonzero

x̺ = (x1, . . . , xn)
t and letting xE =

∑
i∈S

xi∂̃ρi
E we have 〈fE , x〉 = 0 and

〈
Γ x̺, x̺

〉
,= −ρ

〈
(∂2uuS) x, x

〉
so

that Γ is positive definite. Finally, thanks to (2.36), the converse implications is straightforward.
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The inequality ∂̃T E > 0 is usually termed the thermal stability condition. On the other hand,
letting ̺ = (ρ1, . . . , ρn)

t, the condition 〈Γ̺, ̺〉 > 0 is termed the mechanical stability condition. Indeed,
introducing the variable (ν, y1, . . . , yn, T ), where ν denotes the volume per unit mass and yk the mass
fraction of the kth species, and the corresponding derivation operator d̃, it is easily established—after
some differential algebra—that

d̃νp

T
= −

∑

ij∈S

ρiρjΓij = −〈Γ̺, ̺〉,

so that the stability condition 〈Γ̺, ̺〉 > 0 it is easily interpreted as d̃νp < 0 when p is considered as a
function of (ν, y1, . . . , yn, T ) [40]. The condition that Γ − Γ̺⊗Γ̺/〈Γ̺, ̺〉 is positive semi-definite with
nullspace R̺ is also termed the chemical stability condition [40]. Combining these results and writting

Γ =
Γ̺⊗Γ̺
〈Γ̺, ̺〉 +

(
Γ − Γ̺⊗Γ̺

〈Γ̺, ̺〉
)
,

the property that Γ is positive definite encompasses both the mechanical and the chemical stability
conditions [40]. Note that the mixture is globally stable on every convex set—with respect to the
variable u—included in the stability domain where ∂2uuS is negative definite.

2.7 The SRK equation of state

We present in this section a typical equation of state often used to model mathematically high pressure
fluids. This particular equation of state is only investigated to illustrate the preceding developments
and will not be used outside Section 2.7.

2.7.1 Equation of state

Various equations of state have been introduced to represent the behavior of dense fluids [7, 76, 69, 77,
66]. The Benedict-Webb-Rubin equation of state [7] and its modified form by Soave [76] are notably
accurate but are uneasy to handle. On the other hand, the Soave-Redlich-Kwong equation of state
[69, 77] and the Peng-Robinson equation of state [66] allow an easier inversion by using Cardan’s
formula thanks to their cubic form. These cubic equations of state give accurate results over the range
of pressures, temperatures and mixture states of interest for supercritical combustion [65, 64, 70, 43].

We discuss here the Soave-Redlich-Kwong equation of state [69, 77] which is in the form

P =
∑

i∈S

ρi
mi

RT

1− B
− A

1 + B
, (2.37)

where P denotes the pressure, R the perfect gas constant, and A and B the attractive and repulsive
parameters. These parameters A (ρ1, . . . , ρn, T ) and B (ρ1, . . . , ρn) are evaluated with the Van der
Waals mixing rules written here with a mass density formulation

A =
∑

i,j∈S

ρiρjαiαj , B =
∑

i∈S

ρiβi. (2.38)

The pure-component parameters αi(T ) and βi are deduced from the corresponding macroscopic fluid
behavior for stable—or metastable—species and from interaction potentials for active radicals [40, 43].
The validity of this equation of state (2.37) and of the corresponding mixing rules (2.38) has been
carefully studied by comparison with NIST data by Congiunti et al. [16] and with results of Monte
Carlo simulations by Colonna and Silva [15] and Cañas-Maŕın et al. [10, 11]. This equation of state
has been used in high pressure combustion models by Ribert et al. [70] and Giovangigli et al. [43].

From a mathematical point of view, we assume the following properties on the pure species coeffi-
cients αi(T ), and βi, i ∈ S, where κ ∈ N and κ > 3.

(SRK) For any i ∈ S, αi ∈ C0[0,∞) ∩ C1+κ(0,∞), αi(0) > 0, αi > 0, lim+∞ αi = 0, ∂̃Tαi 6 0 and

∂̃2TTαi > 0 over (0,∞), and the parameters βi, i ∈ S, are positive constants.
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2.7.2 Construction of the thermodynamics

The thermodynamics associated with the SRK equation of state may then be constructed under the
assumptions (SRK) and (PG) with the help of the Properties (T1)-(T4), and such a construction has
recently been investigated mathematically [40]. Some of the main results obtained in [40] are now
summarized in terms of volumetric variables. Let the open set O′

z be given by

O′
z = { z = (ρ1, . . . , ρn, T )

t, ρ1 > 0, . . . , ρn > 0,
∑

i∈S

ρiβi < 1 }, (2.39)

and define the energy per unit volume E over O′
z by

E =
∑

i∈S

ρie
pg

i +
(
T ∂̃TA − A

) ln
(
1 + B

)

B
, (2.40)

where epgi = epgi (T ) is the perfect gas specific energy of the ith species. Further define the entropy per
unit volume S over O′

z by

S =
∑

i∈S

ρis
pg⋆
i −

∑

i∈S

ρiR

mi
ln
( ρiRT

mi(1 − B )pst
)
+ ∂̃TA

ln
(
1 + B

)

B
, (2.41)

where spg⋆i = spg⋆i (T ) denotes the perfect gas specific entropy of the ith species at the standard pressure
pst [40].

Theorem 2.16. Assuming that Properties (SRK) and (PG) hold, there exists a unique thermodynamics
compatible with P which satisfies (T1)-(T4). The corresponding energy and entropy per unit volume are
given by (2.40) and (2.41), respectively, and the open set Oz is given by

Oz = { z ∈ O′
z , ∂̃T E > 0 and Γ is positive definite }, (2.42)

where Γ denotes the matrix defined over O′
z with coefficients Γij = ρ∂̃ρj

Gi/T , i, j ∈ S.

Proof. The proof is lengthy and we refer to [40].

2.7.3 Thermodynamic stability with SRK

The thermal stability condition ∂̃TE > 0 is easily established as shown in the following proposition

since we have Cpg
v > 0 from (PG) and ∂̃2TTA ≥ 0 from (SRK).

Proposition 2.17. The heat capacity per unit mass at constant volume of the mixture ∂̃TE = Cv is
given by

Cv = Cpg

v + T ∂̃2TTA
ln
(
1 + B

)

B
, (2.43)

where Cpg
v =

∑
i∈S

ρic
pg
v,i so that (PG) and (SRK) insure that thermal stability holds.

The mechanical stability condition 〈Γ̺, ̺〉 > 0 for the SRK cubic equation of state is now discussed.

Proposition 2.18. For any ̺ = (ρ1, . . . , ρn)
t ∈ (0,∞)n there exists a unique temperature T ⋆(̺) > 0

such that 〈Γ (T, ̺)̺, ̺〉 = 0, and we have

〈Γ̺, ̺〉 > 0 ⇐⇒ T > T ⋆(̺),

lim∑
i∈S

ρiβi→1
T ⋆(̺) = 0, lim

ρ→0
T ⋆(̺) = 0. (2.44)

Proof. We refer the reader to [40] where the proposition is established in a mass based formulation.

Defining then
P⋆(̺) = P

(
̺, T ⋆(̺)

)
,

and keeping in mind that P is a strictly increasing function of T , we deduce from Proposition 2.18 that
〈Γ (̺, T )̺, ̺〉 > 0 if and only if P > P⋆(̺). Defining ρ =

∑
i∈S

ρi, and letting

yi =
ρi
ρ
, i ∈ S, (2.45)
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we next investigate the maximum of T ⋆ and P⋆ as ρ is varying with y = (y1, . . . , yn)
t fixed. The

following proposition is established in [40] is a mass based framework and is reformulated here in terms
of volumetric variables.

Proposition 2.19. For any y ∈ (0,∞)n with 〈y, 1I〉 = 1, there exists a unique maximum positive value
of T ⋆ for ρ ∈ (0, 1/

∑
i∈S

yiβi) and this maximum is reached for ρ = ρ⋆(y) where

ρ⋆(y) =
3
√
2− 1∑

i∈S
yiβi

.

Defining T ⋆⋆ and P⋆⋆ by

T ⋆⋆(y) = T ⋆(ρ⋆(y) y), P⋆⋆(y) = P⋆
(
ρ⋆(y) y

)
= P

(
ρ⋆(y) y, T ⋆(ρ⋆(y) y)

)
, (2.46)

then T ⋆⋆(y) and P⋆⋆(y) correspond to the critical temperature and pressure of the mixture with frozen
mass fractions y. Moreover, for any ̺, letting ̺ = ρy with 〈y, 1I〉 = 1, we always have the inequality

P
(
̺, T ⋆(̺)

)
≤ P⋆⋆(y),

and
P(̺, T ) > P⋆⋆(y) =⇒ 〈Γ̺, ̺〉 > 0,

Finally, since the set Σ = {y ∈ [0,∞)n; 〈y, 1I〉 = 1} is compact, there exists a maximum pressure
maxy∈Σ P⋆⋆(y).

When the condition P > P⋆⋆(y) is satisfied, the fluid is said to be in supercritical state. This shows
that when the pressure P is large enough, the mechanical stability condition is automatically fulfilled for
all possible mass fractions. On the other hand, it is generally not possible to investigate analytically the
chemical stability conditions because of nonlinearities and furthermore chemical stability may not hold
at high pressure and low temperature. As a typical exemple, mixtures of Hydrogen and Nitrogen may
split into two phases at temperatures below 100 K and pressures higher that 100 atm as established
experimentally [81, 28]. These chemical instabilities have been well reproduced computationally by
using the Soave Redlich Kwong equation of state [40, 43]. In practice, the stability domain where the
entropy is concave and where the mixture is stable must be determined numerically by investigating
the eigenvalues of the matrix Γ . In the special situation of the SRK equation of state, the matrix Γ is
given by the following proposition.

Proposition 2.20. The coefficients of the matrix Γ , defined over O′
z , are given by

Γij

ρ
=
Rδij
miρi

+
R

1− B
( βi
mj

+
βj
mi

)
+
∑

k∈S

ρk
mk

Rβiβj

(1− B )2
− 2αiαj

T

ln(1 + B )

B

+
2

T

∑

k∈S

ρkαk

(
αiβj + αjβi

)( ln(1 + B )
B 2

− 1

B (1 + B )

)

+
A βiβj
T

(
−2

ln(1 + B )

B 3
+

2

B 2(1 + B )
+

1

B (1 + B )2

)
, i, j ∈ S. (2.47)

2.7.4 Rescaled Hessian matrices

The spectrum of the matrix Γ is more conveniently investigated by using rescaled matrices. Let us
introduce the diagonal matrix Π = diag

(√
m1y1, . . . ,

√
mnyn

)
/
√
R as well as the rescaled matrices Γ ,

Γ̂r, and Γ̂l, defined by
Γ = Π Γ Π, Γ̂r = Γ Π2, Γ̂l = Π2 Γ. (2.48)

These matrices are Cκ−1 function of z ∈ O′
z and their extension to zero mass fractions is investigated

in the next proposition. When some species density vanishes, we assume for simplicity that for some
1 6 n+ < n, the positive mass densities are the n+ first components of ̺. The general case is easily
reduced to this situation upon introducing permutation matrices [22, 34]. We thus have ρk > 0 for
1 6 k 6 n+ and ρk = 0 for n+ + 1 6 k 6 n. We denote by n0 = n − n+ the number of zero
mass densities, ̺+ the vector of positive mass densities and ̺0 the vector of zero mass densities.
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The indexing set of positive mass densities is also denoted by S+ and that of zero mass densities by
S0. The decomposition Rn = Rn+× Rn0

induces a partitionning of vectors and any x ∈ Rn can be

written in the form x = (x+, x0)t and we have for instance 1I+ ∈ Rn+

and 1I+ = (1, . . . , 1)t. This
partitionning of vectors induces a partitionning of matrices and for any matrix A ∈ Rn,n, we denote
by A++, A+0, A0+, A00, the corresponding blocks, in such a way that (A x)+ = A++x+ +A+0x0, and
(A x)0 = A0+x+ + A00x0. Assuming that S − Spg remains smooth for vanishing mass densities, only
the blocks Γ++, Γ+0, and Γ 0+ of the matrix Γ are defined for nonnegative mass fractions. This is
in contrast with the matrices Γ , Γ̂r, and Γ̂l, which are well defined for nonnegative mass fractions. In
addition, the ++ blocks are associated with the S+ submixture, that is, would be obtained by solely
considering the species subset indexed by S+. For any diagonalizable matrix A with real eigenvalues,
we denote by d+(A), d0(A), and d−(A), the number of positive, zero and negative eigenvalues of A,
respectively.

Proposition 2.21. Assume that Properties (SRK) and (PG) hold, let Γ be defined as in Proposi-

tion 2.20, and Γ , Γ̂r, and Γ̂l be defined as in (2.48). Then the matrix Γ admits a continuous extension

to the set Õ′
z be given by

Õ′
z = { z = (ρ1, . . . , ρn, T )

t, ρ1 ≥ 0, . . . , ρn ≥ 0,
∑

i∈S

ρi > 0
∑

i∈S

ρiβi < 1 }, (2.49)

whereas Γ̂r and Γ̂l admit Cκ−1 extensions to Õ′
z . In addition, for any z ∈ O′

z , we have d
+(Γ ) = d+(Γ ),

d0(Γ ) = d0(Γ ), d−(Γ ) = d−(Γ ), and the matrices Γ , Γ̂ r, and Γ̂l, have the same spectrum.
When there are zero mass fractions, we have the block decompositions

Γ =

(
Γ

++
0n+,n0

0n0,n+ In0

)
, Γ̂r =

(
Γ̂++
r

0n+,n0

Γ̂ 0+
r In0

)
, Γ̂l =

(
Γ̂++
l

Γ̂+0
l

0n0,n+ In0

)
,

so that Γ
+0

= 0, Γ
0+

= 0, Γ̂+0
r

= 0, and Γ̂ 0+
l

= 0. Moreover, we have Γ
++

= Π++Γ++Π++,

Γ̂++
r

= Γ++(Π++)2, Γ̂ 0+
r

= Γ 0+(Π++)2, Γ̂++
l

= (Π++)2Γ++, and Γ̂+0
l

= (Π++)2Γ+0. In particular,

we have d+(Γ++) = d+(Γ
++

), d0(Γ++) = d0(Γ
++

), and d−(Γ++) = d−(Γ
++

), and the matrices Γ
++

,

Γ̂++
r , and Γ̂++

l
, have the same spectrum.

Proof. From Theorem 2.16, the thermodynamic functions are defined over O′
z and the open set Oz is

given by (2.42). Therefore Γ , as well as Γ̂r and Γ̂l, is a C
κ−1 function of z ∈ O′

z , keeping in mind that
the species mass densities remain positive when z ∈ O′

z . Moreover, the coefficients of Γ are evaluated
in Proposition 2.20 so Γij ≃ δijρ

−1
i for vanishing mass densities. These expressions shows that the

matrix Γ admits a continuous extension to Õ′
z and similarly that Γ̂r and Γ̂l admit Cκ−1 extensions to

Õ′
z since the 1/ρi singularity in Γii is cancelled for i ∈ S.
Since the mass densities are positive if z ∈ O′

z , the matrix Π is then invertible. From Sylvester’s
law of inertia we thus deduce that d+(Γ ) = d+(Γ ), d0(Γ ) = d0(Γ ), and d−(Γ ) = d−(Γ ). Finally,

we have Π−1Γ̂lΠ = Γ and ΠΓ̂rΠ
−1 = Γ so that the matrices Γ , Γ̂r, and Γ̂l, are similar and have

the same spectrum. The properties when some mass fractions vanish are easily obtained from the
assumption that S − Spg remains smooth for vanishing mass fractions, from the explicit evaluation of
Γ in Proposition 2.20 and from block manipulations.

We deduce from Proposition 2.21 that d+(Γ ) = d+(Γ ) = d+(Γ̂r) = d+(Γ̂l), d0(Γ ) = d0(Γ ) =

d0(Γ̂r) = d0(Γ̂l), and d−(Γ ) = d−(Γ ) = d−(Γ̂r) = d−(Γ̂l), in such a way that any of the matrices Γ ,

Γ , Γ̂r, or Γ̂l, may be used over O′
z to determine the stability domain. An important consequence of

Proposition 2.21 is that the stability of multicomponent mixtures can more conveniently be investigated
with the help of the matrices Γ̂r or Γ̂l which behave smoothly for nonnegative mass fractions so that the
whole stability diagram can be constructed over the set Õ′

z including automatically all mixture states
with zero mass fractions. As a special case, we may also consider the limiting situation of pure species
states. Denoting by e1, . . . , en the canonical base vectors of Rn and by z i the state z i = (ρei, T )t for
y = ei, we investigate thermodynamic stability in the neighborhood of z i.

Proposition 2.22. Assume that for z = z i we have ∂̃T E(z i) = Cvi > 0 and Γii(z
i) > 0 (or

equivalently ∂̃νp(ν, e
i, T ) < 0). Then thermodynamic stability holds in the neighborhood of z i .
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Proof. Since ∂̃TE(z i) > 0 thermal stability holds in the neighborhood of z i = (ρei, T )t. We thus only
have to investigate the positive definiteness of the matrix Γ and thus of the matrix Γ . However, the
pure state is a special case of Proposition 2.21 and we only have to check that the matrix Γ (z i) is
positive definite. However, the limit value at z i of Γ (z i) is the matrix diag(1, . . . , 1, Γii, 1, . . . , 1) where
Γii = miΓii(z

i)/R is positive so that Γ and Γ are positive definite in the neighborhood of z i.

In summary, thermal stability generally holds, mechanical stability holds when the mixture is super-
critical, and chemical stability has to be investigated numerically at high pressure and low temperature
by investigating the spectrum of the rescaled versions Γ̂r or Γ̂l of the matrix Γ , as for instance done
for hydrogen/air mixtures [43, 40].

2.8 Quasilinear form

The conservative variable u ∈ Rn+d+1 associated with the equations (2.1)–(2.3) is defined by

u =
(
ρ1, . . . , ρn, ρv, E + 1

2ρv·v
)t
, (2.50)

where v = (v1, . . . , vd)
t ∈ Rd and the natural variable z ∈ Rn+d+1 by

z =
(
ρ1, . . . , ρn,v, T

)t
. (2.51)

Note that, for convenience, the velocity components of vectors in Rn+d+1 = Rn × Rd × R are written
as vectors of Rd. The components of u naturally appear as conserved quantities in the fluid system,
and the components of the variable z are more practical to use in actual calculations of differential
identities.

Since the thermodynamic part of u is u = (ρ1, . . . , ρn, E)t and the thermodynamic part of z is
z = (ρ1, . . . , ρn, T )

t it is easily seen that u is defined over the open set

Ou =
{
u ∈ R

n+d+1
(
u1, . . . , un, un+d+1 − 1

2

u2n+1 + · · ·+ u2n+d∑
1≤i≤n ui

)t
∈ Ou

}
, (2.52)

and similarly z is defined over the open set

O
z
= { z ∈ R

n+d+1 (z1, . . . , zn, zn+d+1)
t ∈ Oz }. (2.53)

Of course, whenever z ∈ Oz , the corresponding fluid variable z is naturally defined for all velocities
v ∈ Rd. Moreover, it is easily checked that when the set Ou is convex then Ou is also convex. Therefore,
since Ou is generally not convex in the presence of thermodynamic unstable states, Ou is not likely
to be convex in general, in contrast with ideal gas mixtures [38, 34]. In order to express the natural
variable z in terms of the conservative variable u, we investigate the map z → u and its range.

Proposition 2.23. Assuming that (T1)-(T4) and (PG) hold, the map z 7−→ u is a Cκ diffeomorphism
from the open set Oz onto the open set Ou.

Proof. We first establish that the map z 7−→ u is one to one. Assuming that u(z♯) = u(z♭), then

the corresponding mass densities coincide ρ♯k = ρ♭k, k ∈ S, as well as the velocities v♯ = v♭ with
straightforward notation. As a consequence, the energies E♯ and E♭ also coincide, and we may then
use the Property (T1) or the monotonicity of T → E(ρ1, . . . , ρn, T ) in order to conclude that T ♯ = T ♭

and the map is one to one. Moreover, the map z 7−→ u is Cκ over the open set Oz.
On the other hand, thanks to the triangular structure of the Jacobian matrix

∂
z
u =




In 0 0
v⊗1I ρId 0

∂̺̃E + 1
2 |v|2 ρvt ∂̃T E


 ,

where In is the identity tensor of size n, and since ∂̃T E > 0 from Proposition 2.15 and ρ > 0 since
Oz ⊂ (0,∞)n+1 we deduce that ∂zu is invertible. From the inverse function theorem, the z 7−→ u is a
local Cκ diffeomorphism and the image is an open set. Finally, from the construction of u and (T1), it
is easily concluded that the range of z → u is the open set Ou defined by (2.52).
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The equations modeling supercritical multicomponent reactive fluids may next be written into the
compact form

∂tu+
∑

i∈C

∂iFi +
∑

i∈C

∂iF
diss
i = Ω, (2.54)

where ∂t is the time derivative operator, ∂i the space derivative operator in the ith direction, Fi the
convective flux in the ith direction, Fdiss

i the dissipative flux in the ith direction, Ω the source term,
and C = {1, . . . , d} the indexing set of spatial dimensions.

The convective flux Fi in the ith direction is given by

Fi =
(
ρ1vi, . . . , ρnvi, ρvvi + Pei, (E + P + 1

2ρv·v)vi
)t
, (2.55)

where P is the pressure, ei, i ∈ C, the basis vectors of Rd, and E the total energy per unit mass. The
dissipative flux Fdiss

i is given by

Fdiss
i =

(
F1i, . . . ,Fni, Π• i, Qi +

∑

j∈C

Πijvj
)t
, (2.56)

where Πij , i, j ∈ C, are the components of the viscous tensor with Π• i = (Π1i, . . . , Πdi)
t, Fki, k ∈ S,

i ∈ C, the spatial components of the species mass fluxes Fk = (Fk1, . . . ,Fkd)
t, and Qi, i ∈ C, the

components of the heat flux vector Q = (Q1, . . . , Qd)
t. Finally, the source term is given by

Ω =
(
m1ω1, . . . ,mnωn,0, 0

)t
, (2.57)

where 0 = (0, . . . , 0)t ∈ Rd. From the expressions of the species mass fluxes, the viscous tensor,
and the heat flux, we deduce that the dissipative fluxes Fdiss

i , i ∈ C, may be written in the form

Fdiss
i = −∑j∈C B̂ij(z)∂jz, i ∈ C, where B̂ij denotes the dissipative matrix relating the flux Fdiss

i in

the ith direction with the gradient of the natural variable ∂jz in the jth direction. These matrices B̂ij

are square matrices of size n+ d+ 1 that are directly written in terms of the transport coefficients as
well as the derivatives of the species chemical potentials µk, k ∈ S. Thanks to Proposition 2.23, we
may then write that Fdiss

i = −∑j∈C Bij(u)∂ju, i ∈ C, where the dissipative matrix Bij is defined as

Bij = B̂ij∂uz, i, j ∈ C. Further introducing the Jacobian matrices of the convective fluxes Ai = ∂uFi,
i ∈ C, the governing equations are finally rewritten in the compact form

∂tu+
∑

i∈C

Ai(u)∂iu =
∑

i,j∈C

∂i
(
Bij(u)∂ju

)
+Ω(u). (2.58)

This is a quasilinear system in terms of the conservative variable u whose structure is discussed in an
abstract framework in the next section.

3 Locally symmetrizable systems

We investigate in this section local symmetrization properties of a second-order quasilinear system of
conservation laws with a source term.

3.1 Local symmetrization

3.1.1 Symmetric form

We consider an abstract second-order quasilinear system in the form

∂tu
∗ +

∑

i∈C∗

A∗
i (u

∗)∂iu
∗ =

∑

i,j∈C∗

∂i
(
B∗
ij(u

∗)∂ju
∗
)
+Ω∗(u∗), (3.1)

where u∗ ∈ O
u∗
, O

u∗
is an open set of Rn∗

, and C∗ = {1, . . . , d} denotes the set of direction indices of
Rd. The matrices A∗

i are the jacobian matrices of the convective fluxes denoted by F∗
i in such a way

that A∗
i = ∂u∗F

∗
i , i ∈ C∗. The superscript ∗ is used to distinguish between the abstract second-order

system (3.1) of size n∗ in Rd and the particular system of partial differential equations (2.58) modeling
supercritical reactive fluids of size n+ d+ 1 in R

d. All quantities associated with the abstract system
have the corresponding superscript ∗, so that, for instance, the unknown vector is u∗. We assume that
the following smoothness properties hold for system (3.1).
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(Pde1) The convective fluxes F∗
i , i ∈ C∗, dissipation matrices B∗

ij , i, j ∈ C∗, and source term Ω∗ are
Cκ functions of the variable u∗ ∈ O

u∗
and we have A∗

i = ∂u∗F
∗
i , i ∈ C∗.

It is not assumed that Ou∗ is convex since this is generally not the case for nonideal fluids, but it
is still assumed that O

u∗
is simply connected since it is always the case in practical applications. A

major difficulty with nonideal gases is the presence of thermodynamic unstable states associated with
the loss of definiteness for entropy Hessian matrices. An important consequence is the existence of
distinct states which correspond to the same symmetrizing variable. In order to take into account this
situation, we use symmetryzing variables that are only local diffeomorphisms.

Definition 3.1. Consider a Cκ map u∗ → v∗ from the open domain Ou∗ onto an open domain Ov∗ .
Assume that for any u ∈ O

u∗
there exists subdomains o

u∗
⊂ O

u∗
and o

v∗
⊂ O

v∗
such that u∗ → v∗ is

a Cκ diffeomorphism from o
u∗

onto o
v∗

and consider the corresponding system in the v∗ variable

Ã∗
0(v

∗)∂tv
∗ +

∑

i∈C∗

Ã∗
i (v

∗)∂iv
∗ =

∑

i,j∈C∗

∂i
(
B̃∗
ij(v

∗)∂jv
∗
)
+ Ω̃∗(v∗), (3.2)

where Ã∗
0 = ∂

v∗
u∗, Ã∗

i = A∗
i ∂v∗u

∗ = ∂
v∗
F∗
i , B̃

∗
ij = B∗

ij∂v∗u
∗, Ω̃∗ = Ω∗. The system is said of the local

symmetric form if the matrices Ã∗
0, Ã

∗
i , i ∈ C∗, and B̃∗

ij , i, j ∈ C∗, and the source term Ω̃ verify the

following properties (S1)-(S7) where E is a vector space of Rn∗

independent of u∗ and v∗.

(S1) The matrix Ã∗
0(v

∗) is symmetric positive definite for v∗ ∈ ov∗ .

(S2) The matrices Ã∗
i (v

∗), i ∈ C∗, are symmetric for v∗ ∈ ov∗ .

(S3) We have B̃∗
ij(v

∗)t = B̃∗
ji(v

∗) for i, j ∈ C∗, and v∗ ∈ ov∗ .

(S4) The matrix B̃∗(v∗, w) =
∑

i,j∈C∗ B̃∗
ij(v

∗)wiwj is symmetric positive semi-definite, for v∗ ∈ ov∗ ,

and w ∈ Σd−1, where Σd−1 is the unit sphere in d dimensions.

(S5) There exists a vector space E ⊂ Rn∗

such that for any v∗ ∈ o
v∗
, we have Ω̃∗(v∗) ∈ E ⊥.

Moreover, we have Ω̃∗(v∗) = 0 if and only if v∗ ∈ E and if and only if
〈
v∗, Ω̃∗(v∗)

〉
= 0.

(S6) For any v∗ ∈ ov∗ , if Ω̃
∗(v∗) = 0, then ∂v∗ Ω̃

∗(v∗) =
(
∂v∗Ω̃

∗(v∗)
)t

and N
(
∂v∗Ω̃

∗(v∗)
)
= E .

(S7) For any v∗ ∈ ov∗ ,
〈
v∗, Ω̃∗(v∗)

〉
≤ 0.

The symmetryzing properties (S1)-(S2) for hyperbolic systems of conservation laws have been in-
troduced by Godunov [44] and Friedrichs and Lax [32], and are discussed in Dafermos [18] and Serre
[73]. The properties associated with the dissipative part (S3)-(S4) have been introduced by Kawashima
[50, 51], Umeda et al. [79], and Kawashima and Shizuta [75, 52]. The properties associated with the
source terms (S5)-(S7) are adapted from the structure of chemical source and chemical equilibrium
flows [34, 39], and from the structure of collisional invariants investigated by Chen, Levermore and
Liu [14] and Kawashima and Yong [53]. In comparison with various definitions of symmetrizability
[44, 32, 50, 51, 52, 38, 34], we have taken into account in (S1)-(S7) the second order dissipative terms,
the source terms, the map u∗ → v∗ is only a local diffeomorphism, and the open domain ou∗ may

differ from O
u∗
. Further properties of the jacobian matrix ∂v∗Ω̃

∗ at equilibrium may be obtained from
(S5)-(S7).

Proposition 3.2. Keeping the notation of Definition 3.1 and assuming (S5)-(S7), then if v∗ ∈ o
v∗

is such that Ω̃∗(v∗) = 0, the matrix L̃∗ = −∂v∗Ω̃∗(v∗) is symmetric positive semi-definite. Moreover,

in Property (S6), we may replace N
(
∂v∗Ω̃

∗(v∗)
)
= E by R

(
∂v∗ Ω̃

∗(v∗)
)
= E ⊥ or equivalently by

rank
(
∂v∗Ω̃

∗(v∗)
)
= n∗ − dim(E ).

Proof. Let us introduce the function of v∗ ∈ ov∗ defined by ψ(v∗) =
〈
v∗, Ω̃∗(v∗)

〉
= v∗t Ω̃∗(v∗). From

(S7) we know that ψ ≤ 0 in such a way that if v∗ ∈ o
v∗

satisfies Ω̃∗(v∗) = 0, then ψ reaches its

maximum at v∗. In this situation where Ω̃∗(v∗) = 0, we thus have ∂v∗ψ(v
∗) = 0 and ∂2

v∗
ψ(v∗) has to

be symmetric negative semi-definite.
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A direct calculation yields that

∂v∗i ψ = Ω̃∗
i +

∑

1≤k≤n∗

v∗k∂v∗i Ω̃
∗
k,

which is automatically zero when the source term vanish Ω̃(v∗) = 0 since then v∗ ∈ E and we have

∂v∗i Ω̃
∗(v∗) ∈ E ⊥ from Ω̃∗ ∈ E ⊥. Similarly, ∂2

v∗
ψ = ∂v∗(∂v∗ψ)

t is generally given by

∂2v∗i v∗j ψ = ∂v∗i Ω̃
∗
j + ∂v∗j Ω̃

∗
i + ∂2v∗i v∗j Ω̃

∗tv∗,

but the last term vanishes when Ω̃∗(v∗) = 0 thanks to ∂2
v∗i v

∗
j
Ω̃∗(v∗) ∈ E ⊥ since Ω̃∗ ∈ E ⊥, and

v∗ ∈ E . This shows that ∂v∗Ω̃
∗(v∗) +

(
∂v∗ Ω̃

∗(v∗)
)t

is symmetric negative semi-definite. Therefore,

since L̃∗(v∗) = −∂v∗i Ω̃∗
j (v

∗) by construction and L̃∗(v∗) =
(
L̃∗(v∗)

)t
from (S6) we deduce L̃

∗ is symmetric

positive semi-definite. In addition, since Ω̃∗(v′∗) ∈ E ⊥ for any v′∗ ∈ ov∗ , we also obtain that that

R
(
∂v∗ Ω̃

∗(v∗)
)
⊂ E ⊥ by construction.

On the other hand, since ∂v∗Ω̃
∗(v∗) is symmetric, we have N

(
∂v∗Ω̃

∗(v∗)
)

= E if and only if

R
(
∂v∗ Ω̃

∗(v∗)
)
= E ⊥. In addition, ifR

(
∂v∗Ω̃

∗(v∗)
)
= E ⊥ then rank

(
∂v∗ Ω̃

∗(v∗)
)
= n∗−dim(E ) whereas

if rank
(
∂v∗Ω̃

∗(v∗)
)
= n∗−dim(E ) then R

(
∂v∗Ω̃

∗(v∗)
)
= E ⊥ since we always have R

(
∂v∗Ω̃

∗(v∗)
)
⊂ E ⊥

from Ω̃∗ ∈ E ⊥ and the proof is complete.

3.1.2 Mathematical entropy

The following definition of an entropy function is adapted from Godunov [44] and Friedrichs and Lax
[32] for the hyperbolic part, from Kawashima and Shizuta [50, 51, 75, 52] for the dissipative part, from
the structure of thermochemistry and chemical equilibrium flows [34, 39] and from Chen, Levermore
and Liu [14] and Kawashima and Yong [53] for the source term.

Definition 3.3. Consider a Cκ function σ∗(u∗) defined over the open domain O
u∗

assumed to be
simply connected. The function σ∗ is said to be an entropy function for the system (3.1) if the following
properties hold.

(E1) The Hessian matrix ∂2
u∗
σ∗(u∗) is positive definite over Ou∗ .

(E2) There exists real-valued Cκ functions q∗i = q∗i (u
∗) such that

(
∂u∗σ

∗(u∗)
)
A∗
i (u

∗) = ∂u∗q
∗
i (u

∗), i ∈ C∗, u∗ ∈ Ou∗ .

(E3) For any u∗ ∈ O
u∗

we have

(
∂2u∗σ

∗(u∗)
)−1(

B∗
ij(u

∗)
)t

= B∗
ji(u

∗)
(
∂2u∗σ

∗(u∗)
)−1

, i, j ∈ C∗.

(E4) The matrix

B̃∗(u∗, w) =
∑

i,j∈C∗

B∗
ij(u

∗)
(
∂2
u∗
σ∗(u∗)

)−1
wiwj ,

is symmetric positive semi-definite for any u∗ ∈ Ou∗ and w ∈ Σd−1.

(E5) There exists a vector space E ⊂ Rn∗

such that for any u∗ ∈ O
u∗
, Ω∗(u∗) ∈ E ⊥. Moreover,

Ω∗(u∗) = 0 if and only if
(
∂u∗σ

∗(u∗)
)t ∈ E and if and only if

(
∂u∗σ

∗(u∗)
)
Ω∗(u∗) = 0.

(E6) For any u∗ ∈ O
u∗
, if Ω∗(u∗) = 0, then ∂u∗Ω

∗(u∗)
(
∂2
u∗
σ∗(u∗)

)−1
=
(
∂2
u∗
σ∗(u∗)

)−1(
∂u∗Ω

∗(u∗)
)t

and N
(
∂u∗Ω

∗(u∗)
(
∂2u∗σ

∗(u∗)
)−1)

= E .

(E7) For any u∗ ∈ Ou∗, we have
(
∂u∗σ

∗(u∗)
)
Ω∗(u∗) ≤ 0.
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The fact that the entropy and the entropy fluxes may be defined uniquely over the domain O
u∗

is
a consequence of its simple connectedness. The equivalence between symmetrization and entropy for
hyperbolic systems of conservation laws, that is, the equivalence between (S1)-(S2) and (E1)-(E2), has
been discussed by many authors and is obtained with v∗ = (∂

u∗
σ∗)t. The extension of the equivalence

theorem to second-order systems of partial differential equations as well as to systems with source
terms is then obtained since (S3)-(S7) is a reformulation of (E3)-(E7) and conversely. We clarify here
the equivalence theorem in the particular situation of local symmetrizability including second-order
terms as well as source terms [34].

Theorem 3.4. Assume that the system (3.1) admits an entropy function σ∗ defined over Ou∗. Then,
the system can be locally symmetrized around any point u∗ of O

u∗
with the symmetrizing variable

v∗ = (∂
u∗
σ∗)t. Conversely, assume that the map u∗ → v∗ from O

u∗
onto an open set O

v∗
is a local

diffeomorphism such that the system can be locally symmetrized in the neighborhood of any point u∗ of
the simply connected open set O

u∗
. Then there exists a globally defined entropy over the open set O

u∗

such that v∗ = (∂u∗σ
∗)t.

Proof. Assume first that there exists an entropy σ∗ as in Definition 3.3 and let v∗ =
(
∂
u∗
σ∗
)t

be the
symmetrizing variable. The map u∗ → v∗ is then a local diffeomorphism from (E1) and we can define
the functions

s∗(v∗) = 〈u∗, v∗〉 − σ∗(u∗),

and
q∗i (v

∗) = 〈F ∗
i , v

∗〉 − q∗i (u
∗), i ∈ C∗.

Differentiating these expressions then yields that
(
∂v∗s

∗
)t

= u∗ and
(
∂v∗q

∗
i

)t
= F ∗

i , making use of

v∗ =
(
∂u∗σ

∗
)t

and Property (E2). This implies that Ã∗
0 = ∂v∗u

∗ = ∂2v∗s
∗ and Ã∗

i = ∂v∗F
∗
i = ∂2v∗q

∗
i ,

i ∈ C∗, so that these matrices are symmetric. It is next checked that (S3)-(S7) are direct consequences
of (E3)-(E7).

Conversely, assume that the system is locally symmetrizable with the map u∗ → v∗ in the sense
of Definition 3.1. It is mandatory then to look for gradients with respect to the conservative variable
u∗ and not with respect to the symmetric variable v∗ as in traditional proofs since u∗ → v∗ is not
globally invertible. To this aim, we observe that the matrices ∂u∗v

∗ and ∂u∗
(
(v∗)t∂u∗F

∗
i

)
are symmetric.

This is clear for ∂u∗v
∗ which is the inverse of the symmetric matrix Ã∗

0 = ∂v∗u
∗ whereas denoting

pk =
(
(v∗)t∂u∗F

∗
i

)
k
we have pk =

∑
1≤j≤n∗ v

∗
j∂u∗k

(Fi)
∗
j so that

∂u∗l pk =
∑

1≤j≤n∗

∂u∗l v
∗
j∂u∗k(Fi)

∗
j +

∑

1≤j≤n∗

v∗j∂
2
u∗k u∗l

(Fi)
∗
j ,

and is thus symmetric in (k, l) from the symmetry of second derivatives and the symmetry of the
product (

∂u∗v
∗
)t
∂u∗F

∗
i =

(
∂u∗v

∗
)t
Ã∗
i ∂u∗v

∗,

which a consequence of the symmetry of Ã∗
i = A∗

i ∂v∗u
∗. Therefore, there exists σ∗ and q∗i , i ∈ C∗,

defined over Ou∗ , such that
(
∂u∗σ

∗
)t

= v∗ and
(
∂u∗q

∗
i

)t
= F∗

i , i ∈ C∗ and (E1)-(E2) are established. It
is then easily checked that (E3)-(E7) are direct consequences of (S3)-(S7).

3.2 Local normal variable

We assume that the abstract quasilinear system (3.1) satisfies the following properties.

(Pde2) The system (3.1) admits an entropy function σ∗ defined over the simply connected open set O
u∗
.

Introducing the symmetrizing variable v∗ = (∂
u∗
σ∗)t, the corresponding symmetric system (3.2) then

locally satisfies Properties (S1)-(S7). The symmetric form (3.2) may be used in particular in order to
obtain the classical entropic estimates [38]. However, depending on the range of the dissipation matrices

B̃∗
ij , this system lies between the two limit cases of a hyperbolic system and a strongly parabolic system.

In order to split the variables between hyperbolic and parabolic variables, we have to put the system
into a normal form, that is, in the form of a symmetric hyperbolic–parabolic composite system.
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Definition 3.5. Consider a system locally symmetrizable as in Definition 3.1 and let u∗ → w∗ be a
map from the open set O

u∗
onto an open set O

w∗ . Assume that for any u∗ ∈ O
u∗

there exists o
u∗

⊂ O
u∗

and ow∗ ⊂ Ow∗ such that u∗ → w∗ is a diffeomorphism and assume that u∗ → v∗, from ou∗ onto ov∗

is also a diffeomorphism. Consider then the induced local diffeomorphism v∗ → w∗ from o
v∗

onto o
w∗ .

Letting v∗ = v∗(w∗) in the symmetrized system (3.2), multiplying the conservative symmetric form
(3.2) on the left side by the transpose of the matrix ∂w∗v∗, we then get a new system in the variable w∗

in the form

A
∗

0(w
∗)∂tw

∗ +
∑

i∈C∗

A
∗

i (w
∗)∂iw

∗ =
∑

i,j∈C∗

∂i
(
B
∗

ij(w
∗)∂jw

∗
)
+ T ∗

(w∗,∇w∗) + Ω
∗
(w∗), (3.3)

where A
∗

0 = (∂w∗v∗)t Ã∗
0 (∂w∗v∗), B

∗

ij = (∂w∗v∗)t B̃∗
ij (∂w∗v∗), A

∗

i = (∂w∗v∗)t Ã∗
i (∂w∗v∗), satisfies the

properties (S1)-(S4) rewritten in terms of the overbar matrices and where Ω
∗
= (∂

w∗v∗)tΩ̃∗ and T ∗
=

− ∑
i,j∈C∗

∂i(∂w∗v∗)t B̃∗
ij (∂w∗v∗)∂jw

∗. This system is then said to be of the local normal form if there

exists a partition of {1, . . . , n∗} into I = {1, . . . , n∗
0} and II = {n∗

0 + 1, . . . , n∗} such that the following
properties hold.

(Nor1) The matrices A
∗

0 and B
∗

ij have the block structure

A
∗

0 =

(
A
∗i,i

0 0

0 A
∗ii,ii

0

)
, B

∗

ij =

(
0 0

0 B
∗ii,ii

ij

)
.

(Nor2) The matrix B
∗ii,ii

(w∗, w) =
∑

i,j∈C∗ B
∗ii,ii

ij (w∗)wiwj is positive definite, for w∗ ∈ ow∗ , and

w ∈ Σd−1.

(Nor3) Denoting ∂x = (∂1, . . . , ∂d)
t, we have

T ∗
(w∗, ∂xw

∗) =
(
T ∗

i
(w∗, ∂xw

∗
ii
) , T ∗

ii
(w∗, ∂xw

∗)
)t
,

where we have used the vector and matrix block structure induced by the partitioning of {1, . . . , n∗} into
I = {1, . . . , n∗

0} and II = {n∗
0 + 1, . . . , n∗}, so that we have w∗ = (w∗

i ,w
∗
ii)

t, for instance.

A sufficient condition for system (3.2) to be recast into a normal form is that the nullspace naturally
associated with dissipation matrices is a fixed subspace of Rn∗

. This is Condition N introduced by
Kawashima and Shizuta [52] which has been strengthened in [38] and which is assumed to hold.

(Pde3) The nullspace of the matrix

B̃∗(v∗, w) =
∑

i,j∈C∗

B̃∗
ij(v

∗)wiwj ,

does not depend on v∗ ∈ ov∗ and w ∈ Σd−1 and we have B̃∗
ij(v

∗)N(B̃∗) = 0, i, j ∈ C∗.

We denote by n∗
0 = dim

(
N(B̃∗)

)
the dimension of N(B̃∗). We further consider an arbitrary constant

nonsingular matrix P of dimension n∗, such that its first n∗
0 columns span the nullspace N(B̃∗). More

specifically, the matrix P is such that

span
{
(P1j , . . . ,Pnj)

t; 1 ≤ j ≤ n∗
0

}
= N(B̃∗).

In order to characterize more easily normal forms for symmetric systems of conservation laws satisfying
(Pde1)-(Pde3) we introduce the auxiliary variables [38, 34] u∗′ = Ptu∗ and v∗′ = P−1v∗. The dissipation
matrices corresponding to these auxiliary variables have nonzero coefficients only in the lower right
block of size n∗ −n∗

0, where n
∗
0 = dim

(
N(B̃∗)

)
. Local normal symmetric forms are then equivalently—

and more easily—obtained from the v∗′ symmetric equation [38, 34]. A carefull examination of the
proof in Giovangigli and Massot [38] reveals that the following theorem holds.
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Theorem 3.6. Consider a system of conservation laws (3.2) that is locally symmetric in the sense
of Definition 3.1 and assume that the nullspace invariance property (Pde3) is satisfied. Denoting by
u∗′ = Ptu∗ and v∗′ = P−1v∗, the usual auxiliary variable, any normal form of the system (3.2) is given
by a local change of variable in the form

w∗ =
(
φi(u

∗′
i ), φii(v

∗′
ii )
)t
,

where φi and φii are two diffeomorphisms of Rn∗

0 and Rn∗−n∗

0 , respectively, and we have

T ∗
(w∗, ∂xw

∗) =
(
0, T ∗

ii(w
∗, ∂xw

∗
ii)
)t
.

When the mathematical entropy σ∗ is unique up to an affine transformation, as can be established
for the Navier-Stokes-Fourier system of a single fluid [47, 34] and may be established for multicomponent
nonideal fluids under the assumption that σ∗ is independent of heat and mass diffusion transport
parameters [42] then the symmetrizing variable v∗ is unique up to a multiplicative constant, and
Theorem 3.6 yields all the corresponding normal forms.

3.3 Dissipativity and asymptotic stability

3.3.1 Linearized normal form

We consider a system of conservation laws satisfying (Pde1)-(Pde3) and the additional property

(Pde4) The system (3.1) admits an equilibrium point u∗e.

We denote by v∗e and w∗e the equilibrium point in the v∗ and w∗ variables respectively. If we linearize
system (3.3) around the constant stationary state w∗e, we obtain a linear system in the variable
ŵ∗ = w∗ − w∗e

A
∗

0(w
∗e)∂tŵ

∗ +
∑

i∈C∗

A
∗

i (w
∗e)∂iŵ

∗ =
∑

i,j∈C∗

B
∗

ij(w
∗e)∂i∂jŵ

∗ − L
∗
(w∗e)ŵ∗, (3.4)

where L
∗
is defined by L

∗
= −∂w∗Ω

∗
. The properties of the linearized source terms are established in

the following lemma.

Lemma 3.7. Assuming Properties (Pde1)-(Pde4), (PG), and (S1)-(S7), and letting L
∗
= −∂

w∗Ω
∗
, the

matrix L
∗
(w∗e) is symmetric positive semi-definite with maximal rank n∗ − dim(E ).

Proof. This is a direct consequence of the identity L
∗
(w∗e) = −

(
∂w∗v∗(w∗e)

)t
∂v∗ Ω̃

∗(w∗e)
(
∂w∗v∗(w∗e)

)

and of Proposition 3.2.

By Fourier transform, the spectral problem associated with the linear system of partial differential
equations (3.4) reads

λA
∗

0(w
∗e)φ+

(
iζA

∗
(w∗e, w) + ζ2B

∗
(w∗e, w) + L

∗
(w∗e)

)
φ = 0, (3.5)

where ζ ∈ R, i2 = −1, w ∈ Σd−1, and

A
∗
(w∗e, w) =

∑

i∈C∗

A
∗

i (w
∗e)wi, B

∗
(w∗e, w) =

∑

i,j∈C∗

Bij(w
∗e)wiwj .

We denote by S (ζ, w) the set of complex numbers λ such that there exists φ ∈ Cn∗

, φ 6= 0, satisfying
(3.5). The following result has been established by Shizuta and Kawashima [75] and Beauchard and
Zuazua [4], and equivalent forms of the Kalman condition are also given by Beauchard and Zuazua [4]
as well as Coron [17].

Theorem 3.8. Assume that the matrix A
∗

0(w
∗e) is symmetric positive definite, the matrices A

∗

i (w
∗e),

i ∈ C∗, are symmetric, the reciprocity relations B
∗

ij(w
∗e)t = B

∗

ji(w
∗e), i, j ∈ C∗, hold and that the

matrix L
∗
(w∗e) is symmetric positive semi-definite. Then the following properties are equivalent.
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(Spe1) There exists a compensating matrix K defined and C∞ over Σd−1. That is, for any w ∈ Σd−1

the matrix K(w) is real, the product K(w)A
∗

0(w
∗e) is skew-symmetric, K(−w) = −K(w), and

the matrix
K(w)A

∗
(w∗e, w) + B

∗
(w∗e, w) + L

∗
(w∗e),

is positive definite.

(Spe2) For any ζ ∈ R, ζ 6= 0, and any w ∈ Σd−1, the eigenvalues λ ∈ S (ζ, w) have a negative real
part.

(Spe3) Let Ψ ∈ Rn∗\{0} such that B
∗
(w∗e, w)Ψ = L

∗
(w∗e)Ψ = 0 for some w ∈ Σd−1. Then we have

ζA
∗

0(w
∗e)Ψ + A

∗
(w∗e, w)Ψ 6= 0 for any ζ ∈ R.

(Spe4) There exists δ > 0 such that for any ζ ∈ iR, w ∈ Σd−1 and any eigenvalue λ of S (ζ, w), we
have

ℜ(λ) ≤ δ
|ζ|2

1 + |ζ|2 .

(Spe5) Letting B̂∗e =
(
A0(w

∗e)
)−1(

B
∗
(w∗e, w) + L

∗
(w∗e)

)
and Â∗e =

(
A0(w

∗e)
)−1

A
∗
(w∗e, w) the

Kalman condition is satisfied

rank
[
B̂∗e, Â∗e B̂∗e, . . . , (Â∗e)n

∗−1 B̂∗e
]
= n∗.

The local dissipative properties (Spe
1
)-(Spe

5
) may also equivalently be formulated with any sym-

metric formulation, not necessarily in normal form. It may be formulated for instance in terms of the
linearized natural symmetric form with v̂∗ = v∗ − v∗e

Ã∗
0(v

∗e)∂tv̂
∗ +

∑

i∈C∗

Ã∗
i (v

∗e)∂iv̂
∗ =

∑

i,j∈C∗

B̃∗
ij(v

∗e)∂i∂j v̂
∗ − L̃∗(v∗e)v̂∗. (3.6)

Such an equivalence is a direct consequence from the relations at equilibrium A0 = (∂
w
v)t Ã0 (∂

w
v),

Bij = (∂
w
v)t B̃∗

ij (∂
w
v), Ai = (∂

w
v)t Ã∗

i (∂
w
v), and L = (∂

w
v)t L̃ (∂

w
v), which show in particular that

(3.4) and (3.6) have the same spectrum S (ζ, w).
A physical interpretation of the Shizuta-Kawashima condition may be obtained from (Spe3) which

means that all waves associated with the hyperbolic operator A
∗

0(w
∗e)∂t +

∑
i∈C∗ A

∗

i (w
∗e)∂i lead to

dissipation, i.e., entropy production, since there are not in the nullspaces of B
∗
and L

∗
. Finally, even

if it is not known in general if the matrix K(w) may be written
∑

j∈C∗ Kjwj , it is generally possible
to obtain compensating matrices in this form in practical applications.

3.3.2 Global existence

We investigate the existence of solutions globally in time around equilibrium states. We assume that
the system is strictly dissipative in the sense of Theorem 3.8.

(Pde5) The linearized system is strictly dissipative in the sense of Theorem 3.8.

The following local properties of the source term required to obtain a priori estimates as well as
decay estimates has been introduced by Giovangigli and Massot [38] and may be deduced from (S1)-(S7)
as obsrved by Kawashima and Yong [53].

Proposition 3.9. There exists a neighborhood of v∗e in o
v∗

and a positive constant δ > 0 such that
for any v∗ in this neighborhood we have

δ
∣∣Ω̃∗(v∗)

∣∣2 ≤ −
〈
v∗ − v∗e, Ω̃∗(v∗)

〉
.

Proof. We introduce the decomposition Rn∗

= E ⊕ E ⊥ and write for convenience v∗ = (v∗e , v
∗
r )

t. We

then note that Ω̃∗ = (0, Ω̃∗
r )

t or equivalently Ω̃∗
e = 0 from (S5), and that Ω̃∗(v∗e , 0) = 0 since v∗ ∈ E

implies that Ω̃∗ = 0 also from (S5). This yields in particular that Ω̃∗
r (v

∗
e , v

∗
r ) = Ω̃∗

r (v
∗
e , v

∗
r ) − Ω̃∗

r (v
∗
e , 0)

so that

Ω̃∗
r =

∫ 1

0

∂v∗r Ω̃
∗
r (v

∗
e , θv

∗
r ) dθ v

∗
r ,
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in such a way that

−
〈
v∗ − v∗e, Ω̃∗(v∗)

〉
= −

〈
v∗, Ω̃∗(v∗)

〉
= −

〈∫ 1

0

∂v∗r Ω̃
∗
r (v

∗
e , θv

∗
r ) dθ v

∗
r , v

∗
r

〉
.

On the other hand, for v∗e = v∗ee the matrix −∂v∗r Ω̃∗
r (v

∗
e , 0) is symmetric positive definite since it is of

maximal rank which is the dimension of E ⊥. We thus deduce that δ‖v∗r ‖ ≤ ‖Ω̃∗‖ ≤ (1/δ)‖v∗r‖ and

−
〈
v∗ − v∗e, Ω̃∗(v∗)

〉
≥ δ′‖v∗r ‖2 in the neighborhood of v∗e = (v∗ee , 0)

t and the proof is complete.

The following Theorem is established in [50, 38] under assumptions (Pde1)-(Pde5) and only local
diffeomorphisms are required in the proof.

Theorem 3.10. Let d ≥ 1 and l ≥ [d/2] + 2 be integers and consider the system (3.3). Then there
exists b > 0 small enough such that if w∗0 satisfies ‖w∗0 − w∗e‖l < b, there exists a unique global
solution w∗ to the Cauchy problem

A
∗

0∂tw
∗ +

∑

i∈C∗

A
∗

i ∂iw
∗ =

∑

i,j∈C∗

∂i(B
∗

ij∂jw
∗) + T ∗

+Ω
∗
,

with initial condition
w∗(0, x) = w∗0(x),

such that
w∗
i − w∗e

i ∈ C0
(
[0,∞),W l

2(R
d)
)
∩C1

(
[0,∞),W l−1

2 (Rd)
)
,

w∗
ii
− w∗e

ii
∈ C0

(
[0,∞),W l

2(R
d)
)
∩ C1

(
[0,∞),W l−2

2 (Rd)
)
,

and
∂xw

∗
i ∈ L2

(
(0,∞),W l−1

2 (Rd)
)
,

∂xw
∗
ii
∈ L2

(
(0,∞),W l

2(R
d)
)
.

Furthermore, w∗ satisfies the estimate

‖w∗(t)− w∗e‖2l +
∫ t

0

(
‖∂xw∗

i
(τ)‖2l−1 + ‖∂xw∗

ii
(τ)‖2l

)
dτ ≤ C‖w∗0 − w∗e‖2l ,

where C is a positive constant and supx∈Rd |w∗(t)− we| goes to zero as t→ ∞.

We may further investigate decay estimates under stronger assumptions [79, 50, 51, 38]. A general
study of decay estimates for hyperbolic equations has recently been given by Beauchard and Zuazua [4].

Theorem 3.11. Let d ≥ 1, l ≥ [d/2] + 3 and w∗0(x) be given, such that

w∗0 − w∗e ∈ W l
2(R

d) ∩ Lp(Rd),

with p = 1 if d = 1 and p ∈ [1, 2) if d ≥ 2. Then, if ‖w∗0 − w∗e‖l and ‖w∗0 − w∗e‖Lp are small enough,
the unique global solution to the Cauchy problem satisfies the decay estimate

‖w∗(t)− w∗e‖l−2 ≤ C(1 + t)−γ
(
‖w∗0 − w∗e‖l−2 + ‖w∗0 − w∗e‖Lp

)
,

where C is a positive constant and γ = d(1/2p− 1/4).

3.4 Dependence on a parameter

The asymptotic stability of equilibrium states for quasilinear systems of partial differential equations is
by itself an important question. However, the coefficients of these systems often depend on parameters
that are denoted by ǫ∗ ∈ Rm∗

where m∗ ≥ 1 and the continuous dependence of solutions on these
parameters is then a natural question.

We thus consider a system of partial differential equations in the form

∂tu
∗ +

∑

i∈C∗

A∗
i (u

∗, ǫ∗)∂iu
∗ =

∑

i,j∈C∗

∂i
(
B∗
ij(u

∗, ǫ∗)∂ju
∗
)
+Ω∗(u∗, ǫ∗), (3.7)

where (u∗, ǫ∗) ∈ o(u∗,ǫ∗) and o(u∗,ǫ∗) is an open set of Rn∗×Rm∗

. The continuous dependence of

solutions with respect to the parameter ǫ∗ ∈ Rm∗

has been investigated [37] and is summarized here.
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It is first assumed that the system (3.1) admits an equilibrium point u∗e independent of ǫ∗ and that
o(w∗,ǫ∗) contains a subset in the form ow∗ ×Kǫ∗ , where ow∗ is an open set of Rn∗

independent of ǫ∗ and

Kǫ∗ a compact set of Rm∗

independent of w∗. A main idea for local in time solutions is that all usual
estimates can be made uniform with respect to the parameter ǫ∗ since we are considering a compact
set Kǫ∗ . Thanks to the local existence theorem and to uniform stability estimates, global solutions are
next obtained for all ǫ∗ ∈ Kǫ∗ . Continuity with respect to the parameter ǫ∗ is then a consequence of the
continuity over finite time interval and of uniform asymptotic stability [37]. Similarly, decay estimates
may also be established globally with respect to the parameter ǫ∗ ∈ Rm∗

[37].

4 Asymptotic stability for supercritical fluids

The abstract results established in the previous section are now applied to the system of partial dif-
ferential equations modeling supercritical reactive fluids. We first investigate the existence of constant
equilibrium points and then evaluate symmetric forms of the system of partial differential equations.
Local dissipativity and global existence results are then obtained and these results encompasses in
particular the situations of undercooled vapors and superheated liquids.

4.1 Chemical equilibrium

4.1.1 Definition of chemical equilibrium

We discuss in this section chemical equilibrium points in atom conservation manifolds under the struc-
tural assumptions (T1)-(T4), (PG), and (C1)-(C3).

Proposition 4.1. Assume that Properties (T1)-(T4), (PG), and (C1)-(C3) hold. Then for any z ∈ Oz ,
the following statements are equivalent :

(i) The entropy production due to chemistry vanishes vω = −〈µ, ω〉 = 0.

(ii) The reaction rates of progress vanish τj = 0, j ∈ R.

(iii) The species production rates vanish ωk = 0, k ∈ S.

(iv) The vector µ = (µ1, . . . , µn)
t belongs to R⊥.

Proof. From (2.30) and (C3) we obtain that vω = 0 implies 〈µ, νj〉 = 0, j ∈ R, and so τj = 0, j ∈ R,
and we have established that (i) implies (ii). The fact that (ii) implies (iii) is a consequence of the
relations ωk =

∑
j∈R

τjνkj , k ∈ S. We deduce from the definition vω = −〈µ, ω〉 that (iii) implies (i) so
that the three statements (i), (ii), and (iii) are equivalent. Finally, it is easily established that (iv) is
equivalent to 〈µ, νj〉 = 0, j ∈ R, so that (ii) and (iv) are also equivalent and the proof is complete.

Definition 4.2. A point z e ∈ Oz which satisfies the equivalent properties of Proposition 4.1 is termed
an equilibrium point.

We are only interested here in positive equilibrium states with ρi > 0, i ∈ S, which are in the interior
of the composition space. Spurious points with zero mass fractions where the source terms ωk, k ∈ S,
also vanish—termed ‘boundary equilibrium points’—are of a different nature [34]. Properly structured
chemical kinetic mechanisms automatically exclude such spurious points unless some element is missing
in the mixture [34].

4.1.2 Existence of equilibrium points

When defining chemical equilibrium states, it is necessary to use equations expressing the fact that
atoms are neither created nor destroyed by chemical reactions. These atom conservation relations are
typically in the form 〈̺− ̺f ,M−1a〉 = 0, where a is an atom vector and ̺f is a given state, and more
generally in the form 〈̺ − ̺f , x〉 = 0, where x ∈ (MR)⊥. As a consequence, equilibrium points have
to be investigated in atom conservation affine manifolds in the form ̺f +MR. Different equilibrium
points may be obtained with various thermal properties kept fixed. We discuss in this section the
existence of equilibrium points at fixed temperature and mass density. Existence of equilibrium states
is generally obtained by extremalizing a thermodynamic functional over an atom conservation affine
subspace and the following theorem is established in [40].
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Theorem 4.3. Assume that Properties (T1)-(T4), (PG), and (C1)-(C3) hold. Let ̺f = (ρf1, . . . , ρ
f
n)

t

with ρfi > 0, i ∈ S, and T e > 0 and assume that

∀̺ ∈ (̺f +MR) ∩ (0,∞)n (ρ1, . . . , ρn, T
e)t ∈ Oz . (4.1)

Further assume that E−Epg−T (S−Spg) admits a smooth extension to the closure (̺f+MR)∩[0,∞)n of
the reaction simplex. Then there exists a unique equilibrium state ̺e in the simplex (̺f+MR)∩(0,∞)n.

The thermodynamic functional to be maximized or minimized depends on which thermal properties
are kept fixed and we refer to [34] for instance for equilibrium points with h and p fixed typical of laminar
flames, in an ideal gas framework.

Remark 4.4. In practical applications, the space R spanned by the reaction vectors νj, j ∈ S, is
the maximum space R = A⊥ so that equilibrium is achieved when µ ∈ A. Equilibrium points depend
on the stoichiometric coefficients only through the vector space R spanned by the reaction vectors νj,
j ∈ R. On the contrary, forward and backward reaction vectors νfj, and ν

b
j , j ∈ R, are important for

the production rates and in order to rule out ‘boundary equilibrium points’ [34].

Remark 4.5. Smoothness of equilibrium points as functions T e and of the orthogonal projection of ̺f

onto (MR)⊥ is easily obtained by using the implicit function theorem [55, 34].

We now establish the existence of constant equilibrium states and the following result is a direct
consequence of Theorem 4.3.

Corollary 4.6. Keep the assumptions of Theorem 4.3 and let ve ∈ R
d. Then, denoting ze =

(ρe1, . . . , ρ
e
n,v

e, T e)
t
and letting ue = ue(ze) =

(
ρe1, . . . , ρ

e
n, ρ

eve, Ee + 1
2ρ

e|ve|2
)t

the state ue is an equi-
librium state

Ω(ue) = 0. (4.2)

The equilibrium states for other variables will also be denoted with the superscript e. Thermo-
dynamic stability holds for these equilibrium states in the sense that ∂2uu S is negative definite, from
Definition 4.2.

4.2 Local symmetrization

We investigate in this section symmetric forms for the system of partial differential equations modeling
nonideal fluids (2.1)–(2.3). We define the mathematical entropy σ by

σ = −S
R
, (4.3)

where the 1/R factor is introduced for convenience. It is reminded that the velocity components of all
quantities in Rn+d+1 = Rn ×Rd ×R are denoted as vectors of Rd for the sake of notational simplicity
and the corresponding partitionning is also used for matrices. The following theorem generalizes the
symmetric form for multicomponent flow previously obtained for ideal gas mixtures, ideal type diffusion,
and chemical kinetics of mass action type [38].

Theorem 4.7. Assume that (T1)-(T4), (PG), (C1)-(C3), and (Tr1)-(Tr2) hold. The function σ is a
mathematical entropy for the system (2.1)–(2.3) and the corresponding entropic variable is given by

v = (∂uσ)
t
=

1

RT

(
G1 − 1

2 |v|
2, . . . ,Gn − 1

2 |v|
2,v,−1

)t
. (4.4)

For any u ∈ Ou there exists an open subdomain ou ⊂ Ou such that the map u → v is a local Cκ

diffeomorphism from o
u
onto an open set ov. The system written in term of the entropic variable v is

in the form

Ã0(v)∂tv +
∑

i∈C

Ãi(v)∂iv =
∑

i,j∈C

∂i
(
B̃ij(v)∂jv

)
+ Ω̃(v), (4.5)

with Ã0 = ∂vu, Ãi = Ai∂vu, B̃ij = Bij∂vu, and Ω̃ = Ω, is of the local symmetric form, that is, (S1)-(S7)

hold. The matrix Ã0 is given by

Ã0 =




Λ Sym

v⊗Λ1I 〈Λ1I, 1I〉v⊗v + ρRT Id

Λg 〈Λg , 1I〉vt + ρRTvt Ã
T,T
0


 , (4.6)
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where Λ = ρRΓ−1 and Γ−1 is the inverse of the matrix Γkl = ρ∂̃ρk
Gl/T = ρ∂̃ρl

Gk/T defined in
Proposition 2.15 and where

g i = Gi − T ∂̃TGi +
1
2 |v|

2 = ∂̃ρi
E + 1

2 |v|
2, i ∈ S,

Ã
T,T
0 = 〈Λg , g 〉 + ρRT |v|2 +RT 2∂̃T E .

Since Ã0 is symmetric, we only give its left lower triangular part and write “Sym” in the upper triangular
part. Denoting by ξ = (ξ1, . . . , ξd)

t an arbitrary vector of Rd and letting Ã =
∑

i∈C ξiÃi the matrix Ã

is given by

Ã = v·ξ Ã0 +RT




0 Sym

ξ⊗̺ ρ(ξ⊗v + v⊗ξ)

v·ξ ̺t v·ξ ρvt + (E + p+ 1
2ρ|v|2)ξ

t 2v·ξ (E + p+ 1
2ρ|v|2)


 . (4.7)

Moreover, we have the decomposition associated with (2.11), (2.12), and (2.13)

B̃ij = RT B̃Lδij + κRT B̃κ
ij + ηRT B̃

η
ij , (4.8)

where

B̃L =
1

T



Ln,n Sym
0d,n 0d,d
Le• 01,d Le,e


 , (4.9)

and denoting by ξ = (ξ1, . . . , ξd)
t and ζ = (ζ1, . . . , ζd)

t arbitrary vectors of Rd, the matrices B̃κ
ij and

B̃
η
ij , i, j ∈ C, are given by

∑

i,j∈C

ξiζjB̃
κ
ij =




0n,n 0n,d 0n,1
0d,n ξ⊗ζ v·ζ ξ
01,n v·ξ ζt v·ξ v·ζ


 , (4.10)

∑

i,j∈C

ξiζjB̃
η
ij =




0n,n 0n,d 0n,1

0d,n ξ·ζId + ζ⊗ξ − 2
dξ⊗ζ ξ·ζ v + v·ξ ζ − 2

dv·ζ ξ
01,n ξ·ζ vt + v·ζ ξt − 2

d
v·ξ ζt ξ·ζ v·v + (1 − 2

d
)v·ξ v·ζ


 . (4.11)

Finally, the equilibrium manifold is given by

E = (MR)⊥ × R
d × R, (4.12)

where R = span{ νi, i ∈ R } ⊂ Rn is spanned by the reaction vectors and M = diag(m1, . . . ,mn).

Proof. In order to establish that σ is an entropy we establish that properties (E1)-(E7) are satisfied. In
order to establish that ∂2uuσ = ∂u(∂uσ)

t is positive definite we can directly evaluate the differentials of
∂2
uu
σ in terms of that of ∂2uu S. After lengthy but straightforward algebra it is established that for any

u ∈ Ou and x ∈ Rn+d+1, and writting the components of u as u = u(z), we have

−R
〈
(∂2uuσ)x, x

〉
=
〈
(∂2uu S)xu , xu

〉
− 1

ρT

∣∣v〈1I, x̺〉 − xv
∣∣2,

where x =
(
x1, . . . , xn, xv, xE)

t, xv =
(
xn+1, . . . , xn+d)

t, x̺ =
(
x1, . . . , xn)

t, and xu =
(
x1, . . . , xn, xE +

1
2 〈x̺, 1I〉|v|2−v·xv

)t
. Since ∂2uu S is negative definite, ρ > 0, and T > 0, it is easily concluded that ∂2

uu
σ

is positive definite and (E1) is established. The entropy fluxes are then taken in the form qi = σvi,
i ∈ C and the relations ∂

u
σ∂

u
Fi = ∂

u
q are easily checked in the equivalent form ∂

u
σ∂

z
Fi = ∂

z
q after

a little algebra so that (E2) is established. Properties (E3)(E4) are equivalent to (S3)(S4) and are then

established directly by inspecting the matrices B̃ij , i, j ∈ C.

The matrices Ã0, Ãi, i ∈ C, and B̃ij , i, j ∈ C, are easily evaluated by using the natural variable z

after lengthy calculations that are omitted. The matrices matrices Ã0, Ãi, i ∈ C, are symmetric and
Ã0 is positive definite since the Hessian matrix (Ã0)

−1 = ∂2
uu
σ is positive definite. This may also be
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checked directly, letting x = (x1, . . . , xn, xv, xE)
t, xv = (xn+1, . . . , xn+d)

t, and x̺ = (x1, . . . , xn)
t, since a

direct calculation yields

〈Ã0x, x〉 =
〈
Λ(x̺ + xv·v1I + xEg ), (x̺ + xv·v1I + xEg )

〉
+ ρRT (xv + xEv)·(xv + xEv) + x2ERT

2∂̃T E ,

so that Ã0 is positive definite from thermodynamic stability. Similarly we have (4.8) and the expressions

of B̃L, B̃κ
ij , and B̃

η
ij directly yields the reciprocity relations of Property (S3). Finally, for any ξ ∈ Rd,

the matrix
∑

i,j∈C ξiξjδij B̃
L = (

∑
i∈C ξ

2
i )B̃

L is positive semi-definite since L is positive semi-definite,

whereas for any x = (x1, . . . , xn, xv, xE)
t we have

〈(∑

i,j∈C

ξiξjB̃
κ
ij

)
x, x
〉
=
(
ξ · (xv + vxE)

)2
,

〈(∑

i,j∈C

ξiξjB̃
η
ij

)
x, x
〉
=
(
1− 2

d

)(
ξ · (xv + vxE)

)2
+ |ξ|2

∣∣xv + vxE
∣∣2,

so that
∑

i,j∈C ξiξjB̃
κ
ij and

∑
i,j∈C ξiξj B̃

η
ij are positive semi-definite for any dimension d ≥ 1 keeping

in mind that
∑

i,j∈C ξiξjB̃
η
ij = 0 when d = 1. Therefore, Properties (S3)(S4) are established, and thus

(E3)(E4) are established.

We now investigate the structure and properties of the source term Ω̃ = (m1ω1, . . . ,mnωn,0, 0)
t.

We have defined the equilibrium manifold with (4.12) so that E ⊥ = (MR) × {0}d × {0} and thus by

construction Ω̃ ∈ E ⊥. From Proposition 4.1, we obtain Ω̃ = 0 if and only if µ ∈ R⊥, and it is easy to
check that µ ∈ R⊥ if and only if v ∈ E . More specifically, if µ ∈ R⊥, then (G1, . . . ,Gn)

t ∈ M−1(R)⊥ =
(MR)⊥ since Gk = RTµk/mk, and we know that 1I ∈ (MR)⊥ from Lemma 2.5 so that v ∈ E and the

proof of the converse is similar. In addition, we know from Proposition 4.1, that Ω̃ = 0 if and only if
〈µ, ω〉 = 0. A straightforward calculation, however, yields that 〈µ, ω〉 = 〈v, Ω̃〉 and we have established

that Ω̃ = 0 if and only if v ∈ E and if and only if 〈v, Ω̃〉 = 〈v,Ω〉 = 0 and that (S5) and (E5) hold.

We now have to evaluate the jacobian matrix of the source term ∂vΩ̃ at equilibrium. To this aim,

we define (M νfj)
⋆ =

(
M νfj ,0, 0

)t
, (M νbj )

⋆ =
(
M νbj ,0, 0

)t
, (M νj)

⋆ = (M νbj )
⋆ − (M νfj)

⋆ so that

(M νj)
⋆ =

(
M νj ,0, 0

)t
,

and
Ω̃ =

∑

j∈R

(M νfj)
⋆τj .

The nonideal rate of progress for the jth reaction may also be written in the form

τj = κsj

(
exp
〈
(M νfj)

⋆, v
〉
− exp

〈
(M νbj )

⋆, v
〉)
, (4.13)

where κsj is the symmetric reaction constant of the jth reaction. Noting ve an equilibrium point where

Ω(ve) = 0, and thus where 〈(M νfj)
⋆, ve〉 = 〈(M νbj )

⋆, ve〉 for j ∈ R, a direct calculation of ∂vΩ̃ yields
that

L̃(ve) =
∑

j∈R

κsj exp
〈
(M νfj)

⋆, ve
〉
(M νj)

⋆ ⊗ (M νj)
⋆.

As a consequence, at equilibrium, L̃ is symmetric positive semi-definite of rank dim(E ⊥) = dim(R) so
that (S6) and (E6) are established. Finally, (S7) and (E7) are a direct consequence of Proposition 2.14
since 〈µ, ω〉 = 〈v,Ω〉 and the proof is complete.

For ideal fluids, the symmetrizing change of variable u → v is one to one and is thus a global change
of variable [38, 34]. On the contrary, for nonideal fluid, even though the entropy σ is globally defined,
the map u → v is only locally invertible and a typical situation is that of distinct points u♯ and u♭

such that v♯ = v♭. Indeed, we see from (4.4) that the equality v♯ = v♭ corresponds to the chemical
equilibrium between the two stable phases u♯ and u♭ with identical pressure, temperature and chemical
potentials, that may be observed once the entropy Hessian has lost its signature [40].
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4.3 Local normal form

In this section we investigate local normal forms for the system (2.1)–(2.3) and first establish the
nullspace invariance property.

Lemma 4.8. The nullspace of the matrix

B̃(v, ξ) =
∑

i,j∈C

B̃ij(v)ξiξj ,

is independent of v ∈ ov and ξ ∈ Σd−1, where Σd−1 is the unit sphere in d dimensions. This nullspace
is given by

N(B̃) = R(1I,0, 0)t,

and we have B̃ij(v)N(B̃) = 0, i, j ∈ C, for v ∈ ov.

Proof. From the proof of Theorem 4.7, letting x =
(
x1, . . . , xn, xv, xE)

t, with x̺ =
(
x1, . . . , xn)

t, xv =(
xn+1, . . . , xn+d)

t, we obtain that

〈
B̃x, x

〉
= 2 d−1

d

(
ξ · (xv + vxE )

)2
+ |ξ|2

∣∣xv + vxE
∣∣2 + |ξ|2

〈
B̃Lx, x

〉
.

Assuming that
〈
B̃x, x

〉
= 0 and |ξ| = 1 we thus obtain that

〈
B̃Lx, x

〉
= 0 and

∣∣xv +vxE
∣∣ = 0. From the

structure of B̃L and since N(L) = R(1I, 0)t, we deduce that
(
x1, . . . , xn, xE)

t ∈ R(1I, 0)t so that xE = 0

and (x1, . . . , xn)
t ∈ R1I. Next from

∣∣xv + vxE
∣∣ = 0 we obtain that xn+i = 0 for 1 ≤ i ≤ d. We have

thus established that N(B̃) is spanned by (1, . . . , 1,0, 0)t and it is easily checked that B̃ij(v)N(B̃) = 0,
i, j ∈ C, for v ∈ o

v
.

Since N(B̃) is spanned by (1I,0, 0)t, we define the matrix P by

P =




1 01,n−1 01,d 0

1n−1,1 In−1 0n−1,d 0n−1,1

0d,1 0d,n−1 Id 0d,1

0 01,n−1 01,d 1



, (4.14)

and we may introduce the auxiliary variable u′ = Pu and the corresponding entropic variable v′ = P−1v

given by

u′ =
(
ρ, ρ2, . . . , ρn, ρv, E + 1

2ρ|v|
2
)t

and

v′ =
1

RT

(
G1 − 1

2 |v|
2,G2 − G1, . . .Gn − G1,v,−1

)t
.

From Theorem 3.6, all normal variables are in the form w =
(
φi(u

′
i
), φii(v

′
ii
)
)t

where u′
i
is the first

component of u′ and v′ii the last n + d components of v′. For convenience, we choose the variable w

given by

w =
(
ρ,

G2 − G1

RT
, . . . ,

Gn − G1

RT
,v, T

)t
, (4.15)

and we investigate the corresponding governing equations.

Theorem 4.9. Assume that (T1)-(T4), (PG), (C1)-(C3), and (Tr1)-(Tr2) hold. For any u ∈ Ou there
exists a subdomain ou ⊂ Ou such that the map u → w is a Cκ diffeomorphism from the open set ou

onto an open set ow and the map u → v is a Cκ diffeomorphism from the open set ou onto an open set
ov. The induced diffeomorphism v → w is then a Cκ diffeomorphism from ov onto ow and the system
written in the w variable is in the form

A0(w)∂tw +
∑

i∈C

Ai(w)∂iw =
∑

i,j∈C

∂i
(
Bij(w)∂jw

)
+ T (w, ∂xw) + Ω(w), (4.16)

where A0 = ∂wv
t Ã0 ∂wv, Ai = ∂wv

t Ãi ∂wv, i ∈ C, Bij = ∂wv
t B̃ij ∂wv, i, j ∈ C, Ω = ∂wv

t Ω, and

T = −∑i,j∈C ∂i (∂wv
t) B̃ij ∂wv ∂jw, and is in the local normal form. The matrix A0 is given by

A0 =

[
A
i,i

0 Sym

0n+d,1 A
ii,ii

0

]
,
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with

A
i,i

0 =
1

〈Λ1I, 1I〉 A
ii,ii

0 =




Aii,ii
Sym

0d,n−1
ρ

RT
Id

a
t

RT 2 01,d A
T,T

0


 ,

and where Aii,ii
is the square matrix of dimension n− 1 with coefficients

Aii,ii

kl = Λkl −
(Λ1I)k(Λ1I)l
〈Λ1I, 1I〉 , 2 ≤ k, l ≤ n,

a is the vector of dimension n− 1 with coefficients

al = (Λg )l − (Λ1I)l
〈Λg , 1I〉
〈Λ1I, 1I〉 , 2 ≤ l ≤ n,

and A
T,T

0 is given by

A
T,T

0 =
1

R2T 4

(
〈Λg , g 〉 −

〈Λg , 1I〉2
〈Λ1I, 1I〉

)
+

1

RT 2
∂̃TE .

Denoting by ξ = (ξ1, . . . , ξd)
t an arbitrary vector of Rd, the matrices Ai, i ∈ C, are given by

∑

i∈C

ξiAi = A0v·ξ +




0 Sym

0n−1,1 0n−1,n−1

ρ
〈Λ1I,1I〉ξ ξ⊗b 0d,d

0 01,n−1 γξt 0


 ,

where b is the vector of dimension n− 1 with components

bl = ρl − ρ
(Λ1I)l
〈Λ1I, 1I〉 , 2 ≤ l ≤ n,

and

γ =
1

RT 2

(
E + 1

2ρ|v|
2 + P − ρ

〈Λg , 1I〉
〈Λ1I, 1I〉

)
.

The matrices Bij have the structure

Bij = δijRTB
L
+RTκB

κ

ij +RTηB
η

ij ,

where the matrix B
L
is given by

B
L
=

1

T




0 Sym

0n−1,1 Ln−1,n−1

0d,1 0d,n−1 0d,d

0 1
RT 2L

n−1
e• 01,d

1
R2T 4Lee


 .

Denoting by ξ = (ξ1, . . . , ξd)
t and ζ = (ζ1, . . . , ζd)

t arbitrary vectors of Rd, the matrices B
κ

ij , B
η

ij,
i, j ∈ C, are given by

∑

i,j∈C

ξiζjB
κ

ij =
1

R2T 2




0n,n 0n,d 0n,1

0d,n ξ⊗ζ 0d,1

01,n 01,d 01,1


 ,

∑

i,j∈C

ξiζjB
η

ij =
1

R2T 2




0n,n 0n,d 0n,1

0d,n ξ·ζ Id + ζ⊗ξ − 2
d
ξ⊗ζ 0d,1

01,n 01,d 01,1


 ,

and finally

Ω =
(
0,m2ω2, . . . ,mnωn,0, 0

)t
.

Proof. The proof is lengthy and tedious but presents no serious difficulties.
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4.4 Dissipativity and asymptotic stability

We consider the system (4.16) written in the w = (wi,wii)
t
variable, with the hyperbolic variable

wi = ρ,

and the parabolic variable

wii =
(G2 − G1

RT
, . . . ,

Gn − G1

RT
,v, T

)t
.

The mathematical structure of thermo-chemistry and multicomponent transport have been presented
in Sections 2.2. The existence of constant equilibrium states has been established in Section 4.1. The
equilibrium state in the variable w is denoted by we. We establish in the next proposition that the
linearized system is strictly dissipative around constant equilibrium states.

Proposition 4.10. Assume that (T1)-(T4), (PG), (C1)-(C3), and (Tr1)-(Tr2) hold and consider a con-
stant equilibrium state as in Proposition 4.6. Then the symmetric form of Theorem 4.4 linearized at
ve and the normal form of Theorem 4.9 linearized at we are strictly dissipative.

Proof. Since strict dissipativity is equivalently established with the normal form as well as with the
symmetrized form, we may use the later for convenience and use (Spe3). We thus consider ξ ∈ Σd−1

and assume that Ψ 6= 0 is such that B̃(ve, ξ)Ψ = L̃(ve)Ψ = 0 where B̃(ve, ξ) =
∑

ij∈C B̃ij(v
e)ξiξj and

L̃(ve) is the opposite of the linearized source term at ve.
We know then from Lemma 4.8 that Ψ = α(1I,0, 0)t for some α 6= 0 and we must establish that for

any a ∈ R we have aÃ0(v
e)Ψ + Ã(ve, ξ)Ψ 6= 0 where Ã(ve, ξ) =

∑
i∈C Ãi(v

e)ξi.
However, a direct calculation using (4.6)(4.7) from Theorem 4.7—keeping the same notation—yields

that

1

α

(
aÃ0(v

e)Ψ + Ã(ve, ξ)Ψ
)
= (a+ v · ξ)




Λ1I
v〈Λ1I, 1I〉
〈Λg , 1I〉


+




01,n
ρξ

v·ξ ρ


 .

If this vector is zero, then a + v · ξ = 0 from the n first components since Λ is invertible and 1I 6= 0.
This then implies that ρ = 0 from the velocity components, since ξ ∈ Σd−1, which is impossible so
that (Spe3) holds.

The following theorems are now consequences of Theorem 3.10, Theorem 3.11, Proposition 4.10 and
of the hyperbolic-parabolic structure of the system of partial differential equations modeling nonideal
fluids in normal form established in Theorem 4.9.

Theorem 4.11. Let d ≥ 1 and l ≥ [d/2] + 2 be integers and consider the system (4.16). There exists
b > 0 small enough such that if ‖w0 − we‖l < b, there exists a unique global solution w to the Cauchy
problem

A0(w)∂tw +
∑

i∈C

Ai(w)∂iw =
∑

i,j∈C

∂i
(
Bij(w)∂jw

)
+ T (w, ∂xw) + Ω(w),

with initial condition
w(0, x) = w0(x),

such that
wi − we

i ∈ C0
(
[0,∞),W l

2(R
d)
)
∩ C1

(
[0,∞),W l−1

2 (Rd)
)
,

wii − we
ii
∈ C0

(
[0,∞),W l

2(R
d)
)
∩ C1

(
[0,∞),W l−2

2 (Rd)
)
,

and
∇wi ∈ L2

(
(0,∞),W l−1

2 (Rd)
)
,

∇wii ∈ L2
(
(0,∞),W l

2(R
d)
)
.

Furthermore, w satisfies the estimate

‖w(t)− we‖2l +
∫ t

0

(
‖∇wi(τ)‖2l−1 + ‖∇wii‖2l

)
dτ ≤ C‖w0 − we‖2l ,

where C is a positive constant and supx∈Rd |w(t)− we| goes to zero as t→ ∞.
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Theorem 4.12. Let d ≥ 2, l ≥ [d/2] + 3 and w0(x) be given, such that

w0 − we ∈ W l
2(R

d) ∩ Lp(Rd),

with p ∈ [1, 2). Then, if ‖w0 − we‖l and ‖w0 − we‖Lp are small enough, the unique global solution to
the Cauchy problem satisfies the decay estimate

‖w(t)− we‖l−2 ≤ C(1 + t)−γ
(
‖w0 − we‖l−2 + ‖w0 − we‖Lp

)
, t ∈ [0,+∞),

uniformly in ǫ ∈ [0, ǫ] where C is a positive constant and γ = d(1/2p− 1/4).

Emphasizing the dependence on physical parameters ǫ ∈ Kǫ ⊂ Rm and assuming structural proper-
ties discussed in Section 3.4 there is a continuous dependence of solutions with respect to the parame-
ters ǫ [37]. Denoting by w(t, x, ǫ) the solution obtained for ǫ ∈ Kǫ, we have for any α ∈ Kǫ

lim
ǫ→α

sup
t≥0

‖w(t, ·, ǫ)− w(t, ·, α)‖Cl−([d/2]+2) = 0.

The physical parameters may typically chosen to be some transport coefficients parameters as well as
some thermochemistry constants.

5 Thermodynamically unstable points

We investigate in this section the deficiency of the system of partial differential equations modeling
multicomponent nonideal fluids at thermodynamic unstable states. We first characterize hyperbolic
and parabolic symmetric systems of conservation laws. We then specifically consider single component
fluids at thermodynamic mechanical unstable points as well as binary mixtures fluids at thermodynamic
chemical unstable points.

5.1 Hyperbolicity and parabolicity

We restate in this section various definitions of hyperbolicity and parabolicity keeping the notation of
Section 3.2 for abstract systems of conservation laws.

5.1.1 Symmetric hyperbolic systems

Consider a first-order abstract system of partial differential equations written in the form

A
∗

0(w
∗)∂tw

∗ +
∑

i∈C∗

A
∗

i (w
∗)∂iw

∗ = Ω
∗
(w∗), (5.1)

where A
∗

0, A
∗

i , i ∈ C∗, and Ω
∗
are smooth functions of w∗ over an open set ow∗ , C∗ = {1, . . . , d} the

set of direction indices of Rd, and where A
∗

0 is assumed to be invertible. The following definition of
hyperbolicity can be found in the book of Denis Serre [73].

Definition 5.1. The system (5.1) is said to be hyperbolic at a given point w∗ if

sup
ξ∈Rd

∥∥exp
(
−i
(
A
∗

0(w
∗)
)−1

A
∗
(w∗, ξ)

)∥∥ <∞, (5.2)

where for ξ ∈ Rd we have defined A
∗
(w∗, ξ) =

∑
j∈C Ai(w

∗)ξi.

When the system (5.1) is hyperbolic, it is easily established that the matrix
(
A
∗

0

)−1
A
∗
(ξ) is diago-

nalizable with real eigenvalues so that it is hyperbolic in the classical sense [18, 73]. We also have the
following sufficient condition in terms of eigenvalues and eigenvector matrices established by Serre [73].

Proposition 5.2. Assume that
(
A
∗

0

)−1
A
∗
(w∗, ξ) is diagonalizable at w∗ for any ξ ∈ R

d with real
eigenvalues. Let P (ξ) denote a matrix of eigenvectors and assume that

sup
ξ∈Rd

‖P (ξ)‖ ‖P (ξ)−1‖ <∞. (5.3)

Then the system (5.1) is also hyperbolic at w∗.
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A fundamental property of Definition 5.1 is its invariance under a change of variable [73]. Moreover,
when a first-order system is symmetrizable, the system (5.1) is hyperbolic [18, 73].

Definition 5.3. The system (5.1) is said to be symmetric at a given point w∗ when A
∗

0(w
∗) is positive

definite and the matrices A
∗

i (w
∗), i ∈ C, are symmetric.

Proposition 5.4. A symmetric system of partial differential equation is hyperbolic.

Since the existence of an entropy function also implies symmetrizability, it automatically implies
hyperbolicity [18, 73].

5.1.2 Symmetric parabolic systems

Consider a second-order system in the form

A
∗

0(w
∗)∂tw

∗ =
∑

i,j∈C∗

B
∗

ij(w
∗)∂i∂jw

∗ +Ω
∗
(w∗, ∂xw

∗), (5.4)

where A
∗

0, B
∗

ij , i, j ∈ C, are smooth functions of w∗ over an open set ow∗ , Ω
∗
is a smooth function over

ow∗ × Rdn∗

, and where A
∗

0 is invertible. We will generally consider second-order symmetric systems is
the following sense.

Definition 5.5. The system (5.4) is said to be symmetric at a given point w∗ when A
∗

0(w
∗) is symmetric

positive definite and
(
B
∗

ij(w
∗)
)t

= B
∗

ji(w
∗), for i, j ∈ C∗.

We then have the following definition for strongly parabolic systems of second-order partial differ-
ential equations.

Definition 5.6. Assume that the system (5.4) is symmetric at a given point w∗. This system is said
to be strongly parabolic at w∗ if there exists a positive constant δ > 0 such that for any ξ = (ξ1, . . . , ξd)

t

and w = (w1, . . . , wn∗)t we have

∑

1≤i,j≤d
1≤k,l≤n∗

(
B
∗

ij

)
kl
ξiξjwkwl ≥ δ|ξ|2|w|2. (5.5)

Remark 5.7. It is often the case that systems of partial differential equations of physical origin satisfy
stronger properties than (5.5) at a given point w∗ and are indeed such that

∑

1≤i,j≤d
1≤k,l≤n∗

(
B
∗

ij

)
kl
ζikζjl ≥ δ|ζ|2, (5.6)

for any ζ ∈ Rdn∗

. The condition (5.5) then simply corresponds to the situation where ζ is constrained
to be a tensor product ζ = ξ⊗w, so that ζik = ξiwk, for i ∈ {1, . . . , d}, k ∈ {1, . . . , n∗}.

The definition of strong parabolicity is only given here for symmetric systems and will be applied
to the symmetrized forms like (3.2) or (3.3), thereby naturally involving entropy Hessians. Indeed,
the definition of strong parabolicity in the usual sense, which neither require symmetry properties nor
entropy hessians, only has a meaning for particular forms of systems of partial differential equation
under consideration which need to be specified as shown by the following counter example. Consider
the system ∂tw

∗ −D ∆w∗ = 0 where w∗ = (w∗
1,w

∗
2)

t, ∆w∗ = (∆w∗
1 ,∆w∗

2)
t, and D = diag(δ1, δ2), with

δ1 > 0, δ2 > 0, and δ1 6= δ2. In other words, consider two uncoupled heat equations which of course
form a symmetric strongly parabolic system. Introduce next the modified variable w′∗ = (w∗

1+w∗
2, δw

∗
2)

t

where δ > 0 is a positive parameter. We then have ∂tw
′∗ −D ′∆w′∗ = 0 with

D ′ =

[
δ1

δ2−δ1
δ

0 δ2

]
,

so that if 0 < δ < |δ2− δ1|/(2
√
δ1δ2) the quadratic form associated with D ′ is not positive definite and

the system in the w′∗ variable is not strongly parabolic in the usual sense even though it is obtained
from a trivially strongly parabolic system.
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Definition 5.8. Denoting B
∗
(w∗, ξ) =

∑
i,j∈C∗ ξiξjB

∗

ij(w
∗), a system (5.4) is said to be parabolic in

the sense of Petrovsky at a given point w∗ if there exists a positive constant δ such that for any ξ ∈ Rd,

the eigenvalues λ of
(
A
∗

0(w
∗)
)−1

B
∗
(w∗, ξ), are such that

ℜ(λ) ≥ δ|ξ|2. (5.7)

Various other generalized definitions are discussed in the book of Ladyz̃enskaja et al. [58], in par-
ticular that of Douglis and Nirenberg, Shirota, and Eı̆del’man, but these definitions coincide with that
of Petrovsky for second-order systems [58].

Proposition 5.9. Consider a second-order system in the form

A
∗

0(w
∗)∂tw

∗ =
∑

i,j∈C∗

B
∗

ij(w
∗)∂i∂jw

∗ +Ω
∗
,

and assume that the system is symmetric. Then the system is strongly parabolic at w∗ if and only if it
is Petrovsky parabolic at w∗.

Proof. Assume that the system is parabolic in the sense of Petrovsky and let ξ ∈ Rd. Since the matrix(
A
∗

0

)−1
B
∗
is the product of a positive definite matrix

(
A
∗

0

)−1
and of the symmetric matrix B

∗
, it is

self-adjoint with respect to the scalar product 〈〈x, y〉〉 = 〈A∗

0x, y〉 so that it is diagonalizable with real
eigenvalues and admits a basis of eigenvectors orthonormal with respect to the scalar product 〈〈x, y〉〉.

Denoting f1, . . . , fn∗

a basis of eigenvectors and λ1, . . . , λn
∗

the corresponding eigenvalues, we
have (A

∗

0)
−1B

∗
f i = λif

i so that B
∗
f i = λiA

∗

0f
i, for 1 ≤ i ≤ n∗. Since the eigenvector basis is

orthonormal with respect to the scalar product 〈〈x, y〉〉 we have 〈A∗

0f
i, f j〉 = 0 when i 6= j. Upon

forming λi〈A
∗

0f
i, f j〉 = 〈B∗

f i, f j〉 we deduce that 〈B∗
f i, f j〉 = 0 when i 6= j. From the relations

λj〈A
∗

0f
i, f j〉 = 〈B∗

f i, f j〉 and the lower bound δ|ξ|2 ≤ λj , for 1 ≤ j ≤ n∗, we next obtain that

δ|ξ|2〈A∗

0x, x〉 = δ|ξ|2
∑

1≤j≤n∗

x2j 〈A
∗

0f
j, f j〉 ≤

∑

1≤j≤n∗

λjx
2
j 〈A

∗

0f
j, f j〉 = 〈B∗

x, x〉.

Since δ′‖x‖ ≤ 〈A∗

0x, x〉 for some positive constant δ′ the system is strongly parabolic.

Conversely, assume that the system is strongly parabolic and let λ be an eigenvalue of
(
A
∗

0

)−1
B
∗
.

We have then
(
A
∗

0

)−1
B
∗
x = λx for some x 6= 0 and we may write λ〈A∗

0x, x〉 = 〈B∗
x, x〉. This implies

that λ〈A∗

0x, x〉 ≥ δ′|x||ξ| since the system is strongly parabolic and we then obtain that λ ≥ δ|ξ| since
〈A∗

0x, x〉 ≤ C|x| for some constant C and the system is Petrovsky parabolic.

From a practical point of view, for systems of partial differential equations derived from physics,
thanks to the existence of a mathematical entropy, we can use symmetrized systems of partial differ-
ential equations and then rely of the classical definition of strongly parabolic systems.

In addition, strongly parabolicity is also invariant by a change of variable for symmetric systems,
after multiplication of the left by the transpose of the jacobian matrix. Considering for instance the
previous system ∂tw

∗ −D ∆w∗ = 0 where w∗ = (w∗
1,w

∗
2)

t, ∆w∗ = (∆w∗
1,∆w∗

2)
t, and D = diag(δ1, δ2),

with δ1 > 0, δ2 > 0, and letting w′∗ = (w∗
1 + w∗

2, δw
∗
2)

t where δ > 0 is a positive parameter and

P =

[
1 1
0 δ

]
, Q = P−1,

we then have
QtQ∂tw

′∗ − QtD Q∆w′∗ = 0,

which remains symmetric strongly parabolic.

5.2 Mechanical unstable point for a single fluid

We investigate in this section the system of partial differential equation modeling a single fluid n = 1
near a mechanical unstable point wu where ∂̃ρp(w

u) = 0. We assume that thermodynamic stability

holds with ∂̃ρp > 0 in some neighborhood and we pass to the limit w → wu in the resulting system of
partial differential equations.

We may use the calculations already made by using the normal variable w = (ρ,v, T )t presented
in Section 4.3. Note that the mass density ρ1 is denoted by ρ since there is only one species. We may
also use the relation ∂̃ρG1 = ∂̃ρp/ρ where the index 1 is kept to distinguish between G1 and G = ρ1G1.
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Proposition 5.10. The system written in the w variable is in the form (4.16) and we have

A0 =




∂̃ρp

ρRT 01,d 0

0d,1
ρ

RT
Id 0d,1

0 01,d
1

RT 2 ∂̃TE


 .

Moreover, denoting by ξ = (ξ1, . . . , ξd)
t an arbitrary vector of Rd, the matrices Ai, i ∈ C, are given by

∑

i∈C

ξiAi = A0v·ξ +




0
∂̃ρp

RT
ξt 0

∂̃ρp

RT ξ 0d,d
∂̃T p

RT ξ

0
∂̃T p

RT ξt 0


 ,

Finally, the dissipation matrices are left unchanged with respect to Theorem 4.9.

Proof. It is a particular case of Theorem 4.9.

Assuming that we are in the neighborhood of the mechanical unstable point wu and passing to the
limit up to this point, we deduce from Proposition 5.10 that the normal form degenerates with lines of
zero coefficients in the matrices A0(w

u), Ai(w
u), i ∈ C, Bij(w

u), i, j ∈ C, of the system of quasilinear

partial differential equations as well as for the linearized source term in L(wu) since then ∂̃ρp(w
u) = 0.

We also know that this is the case for all normal forms built from the representation Theorem 3.6.
It is thus mandatory to remove the singularity prior passing to the limit. This can be done by

considering the rescaled system

∂tw+
∑

i∈C

(A0)
−1Ai∂iw =

∑

i,j∈C

(A0)
−1Bij∂i∂jw+

∑

i,j∈C

(A0)
−1∂i(Bij)∂jw + (A0)

−1Ω, (5.8)

and passing to the limit w → wu at a mechanical thermodynamically unstable point wu. More specifi-
cally, since ∂̃ρp only appear in the upper left corner of A0, it is easily checked that there is a cancellation

of singularities in all the products (A0)
−1Ai, (A0)

−1Bij , (A0)
−1∂iT , and (A0)

−1Ω. The limiting struc-
ture of the system of partial differential equations (5.8) is in the object of the following theorem.

Theorem 5.11. At a mechanical thermodynamic unstable point wu with ∂̃ρp(w
u) = 0 and ∂̃T p(w

u) > 0,
the limiting rescaled system of partial differential equations (5.8) remains hyperbolic in the sense of
Definition 5.1 and the subsystem in the wii variable remains symmetrizable and parabolic in the sense
of Definition 5.8. The coupled system is not anymore symmetrizable, although its parabolic part still
is. Finally, the Shizuta-Kawashima condition does not hold anymore and pure compression waves are
undamped by viscosity and thermal conductivity.

Proof. The products (A0)
−1Ai are easily evaluated in the form

(A0)
−1Ai = v·ξ In+d+1 +




0 ρ ξt 0

∂̃ρp

ρ
ξ 0d,d

∂̃T p

ρ
ξ

0
T ∂̃T p

∂̃T E
ξ
t 0


 ,

and there is a cancellation of singularities as ∂̃ρp goes to zero. The characteristic polynomial is easily
evaluated as

det
(
XI− (A0)

−1Ai

)
= (X − v·ξ)d

(
(X − v·ξ)2 − (∂̃ρp+

T
ρ

(∂̃T p)2

∂̃T E
)
)
.

All eigenvalues of (A0)
−1Ai thus remain real as ∂̃ρp→ 0 and denoting by P (ξ) a change of basis matrix

between the canonical basis and a full system of eigenvectors, it is checked that ‖P (ξ)‖ ‖P (ξ)−1‖
remains bounded independently of ξ as ∂̃ρp→ 0 so that the limiting system is hyperbolic.

On the other hand, the singularity in the matrices A0 and Ai, i ∈ C, does not influence the equa-
tions associated with the parabolic variables so that the dissipative part remains symmetric strongly
parabolic and the rescaled version remains Petrovsky parabolic.

Finally, the vector (1, 0, . . . , 0)t is an eigenvector of the limiting value of (A0)
−1Ai at a mechanically

unstable point and is also in the nullspace of B and L so that (Spe
3
) does not hold for the rescaled

system.
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We conclude here that the Shizuta-Kawashima condition is of fundamental importance since it is
the main indication that the state of the system is thermodynamically unstable.

5.3 Chemical unstable point for a binary mixture

We investigate in this section the system of partial differential equation modeling a binary fluid at a
chemical thermodynamical unstable point. More specifically, we consider the situation of a two species
mixture n = 2 near a point where the matrix

Γ =
ρ

T



∂̃ρ1

G1 ∂̃ρ2
G1

∂̃ρ1
G2 ∂̃ρ2

G2


 ,

has one positive eigenvalue and one zero eigenvalue. We assume in all calculations that thermodynamic
stability holds with Γ positive definite and pass to the limit where the determinant vanish and the
trace remains positive.

We may directly use in this situation the calculations already made using the normal variable

w =
(
ρ, (G2 −G1)/RT,v, T

)t
presented in Section 4.3. To this aim, the matrix Λ is easily evaluated to

be

Λ =
RT

∂̃ρ1
G1 ∂̃ρ2

G2 − ∂̃ρ1
G2 ∂̃ρ2

G1




∂̃ρ2
G2 −∂̃ρ2

G1

−∂̃ρ1
G2 ∂̃ρ1

G1


 .

The normal form is investigated in the following proposition.

Proposition 5.12. The system written in the w variable is in the form (4.16) and the coefficients of

the matrix A0 are the following. The coefficient A
i,i

0 = 1/〈Λ1I, 1I〉 is given by

A
i,i

0 =
1

RT

∂̃ρ1
G1 ∂̃ρ2

G2 − ∂̃ρ1
G2 ∂̃ρ2

G1

∂̃ρ1
G1 + ∂̃ρ2

G2 − ∂̃ρ1
G2 − ∂̃ρ2

G1

.

On the other hand, the coefficient Aii,ii
is easily evaluated after some algebra in the form

Aii,ii
=

RT

∂̃ρ1
G1 + ∂̃ρ2

G2 − ∂̃ρ1
G2 − ∂̃ρ2

G1

.

The last coefficients are obtained after lengthy algebra in the form

at

RT 2
=

1

T

∂̃ρ2
E − ∂̃ρ1

E
∂̃ρ1

G1 + ∂̃ρ2
G2 − ∂̃ρ1

G2 − ∂̃ρ2
G1

,

A
TT

0 =
1

RT 3

(∂̃ρ2
E − ∂̃ρ1

E)2

∂̃ρ1
G1 + ∂̃ρ2

G2 − ∂̃ρ1
G2 − ∂̃ρ2

G1

+
1

RT 2
∂̃T E .

From the expressions of the various matrices appearing in the normal form, it is again deduced, using
the special form of the matrix A0 that the rescaled form of the system of partial differential equation
(5.8) pass to the limit at a chemical thermodynamically unstable point thanks to a cancellation of
singularities. The limiting structure of the system of partial differential equations (5.8) for binary
mixtures is in the object of the following theorem.

Theorem 5.13. At a chemical thermodynamically unstable point wu where the matrix Γ is singular
with

(
∂̃ρ1

G1 ∂̃ρ2
G2 − ∂̃ρ1

G2 ∂̃ρ2
G1

)
(wu) = 0,

(
∂̃ρ1

G1 + ∂̃ρ2
G2 − ∂̃ρ1

G2 − ∂̃ρ2
G1

)
(wu) > 0 and ∂̃T p(w

u) > 0,
the limiting rescaled system of partial differential equations (5.8) remains hyperbolic in the sense of
Definition 5.1 and the subsystem in the wii variable remains symmetrizable and parabolic in the sense
of Definition 5.8. The coupled system is not anymore symmetrizable, although its parabolic part still
is. Finally, the Shizuta-Kawashima condition does not hold anymore and pure compression waves are
undamped by viscosity and thermal conductivity.

Proof. The proof is lengthy and tedious but similar to the previous situation of mechanically unstable
points.
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Sciences, Ecole Polytechnique Fédérale de Lausanne, 1112, (1993).

[69] O. Redlich and J. N. S. Kwong, On the thermodynamics of solutions. V An equation of state.
Fugacities of gaseous solutions, Chem. Reviews 44 (1949), pp. 233–244.

[70] G. Ribert, N. Zong, V. Yang, L. Pons, N. Darabiha, and S. Candel, Counterflow diffusion flames
of general fluids: Oxygen/Hydrogen mixtures, Comb. Flame 154 (2008), pp. 319–330.

[71] T. Ruggeri, Thermodynamics and Symmetric Hyperbolic Systems, Rend. Sem. Mat. Univ. Torino,
Fascicolo Speciale Hyperbolic Equations, (1987), pp. 167–183.

[72] N. Z. Shapiro and L. S. Shapley, Mass Action Law and the Gibbs Free Energy Function, SIAM J.
Appl. Math., 13 (1965), pp. 353–375.
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