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Abstract

We give formulas and equations for finding generalized scattering data
for the Schrédinger equation in open bounded domain at fixed energy
from the impedance boundary map (or Robin-to-Robin map). Combining
these results with results of the inverse scattering theory we obtain efficient
methods for reconstructing potential from the impedance boundary map.

1 Introduction

We consider the Schrédinger equation

—AY+ou(z)p =Ey, x€D, EFeR, (1.1)
where
D is an open bounded domain in R?, d > 2, (1.2)
with 9D € C?, '
veL*(D), v=1. (1.3)

Following [11], [17], we consider the impedance boundary map M, = M, ,(F)
defined by

Ma[w]a = [¢]a—7r/2 (1~4)
for all sufficiently regular solutions ¢ of equation (1.1) in D = D U dD, where

[¥]a = [¢¥(2)]a = cosap(x) —sina g—lﬁbp(x), x€dD, aeR (1.5)

and v is the outward normal to dD. Under assumptions (1.2), (1.3), in Lemma
3.2 of [17] it was shown that there is not more than a countable number of a € R
such that F is an eigenvalue for the operator —A + v in D with the boundary
condition

0
cosa|ap —Sina£|a[) =0. (1.6)
ov
Therefore, for any energy level F we can assume that for some fixed o € R

FE is not an eigenvalue for the operator —A 4+ v in D (17)
with boundary condition (1.6) '

and, as a corollary, M, can be defined correctly.

We recall that the impedance boundary map M, is reduced to the Dirichlet-
to-Neumann(DtN) map if & = 0 and is reduced to the Neumann-to-Dirichlet(NtD)
map if a = 7/2. The map M, can be called also as the Robin-to-Robin map.



As in [17], we consider the following inverse boundary value problem for
equation (1.1).

Problem 1.1. Given M, for some fixed F and a, find v.

This problem can be considered as the Gel’fand inverse boundary value prob-
lem for the Schrodinger equation at fixed energy (see [10], [25]). At zero energy
this problem can be considered also as a generalization of the Calderon problem
of the electrical impedance tomography (see [6], [25]).

Problem 1.1 includes, in particular, the following questions: (a) uniqueness,
(b) reconstruction, (c) stability.

Global uniqueness theorems and global reconstruction methods for Problem
1.1 with o = 0 were given for the first time in [25] in dimension d > 3 and in [5]
in dimension d = 2.

Global stability estimates for Problem 1.1 with o = 0 were given for the
first time in [1] in dimension d > 3 and in [34] in dimension d = 2. A principal
improvement of the result of [1] was given recently in [33] (for the zero energy
case). Due to [21] these logarithmic stability results are optimal (up to the value
of the exponent). An extention of the instability estimates of [21] to the case of
the non-zero energy as well as to the case of Dirichlet-to-Neumann map given
on the energy intervals was given in [16].

Note also that for the Calderon problem (of the electrical impedance tomog-
raphy) in its initial formulation the global uniqueness was firstly proved in [39]
for d > 3 and in [24] for d = 2. In addition, for the case of piecewise constant or
piecewise real analytic conductivity the first uniqueness results for the Calderon
problem in dimension d > 2 were given in [7], [18].

It should be noted that in most of previous works on inverse boundary
value problems for equation (1.1) at fixed F it was assumed in one way or
another that E is not a Dirichlet eigenvalue for the operator —A + v in D,
see [1], [21], [25], [33]- [37]. Nevertheless, the results of [5] can be considered as
global uniqueness and reconstruction results for Problem 1.1 in dimension d = 2
with general a.

Global stability estimates for Problem 1.1 in dimension d > 2 with general
« were recently given in [17].

In the present work we give formulas and equations for finding (general-
ized) scattering data from the impedance boundary map M, with general «.
Combining these results with results of [13], [15], [24], [26]- [28], [30]- [32], we
obtain efficient reconstruction methods for Problem 1.1 in multidimensions with
general a.

Definitions of (generilized) scattering data are recalled in Section 2. Our
main results are presented in Section 3. Proofs of these results are given in
Sections 4, 5 and 6.

2 Scattering data

Consider the Schrédinger equation

—AYp+v(z)p =Ey, zeRY d>2 (2.1)



where
(1 + |z))¥*ev(z) € L= (RY) (as a function of ), for some & > 0. (2.2)

For equation (2.1) we consider the functions 1™ and f of the classical scattering
theory and the Faddeev functions v, h, v, h, (see, for example, [3], [8], [9],
[12], [15], [22], [26]).

The functions ¥ and f can be defined as follows:

w@m—ww/mxwm<wwwm (2.3)
zﬁw
G (1’ k (27T> /52 k‘2—20 ga (24)

x,keRd, k2 >0,

where (2.3) at fixed k is considered as an equation for ¢* in L>°(R);

o <217T>d/e_ilxw+(m7]g)v(m)d$, (2.5)

Rd

k,leRY K2 >0.

In addition: ¢ (x, k) satisfies (2.3) for E = k? and describes scattering of the
plane waves e*%; f(k, 1), k> = [2, is the scattering amplitude for equation (2.1)
for E = k2. Equation (2.3) is the Lippman-Schwinger integral equation.

The functions ¢ and h can be defined as follows:

w@mzaM+/Gu—%mwww%M@, (2.6)
~ eErde
Gl k) = (27r) /§2+2k§ ’ (2.7)

r € RY, ke(Cd, Imk # 0,

where (2.6) at fixed k is considered as an equation for @ = e**pu(x, k),
p € L= (RY);

M&0=(;Jd/emw“kW@M% (28)

Rd
k,leC? Imk=1Iml#0.

In addition, v (x, k) satisfies (2.1) for E = k2, and ¢, G and h are (nonanalytic)
continuations of 97, GT and f to the complex domain. In particular, h(k,1) for



k? = 2 can be considered as the "scattering" amplitude in the complex domain
for equation (2.1) for E = k?. The functions ¢., and h. are defined as follows:

Uy, k) =P,k +i0y),  hy(k,1) = h(k +i0v,1 + i07),

2.9
x,k, 1,y eRY A% =1. 29)

We recall also that

¢+(l‘,k‘) :wk/\k\<x7k)a f(k’l) :hk/|k|(k>l)a

2.10
2, k,l € R, [k| > 0. (2:10)

We consider f(k,l) and h.(k,1), where k,l,v € R%, k? =2 = E, 4% = 1, and
h(k,1), where k,1 € C% Imk = Iml # 0, k> = |2 = E, as scattering data Sg
for equation (2.1) at fixed E € (0,+oc). We consider h(k,1), where k,1 € C¢,
Imk =1Iml # 0, k? = [?> = E, as scattering data Sg for equation (2.1) at fixed
E € (—0,0].

We consider also the sets &, £, 1 defined as follows:

£ — ¢ € C4\R? : equation (2.6) for k= ( isnot (2.11a)
~ | uniquely solvable for 1 = e™**y with pu € L>®(RY) [~ '

£ - ¢ €R4\ {0} : equation (2.6) for k= (+i0y
T is not uniquely solvable for ¢ = L>°(R?) ’ (2.11Db)

v est,

£t — ¢ €R4\ {0} : equation (2.6) for k= isnot (2.11¢)
- uniquely solvable for 1 = L>°(R%) ‘ ’

In addition, £ is a well-known set of the classical scattering theory for
equation (2.1) and €T = ) for real-valued v satisfying (2.2) (see, for example,
[3], [22]). Note also that £ is spherically symmetric. The sets £, &, were
considered for the first time in [8], [9]. Concerning the properties of £ and &,
see [9], [14], [15], [20], [22], [24], [27], [40].

We consider also the functions R, R,, R defined as follows:

R(z,y,k) = Gz — y.k) + / Gz — 2, K)o(2) R (=, k)dz,
2 (2.12)

z,yeRY, keCl Imk #0,

where G is defined by (2.7) and formula (2.12) at fixed y, k is considered as an
equation for _
R(w,y, k) = ez, y, k), (213)

where r is sought with the properties

r(-,y,k) is continuous on R\ {y} (2.14a)



r(z,y,k) =0 as |z| — oo, (2.14b)
r(z,y, k) = O(|z —y|>~%) as = —y for d>3,

(2.14c)
r(z,y, k) =0(In |z —y||) as 2 —y for d=2;
z,y €RY, ke R\ {0}, y €571 '
RY(z,y,k) =R x,y,k),
(2,y,k) = Ry (2,y, k) (2.16)

z,y € RY ke R\ {0}

In addition, the functions R(z,y,k), Ry(z,y,k) and R (z,y, k) (for their do-
mains of definition in k and ) satisfy the following equations:

(Ay + E —v(x)R(x,y, k) = 0(x — y),
(Ay + E—v(y)R(z,y, k) = é(x — y), (2.17)
T,y € R?, E =K%

The function R* (z,y, k) (defined by means of (2.12) for k € R?\ {0} with G re-
placed by G of (2.4)) is well-known in the scattering theory for equations (2.1),
(2.17) (see, for example, [4]). In particular, this function describes scattering
of the spherical waves G (x — y, k) generated by a source at y. In addition
R*(x,y,k) is a radial function in &, i.e.

RY(z,y,k) =RT(z,y,]k]), z,y€R? keR*\{0}. (2.18)

Apparently, the functions R and R, were considered for the first time in [27].

In addition, under the assumption (2.2): equation (2.12) at fixed y and
k is uniquely solvable for R with the properties (2.13), (2.14) if and only if
k€ C1\ (\R?UE); equation (2.12) with k = ¢ +1i0v, ¢ € R4\ {0}, v € S¥71, at
fixed y, ¢ and v is uniquely solvable for R, if and only if ( € R\ ({0} U&,);
equation (2.12) with k = ¢ +40¢/|¢|, ¢ € R%\ 0, at fixed y and ¢ is uniquely
solvable for R* if and only if ¢ € RY\ ({0} UET).

3 Main results

Let v and oY satisfy (1.3), (1.7) for some fixed E and a. Let M, ,(z,y, F),
M, o (x,y, E), x,y € 0D, denote the Schwartz kernels of the impedance bound-
ary maps Maﬂ,, Ma,vo, for potentials v and v°, respectively, where va, Ma’vo
are considered as linear integral operators. In addition, we consider v° as some
known background potential.

Let hv 1/)7 f7 ’l/}+7 h'yv 1/177 gv 5+7 g’y and ho» 1/)0» va w+’03 hgv 1/’2» 507 ng’Oa
&Y denote the functions and sets of (2.3), (2.5), (2.6), (2.8), (2.9), (2.11) for
potentials v and v°, respectively. Here and bellow in this section we always
assume that v = 0, v = 0 on R?\ D.



Theorem 3.1. Let D satisfy (1.2) and potentials v, v° satisfy (1.3), (1.7) for
some fized E and . Then:

Bk, 1) -
G)l//wx_z w = M) (2,9, E)(y, K)ladw dy, (3.1

oD oD
kE1eCI\(EUE), k2 =17 =E, Imk = Iml # 0,

[waML:WMumn+/Aa%%mwmmn@,
éb (3.2)

r€dD, ke CI\(EUEY), Imk#0, k> =E

where

Aa(z,y, k) = im_ Do e R(2,6,k) (Maw — Mawo) (& y, B)dE, (3.3)
oD

Do R (%,&,k) = [R°(z + eva, &, K)e.aloa =
2

0 0 0
_ 2 . 0
= (cos o — sin o cos o (81/1 + 8V5> + sin a61/18V§>R (x + evy, & k),

x,§,y € 0D,

(3.4)
where R® denotes the Green function of (2.12) for potential v°, v, is the outward
normal to 0D at x. In addition, formulas completely similar to (3.1) - (3.4) are
also wvalid for the classical scattering functions f, ¥+, fO, v 70 and sets £,
ET0 of (2.3), (2.5), (2.11c) for v and v°, respectively, but with RT° in place of
RY in (3.3), (3.4), where R™° denotes the Green function of (2.16) for potential
vV,

Note that formula of the type (3.1) for h, is not completely similar to (3.1).
To present this formula for k., we consider also 1, (x, k,1) defined as follows:

m@hmwM+/G< — y R)o(y)n (y, b, Dy,

ke (3.5)
Gy(z, k) = G(z, k + i07),

veST 2k leRYLE2=1%>0,

where (3.5) at fixed v, k, [ is considered as an equation for ., (-, k, 1) in L°>°(R%),
G is defined by (2.7).

Proposition 3.1. Let the asssumptions of Theorem 3.1 hold. Let 1 (z,k)
correspond to v according to (2.9) and ¢37(‘» k,1) correspond to v° according to



(3.5). Then

ho (K, 1) = BY (k1) =

d
~(52) [ [0 (Mo = M) B (0 s
D 8D
yeST keRM\ ({0}UE UEY, leR, K> =1 =E.
(3.6)
In addition, formulas completely similar to (3.2) - (3.4) are also wvalid for the
functions . (z, k), 1/13(x,k) and sets £, 52 of (2.9), (2.11b) for v and v°,
respectively, but with RY in place of R° in (3.3), (3.4), where R) denotes the
Green function of (2.15) for potential v°.

Note that (3.2) is considered as a linear integral equation for finding [¢)(x, k)]a,
x € 0D, at fixed k, from Maﬂ, - Ma)vo and [¢/°(z, k)]s, whereas (3.1) is con-
sidered as an explicit formula for finding A from A°, ]\;[a,v — vao, [0 (x, k)a
and [¢(z,k)]o. In addition, we use similar interpretation for similar formulas
for ¢y, f and for ¢, h,, mentioned in Theorem 3.1 and Proposition 3.1.

Under the assumptions of Theorem 3.1, the following propositions are valid:

Proposition 3.2. Equation (3.2) for [t(z, k)] at fived k € C4\ (RCUE®) is a
Fredholm linear integral equation of the second kind in the space of bounded func-
tions on 8D. In addition, the same is also valid for the equation for [T (x, k)]a
at fived k € R?\ ({0} U EHY), mentioned in Theorem 3.1, and for the equation
Jor [ (z, k)] at fived v € ST, ke R\ ({0} UEY), mentioned in Proposition
3.1

Proposition 3.3. For k € C%\ (R U &%) equation (3.2) is uniquely solvable
in the space of bounded functions on OD if and only if k ¢ £. In addition, the
aforementioned equations for [T (z,k)]a, k € R4\ ({0}UETC), and [t (2, k)]a,
v e S ke RN ({0} u £Y), are uniquely solvable in the space of bounded
functions on 0D if and only if k ¢ ET and k ¢ &, respectively.

Proposition 3.4. Let ¢,(x,y) be the solution of the Dirichlet boundary value
problem at fixed y € 0D, A € C:

7A:E¢a(xay):A¢a(xay)7 .IGD,

(3.7
¢a(@,y) = (Ma,y = Mao) (2,9, E), € 9D,
where we assume that X is not a Dirichlet eigenvalue for —A in D. Then
Ao,y k) = Jim [ (R + eva, & )i alda(€,p)le ads—
aD
. 0 0 (3.8)
—smo [R (xvgvk)]m,a(v (5) _E+)‘)¢a(€>y)d€7

D
x,y € 9D,



where

Uy

[RO(x + eva, £, k)]0 = <cosa - sinaaa> Rz + evy, €, k), (3.9)

xe€dD, £E€D,

0

[0 (&, 9)]e.0 = <COSO< - Sinaayf) Palliy) = (3.10)

:cosa¢a(§,y)—Sina(@(k)¢a(~,y)) (5)7 §7y€aD7

where A, is defined in (3.3), ®(\) = Moo()\) is the Dirichlet-to-Neumann map
for (3.7). In addition, formulas completely similar to (3.8) are also valid for
the kernels AL (but with R in place of Ry) and Aq .~ (but with R in place of
RY), arising in the equations for "], and (], mentioned in Theorem 3.1
and Proposition 3.1.

Note that, for the case when sina = 0, formula (3.8) coincides with (3.3).
However, for sina # 0, formula (3.8) does not contain 8*R°/dv,0vg in contrast
with (3.3) and is more convenient than (3.8) in this sense.

Theorem 3.1, Propositions 3.1 - 3.4 and the reconstruction results from gen-
eralized scattering data (see [12], [13], [15], [26]- [28], [30]- [32], [36]) imply the
following corollary:

Corollary 3.1. To reconstruct a potential v in the domain D from its impedance
boundary map M, ,(F) at fixed E and « one can use the following schema:

Lov® — {S%}, {R"}, {[¥°]a}, My o via direct problem methods,

2. {R%}, MQ’UO,MQ,U — {A,} as described in Theorem 3.1 and Propositions
3.1, 3.4,

w

AAY {[Wa} — {[¥]a]} as described in Theorem 3.1 and Proposition 3.1,

. {S%},{[wo]a}, {W]a},Ma,uU,Ma,u — {Sg} as described in Theorem 3.1
and Proposition 3.1,

S

5. {Sg} — v as described in [12], [13], [15], [26]- [28], [30]- [32], [36],

where {S%} and {Sg} denote some appropriate part of h%, f°, b9 and h, f, h,
respectively, {[¢°],} and {[)],} denote some appropriate part of [1/°]4, [ 1°]4,
[9]a and [¢]a, [T ]a, [y]a, respectively, {R°}, {A4} denote some appropriate
part of RY, RT:0, R?W Ao, AL, Ao 5.

Remark 3.1. For the case when v° = 0, sin = 0, Theorem 3.1, Propositions
3.1 - 3.3 and Corollary 3.1 (with available references at that time at step 5)
were obtained in [25] (see also [23], [24]). Note that basic results of [25] were
presented already in the survey given in [15]. For the case when sina = 0
Theorem 3.1, Propositions 3.1 - 3.3 and Corollary 3.1 (with available references
at that time at step 5) were obtained in [29].



Remark 3.2. The results of Theorem 3.1, Propositions 3.1 - 3.4 and Corollary
3.1 remain valid for complex-valued v, v° and complex E, «, under the condition
that (1.7) holds for both v and v°.

Remark 3.3. Under the assumptions of Theorem 3.1, the following formula
holds:

My o(E) = My 0 (E) = (DoRTO(E) ™t — (D, RT(E)) 7Y, (3.11)
DoR* (Byu(x) = lim [ Do R*(z.y. VE)u(y)dy.
oD
DLRFO(Eyu(a) = lim [ DRy VEyu)dy, O
oD

x € 0D,

where D, . is defined as in (3.4), RY(z,y,VE), R+’0(:lc7 y,VE), VE > 0, are the
Green functions of (2.16) written as in (2.18) for potentials v, v°, respectively, u
is the test function. For the case when sina = 0, v* =0, d > 3, formula (3.11)
was given in [23]. Using techniques developed in [17] and in the present work,
we obtain (3.11) in the general case.

4 Proofs of Theorem 3.1 and Propositions 3.1,
3.2, 3.4

In this section we will use formulas and equations for impedance boundary map
from [17]. These results are presented in detail in Subsection 4.1. Proofs of
Theorem 3.1 and Propositions 3.1, 3.2, 3.4 are given in Subsections 4.2, 4.3.

4.1 Preliminaries

Let Go,(x,y, E) be the Green function for the operator A—v+E in D with the
impedance boundary condition (1.6) under assumptions (1.2), (1.3) and (1.7).
We recall that (see formulas (3.12), (3.13) of [17]):

Ga,v(xava) = Ga,v(y,a:,E), z,y €D, (4'1)
and, for sina # 0,

COs &

Ma,u(z,ny) = 3 Ga,v(zvva) -

. —d0op(z —vy), =x,y€eoD, (4.2)
sin” o sin av

where M, (z,y, F) and dsp(z—y) denote the Schwartz kernels of the impedance

boundary map M, ,(E) and the identity operator I on 8D, respectively, where
M, and I are considered as linear integral operators.



We recall also that (see, for example, formula (3.16) of [17]):

P(x) = L /(cosaz/J(f) — sin agw(g))Gayv(x,ﬁ,E)dﬁ, xeD, (4.3

sin o v
oD
for all sufficiently regular solutions 1 of equation (1.1) in D and sina # 0.
We will use the following properties of the Green function G, (z,y, E):

Gov(z,y, E) is continuous in z,y € D, x # y, (4.4)

|Gaw(z,y, B)| < il —y[*™), z,y €D, for d>3,
|Ga,v($7y7E)| < cl(‘ln |LL’ _y||)’ T,y € Da for d = 27

where ¢; = ¢1(D, E,v,a) > 0.

Actually, properties (4.4), (4.5) are well-known for sinaw = 0 (the case of
the Direchlet boundary condition) and for cosa = 0 (the case of the Neumann
boundary condition). Properties (4.4), (4.5) with d > 3, ** < 0, v = 0 and
E = 0 were proven in [19]. For d = 2 see also [2]|. In Section 6 we give proofs of
(4.4), (4.5) for the case of general o, v and E.

In addition, under assumptions of Theorem 3.1, the following identity holds
(see formula (3.9) of [17]):

(4.5)

Jo=witas = [ (3o = Vo) W0t (26)

D oD

for all sufficiently regular solutions 1, ¥° of equation (1.1) in D for potentials

v, v°, respectively, where [t/],, [¢°], are defined according to (1.5).

Identity (4.6) for sina = 0 is reduced to the Alessandrini identity (Lemma
1 of [1]).
We will use also that:

[R(K)ullci+s oy < c2(D, 2,0, &, 8)||ullLe(p),
Ryu(o) = [ Rey.bu)dy, €. @)
D
keCi\ (RIUE),

HR’Y(k)u||Cl+5(Q) < 83(D7 Qa v, kvr% 5)””||]L°°(D)7

R, (k)u(z) = /R»y(x,y, ku(y)dy, =€, (4.7b)
D
ves™ keR\ ({0}UE,),

for u € L>°(D), 6 € [0,1), where Q is such an open bounded domain in R? that
D € Q and C'*9 denotes C' with the first derivatives belonging to the Holder
space C°.

10



We will use also the Green formula:
0 0
/ <¢1¢2 — by ¢1> = /(¢1A¢2 — p2A¢1) dz, (4.8)
oD D

where ¢, and ¢, are arbitrary sufficiently regular functions in D.

4.2 Proof of Theorem 3.1 and Proposition 3.1

For the case when sinaw = 0, Theorem 3.1 and Proposition 3.1 were proved
in [29]. In this subsection we generalize the proof of [29] to the case sina #
0. We proceed from the following formulas and equations (being valid under
assumption (2.2) on v” and v):

h(k,1) — hO(k,1) = Oz, =) (v z, k)dz,
(k)= 10,0 = (5 )/w SR
k,le(Cd\(EOUE), =12, Imk| = [Imi| # 0,
(k) = ¢°(x, k) +/R°(o:,y, k) (v(y) — 0" (y)¢(y, k)dy,
g (4.10)

reRY keCd\ (REUED),

where (4.10) at fixed k is considered as an equation for ¢ = e***u(z, k) with
p € L2 (R?);

Ok, 1) = 0z, —1)(v )T (z, k)dz
Flk1) — £ ( )/w @ -

kleRI\ ({0YUEFPUET), k2 =12,
U k) = 6wk + [ Ry () — W) 4. b,
2 (4.12)
zeRY, keRY\ ({0} UETD),
where (4.12) at fixed k is an equation for ¥+ € L>°(R?);

By (1) — ROk, 1) = ( ) / 00 (5, —h, ~)(0(z) — (@) by (2, k)

VGSd LkeRYN\(EJUE,), leRY, K =1,
(4.13)

11



) = 08w ) + [ By b)(0(0) — o) (oK),
R(l
zeRY, yeS keRY\ ({0} U&)),

(4.14)

where (4.14) at fixed v and k is considered as an equation for v, € L>°(R9).

We recall that ¢, f, ¥, h, ¢, h, were defined in Sections 2, 3 by means
of (2.3) - (2.9), (3.5). Equation (4.12) is well-known in the classical scattering
theory for the Schrodinger equation (2.1). Formula (4.11) was given, in partic-
ular, in [38]. To our knowledge formula and equations (4.9), (4.10), (4.14) were
given for the first time in [27], whereas formula (4.13) was given for the first
time in [29].

In addition, under assumption (2.2) on v° and v:

equation (4.10) at fixed k € C?\ (R? U £°) is uniquely solvable

n d (4.15a)
for ¢ = " p(x, k) with g € L>°(R?) if and only if k ¢ &;
equation (4.12) at fixed k € R\ ({0} U£ET0) is uniquely (4.15b)
solvable for 1) € L>=(R?) if and only if k ¢ £; '
equation (4.14) at fixed v € S*™! and k € R\ ({0} U A (4.150)
.15¢

is uniquely solvable for 1, € L>°(R?) if and only if k ¢ &,.

Let us prove Theorem 3.1 for the case of the Faddeev functions ¥, h. The
proof of Theorem 3.1 for the case of )™, f and the proof of Proposition 3.1 are
similar.

Note that formula (3.1) follows directly from (4.6) and (4.9).

Using (2.17) and applying (4.6) for equation (4.10), we get that

1/}($, k) - 1/10(1:, k) =

= [ [ 0en (Mo~ Moo) €0 BN Ry, (4,10
oD oD
r€RY\ D,

where
[R%(z,&,k)]e.0 = (cosa —sin a88> RO(x, €&, k). (4.17)

Ve

Equation (3.2) follows from formula (4.16), definition (1.5) and the property
that

. _ 0
el—l>r-rs-10 (cosa —sin aayw) u(z +evy) = [u(z)]a, x€0D, (4.18)

for u(z) = ¥(x, k) — ¢°(x, k).

12



4.3 Proofs of Propositions 3.2 and 3.4

In this subsection we prove Propositions 3.2, 3.4 for the case of equation (3.2)
for [¢]o. The proofs of Propositions 3.2 and 3.4 for the cases of ™ and 1., are
absolutely similar.

Proof of Proposition 3.2. The proof of Proposition 3.2 for the case of sina =0
was given in [29]. Let us assume that sin o # 0.
Using (4.2), we find that

(Ma,v - a vo) (f Y, ) . 12 (Goc,’u - a vo) (5 Y, )7 §7y € 0D. (419)

sSim” @

Using (2.17), (4.1), (4.8) and the impedance boundary condition (1.6) for G4,
Ga0, we get that

/[Ro(xagvk)]a,é(Ga,v av“)(f Y, ) €

oD

= / <[RO($,§, k)]a,{ (Ga,v -G, UO) (§ Y, )df—

oD

_Ro(l‘yfyk)[(Ga,v - a UO) (E Y, )] >d§ =

4.20

= Sina/ (Ro(x,&k)Ag (Ga,v -G, vO) &y, B)dE— ( )
D

- (Ga,v - avo) (5 Y, )AﬁRO(‘T7€7k)> d§ =

~ sina / RO(2,6,k) (0(€) — 02(€)) G (€, y, E)dE
D
re€RI\ D, yedD.

Combining (4.16), (4.19) and (4.20), we obtain that

An(z,y, k) = lim (cosa — sinozi

e—+0 6I/x) BO‘(‘T + EVg, Y, k)7 T,y € 8D, (421)

where

Ba(z,y,k) = / RO, €0 k) (Mony — M y0)(€, 3, E)dE =

sin o

/ RO(x,€,%) (u(6) — 0(€)) Gan(€y, B)de,  (422)
D

xR\ D, y€aD.
13



Thus, we have that the limit in (4.21) (and, hence, in (3.3)) is well defined and

Aol g, k) = — / R, €)oo (0(E) — 0°(6)) GanolE, 9, B,

sin o

A (4.23)

z,y € 0D.

Let Aa(k) denote the linear integral operator on 9D with the Schwartz kernel
Aq(x,y, k) of (3.3), (4.23). Using (4.5), (4.7), (4.23), we obtain that

Ao (k) : L=(0D) — C*(0D)

. . (4.24)
is a bounded linear operator.
As a corollary of (4.24), A, (k) is a compact operator in L>(D). [ ]
Proof of Proposition 3.4. Using (2.17), (3.7) and (4.8), we get that
9 o 0 9 _
[ (dolen g e = (o6 g oulen) ) de =
oD
— [ (@a(€ AR (@,6.) ~ R(w. & 1) Acou(€,v) dé =
J (4.25)

_ /Ro(x, €.5)(02(E) — B+ N)oa (€, y)de,
D

z€RI\ D, y € dD.
Combining (3.7), (4.22) and (4.25), we find that

Ba(z,y.k) = / [RO(, £, k)] 6 (€, 4)dE =

oD

=/R%%&MWJ&Mkwf—WW/ﬁ%%émw%@—E+AWA&w%,
D

oD
zeRI\ D, yedD.
(4.26)
Combining (4.21) and (4.26), we obtain (3.8).
Formula (3.10) follows from (3.7) and the definition of ®.
|

5 Proof of Proposition 3.3
For the case when sin o = 0, Proposition 3.3 was proved in [29]. In this section

we prove Proposition 3.3 for sina # 0. We will prove Proposition 3.3 for the
case of equation (3.2) for [¢/],. The proofs for the cases of 1)+ and )., are similar.

14



According to (4.15), to prove Proposition 3.3 (for the case of v) it is sufficient
to show that equation (3.2) (at fixed k € C?\ (R?U&°)) is uniquely solvable in
the space of bounded functions on 9D if and only if equation (4.10) is uniquely
solvable for ¢ = e™*@y(x, k) with p € L>°(R4).

Let equation (4.10) have several solutions. Then, repeating the proof of
Theorem 3.1 separately for each solution, we find that [¢], on OD for each of
these solutions satisfies equation (3.2). Thus, using also (1.7) we obtain that
equation (3.2) has at least as many solutions as equation (4.10).

To prove the converse (and thereby to prove Proposition 3.3) it remains to
show that any solution [¢], of (3.2) can be continued to a continuos solution of
(4.10).

Let ¢ be the solution of (1.1) with the impedance boundary data [¢]a,
satisfying (3.2). Let

D) =@ k) + [ R b - )y, s R G

D
Using (4.7), we obtain that

1y defined by (5.1) belongs to C*T0(R%), § € [0,1). (5.2)
We have that
(—A+°(@) — B)ple) = (0°(x) — v@)(a), se€D,  (53)
(-8 +2%(a) = Byin(e) = [ 8a ~ p)(e(w) ~ o)) lu)dy =
3 (5.4
— () — v(@)(z), z € D.
Combining (4.6) and (4.22), we get that
[ B k)0) - )0y = [ Buleykb)ady. o€ R\ D,
D oD

(5.5)
Using (3.2), (4.21), (5.2), (5.5), we find that

[¥1(2)]a = [V (. k)la + /Aa(x,y, k) @)]ady = [Y(2)]a, «€dD. (5.6)

oD
Using (5.3), (5.4) and (5.6), we obtain that
(A +0%(z) = E)(¥1(z) — ¥(2)) =0, z €D,
[61(2) — $(@)a =0, z€0D.
Since v satisfies (1.7), we get that
Y1(z) =(x), xz€D. (5.8)

Combining (5.1), (5.2) and (5.8), we find that ¢; is a continuos solution of
(4.10).

(5.7)
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6 Proofs of properties (4.4), (4.5)

As it was mentioned in Subsection 4.1, properties (4.4), (4.5) are well-known
for cosa = 0 (the case of the Neumann boundary condition). To extend these
properties to the case of general a, v, E, we use the following schema:

1. Ga,,0 — Gayw by means of Lemma 6.1 given bellow (with sinaq # 0 and
sinag # 0),

2. Ga,v;, — Ga,v, by means of Lemma 6.2 given bellow.

The proofs of steps 1, 2 are based on the theory of Fredholm linear integral
equations of the second kind.
Starting from (4.4), (4.5) for cosa = 0 and combining steps 1, 2 and the
property
Gav( E)=Gauv-£g(-0), (6.1)

we obtain these properties for the case when sin « # 0.
As it was already mentioned in Section 4, properties (4.4), (4.5) are well-
known for sina = 0 (the case of the Dirichlet boundary condition).

Lemma 6.1. Let D satisfy (1.2) and potential v satisfy (1.8), (1.7) for some
fixzed E and for a = a1, a = as simultaneously, where sin oy # 0 and sin as # 0.
Let G; denote the Green function Ga, v, j = 1,2. Let G1 satisfy:

Gi(z,y,E) is continuous in =,y € D, = # y, (6.2)

|G1(£L’,y,E)| §a1|$—y\27d for d23’

|Gy (z,y, E)| <ai|ln |z —y|| for d=2, (6.3)
z,y € D.
Then: -
Ga(x,y, E) is continuous in z,y € D, = #y, (6.4)
|Go(z,y, E)| < aslz —y[*>~? for d >3,
|G2(z,y, )| < az|ln |z —y|| for d=2, (6.5)
T,y € D,

where as = as(D, E,a1,v,a1,as) > 0.

Proof of Lemma 6.1. First, we derive formally some formulas and equations
relating the Green functions G; and G5. Then, proceeding from these formulas
and equations, we obtain, in particular, estimates (6.4), (6.5).
Consider W = G5 — G;. Using definitions of Gy, G2 and formula (4.3), we
find that:
(A +v(z) — EYW(z,y) =0, z,y€ D, (6.6)
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redD

(cos as W (z,y) — sinay ZTW(Z‘, y))

x€dD

= (cos as Gy (z,y, E) — sinag aaGl (z,y, E))
v

(6.7)

= — (cosag Gi(z,y, E) — sin g 21 Gl(:r y,E)) op =

sin(as — «
:MGl(thE)’ ’ yGD’
SN o zedD
1

W(z,y) = — / (cos a W (&, y) — Slnal (f y))Gl(g,x,E)df,

sin o (6.8)
aD .
xay e D

Using (6.7) and (6.8), we find the following linear integral equation for W (-, y)
on 0D:

W(ay) :WO<7y)+IA{1W(,y)7 Yy e Da (69)
where i )
sin(ag — a
W, y) = 202~ / (6.x. E)Cr (6, E)dE,  (6.10)
sin Q9
Kiu(z) = sin(az — a1) /G1 & x, B)u(€)dE,
sin a sin o (6.11)
xe€dD, ye D, u is a test function.
In addition, for
S W =W = (K1)~ 'Wy (6.12)
j=1
equation (6.9) takes the form
oW = ([A(l)nW() + f(l(an (613)

Our analysis based on (6.6)-(6.13) is given bellow.
Using (6.2), (6.3), we obtain that

(K1)"Wy € C(8D x D) for sufficiently great n with respect to d,  (6.14)

K is a compact operator in C'(dD). (6.15)

Let us show that the homogeneous equation
uw=Kyu, ueC(dD), (6.16)

has only trivial solution u = 0.

17



Using the fact that the potential v satisfy (1.7) for o = oy, we define ¢ by

(-A+ov(z)— E)Y(x) =0, x€D,

] o (6.17)
cos a1lgp — sina; —|ap = u.
v
Due to (4.3), we have that
vle) = o [(cosani(©) —sinan SE©)Gule.0. BN, we D, (6.15)
* ~ sinag ! S, 1S ’ ' ’
oD
Using (6.16), (6.18), we find that
sin(ag — o) P B
Wﬁ)(m) = Kiju(z) = u(z), =z € dD. (6.19)
Therefore, we have that
. o, . sin(ag —aq)
cosarp(z) — smala(a:) = Wd)(x), x € 0D. (6.20)
Since sinay # 0 and sin ag # 0, using (6.20), we obtain that
cos apth(x) — sin aga—w(x) =0 (6.21)

ov

Taking into account the fact that the potential v satisfy (1.7) for o = ag, we
get that ¢ =0 and u = 0.
Proceeding from

Cos ap sin(as — ay)
Few d Fl="22Ww e G B
(z,y) an — (z,y) sin ary Sin o 1(z, 9, B), (6.22)
T e 8D, Yy S Da

found from (6.9), (6.13) and (6.7) (with F’ substituted in place of 0W/0v,,), we
consider

W(z,y) =

1 / <COS alF(ﬁ,y) - SiIlOélF,(f, y)>G1(§7xa E)df,

s S (6.23)

z,y € D.

Using (6.9) and properties of G; (including formula (4.3)), we subsequently
obtain that

lin+10W(x —evg,y) = F(z,y), x€dD, ye D, (6.24)
W satisfies (6.6), (6.25)

: 0 _
613110 T%W(x —evg,y) = F'(z,y), z€08D, yeD. (6.26)

18



From (6.2), (6.3), (6.10)-(6.16), (6.24)-(6.26) it follows that G5 defined as
Gy = Gy + W is the Green function for the operator A — v + FE in D with
the impedance boundary condition (1.6) for & = a3 and that G satisfies (6.4),
(6.5). [ |

Lemma 6.2. Let D satisfy (1.2) and potentials v1, ve satisfy (1.3), (1.7) for
some fived E and o. Let G; denote the Green function Go.;, j =1,2. Let Gy
satisfy:

Gi(z,y,E) is continuous in =,y € D, = # y, (6.27)

|G1(z,y, E)| < aslz —y[*~* for d >3,
|G1(x,y, E)| < az|ln |z —y|| for d=2, (6.28)

z,y € D.

Then: B

Go(z,y, E) is continuous in z,y € D, x # y, (6.29)

|G2(IvyaE)| §a4|z7y‘27d for d237
|G2($,y,E)| §a4|ln |l‘—y|‘ for d:2a (630)

z,y € D,

where ay = a4(D, E, a3, v1,v2,a) > 0.

Proof of Lemma 6.2. First, we derive formally some formulas and equations
relating the Green functions G; and Gs. Then, proceeding from these formulas
and equations, we obtain, in particular, estimates (6.29), (6.30).

Using (4.1), the impedance boundary condition for Gy, G2, we find that

Gi(2.9.B) = [ Grln6 B)(Be = a(6) + E) Gl . B)
D

GQ(x’yaE) = /GQ<§7y?E)<A§ —01(6) +E)Gl($757E) dg,
D

(6.31)
0Gs 0G1
/ <G1(xa€7E)aV£(£aya E) - GQ(é—a y’E)TVg(:C’g’ E)> dg = 07
oD
x,y €D.
Combining (6.31) with (4.8), we get that
GQ('ay7E)_G1('7yaE):KQGQ('vyaE)7 Z/ED7 (632)
where
Kyu(z) = /(Uz(f) —v1(§)) G1(, &, E)u(§)d§. (6.33)

D
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In addition, for

0,G =Gy — Y (Ky)7'Gy (6.34)

J=1

equation (6.32) takes the form
6,G = (K2)"G1 + K16,G. (6.35)

Our analysis based on (6.31)-(6.35) is given bellow.
Using (6.27), (6.28), we find that

(K2)"G1 € C(D x D) for sufficiently great n with respect to d, (6.36)

K, is a compact operator in C/(D). (6.37)

Let us show that the homogeneous equation
u= Kyu, ueC(D), (6.38)

has only trivial solution w = 0. Using (6.33), (6.38) and properties of the Green
function G, we find that

(A + vi(z) — B)u(e) = / 6 — €) (0(€) — 12 (€)) u(€)de =
D

= (v — vo)u(x), =€ D, (6.39)

cosau(x) — sin a@(x) =0, ze€dD.
Oov
Using (6.27), (6.28), we find that u € C(D). Taking into account the fact that
the potential vy satisfy (1.7), we get that u = 0.

Proceeding from (6.27), (6.28), (6.36), (6.37) it follows that G5 found from
(6.32), (6.35) is the Green function for the operator A — v + E in D with the
impedance boundary condition (1.6) for v = vy and that Go satisfies (6.29),
(6.30). n
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