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Abstract
We consider weighted Radon transforms on the plane, where weights are given as finite

Fourier series in angle variable. By means of additive Riemann-Hilbert problem techniques,
we reduce inversion of these transforms to solving first order differential systems on R2 = C
with a decay condition at infinity. As a corollary, we obtain new injectivity and inversion
results for weighted Radon transforms on the plane.

1. Introduction
We consider the weighted ray transforms PW defined by the formula

PW f(s, θ) =

Z
R

W (sθ⊥ + tθ, θ)f(sθ⊥ + tθ)dt, s ∈ R, θ = (θ1, θ2) ∈ S1, (1.1)

where θ⊥ = (−θ2, θ1), W = W (x, θ) is the weight, f = f(x) is a test function, x ∈ R2,
S1 is the unit circle in R2. Up to change of variables, PW is known also as the weighted
Radon transform on the plane.

In this work one can always assume that

W ∈ C(R2 × S1) ∩ L∞(R2 × S1). (1.2)

Additional assumptions onW will be formulated in the framework of context. In particular,
in important particular cases W is real-valued and strictly positive:

W = W̄ , W ≥ c > 0. (1.3)

We recall that in definition (1.1) the product R × S1 is interpreted as the set of all
oriented straight lines in R2. More precisely, if γ = (s, θ) ∈ R × S1, then γ = {x ∈ R2 :
x = sθ⊥ + tθ, t ∈ R} (modulo orientation) and θ gives the orientation of γ.

If W ≡ 1, then PW is known as classical ray (or Radon) transform on the plane. This
transform arises, in partcular, in X-ray transmission tomography. If

W (x, θ) = exp(−Da(x, θ)), Da(x, θ) =

+∞Z
0

a(x+ tθ)dt, (1.4)

where a is a complex-valued sufficiently regular function on R2 with sufficient decay at
infinity, then PW is known as the attenuated ray (or Radon) transform on the plane.
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This transform (at least, with a ≥ 0 ) arises, in particular, in single-photon emission
computed tomography (SPECT). Transforms PW with some other weights W also arises
in applications. For more information in this connection see, for example, [Na], [Ku], [MP],
[Ba2].

Exact and simultaneously explicit inversion formulas for the classical and attenuated
Radon transforms on the plane were given for the first time in [Ra] and [No1], respectively.
For some other weightsW , exact and simultaneously explicit inversion formulas were given
in [TM], [BS], [G], [No2].

For general PW , under assumptions (1.2), (1.3), explicit and simultaneously exact
(modulo Ker PW ) inversion formulas seem to be impossible. Nevertheless, due to [BQ],
PW is injective on C0(R2) (where C0 denotes continuous functions with compact support),
i.e. Ker PW = 0 in C0(R2), for real analytic W satisfying (1.3).

Besides, [Bo1] gives an example of infinitely smoothW satisfying (1.2), (1.3) and such
that Ker PW 6= 0 in C∞0 (R2) (where C∞0 denotes infinitely smooth functions with compact
support).

For more information concerning known uniqueness and non-uniqueness results for
weighted Radon transforms on the plane see [Q], [Fi], [Ku], [BQ], [Bo1], [Bo2], [No1],
[No2] and references therein.

In the present work we develop (exact and approximate) reconstruction methods of
f ∈ C0(R2) from PW f with known W satisfying (1.2) and, for example, (1.3). Our
studies are based on: (1) the Riemann-Hilbert problem approach of [FN], [No1], [Ba1]; (2)
generalized analytic function theory, see [V]; (3) approximate inversion approach of [Ch],
[No2]. Some of our results can be considered also as a development of [Ku]. Actually, we
consider weights of the form

W (x, θ(ϕ)) =
NX

n=−N
einϕwn(x),

x ∈ R2, θ(ϕ) = (cosϕ, sinϕ), ϕ ∈ [−π, π], N ∈ N ∪ 0,

(1.6)

where wn ∈ C(R2) ∩ L∞(R2) and, for example, |w0| > c0 > 0. Such weights approximate,
in particular, W satisfying (1.2), (1.3).

Due to the formula (see [No2])

1

2
(PW f(s, θ) + PW f(−s,−θ)) = PWsymf(s, θ), (s, θ) ∈ R× S1,

Wsym(x, θ) =
1

2
(W (x, θ) +W (x,−θ)), x ∈ R2, θ ∈ S1,

(1.7)

inversion of PW can be reduced to inversion of PWsym . Therefore, in the present work we
consider mainly the case when

W (x, θ) =W (x,−θ), x ∈ R2, θ ∈ S1 (1.8a)

and, as a corollary,
wn ≡ 0 on R2 if n is odd (1.8b)

2



for W of (1.6).
In Theorem 3.1 of Section 3 we reduce inversion of PW under assumptions (1.6), (1.8)

to solving a system of first order differential equations on R2 with a decay condition at
infinity. In the simplest non-trivial case this system is reduced to the inhomogeneous
Beltrami type equation of Remark 3.2 of Section 3.

One of possibilities to obtain a linear integral equation for finding f from PW f and
W proceeding from Theorem 3.1 is realized in Theorem 3.2 of Section 3. In addition, the
linear integral equation of Theorem 3.2 is uniquely solvable by the method of successive
approximations, under some smallness condition on the function set
{w2kw0

: |2k| ≤ N, k 6= 0}. It is interesting to note that for the case when w0 ≡ 1 the
linear integral equation of Theorem 3.2, actually, coincides with related equation of [Ku],
obtained in a completely different way.

In turn, proceeding from Theorem 3.2 we obtain, in particular, that if W satisfies
(1.2), (1.3) and can be written as

W (x, θ(ϕ)) = e−2iϕw−2(x) +w0(x) + e2iϕw2(x),

x ∈ R2, θ(ϕ) = (cosϕ, sinϕ), ϕ ∈ [−π, π],
(1.9)

then f ∈ C0(R2) is uniquely and efficiently determined by PW f and W ; see Theorem 3.3
of Section 3 for details.

At least on the theoretical level, our exact inversion method for PW , under assumptions
(1.2), (1.3), (1.9), and formula (1.7) give new approximate inversion method for PW under
general assumptions (1.2), (1.3). For w−2 ≡ 0, w2 ≡ 0 this approximate inversion is
reduced to the Chang approximate inversion formula; see, for example, [Ch], [No2], [GN]
in connection with Chang’s formula.

In studies of the present work we proceed from Proposition 2.1 of Section 2. Due to
this proposition we consider inversion of PW as, roughly speaking, some additive Riemann-
Hilbert problem. The main results of the present work on inversion of PW are presented
in details in Section 3.

2. Weighted ray equation
Assuming that W satisfies (1.2) and f ∈ C0(R2), we consider the equation

θ∂xψ(x, θ) =W (x, θ)f(x), x = (x1, x2) ∈ R2, θ = (θ1, θ2) ∈ S1, (2.1)

where θ is spectral parameter, ∂x = (∂/∂x1, ∂/∂x2), θ∂x =
P2

j=1 θj∂/∂xj .

For any θ ∈ S1 we consider the continuous solution ψ+(·, θ) of (2.1), specified by

lim
t→−∞

ψ+(x+ tθ, θ) = 0, x ∈ R2. (2.2)

The following formula holds:

ψ+(x, θ) =

0Z
−∞

W (x+ tθ, θ)f(x+ tθ)dt, x ∈ R2, θ ∈ S1. (2.3)
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In addition,

PW f(s, θ) = lim
t→+∞

ψ+(sθ⊥ + tθ, θ) = 0, s ∈ R, θ ∈ S1, (2.4)

where PW f is defined by (1.1), θ⊥ is the same that in (1.1).
We say that equation (2.1) is the weighted ray equation on the plane and that PW f

is ”scattering” data for this equation.
Assuming that W satisfies (1.6) and f ∈ C0(R2) we consider also equation (2.1) with

complexified spectral parameter:

θ∂xψ(x, θ) =W (x, θ)f(x), x ∈ R2, θ ∈ Σ, (2.5)

where

Σ = {θ = (θ1, θ2) ∈ C2 : θ21 + θ22 = 1}. (2.6)

For any θ ∈ Σ\S1 we consider the continuous solution ψ(·, θ) of (2.5) specified by

ψ(x, θ)→ 0 as |x|→∞. (2.7)

The following formula holds:

ψ(x, θ) =

Z
R2

G(x− y, θ)W (y, θ)f(y)dy, x ∈ R2, θ ∈ Σ\S1, (2.8)

where

G(x, θ) =
sgn(Reθ1Imθ2 −Reθ2Imθ1)

−2πi(θ2x1 − θ1x2)
, (2.9)

W is defined by (1.6) with einϕ replaced by (θ1 + iθ2)
n.

θ∂xG(x, θ) = δ(x), x ∈ R2, θ ∈ Σ\S1. (2.10)

For detail properties of G(x, θ) we refer to [No1].
Consider

z = x1 + ix2, z̄ = x1 − ix2, x = (x1, x2) ∈ R2. (2.11)

Consider the following parametrization of Σ by λ ∈ C\0:

λ(θ) = θ1 + iθ2 for θ = (θ1, θ2) ∈ Σ,

θ1(λ) =
1

2
(λ+

1

λ
), θ2(λ) =

1

2i
(λ− 1

λ
) for λ ∈ C\0.

(2.12)

In the variable λ the circle S1 = Σ ∩R2 takes the form

T = {λ ∈ C : |λ| = 1}. (2.13)
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Let ψ(z, λ), G(z, λ) denote ψ and G of (2.8), (2.9) written in the variables z, λ of
(2.11), (2.12). Let W (z, λ), f(z) denote related W and f written in the same way. We
recall that

G(z, λ) =
sgn(|λ|− 1)
π(λz̄ − z/λ)

, z ∈ C, λ ∈ C\(T ∪ 0), (2.14)

see [No1], [Ba1] for detail properties of G. Note also that, under assumptions (1.6), (1.8),
W can be written as

W (z, λ) =
mX

l=−m
λ2lw2l(z), λ ∈ C\0, z ∈ C, (2.15)

where w2l ∈ C(C) ∩ L∞(C), m = [N/2] (i.e. m is the integer part of N/2). In addition,
we have the following proposition:

Proposition 2.1. Let ψ be the function of (2.8), where W satisfies (1.6), (1.8),
[N/2] = m, and f ∈ C0(R2). Then for each z ∈ C the function ψ = ψ(z, λ) has the
following properties in λ (in variables z, λ of (2.11), (2.12)):

∂

∂λ̄
ψ(z, λ) = 0 for λ ∈ C\(T ∪ 0); (2.16)

ψ(z, λ) =
mX
j=0

λ2j−1u−2j−1(z) +O(λ−3), λ→∞,

u−2j−1(z) =
1

π

m−jX
k=0

Z
C

(z − ζ)k

(z̄ − ζ̄)k+1
w2(k+j)(ζ)f(ζ)dRe ζdImζ,

(2.17)

ψ(z, λ) =
mX
j=0

λ1−2ju+1−2j(z) +O(λ3), λ→ 0,

u+1−2j(z) =
1

π

m−jX
k=0

Z
C

(z̄ − ζ̄)k

(z − ζ)k+1
w−2(k+j)(ζ)f(ζ)dRe ζdImζ;

(2.18)

ψ+(z, λ)− ψ−(z, λ) = ϕ(z, λ), λ ∈ T, (2.19)

where

ψ±(z, λ) = ψ(z, λ(1∓ 0)), λ ∈ T, (2.20)

ϕ(z, λ) =
1

πi
p.v.

Z
R

PW f(s, θ(λ))

x(z)θ⊥(λ)− s
ds, λ ∈ T, (2.21)

where x(z) = (x1(z), x2(z)), θ(λ) = (θ1(λ), θ2(λ)) are given according to (2.11), (2.12),
θ⊥ = (−θ2, θ1) for θ = (θ1, θ2).
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Proposition 2.1 follows from considerations given in [No1], [Ba1]. In particulier, for
[N/2] = m = 0 Proposition 2.1 is a particular case of results of [No1] (and goes back to
[FN]).

Properties (2.16)-(2.21) of ψ permit to study inversion of PW by means of additive
Riemann-Hilbert problem techniques.

3. Inversion of PW
One can see that

PW f = PW̃ (w0f), (3.1)

W̃ (x, θ) =W (x, θ)/w0(x), x ∈ R2, θ ∈ S1, (3.2)

under the assumption that

|w0| > c0 > 0, (3.3)

where

w0(x) =
1

2π

Z
S1

W (x, θ)dθ, x ∈ R2. (3.4)

Therefore, under assumptions (1.2), (3.3), inversion of PW is reduced to the case when
w0 ≡ 1 on R2.

Let
fappr(x) = F0(x)/w0(x),

F0(x) =
1

4π

Z
S1

h0(xθ⊥, θ)dθ, h0(s, θ) =
d

ds
h(s, θ),

h(s, θ) =
1

π
p.v.

Z
R

PW f(t, θ)

s− t
dt, s ∈ R, θ ∈ S1, x ∈ R2.

(3.5)

We recall that (3.5) is known as the Chang approximate inversion formula for PW under
assumptions (1.2), (3.3). In addition, under assumptions (1.2), (3.3), due to Theorem 1 of
[No2], we have that

fappr = f (in the sense of distributions) on R2 for all f ∈ C0(R2), (3.6)

if and only if

W (x, θ)−w0(x) = w0(x)−W (x,−θ), x ∈ R2, θ ∈ S1. (3.7)

However, property (3.7) is fulfilled for W of the form (1.6) if and only if

[N/2]X
l=1

(|w2l|+ |w−2l|) ≡ 0 on R2. (3.8)
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Below in this section we are focused on inversion of PW under assumptions (1.2),
(1.8), (3.3) for the case when (3.8) is not necessary fulfilled. In addition, we assume that
W is written in the form (2.15), where m ≥ 1.

Consider the 2m× 2m operator matrices A and B such that

Aj,j = ∂z, j = 1, . . . ,m,

Aj+1,j = ∂z̄, j = 1, . . . ,m− 1,
Aj,j = ∂z̄, j = m+ 1, . . . , 2m,

Aj,j+1 = ∂z, j = m+ 1, . . . , 2m− 1,
Ai,j = 0 for all other cases,

(3.9)

Bj,m = w̃2(m−j+1)(z)∂z̄, j = 1, . . . ,m,

Bj,m = w̃−2(j−m)(z)∂z̄, j = m+ 1, . . . , 2m,

Bj,m+1 = w̃2(m−j+1)(z)∂z, j = 1, . . . ,m,

Bj,m+1 = w̃−2(j−m)(z)∂z, j = m+ 1, . . . , 2m,

Bi,j = 0 for all other cases,

(3.10)

where

∂z =
1

2
(
∂

∂x1
− i

∂

∂x2
), ∂z̄ =

1

2
(
∂

∂x1
+ i

∂

∂x2
), (3.11)

w̃2l = w2l/w0, w̃−2l = w−2l/w0, l = 0, 1, . . . ,m. (3.12)

Consider the vector-functions q = (q1, . . . , q2m), v = (v1, . . . , v2m) such that

qj = w̃2(m−j+1)(z)F0(z), j = 1, . . . ,m,

qj = w̃−2(j−m)(z)F0(z), j = m+ 1, . . . , 2m,
(3.13)

vj = u−2(m−j+1)−1(z), j = 1, . . . ,m,

vj = u+−2(j−m)+1(z), j = m+ 1, . . . , 2m,
(3.14)

where F0 is the function of (3.5), w̃±2l are defined by (3.12), u
−
2l−1, u

+
−2l+1 are the function

of (2.17), (2.18), l = 1, . . . ,m.
Let χD denote the characteristic function of a domain D in C, i.e.

χD ≡ 1 on D, χD ≡ 0 on C\D. (3.15)

Let
v0(z) = (∂zv1(z), . . . , ∂zvm(z), ∂z̄vm+1(z), . . . , ∂z̄v2m(z))

for v(z) = (v1(z), . . . , v2m(z)), z ∈ C.
(3.16)

Theorem 3.1. Let W satisfy (2.15), (3.3) and f ∈ C(C), supp f ⊂ D, where m ≥ 1
and D is an open bounded domain in C. Then:

(A− χDB)v = χDq, (3.17)

v ∈ C(C), v0 ∈ L2(C), |v(z)|→ 0 as |z|→∞, (3.18)
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where A, B, q, v, χD are defined by (3.9), (3.10), (3.13), (3.14), (3.15) and v0 is defined
by (3.16) in terms of v. In addition,

f(z) =
F0(z) + ∂z̄vm(z) + ∂zvm+1(z)

w0(z)
, z ∈ C, (3.19)

where F0/w0 is the function of (3.5) and vm, vm+1 are the components of v.
We consider (3.17), (3.18) as a system of first order differential equations for

v = (v1, . . . , v2m) on C with a decay condition at infinity. One can see that : A is
independent of W and F0, B is explicitely given in terms of W and is independent of F0,
q is explicitely given in terms of W and F0. In addition, f can be found via (3.19) as soon
as F0/w0, vm, vm+1 are known.

Theorem 3.1 is proved in Section 4.

Lemma 3.1. Let the assumptions of Theorem 3.1 be fulfilled and

mX
l=1

sup
z∈D

|w̃2l(z)| <
1

2
,

mX
l=1

sup
z∈D

|w̃−2l(z)| <
1

2
.

(3.20)

Then system (3.16), (3.17) is uniquely solvable for v.
Lemma 3.1 is proved in Section 5.
Theorem 3.1 and Lemma 3.1 imply, in particular, that PW is injective on

CD(C) = {f ∈ C(C) : supp f ⊂ D}, (3.21)

under assumptions (2.15), (3.3), (3.20), where D is an open bounded domain in C.

Remark 3.1. If W of (2.15) is real-valued for λ ∈ T, z ∈ C, then

w−2l = w̄2l on C, l = 0, 1, . . . ,m. (3.22)

In this case both inequalities (3.20) are reduced to each of them. If, in addition, f is
continuous compactly supported and also real-valued, then

v2m−j+1 = v̄j on C, j = 1, . . . ,m, (3.23)

where v = (v1, . . . , v2m) is defined by means of (3.14), (2.17), (2.18).

Remark 3.2. The system (3.17), (3.18) with symmetries (3.22), (3.23) and with
m = 1 is reduced to the following scalar equation

∂zu− 2χDw̃2Re∂z̄u = χDw̃2F0, (3.24)

u ∈ C(C), ∂zu ∈ L2(C), |u(z)|→ 0, as |z|→∞, (3.25)
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where u = v1, ū = v2. In addition, formula (3.19) is reduced to the formula

f =
F0 + 2Re∂z̄u

w0
. (3.26)

There are different possibilities to obtain a linear integral equation for finding f from
F0 and W proceeding from Theorem 3.1. One of these possibilities is realized as equation
(5.11) of Section 5. Another one is realized as Theorem 3.2 given below.

Let T , Π, T̄ , Π̄ denote the linear integral operators on the complex plane such that

Tu(z) = − 1
π

Z
C

u(ζ)

ζ − z
dRe ζdImζ,

Πu(z) = ∂zTu(z) = −
1

π

Z
C

u(ζ)

(ζ − z)2
dRe ζdImζ,

(3.27)

T̄ u(z) = − 1
π

Z
C

u(ζ)

ζ̄ − z̄
dRe ζdImζ,

Π̄u(z) = ∂z̄Tu(z) = −
1

π

Z
C

u(ζ)

(ζ̄ − z̄)2
dRe ζdImζ,

(3.28)

where u is a test function, z ∈ C; see, for example, [V] for detail properties of these
operators.

Theorem 3.2. Let W satisfy (2.15), (3.3) (where m ≥ 1). Let F = w0f , f ∈ C(C),
supp f ⊂ D, where D is an open bounded domain in C. Then

F +
mX
l=1

((−Π̄)lw̃2l + (−Π)lw̃−2l)χDF = F0, (3.29)

where w̃±2l, χD are the multiplication operators by the function of (3.12), (3.15), Π, Π̄ are
the operators of (3.27), (3.28), F0 is the function of (3.5). In addition, equation (3.29) is
uniquely solvable for F in L2(C) (by the method of successive approximations) if

mX
l=1

(sup
z∈D

|w̃2l(z)|+ sup
z∈D

|w̃−2l(z)|) < 1. (3.30)

Theorem 3.2 is proved in Section 6.
One can show that for the case when w0 ≡ 1 equation (3.29), actually, coincides

with related equation of [Ku]. In [Ku] it was shown that this equation of [Ku] is uniquely
solvable if Pm

l=1(sup
z∈D

|w̃2l(z)|+ sup
z∈D

|w̃−2l(z)|)

min
z∈D

|w0(z)|
< 1. (3.31)
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One can see that condition (3.30) is considerably less restrictive than (3.31), in general.
In addition, for m = 1 one can show that if W is given by (2.15) and

W (z, λ) =W (z, λ) ≥ c > 0, z ∈ D, λ ∈ T, (3.32)

then
|w0(z)|− |w−2(z)|− |w2(z)| ≥ c, z ∈ D, (3.33)

and condition (3.30) is fulfilled. Therefore, proceeding from Theorem 3.2 we have also, in
particular, the following result:

Theorem 3.3. Let W be given by (2.15) for m = 1 and conditions (3.32) be fulfilled,
and let f ∈ C(C), supp f ⊂ D, where D is an open bounded domain in C. Then f is
uniquely determined by PW f and W via the linear integral equation (3.29) for m = 1
(solvable by the method of successive approximations in L2(C)).

Note that Theorems 3.2 and 3.3 remain valid under assumptions that f ∈ L2(D),
f ≡ 0 on C\D.

4. Proof of Theorem 3.1
Note that

PW f(s, θ) = PW f(−s,−θ), (s, θ) ∈ R× S1. (4.1)

As a corollary, we have that

ϕ(z,−λ) = −ϕ(z, λ), z ∈ C, λ ∈ T, (4.2)

where ϕ is defined by (2.21).
Let

ψ0(z, λ) =
1

2πi

Z
T

ϕ(z, ζ)

ζ − λ
dζ, z ∈ C, λ ∈ C\T, (4.3)

where ϕ is defined by (2.21). Then for each z ∈ C the function ψ0 = ψ0(z, λ) has the
following properties in λ:

∂

∂λ̄
ψ0(z, λ) = 0 for λ ∈ C\T, (4.4)

ψ0(z, λ) = λ−1ψ0−1(z) +O(λ−3), λ→∞, (4.5)

ψ0(z, λ) = λψ01(z) +O(λ3), λ→ 0, (4.6)

ψ0+(z, λ)− ψ0−(z, λ) = ϕ(z, λ), λ ∈ T, (4.7)

where
ψ0±(z, λ) = ψ(z, λ(1∓ 0)), λ ∈ T, (4.8)

and also

ψ0−1(z) = −
1

2πi

Z
T

ϕ(z, ζ)dζ, (4.9)

ψ01(z) =
1

2πi

Z
T

ϕ(z, ζ)

ζ2
dζ. (4.10)
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Properties (4.4)-(4.10) follow from (4.3), where to obtain (4.5), (4.6) we use also (4.2).
Let

µ(z, λ) = ψ(z, λ)− ψ0(z, λ)−
mX
j=1

λ2j−1u−2j−1(z)−
mX
j=1

λ1−2ju+1−2j(z),

z ∈ C, λ ∈ C\(T ∪ 0),
(4.11)

where ψ is the function of Proposition 2.1, ψ0 is defined by (4.3), u−2j−1, u
+
1−2j are the

coefficients of formulas (2.17), (2.18). Then for each z ∈ C the function µ = µ(z, λ) has
the following properties in λ:

∂

∂λ̄
µ(z, λ) = 0 for λ ∈ C\(T ∪ 0), (4.12)

µ(z, λ)→ 0, λ→∞, (4.13)

µ(z, λ)→ 0, λ→ 0, (4.14)

µ+(z, λ)− µ−(z, λ) = 0, λ ∈ T, (4.15)

where
µ±(z, λ) = µ(z, λ(1∓ 0)), λ ∈ T. (4.16)

Properties (4.12)-(4.16) follow from (2.16)-(2.20), (4.4)-(4.8) and definition (4.11). Using
(4.12)-(4.16) we obtain that

µ(z, λ) ≡ 0, z ∈ C, λ ∈ C. (4.17)

Due to (4.11), (4.17) we have that

ψ(z, λ) =
mX
j=1

λ2j−1u−2j−1(z) +
mX
j=1

λ1−2ju+1−2j(z) + ψ0(z, λ),

z ∈ C, λ ∈ C\(T ∪ 0).
(4.18)

Due to equation (2.5) for ψ we have that

(λ∂z + λ−1∂z̄)ψ(z, λ) =W (z, λ)f(z), λ ∈ C\(T ∪ 0), z ∈ C, (4.19)

where W is given by (2.15) and ψ is written according to (4.18). Proceeding from (2.15),
(4.5), (4.6), (4.18), (4.19) we obtain that

mX
j=1

λ2j∂zu
−
2j−1(z) +

m−1X
j=0

λ2j∂z̄u
−
2j+1(z) + ∂zu

+
−1(z) + ∂zψ

0
−1(z) + o(1) =

mX
j=0

λ2jw2j(z)f(z) for λ→∞, z ∈ C,
(4.20a)
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mX
j=1

λ−2j∂z̄u
+
1−2j(z) +

m−1X
j=0

λ−2j∂zu
+
−1−2j(z) + ∂z̄u

−
1 (z) + ∂z̄ψ

0
1(z) + o(1) =

−1X
j=−m

λ2j∂z̄u
+
2j+1(z) +

0X
j=−m+1

λ2j∂zu
+
2j−1(z) + ∂z̄u

−
1 (z) + ∂z̄ψ

0
1(z) + o(1) =

0X
j=−m

λ2jw2j(z)f(z) for λ→ 0, z ∈ C.

(4.20b)

In addition, proceeding from (2.21), (3.11), (4.9), (4.10) one can see that

∂zψ
0
−1(z) = F0(z), z ∈ C, (4.21a)

∂z̄ψ
0
1(z) = F0(z), z ∈ C, (4.21b)

where F0 is the function of (3.5).
Formulas (4.20), (4.21) imply that:

∂zu
−
2j−1(z) = w2j(z)f(z) for j = m,

∂zu
−
2j−1(z) + ∂z̄u

−
2j+1(z) = w2j(z)f(z) for j = 1, . . . ,m− 1,

∂zu
+
−1(z) + ∂z̄u

−
1 (z) + F0(z) = w0(z)f(z);

(4.22a)

∂z̄u
+
2j+1(z) = w2j(z)f(z) for j = −m,

∂z̄u
+
2j+1(z) + ∂zu

+
2j−1(z) = w2j(z)f(z) for j = −m+ 1, . . . ,−1,

∂z̄u
−
1 (z) + ∂zu

+
−1(z) + F0(z) = w0(z)f(z),

(4.22b)

where z ∈ C. In turn, formulas (4.22) can be rewritten as

Av = fω, (4.23)

∂z̄vm + ∂zvm+1 + F0 = w0f, (4.24)

where A is the operator matrix defined by (3.9), v is the vector-function defined by (3.14),
ω = (ω1, . . . , ω2m) is the vector-function such that

ωj = w2(m−j+1), j = 1, . . . ,m,

ωj = w−2(j−m), j = m+ 1, . . . , 2m,
(4.25)

and vm, vm+1 are the components of v.
In addition, we have that

f = χDf. (4.26)

Formulas (4.23), (4.26) imply that

Av = χDfω. (4.27)
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Formulas (3.3), (4.24), (4.27) imply that

Av = χD
¡∂z̄vm + ∂zvm+1

w0

¢
ω. (4.28)

One can see that, under assumption (3.3), formula (3.17) is equivalent to (4.28) and formula
(3.19) is equivalent to (4.24).

Under our assumptions, the properties that v ∈ C(C), |v(z)| → 0 as |z| → ∞ follow
form formulas for u−2j−1 and u+1−2j of (2.17), (2.18). Under our assumptions, the property

that v0 ∈ L2(C) can be obtained recurrently for its components v01, . . . , v0m and for its
components v02m, . . . , v

0
m+1 proceeding from definition (3.16), equation (4.27) and the result

that (see [V])
kΠkL2(C)→L2(C) = 1, kΠ̄kL2(C)→L2(C) = 1, (4.29)

where Π, Π̄ are the operators of (3.27), (3.28).
This completes the proof of Theorem 3.1.

5. Proof of Lemma 3.1
Let Â, B̂, Θ denote the 2m× 2m operator matrices such that

Âj,j = 1, j = 1, . . . , 2m,

Âj+1,j = Π̄, j = 1, . . . ,m− 1,
Âj,j+1 = Π, j = m+ 1, . . . , 2m,

Âi,j = 0 for all other cases,

(5.1)

B̂j,m = w̃2(m−j+1)Π̄, j = 1, . . . ,m,

B̂j,m = w̃−2(j−m)Π̄, j = m+ 1, . . . , 2m,

B̂j,m+1 = w̃2(m−j+1)Π, j = 1, . . . ,m,

B̂j,m+1 = w̃−2(j−m)Π, j = m+ 1, . . . , 2m,

B̂i,j = 0 for all other cases,

(5.2)

Θi,j = (−Π̄)i−j , 1 ≤ j ≤ i ≤ m,

Θi,j = (−Π)j−i, m+ 1 ≤ i ≤ j ≤ 2m,

Θi,j = 0 for all other cases,

(5.3)

where Π, Π̄ are the operators of (3.27), (3.28), w̃±2l are the functions of (3.12).
In addition to (4.29), we recall that (see [Ri], [V] and references therein)

kΠkLp(C)→Lp(C) = kΠ̄kLp(C)→Lp(C) = λp, p > 1, (5.4a)

where for any ε > 0 there is δ(ε) > 0 such that

λp < 1 + ε if |p− 2| < δ(ε). (5.4b)
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One can see that in terms of v0 defined by (3.16) system (3.17), (3.18) takes the form

(Â− χDB̂)v
0 = χDq, v0 ∈ L2(C). (5.5)

It is necessary to note that, under our assumptions, we have that

χDq ∈ Lp(C), p > 1. (5.6)

Property (5.6) follows from (5.5) and the property that v0 ∈ Lp(C), p > 1, where v0 is
defined as in Theorem 3.1. In turn, the property that v0 ∈ Lp(C), p > 1, is proved in a
similar way as for p = 2 (using (5.4a) instead of (4.29)).

Besides, one can see that
ΘA = I, AΘ = I, (5.7)

where I is the identity operator matrix.
As a corollary of (5.7), system (5.5) is equivalent to the system

(I −ΘχDB̂)v0 = ΘχDq, v0 ∈ L2(C). (5.8)

In addition, formulas (5.2), (5.3) imply that

(ΘχDB̂)i,j = 0 if j /∈ {m,m+ 1},

r1,1
def
= (ΘχDB̂)m,m =

mX
j=1

(−Π̄)m−jχDw̃2(m−j+1)Π̄,

r1,2
def
= (ΘχDB̂)m,m+1 =

mX
j=1

(−Π̄)m−jχDw̃2(m−j+1)Π,

r2,1
def
= (ΘχDB̂)m+1,m =

2mX
j=m+1

(−Π)j−m−1χDw̃−2(j−m)Π̄,

r2,2
def
= (ΘχDB̂)m+1,m+1 =

2mX
j=m+1

(−Π)j−m−1χDw̃−2(j−m)Π.

(5.9)

Let
g1 = (ΘχDq)m, g2 = (ΘχDq)m+1, (5.10)

where ΘχDq is the vector-function of the right side of (5.8).
Using (5.9) we obtain that system (5.8) is reduced to the systemµµ

1 0
0 1

¶
−
µ
r11 r12
r21 r22

¶¶µ
v0m
v0m+1

¶
=

µ
g1
g2

¶
, (5.11)

where ri,j are defined in (5.9), gj are defined by (5.10), and to the formula

v0 = ΘχDB̂χ{m,m+1}v
0 +ΘχDq, (5.12)

14



where χ{m,m+1}v
0 denotes the vector-function of the length 2m such that

(χ{m,m+1}v
0)i = v0i for i ∈ {m,m+ 1},

(χ{m,m+1}v
0)i = 0 for i /∈ {m,m+ 1}.

(5.13)

Proceeding from (4.29), (5.4), (5.6) we obtain that, under our assumptions, system
(5.11) is uniquely solvable for v0m, . . . , v

0
m+1 in L

2(C) (by the method of successive approx-
imations) and that, in addition, v0m, . . . , v

0
m+1 belong to L

p(C) if p is sufficiently close to
2.

In addition, using (5.12) one can see that v0 ∈ Lp(C) if p is sufficiently close to 2.
Using that

v ∈ C(C), |v(z)|→ 0 as |z|→∞,

for v = (T̄ v01, . . . , T̄ v
0
m, Tv0m+1, . . . , T v

0
2m),

(5.14)

where T , T̄ are the operators of (3.27), (3.28) and v0 ∈ Lp(C) if p is sufficiently close to 2,
one can complete the proof of Lemma 3.1.

6. Proof of Theorem 3.2
Proceeding from (4.22), (3.14), (3.18) we obtain that

vj = T̄

jX
k=1

(−Π̄)j−kw2(m−k+1)f, j = 1, . . . ,m, (6.1a)

vj = T

2m−j+1X
k=1

(−Π)2m−j+1−kw−2(m−k+1)f, j = m+ 1, . . . , 2m, (6.1b)

where T , Π, T̄ , Π̄ are the operators of (3.27), (3.28). In addition, due to (4.22), (3.14) we
have also that

∂zvm+1(z) + ∂z̄vm(z) + F0(z) = w0(z)f(z), z ∈ C. (6.2)

In turn, formulas (6.1a) for j = m, (6.1b) for j = m+ 1 and formula (6.2) imply that

w0f +
mX
l=1

((−Π̄)lw2l + (−Π)lw−2l)f = F0. (6.3)

Using (5.4a), (6.3) one can see, in particular, that under our assumptions,

F0 ∈ Lp(C) for each p > 1. (6.4)

Equation (3.29) follows from formula (6.3), the definitions of F and w̃2l and formula (4.26).
In addition, using (4.29) we obtain that

k
mX
l=1

((−Π̄)lw̃2l + (−Π)lw̃−2l)χDkL2(C)→L2(C) ≤

mX
l=1

(sup
z∈D

|w̃2l(z)|+ sup
z∈D

|w̃−2l(z)|).
(6.5)
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Inequality (6.5) completes the proof of Theorem 3.2.
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[ BS] J. Boman and J.O. Strömberg, Novikov’s inversion formula for the attenuated Radon

transform - a new approach, J.Geom.Anal. 14 (2004), 185-198
[ Ch] L.T. Chang, A method for attenuation correction in radionuclide computed tomogra-

phy, IEEE Trans. Nucl. Sci. NS-25 (1978), 638-643
[ Fi] D.V. Finch, Uniqueness for the attenuated X-ray transform in the physical range,

Inverse Problems 2 (1986), 197-203
[ FN] A.S. Fokas and R.G. Novikov, Discrete analogues of ∂̄- equation and of Radon trans-

form, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 75-80
[ G] S. Gindikin, A remark on the weighted Radon transform on the plane, Inverse Prob-

lems and Imaging 4 (2010), 649-653
[ GN] J.-P. Guillement and R.G. Novikov, Optimized analytic reconstruction for SPECT, J.

Inv. Ill-Posed Problems, doi: 10.1515/jip-2012-0011
[ Ku] L.A. Kunyansky, Generalized and attenuated Radon transforms: restorative approach

to the numerical inversion, Inverse Problems 8 (1992), 809-819
[ MP] E.X. Miqueles and A.R. De Pierro, Fluorescence tomography: reconstruction by iter-

ative methods, ISBI (2008), 760-763
[ Na] F. Natterer, The Mathematics of Computerized Tomography (Stuttgart: Teubner),

1986
[No1] R.G. Novikov, An inversion formula for the attenuated X-ray transformation, Ark.

Mat. 40 (2002), 145-167
[No2] R.G. Novikov, Weighted Radon transforms for which Chang’s approximate inversion

formula is exact, Uspekhi Mat. Nauk 66 (2) (2011), 237-238
[ Q] E.T. Quinto, The invertibility of rotation invariant Radon transforms, J. Math. Anal.

Appl. 91 (1983), 510-522
[ Ra] J. Radon, Uber die Bestimmung von Funktionen durch ihre Integralwerte langs

gewisser Mannigfaltigkeiten, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math-Nat.,
K 1 69 (1917), 262-267

[ Ri] M. Riesz, Sur le maxima des formes billinéares et sur les fonctionnelles linéaires, Acta
Math. 49 (1928), 465-497

[ TM] O.J. Tretiak and C. Metz, The exponential Radon transform, SIAM J. Appl. Math.
39 (1980), 341-354

[ V] I.N. Vekua, Generalized Analytic Functions, Pergamon Press Ltd. 1962

16


