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Abstract

We apply in this paper a geometrical shape optimization method for
the design of the core of a SFR (Sodium Fast Reactor) in order to minimize
a thermal counter-reaction known as the sodium void e�ect. In this kind
of reactors, by increasing the temperature, the core may become liable
to a strong increase of reactivity, a key-parameter governing the chain-
reaction at quasi-static states. We �rst use the one group energy di�usion
model and give the generalization to the two groups energy equation.
We then give some numerical results in the case of the one group energy
equation. Note that the application of our method leads to some designs
whose interfaces can be parametrized by very smooth curves which can
stand very far from realistic designs. We don't explain here the method
that it would be possible to use for recovering an operational design but
there exists several penalization methods (see [2]) that could be employed
to this end.

Introduction

We propose in this work to apply the geometric shape optimization method
(see [6],[1]) in order to design a nuclear reactor core of generation IV which is
cooled with sodium. The aim is to assess to what extent, such automatic way of
improving the design could be positively employed. This kind of mathematical
theory has already been investigated for optimizing the fuel reloading by the
homogenization method (see [2]). We here restrict ourselves to the geometrical
method. We have been working mainly on the one group di�usion equation, for
which a whole presentation of the model is given in the �rst two sections of this
paper. The sodium void e�ect that we want to reduce is mainly dependent on
the geometry of the core and even the use of the simpli�ed one group theory can
lead to relevant results. However, this safety coe�cient also has a component
related to the energy spectrum. We give thus a extension of our model for this
second state equation that is non self-adjoint in the third section in order to pave
the way for some future work. In section 4, we focus on some numerical results
obtained with the one group theory. As the geometrical shape optimization
method does not account for changes of topology, we need to use a Level-Set
approach [4] in order to remesh the domain when some superposition of the
interfaces occurs. Our algorithm is implemented thanks to the open source
software FreeFem++[7] that o�ers a suitable frame for this kind of problem.

1 Statement of the shape optimization problem

1.1 Design of the core

We assume that the reactor can be assimilated to a cylinder of radius R and
height h and that the neutron �ux u is unchanged by rotation around the axis
r = 0. We thus have an axisymmetric geometry and we want to optimize the
internal shape of the reactor that we de�ne as the bounded set Ω = [0, R]×[0, h].

1



In the frame of this work, we assume that the inside of the core is divided into
four di�erent parts Ω = ∪3

i=0ωi, each of them having some averaged physical
properties. Three of them compose the active part of the core, responsible for
the production of energy by �ssion reactions and playing an important role in
terms of neutronic reactions. The last region is occupied by the re�ector, an
absorbing material mainly made of steel.

Each sub-domain ωi is characterized by a di�usion coe�cient Di, and neu-
tronic data, the macroscopic absorption and �ssion cross-sections (respectively
denoted αi and βi). They depend only on the average density of sodium
dNa ∈ R+ and, in the �ssile region ω0, also on the concentration of plutonium
e.

These parameters result from an accurate calculation according to the trans-
port theory on a 33-groups energy mesh (with the code ERANOS 1) and ho-
mogenized in order to be used in the simpli�ed modelings restricted to one or
two groups to which we will from now on restrict our analysis. For more de-
tails about the way of calculating these parameters and their physical meaning,
further information could be found in [8].

It follows, that for a given design and a given average density of sodium, the
domain is characterized by

D(dNa, ϕ, e) :=

3∑
i=0

Di(dNa, e)ϕi; (1)

α(dNa, ϕ, e) :=

3∑
i=0

αi(dNa, e)ϕi; (2)

β(dNa, ϕ, e) :=

3∑
i=0

βi(dNa, e)ϕi; (3)

where ϕ = (ϕi)i=0,··· ,3 = (χωi)i=0,··· ,3 = χω stands for the family of character-
istic functions of the ωi.

1.2 State equation - The one group energy di�usion equa-

tion

The behavior of the core is in a �rst approximation described by the eigenvector
u of smallest eigenvalue λ of the one group energy di�usion equation

−r−1 div(rD∇u) + αu = λγu, in ∪i ωi,
[u] = 0 on Γ,[
D ∂u
∂n

]
= 0 on Γ,

u = 0 on ΓD,

(4)

where ΓD is the part of boundary of the domain Ω other than the symmetry
axis r = 0,

ΓD := ∂Ω \ {(r, z) such that r = 0},
1Used for core calculations in neutrons fast reactors
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whereas Γ = Ω \
⋃4
i=0 ωi is the interface between the sub-domains and γ := νβ,

ν being the average number of neutrons produced by �ssion. This equation
results from the equilibrium between each potential reactions happening into
the core: �ssion, absorption and leakage.

Weak formulation The weak formulation of (4) consists in �nding (λ, u) ∈
R× V , where

V := {u ∈ L2(Ω) such that
√
r∇u ∈ L2(Ω) and u = 0 on ΓD},

such that for every v ∈ V ,

adNa,ϕ,e(u, v) = λbdNa,ϕ,e(u, v), (5)

where

adNa,ϕ,e(u, v) =

∫
Ω

(D∇u · ∇v + αuv)dV (6)

and

bdNa,ϕ,e(u, v) =

∫
Ω

γuvdV, (7)

where dV := r dr dz. We denote by u(dNa, ϕ, e) and λ(dNa, ϕ, e) the solution of
this equation.

1.3 Setting of the Optimization Problem

In this section, we introduce the design problem we aim to solve. Our main
objective consists in minimizing the sodium void e�ect, that is the variation of
the reactivity, which is equal to ρ(dNa, ϕ, e) := 1 − λ(dNa, ϕ, e). The lower is
the �rst eigenvalue, the bigger is the reactivity. In general, the decrease of the
average sodium density leads to an increase of the reactivity. The variation is
strongly related to the geometry of the core. To measure the sodium void e�ect,
we introduce the cost function

J1(ϕ, e) := λ1(ϕ, e)− λ2(ϕ, e),

where λ1 and λ2 are the �rst eigenvalues of (5) for a concentration of sodium
dNa1 in the nominal state and dNa2 in a perturbed one, with dNa2 = (1−10−2)dNa1 .
We set

λk(ϕ, e) := λ(dNak , ϕ, e), k = 1, 2.

and in a similar fashion de�ne

uk(ϕ, e) := u(dNak , ϕ, e)), k = 1, 2. (8)

As one can expect, minimizing only the sodium void e�ect will not lead to a
realistic design and other performance or safety requirements should be taken
into account. First, we would like the reactivity in the nominal state to be close
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to a target value, or equivalently, λ1 to be close to a given constant λ0. To this
end, we introduce a second cost function

J2(ϕ, e) := (λ1(ϕ, e)− λ0)2.

Another safety requirement stems from the power distribution which must be
as uniform as possible in the core, and more particularly in the region of �s-
sile material ω0. We usually de�ne the shape factor as the ratio between the
maximum value of the rate of �ssion τ1(ϕ, e) := β0(dNa1 , e)u1(ϕ, e) in a nominal
state and its mean value on the �ssile region � u1 is the neutron �ux in the
nominal state, that is for a sodium concentration equal to dNa1 . As the in�nity
norm is not di�erentiable, we replace the classical shape factor by the following
approximation (for a large enough value of s) :

J3(ϕ, e) := Vol(ϕ0)
s−1
s

(∫
Ω

τ1dV0

)−1 ∣∣∣∣∫
Ω

τs1dV0

∣∣∣∣1/s , (9)

Vol(ϕ) :=

∫
Ω

ϕdV, (10)

where dV0 := ϕ0dV is the integration over the �ssile region. Finally, we have
to take into account an additional constraint for the volume of the �ssile region
ω0. Its volume must be kept constant during the simulation in order to obtain
designs that have approximately the same power. Thus our aim is to minimize
a weighted sum of the cost Jk, k = 1, · · · , 3 over the set

Uad :=

{
(ω, e) ∈ (V4, L∞(Ω))

such that ∀i, j = 0, · · · , 3, ωi ⊂ Ω, ωi ∩ ωj = ∅, Ω =

3⋃
k=0

ωi,

e(x) ∈ [emin, emax] for all x ∈ ω0 and V (ω0) = V0

}
, (11)

where V0 is a positive real lower than the total volume Vol(Ω) whereas emin
and emax are respectively the minimal and maximal density of plutonium in ω0.
The minimization problem can be stated as

arg min
(ω,e)∈Uad

{
J(ω, e)

}
, (12)

where
J(ϕ, e) := s1J1(ϕ, e) + s2J2(ϕ, e) + s3J3(ϕ, e)

and (sk)k=1,2,3 are given positive weights.

Remark 1 In order to simplify the notations, we will sometimes � as in the
de�nition of the problem (12) or the de�nition of Uad (11) � write F (ω) instead
of F (χω) when F is a map de�ned on (L∞(D))r and ω ∈ Vr is a family of open
subsets of Ω (r ∈ N∗).
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To minimize J , we alternatively perform a parametric optimization with
respect to the concentration of plutonium e and a geometric optimization with
respect to the shape ω based in both cases on a gradient method.

We �rst di�erentiate in this section J with respect to the variable e. This
can be achieved by using the adjoint-method which allows us to obtain a simple
expression of the gradient of J for any increment δe of the plutonium concentra-
tion at the price of one additional calculation of an adjoint state p1(ω, e) given
by 

−r−1 div(rD1∇p1) + α1p1 − λ1γ1p1 = `ω,e in ∪i ωi
[p1] = 0 on Γ[
∂p1
∂n

]
= 0 on Γ

p1 = 0 on ΓD

(13)

where

`ω,e = V (ω0)
s−1
s

(∫
ω0

β0
1u1dV

)−2(∫
ω0

(β0
1u1)sdV

) 1−s
s

[(∫
ω0

(β0
1u1)sdV

)
β0

1 −
(∫

ω0

β0
1u1dV

)
(β0

1)sus−1
1

]
on ω0, `ω,e = 0 on Ω \ ω0 and for k = 1, 2,

Dk(ϕ, e) = D(dNak , ϕ, e); αk(ϕ, e) = α(dNak , ϕ, e); βk(ϕ, e) = β(dNak , ϕ, e).

Propostion 1 The parametric derivative ∂J/∂e in a direction δe ∈ L∞(ω0) is
given by the following equation

〈
∂J

∂e
, δe

〉
= V (ω0)

s−1
s

(∫
ω0

β0
1u1dV

)−2 ∣∣∣∣∫
ω0

(β0
1u1)sdV

∣∣∣∣ 1−s
s

(∫
ω0

β0
1u1 rdrdz

∫
ω0

(β0
1)s−1 dβ

0
1

de
us1δedV −

∫
ω0

(β0
1u1)s rdrdz

∫
ω0

dβ0
1

de
u1δedV

)
+
∑
k=1,2

[∫
ω0

(
dDk

de
∇uk · ∇pk +

dαk
de

ukpk − λk
dγk
de

ukpk

)
δedV

]
(14)

where p1 is the solution of the adjoint-state equation (13), p2 = −u2 and uk the
solution of the 1-group equation (8) in the state k.

1.4 Adjoint equation

In order to prove Proposition 1, we introduce a Lagrangian L as the sum of the
cost function J (written for independent variables) and the constraint provided
by the state equation.
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L(ϕ, e, û1, û2, p̂1, p̂2, λ̂1, λ̂2) = j(ϕ, e, û1, û2, λ̂1, λ̂2)+
∑
k=1,2

akϕ,e(ûk, p̂k)−λ̂kbkϕ,e(ûk, p̂k)

(15)
where

j(ϕ, e, û1, û2, λ̂1, λ̂2) := λ̂1 − λ̂2 + (λ̂1 − λ0)2

+ V (ϕ0)
s−1
s

(∫
Ω

β0
1 û1dV0

)−1 ∣∣∣∣∫
Ω

(β0
1 û1)sdV0

∣∣∣∣1/s ,
while

akϕ,e := adNa
k ,ϕ,e and b

k
ϕ,e := bdNa

k ,ϕ,e.

Remark 2 The dependance of akϕ,e and b
k
ϕ,e with respect to the partition ϕ and

the concentration in plutonium e will sometimes be understood, and we will use
the notations ak and bk instead.

We recall that Dk, αk and γk are the values of D, α and γ for the concentra-
tion of sodium dNak for a given partition ϕ of the domain Ω and for a sodium
concentration e.

For all (p̂1, p̂2) ∈ V 2, we have

J(ϕ, e) = L (ϕ, e, u1(ϕ, e), λ1(ϕ, e), u2(ϕ, e), λ2(ϕ, e), p̂1, p̂2) ,

which yields by composed derivation to〈
∂J

∂e
, δe

〉
=

〈
∂L
∂e
, δe

〉
+
∑
k=1,2

〈
∂L
∂ûk

,

〈
∂uk
∂e

, δe

〉〉
+

∂L
∂λ̂k

〈
∂λk
∂e

, δe

〉
. (16)

Let us remark that it is well known that both uk and λk are di�erentiable with
respect to e as maps with values in V and R respectively. In particular, the
application of the chain rule to obtain (16) is licit.

The adjoint-states pk are then de�ned in such a way that they make the
derivatives of L with respect to the state variables (ûk, λ̂k) vanish. As〈

∂uk
∂e

, δe

〉
∈ Vk :=

{
q ∈ V such that bk(uk, q) = 0

}
,

this leads to the following weak formulation for the state k
〈
∂L
∂ûk

(ω, e, uk, λk, pk), q

〉
= 0 ∀ q ∈ Vk

∂L
∂λ̂k

(ω, e, uk, λk, pk) = 0

⇐⇒


ak(q, pk)− λkbk(q, pk) = −

〈
∂j

∂ûk
, q

〉
∀ q ∈ Vk

bk(uk, pk) =
∂j

∂λ̂k
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It is easily seen that the solution of the adjoint equation for k = 2 is simply
p2(ϕ, e) := −u2(ϕ, e). On the other hand, we get that p1(ϕ, e) ∈ V is such that
for all q1 ∈ V1,

akϕ,e(p1, q1)− λ1b
1
ϕ,e(p1, q1) = `ϕ,e(q1) (17)

b1ϕ,e(p1, u1) = 1 + 2(λ1 − λ0) (18)

where

`ϕ,e(q1) := V (ϕ0)
s−1
s

(∫
Ω

β0
1u1dV0

)−2(∫
Ω

(β0
1u1)sdV0

) 1−s
s

[(∫
Ω

(β0
1u1)sdV0

)∫
Ω

β0
1q1dV0 −

(∫
Ω

β0
1u1dV0

)∫
Ω

(β0
1)sus−1

1 q1dV0

]
.

It can be easily proved that (17-18) admits a unique solution, which will be
denoted by p1(ϕ, e). Indeed, let p1 = p1 − (1 + 2(λ1 − λ0))u1. Then p1 is a
solution if and only if p1 ∈ V1 and for all q1 ∈ V1 we have

a1(p1, q1)− λ1b
1(p1, q1) = `(q1).

Moreover, it can be checked that the bilinear form a1 − λ1b
1 is coercive on V1

and the conclusion follows from the application of the Lax-Milgram Theorem.
It remains to evaluate the sensitivity of L with respect to the design variable

e. Some calculations provide for any δe

〈
∂L
∂e
, δe

〉
= V (ω0)

s−1
s

(∫
ω0

β0
1 û1dV

)−2 ∣∣∣∣∫
ω0

(β0
1 û1)sdV

∣∣∣∣ 1−s
s

(∫
ω0

β0
1 û1dV

∫
ω0

(β0
1)s−1 dβ

0
1

de
ûs1 δedV −

∫
ω0

(β0
1 û1)sdV

∫
ω0

dβ0
1

de
û1δedV

)
+
∑
k=1,2

[∫
Ω

(
dDk

de
∇ûk · ∇p̂k +

dαk
de

ûk p̂k − λ̂k
dγk
de

ûk p̂k

)
δedV

]
By applying (16) at (uk, pk, λk)k=1,2, we get the announced expression (14) of
the parametric gradient of J with respect to the concentration of sodium.

1.5 Gradient method

In order to minimize our cost function J with respect to e, we apply a projected
gradient algorithm. We construct a minimizing sequence en∈N recursively, set-
ting

en+1 = max(min(en − µδen, emax), emin)

where δen ∈ L2(ω0) is such that for all δe ∈ L2(ω0),

(δen, δe)L2 =

〈
∂J

∂e
(ω, en), δe

〉
, (19)
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and µ > 0 is a small time step, starting with an initial uniform design param-
eter e0. Note that δen is correctly de�ned provided the solutions of the state
and adjoint equations are regular enough. Moreover, from the practical point of
view, it could be of some interest to regularize a little bit the solution δen of (19)
by replacing the L2 scalar product by (δen, δe)L2 + ε(∇δen,∇δe)L2 . However,
it should be reminded that with such a regularization, �x points of the algorithm
are not minimizers of the problem, because the operator max(min(·, emax), emin))
is not the orthogonal projection onto [emin, emax] for such a choice of scalar prod-
uct. Nevertheless, if ε is chosen small enough, it has little impact on the solution
obtained. A more rigorous approach would have been to add Lagrange multi-
pliers to take into account those constraints and to use an Uzawa algorithm,
what is, unfortunately, a lot more time consuming.

2 Geometric shape optimization

Let us now consider the minimization of J with respect to the shape ω. To this
end, we perform small perturbations of the sub domains ωi by convecting them
along a vector �eld θ of the domain Ω. More precisely, let θ ∈ W 1,∞(Ω;R3)
such that θ · n = 0 on ∂Ω, we set ωi(t) = Xθ(t, ωi) where Xθ is the map from
Ω× R into Ω de�ned by{

Ẋθ(x, t) = θ(Xθ(x, t)) for all (t, x) ∈ R× Ω
Xθ(x, 0) = x.

In the following, if no confusion is possible, we will use the notation X instead of
Xθ. The shape derivative at ω of a functional J(ω, e) is given by the derivative
at t = 0 of the map t 7→ J(ω(t), e).

2.1 Computation of the shape derivative

In this section, we compute the derivative of the cost function J with respect
to the shape of the partition ω of Ω.

Propostion 2 The shape derivative of our cost function in any direction θ is
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given by :

〈
∂J

∂ω
, θ

〉
= Vol(ω0)

s−1
s

(∫
ω0

β1u1dV

)−1 ∣∣∣∣∫
ω0

(β1u1)sdV

∣∣∣∣1/s[
s− 1

s
Vol(ω0)−1

∫
∂ω0

(θ · n)r ds−
(∫

ω0

β1u1dV

)−1 ∫
∂ω0

β0
1u1(θ · n)r ds

+
1

s

(∫
ω0

(β1u1)sdV

)−1 ∫
∂ω0

(β0
1u1)s(θ · n)r ds

]
−
∑
k=1,2

∫
Γ

(
[Dk]

∂uk
∂τ

∂pk
∂τ
− [D−1

k ]

(
Dk

∂uk
∂n

)(
Dk

∂pk
∂n

)

+ [αk]ukpk − λk[γk]ukpk

)
(θ · n)dV, (20)

where β0
1 = β0(dNa1 , e).

The fast derivation method of Céa we have used for the computation of the
di�erential with respect to the concentration of plutonium e can not be applied
directly, because the eulerian di�erential of the state does not belong to V (in
particular, the chain rule used to derive (16) can not be applied).

This problem can be circumvented by di�erent approaches. The most clas-
sical one consists in performing a change of variables in order to rewrite the
state equation on �x sub-domains rather than ω(t), another one to use a di�er-
ent de�nition for the Lagrangian taking explicitly into account the equations of
transition on the interfaces between the sub-domains. In this article, we propose
to follow another path as in [5]. Roughly speaking it consists �rst to apply the
fast derivation method by assuming the coe�cients D, β and α to be regular,
then to �pass to the limit� into the expression of the derivative obtained.

To this end, we generalize the notion of shape derivation to cases where the
map ϕ is not necessarily a family of characteristic functions. Let ϕ be a partition
of the domain Ω, we de�ne ϕ(t) as the partition de�ned by

ϕi(t)(x) = ϕi(X(x,−t)) for i = 0, · · · , 3,

and we de�ne the shape derivative of the functional J(ϕ, e) as the derivative at
time t = 0 of the map t 7→ J(ϕ(t), e). Note that both de�nition coincide if ϕ
is a family of characteristic functions. Indeed, if ϕ = χω, we have J(ϕ(t), e) =
J(χω(t), e) = J(ω(t), e).

The computation of the classical derivative is then obtained in a two steps
process. We �rst compute the shape derivative for regular partitions ϕ and
extend (formally) this expression when ϕ is a family of characteristic functions
by passing to the limit.
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2.1.1 Regular case

If ϕ is a regular partition of the unity, the fast derivation method of Céa can be
applied. Using the same Lagrangian than the one used to derive the derivative
of J with respect to e and the same adjoint state de�ned by (17-18), we get that〈

∂J

∂ω
(ϕ, e), θ

〉
=

〈
∂L
∂ω

(ϕ, e, u1, u2, p1, p2), θ

〉
(21)

We just have to compute the shape derivative of L to conclude. First, as

Vol(ϕ0(t)) =

∫
Ω

ϕ0(t)dV =

∫
Ω

ϕ0(X(x,−t))dV,

and Ẋ(x, t = 0) = θ, we get〈
∂Vol

∂ω
, θ

〉
= −

∫
Ω

∇ϕ0 · θdV.

A similar computation (even if more tedious), leads to

〈
∂j

∂ω
, θ

〉
= Vol(ϕ0)

s−1
s

(∫
Ω

β0
1 û1dV0

)−1(∫
Ω

(β0
1 û1)sdV0

)1/s

[
1− s
s

Vol(ϕ0)−1

∫
Ω

(∇ϕ0 · θ)dV +

(∫
Ω

β0
1 û1dV0

)−1 ∫
Ω

β0
1 û1(∇ϕ0 · θ)dV

− 1

s

(∫
Ω

(β0
1 û1)sdV0

)−1 ∫
Ω

(β0
1 û1)s(∇ϕ0 · θ)dV

]
(22)

The computation of the di�erential of the last part of the Laplacian turns out
to reduce itself to the computation of the variation of the coe�cients Dk, αk
and βk. As

Dk(ϕ(t), e)(x) =
∑
i

Di
k(e)ϕi(X(−t, x))

we get deriving this expression with respect to t at time t = 0〈
∂Dk

∂ω
, θ

〉
= −

∑
i

Di
k(e)∇ϕi · θ, (23)

where Di
k(e) := Di(dNak , e). The same expression could be derived for αk and
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βk. From (21), (22) and (23), we obtain that

〈
∂J

∂ω
, θ

〉
= Vol(ϕ0)

s−1
s

(∫
Ω

β0
1u1dV0

)−1 ∣∣∣∣∫
Ω

(β0
1u1)sdV0

∣∣∣∣1/s[
1− s
s

Vol(ϕ0)−1

∫
Ω

(∇ϕ0 · θ)dV +

(∫
Ω

β0
1u1dV0

)−1 ∫
Ω

β0
1u1(∇ϕ0 · θ)dV

− 1

s

(∫
Ω

(β0
1u1)sdV0

)−1 ∫
Ω

(β0
1u1)s(∇ϕ0 · θ)dV

]
−

∑
k=1,2
i=0,··· ,3

∫
Ω

(
Di
k∇uk · ∇pk + αikukpk − λkγikukpk

)
(∇ϕi · θ)dV. (24)

2.1.2 Passage to the limit

Let ω be a subdivision of the domain Ω. Up to a small regularization, there
exists a sequence ϕε of partition of the unity such that ϕε converges toward ϕω
into the space functions of bounded variation (it can for instance be obtained
by molli�cation). In order to obtain the shape di�erential of J(ω, e) we formally
pass to the limit in (24) on the di�erential of J(ϕε, e).

Let F ε be a sequence of continuous function on Ω converging toward F , for
all i = 0, · · · , 3, we have∫

Ω

F ε(∇ϕεi · θ)dV
ε→0−−−→ −

∫
∂ωi

F (θ · n)r ds, (25)

where n is the outward normal to ωi. Unfortunately, it is not reasonable to
pass directly to the limit in the expression of ∂J/∂ω(ϕε, e) using (25). A special
treatment is needed for the convergence of the term

sεk :=
∑

i=0,···3

∫
Ω

Di
k∇uεk · ∇pεk(∇ϕεi · θ)dV .

Indeed, neither ∇uk nor ∇pk can be expected to be continuous on Ω. Never-
theless, we can assume both ∂uεk/∂τ and Dε

k∂u
ε
k/∂n to be convergent (where n

is an extension of the normal to the interface Γ between the sub-domains and τ
is the tangent vector to the interface and Dε

k := Dk(ϕε, e).). The term sεk could
be split in two parts,

sεk,n :=
∑

i=0,···3

∫
Ω

Di
k

∂uεk
∂n

∂pεk
∂n

(∇ϕεi · θ)dV

and

sεk,τ :=
∑

i=0,···3

∫
Ω

Di
k

∂uεk
∂τ

∂pεk
∂τ

(∇ϕεi · θ)dV.
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We can directly use (25) to compute the limit of sεk,τ and we get

sεk,τ → −
∫

Γ

[Dk]
∂uεk
∂τ

∂pεk
∂τ

(θ · n)r ds. (26)

In order to compute the limit of the �rst term sεk,n we rewrite it as

sεk,n = −
∫

Ω

(
Dε
k

∂uεk
∂n

)(
Dε
k

∂pεk
∂n

)(
∇((Dε

k)−1) · θ + (Dε
k)−2

∑
i

(∇Di
k · θ)ϕεi

)
dV.

As (Dε
k)−1 converges toward D−1

k in the space of functions of bounded variation,
we can pass to the limit in this expression to obtain that

sεk,n →
∫

Γ

(
Dk

∂uk
∂n

)(
Dk

∂pk
∂n

)
[D−1

k ](θ · n)r ds

−
∑

i=0,··· ,3

∫
ωi

(
Dk

∂uk
∂n

)(
Dk

∂pk
∂n

)
(∇((Di

k)−1) · θ)dV

−
∑

i=0,··· ,3

∫
ωi

(
Dk

∂uk
∂n

)(
Dk

∂pk
∂n

)
(Di

k)−2(∇Dk · θ)dV,

which reduces to

sεk,n →
∫

Γ

(
Dk

∂uk
∂n

)(
Dk

∂pk
∂n

)
[D−1

k ](θ · n)r ds. (27)

Using (26), (27) and (25), we can pass to the limit in the expression of ∂J/∂ω(ϕε, e)
and we �nally get (20).

2.2 Gradient method

We move the shape at each step of our algorithm with a velocity �eld θn belong-
ing to a sub-space W of H1(Ω,R2) accounting for some boundary conditions.
This descent direction is chosen as the unique element θn ∈ W such that for
every θ ∈W ,

(θn, θ)W +

〈
∂J

∂ω
(ωn, e), θ

〉
= 0. (28)

This step has also the property to regularize the calculated velocity �eld. We
remark that this �eld θn also satis�es 〈∂J/∂ω(ωn, e), θn〉 = −‖θn‖2W so that
moving the sub-domains ωni along this direction for a su�ciently small time
step dt will make decrease the value of J(ω, e).

2.3 Volume constraint on ω0

As for many structural optimization problem, it is necessary in our problem to
add a volume constraint due to the level of power in the core that we want to
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keep constant during the optimization process. It concerns the volume of the
subset ω0 ⊂ ω consisting of �ssile medium. This constraint can be imposed by
the use of a Lagrange multiplier lk. We now consider the Lagrangian associated
to the volume constraint : J(ω, e) + lk (V (ω0) − V0) and we look for a couple
(ω, lk) which veri�es the optimality condition [1]:〈

∂J

∂ω
, θ

〉
+ lk

∫
∂ω0

(θ · n)r ds = 0 ∀θ ∈W (29)

The new descent direction is computed from the following equation :

Find θn ∈W s.t. (θn, θ)W +

〈
∂J

∂ω
(ωn, e), θ

〉
+ lk

∫
∂ωn

0

(θ ·n)r ds = 0 ∀θ ∈W

(30)
To this end, we divide θn into two components θn and θ∗n solutions of:

(θn, θ)W +

〈
∂J

∂ω
, θ

〉
= 0 ∀θ ∈W

(θ∗n, θ)W +

∫
∂ωn

0

(θ · n)r ds = 0 ∀θ ∈W
(31)

By linearity, the resulting velocity θn + lk θ
∗
n = θn is a solution of the equation

(30). From the numerical point of view, our algorithm consists in advecting
the sub-domains ωni along θn and checking if the volume of the next domain

ωn+1
0 = Xθn(ωn0 , δt) satis�es approximately the constraint, i.e

∣∣∣Vol(ωn+1
0 )−V0

V0

∣∣∣ ≤
ε. If that is not the case, we adjust the multiplier lk. More precisely, at each
step of this loop, we update the value of the Lagrange multiplier by :

lk+1 = lk + α
Vol(ωn+1

0 )− V0

V0
, α ∈ R+. (32)

3 Extension of the model to the 2-groups energy

equation

We explain in this section the modi�cations that arise in our model when con-
sidering a di�erent di�usion model for the neutrons, the so-called two groups
energy di�usion equation. This model amounts to divide the energy spectrum
into two intervals and to average the di�erent physical quantities consequently.
The main di�erence with the previous model is that the di�usion operator is no
longer self-adjoint. The superscript 1 denotes the group of high energy while
the index 2 denotes the group of lower energies.
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

− r−1 div(rD(1)∇u(1)) + (α(1) + βr)u
(1)

= λ (γ(1)u(1) + γ(2)u(2)) in ∪i ωi
− r−1 div(rD(2)∇u(2)) + α(2)u(2) = βru

(1) in ω[
u(k)

]
= 0 on Γ for k = 1, 2[

∂u(k)

∂n

]
= 0 on Γ for k = 1, 2

u(1) = u(2) = 0 on ΓD

(33)

As in the one group model, all the paremters are postive valued functions of the
sodium and plutonium concentration and of the region type. This generalized
eigenvalue problem satis�es a Krein and Rutman theorem [3] what proves the
existence of a positive simple eigenvalue λ with a minimal modulus and associ-
ated to an eigenvector keeping the same sign over Ω. As in the 1-group case,
we consider two di�erent states corresponding to two di�erent concentrations
of sodium dNak (k = 1, 2). We adopt the following notations for denoting the
sti�ness and mass operator, that depend on the concentration dNak ,

ak : (u,v) ∈ X4 7−→
∫

Ω

(Dk∇u · ∇v +αku · v)dV ∈ R

bk : (u,v) ∈ X4 7−→
∫

Ω

γku · vdV ∈ R,
(34)

where u = (u(1), u(2))T ∈ X2, v = (v(1), v(2))T , for k = 1, 2

Dk =

(
D

(1)
k 0

0 D
(2)
k

)
; αk =

(
α

(1)
k + βr,k 0

−βr,k α
(2)
k

)
; γk =

(
γ

(1)
k γ

(2)
k

0 0

)
.

The weak form of the 2 groups energy equation is given in the following propo-
sition.

Propostion 3 The weak form of equation (33) is :

Find (uk,λk) ∈ V 2 ×R such that ak(uk,vk) = λkbk(uk,vk) ∀vk ∈ V 2 (35)

The rate of �ssion can be evaluated thanks to the solution u by considering
the quantity τ1 = β0

1 ·u1, where β := ν−1γ. In this case, we use the same form
for the cost functions. More precisely, we set

J1(ϕ, e) := λ1(ϕ, e)− λ2(ϕ, e),

J2(ϕ, e) := (λ1(ϕ, e)− λ0)2.

J3(ϕ, e) := Vol(ϕ0)
s−1
s

(∫
Ω

τ1dV0

)−1 ∣∣∣∣∫
Ω

τ s1 dV0

∣∣∣∣1/s ,
14



and consider the minimization problem

arg min
(ω,e)∈Uad

J := s1J1 + J2 + s3J3,

Obviously, the minimization problem obtained in this 2-group case is formally
equivalent to the more simple 1-group case. Thus, the expression of the deriva-
tive of J with respect to e or ω does still apply in this case, up to replace all
variables by their vectorial counterpart (that is replacing u by u, D by D and
so on).

4 Numerical results

The coe�cients D, α and β will be taken constant in each region ωi with i =
1, · · · 3 and will vary in ω0 in a bounded interval, the percentage of Plutonium
e being chosen in the interval [15%, 27%].

In the table (1) are given the dependency of each coe�cient with respect to
e.

Table 1: Interpolations of some ERANOS values for the coe�cients in the set
[15%, 27%]

Coe�cient Nominal state Perturbed state

D hyperbolic 1
−5,029649.10−3 e+7,898226.10−1

1
−5,025644.10−3 e+7,889087.10−1

α linear 7, 819137.10−5 e+ 4, 750344.10−3 7, 828342.10−5 e+ 4, 745445.10−3

β linear 1, 342218.10−4 e+ 4, 028949.10−4 1, 342570.10−4 e+ 4, 018440.10−4

γ = ν β linear 4, 066337.10−4 e+ 9, 710325.10−4 4, 067438.10−4 e+ 9, 679273.10−4

The optimization method for the one-group energy equation described in
section 2 is here carried out with the help of the software FreeFem++. The
equations of the continuous model are discretized with the �nite element method
on an initial mesh of 3.103 nodes. We have considered a domain ω whose
dimensions are given in the table (2).

The state u and the adjoint state p are discretized with P1 continuous �nite
elements. The coe�cients (D,α, γ) are discretized with P1 discontinuous �nite
elements (see [7]). The velocity �eld θ is discretized with P1×P1 �nite elements.

Between each iteration of the geometric gradient step, we perform two iter-
ations of the parametric optimization. The di�erent criteria are weighted with
the following factors : s1 = 105, s2 = 200 and s3 = 8. The target value for the
minimal eigenvalue λ0 is set at 0.9 and the volume constraint must be satis�ed
with a 10% margin of error. The Lagrange multiplier for the volume constraint
is initialized at the value l0 = 1.

Note that we obtain very smooth interfaces due to a high value of the reg-
ularization factor ξ = 104 (the constant value in front of the Laplacian term
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Table 2: Dimensions of ω

material
internal external inferior superior
radius radius height height
(cm) (cm) (cm) (cm)

Fissile 0 150 60 140
Fertile 0 150 30 60

Plénum sodium 0 150 140 170
Re�ector thickness of 30 cm around the active core

Figure 1: Initial design versus the optimal one at Niter = 3000 with δρ =
−29 pcm and 〈e〉 = 17, 2%

involved in the calculation of the descent direction θ) where we consider the
following scalar product on W :

(θ1, θ2)W =

∫
ω1

(ξ∇θ1 : ∇θ2 + θ1 · θ2)dV

The step descent are chosen as follows :

µ = 104, dt = 102

Applying our method during 3000 iterations leads to the design presented
on �gure (1) The sodium void e�ect δρ := ρ2 − ρ1 is expressed in terms of pcm
which is a unit de�ned as 1 pcm = 10−5. The accuracy of the calculation for
δρ is about 1 pcm. Note that the sodium void e�ect decreases from an initial
value of 11 pcm (evaluated with an uniform value of e set at 20%) to a �nal
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value of −29 pcm. During this simulation, one may check the convergence by
paying attention to the behavior of the following quantities

� for the shape, J
′(ωn)(θn)
J′(ω0)(θ0)

� for the content of Plutonium, δen =
∫
ω0

(en(r, z)− en−1(r, z))2dV .

The �rst of these quantities is represented on the �gure (3) and, as expected,
it strongly decreases at the beginning of the algorithm. We observe a good con-

Figure 2: J = αi Ji Figure 3: J ′(ωn)(θn)

Figure 4: −
∫
ω0
r div(D2∇φ2)drdz Figure 5: L2 residual of en(x)

vergence for the Plutonium percentage e as it may be seen on the �gure (5). It
appears that our model cannot optimize the shape factor (red curve on �gure
(2)) as well as the sodium void e�ect (represented with the blue curve). Never-
theless, this last term reach very low negatives values which demonstrates the
e�ciency of the geometric shape optimization method for our problem. One
may verify the physical consistency of this simulation by plotting the neutrons
leakages through the external surface of the �ssile region ∂ω0 in perturbed con-
ditions. The �gure (4) stands in good agreement with the physical explanation
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of the sodium void e�ect δρ : we minimize the sodium void e�ect by increasing
its leakage component.

Figure 6: Boundary superposition (on the left) is removed using a regularization
by the mean of the introduction of a Level-Set function.

Another drawback of the geometric shape optimization method is that it
does not account for changes of topology of the mesh what cause sometimes the
superposition of the boundaries. To get rid of those overlapping boundaries,
we introduce a function whose zero Level-Set match the interface. After a
regularization of this function, we determine a parametrization of the regularized
zero Level-Set and remesh the domain Ω accordingly. Our algorithm is then
restarted with the modi�ed topology. Note that we are here talking of the
topology of the mesh. For instance, the mesh displayed on the right hand side
of Figure 6 has a di�erent topology than the one of the initial mesh � better seen
on Figure 1 � because the interfaces do connect di�erent parts of the surrounding
box. This regularization step is represented on the �gure (6). We re-initialize
the percentage of Plutonium at the mean value reached at the end of the �rst
optimization process and perform again our method. It leads to the design of
�gure (7).

We reach this time a sodium void e�ect δρ = −35 pcm but we observe
that the shape did not have changed that much. Due to a good behavior of
the convergence indicators (�gures (9), (10)), we think that we probably have
reached a local minimizer for our optimization problem.

Conclusion

This works gives an overview of the application of a geometric shape optimiza-
tion to the design of a sodium fast reactor. Although some work still needs to
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Figure 7: New design of the core
Figure 8: History of J

Figure 9: J′(ωn)(θn)
J′(ω0)(θ0) Figure 10: L2 residual of en(x)

be done in order to improve the multi-criteria convergence, we observe that our
algorithm leads to a very e�cient optimization of the sodium void e�ect and a
really strong change of the shape. In addition, we should also study the in�u-
ence of the initial guess on our result which is an important point in geometric
optimization. The use of the two groups energy equation needs to be tested in
the future in order to enhance the accuracy of the state equation. Another step
toward more relevant results from an industrial point of view would be to add in
the algorithm some geometrical constraints. Those constraints would be chosen
in order to take into account the size and the shape of the nuclear assemblies.
This can be done either by adding some constraints directly in the algorithm or
by performing a penalization method on the �nal shape (see [2]) .
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