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Abstract

We consider weighted Radon transforms on the plane, where weights are given as finite
Fourier series in angle variable. By means of additive Riemann-Hilbert problem techniques,
we reduce inversion of these transforms to solving first order differential systems on R? = C
with a decay condition at infinity. As a corollary, we obtain new injectivity and inversion
results for weighted Radon transforms on the plane.

1. Introduction
We consider the weighted ray transforms Py defined by the formula

Py f(s,0) = /W(seL +10,0) f(s6F +t0)dt, sc R, 0= (01,0,) € S, (1.1)

R
where 0+ = (—03,01), W = W(z,0) is the weight, f = f(z) is a test function, z € R?,
S' is the unit circle in R?. Up to change of variables, Py is known also as the weighted

Radon transform on the plane.
In this work one can always assume that

W e C(R? x S') N L>=(R? x Sh). (1.2)

Additional assumptions on W will be formulated in the framework of context. In particular,
in important particular cases W is real-valued and strictly positive:

W=W, W>c>0. (1.3)

We recall that in definition (1.1) the product R x S' is interpreted as the set of all
oriented straight lines in R%. More precisely, if v = (s,60) € R x S*, then v = {z € R? :
r = 56+ +t0, t € R} (modulo orientation) and 6 gives the orientation of 1.

If W =1, then Py is known as classical ray (or Radon) transform on the plane. This
transform arises, in partcular, in X-ray transmission tomography. If

+oo
W(x,6) = exp(—Da(z,6)), Da(,8) — / a(z + 10)dt, (1.4)

where a is a complex-valued sufficiently regular function on R? with sufficient decay at
infinity, then Py is known as the attenuated ray (or Radon) transform on the plane.
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This transform (at least, with a > 0 ) arises, in particular, in single-photon emission
computed tomography (SPECT). Transforms Py with some other weights W also arises
in applications. For more information in this connection see, for example, [Na], [Ku], [MP],
[Ba2].

Exact and simultaneously explicit inversion formulas for the classical and attenuated
Radon transforms on the plane were given for the first time in [Ra] and [Nol], respectively.
For some other weights W, exact and simultaneously explicit inversion formulas were given
in [TM], [BS], [G], [No2].

For general Py, under assumptions (1.2), (1.3), explicit and simultaneously exact
(modulo Ker Py) inversion formulas seem to be impossible. Nevertheless, due to [BQ)],
Py is injective on Cy(R?) (where Cy denotes continuous functions with compact support),
i.e. Ker Py =0 in Co(R?), for real analytic W satisfying (1.3).

Besides, [Bol]| gives an example of infinitely smooth W satisfying (1.2), (1.3) and such
that Ker Py # 0 in C5°(R?) (where C§° denotes infinitely smooth functions with compact
support).

For more information concerning known uniqueness and non-uniqueness results for
weighted Radon transforms on the plane see [Q], [Fi], [Ku], [BQ], [Bol], [Bo2], [Nol],
[No2] and references therein.

In the present work we develop (exact and approximate) reconstruction methods of
f € Co(R?) from Py f with known W satisfying (1.2) and, for example, (1.3). Our
studies are based on: (1) the Riemann-Hilbert problem approach of [FN], [Nol], [Bal]; (2)
generalized analytic function theory, see [V]; (3) approximate inversion approach of [Ch],
[No2]. Some of our results can be considered also as a development of [Ku|. Actually, we
consider weights of the form

N

W(e0(9) = 3. ™w,(a),

n=—N
z €R?, 0(p) = (cosp,sing), ¢ [-m,7], NeNUO,

(1.6)

where w,, € C(R*) N L>(R?) and, for example, |wq| > co > 0. Such weights approximate,
in particular, W satisfying (1.2), (1.3).
Due to the formula (see [No2])

(P f(5,6) + P f(=s,~0) = P, f(5.0), (s,6) € R xS,
(1.7)
Wiy (2,0) = 5(W(x,0) + W(z,~0)), =B s

inversion of Py can be reduced to inversion of Py, .. Therefore, in the present work we
consider mainly the case when

W(z,0) =W(z,—0), z€R?* fcS (1.8a)

and, as a corollary,
w, =0 on R? if n isodd (1.8b)
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for W of (1.6).

In Theorem 3.1 of Section 3 we reduce inversion of Py under assumptions (1.6), (1.8)
to solving a system of first order differential equations on R? with a decay condition at
infinity. In the simplest non-trivial case this system is reduced to the inhomogeneous
Beltrami type equation of Remark 3.2 of Section 3.

One of possibilities to obtain a linear integral equation for finding f from Py f and
W proceeding from Theorem 3.1 is realized in Theorem 3.2 of Section 3. In addition, the
linear integral equation of Theorem 3.2 is uniquely solvable by the method of successive
approximations, under some smallness condition on the function set
{“2 . |2k[ < N, k # 0}. It is interesting to note that for the case when wy = 1 the
linear integral equation of Theorem 3.2, actually, coincides with related equation of [Ku],
obtained in a completely different way.

In turn, proceeding from Theorem 3.2 we obtain, in particular, that if W satisfies
(1.2), (1.3) and can be written as

W(z,0(p)) = e *Pw_s(z) + wo(w) + e “wa(x),

N ) (1.9)

x €R?, 0(p) = (cosp,siny), ¢ € [—m, 7],
then f € Cy (]R2) is uniquely and efficiently determined by Py f and W; see Theorem 3.3
of Section 3 for details.

At least on the theoretical level, our exact inversion method for Py, under assumptions
(1.2), (1.3), (1.9), and formula (1.7) give new approximate inversion method for Py under
general assumptions (1.2), (1.3). For w_s = 0, we = 0 this approximate inversion is
reduced to the Chang approximate inversion formula; see, for example, [Ch], [No2], [GN]
in connection with Chang’s formula.

In studies of the present work we proceed from Proposition 2.1 of Section 2. Due to
this proposition we consider inversion of Py as, roughly speaking, some additive Riemann-
Hilbert problem. The main results of the present work on inversion of Py are presented
in details in Section 3.

2. Weighted ray equation
Assuming that W satisfies (1.2) and f € Cy(R?), we consider the equation

00, (x,0) = W(z,0)f(z), x=(x1,22) €ER? 0= (01,0y) €S, (2.1)

where 6 is spectral parameter, 9, = (0/0z1,0/0x2), 600, = Z?Zl 0;0/0x;.
For any 6 € S* we consider the continuous solution 1% (-, ) of (2.1), specified by

Jim g (z+10,0) =0, z€ R?. (2.2)

The following formula holds:

0
Wt (z,0) = / Wz +10,0)f(x + t0)dt, = € R?, 6 € S, (2.3)
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In addition,
Py f(s,0) = lim Y (s0t +10,0) =0, seR, HeS, (2.4)

where Py f is defined by (1.1), 6+ is the same that in (1.1).

We say that equation (2.1) is the weighted ray equation on the plane and that Py f
is "scattering” data for this equation.

Assuming that W satisfies (1.6) and f € Cy(R?) we consider also equation (2.1) with
complexified spectral parameter:

00, (x,0) = W(z,0)f(x), z€R? X, (2.5)

where
Y ={0=(0,0:) €C?: 67 +62=1). (2.6)

For any 6 € ¥\S' we consider the continuous solution (-, 6) of (2.5) specified by
U(z,0) =0 as |z| — oco. (2.7)

The following formula holds:

(. 0) = / Gz — 3, 0)W (. 0)f(y)dy, z€cR, 0c\S (2.8)
RQ

where
sgn(Re 611m 0y — Re 621m 64)

= 2.
G(CL‘, 0) —27‘(’7:(62171 - 91:112) ’ ( 9)
W is defined by (1.6) with ¢¥ replaced by (67 + i62)™.
00,G(x,0) = 6(z), = cR?* 6ex\S' (2.10)
For detail properties of G(x,0) we refer to [Nol].
Consider
z2=x1 +ixe, Z=2x1 —iTs, = (T1,T2) e R2. (2.11)
Consider the following parametrization of ¥ by A € C\0:
)\(0) =0, +109 for 0= (91,(92) € 2,
BN = (At 3), 6s(N) = —~(A— 1) for A€ C\O (2.12)
B =Ty A E T '
In the variable X the circle S = ¥ N R? takes the form
T={AeC: |N=1} (2.13)
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Let ¥(z,\), G(2,A) denote ¥ and G of (2.8), (2.9) written in the variables z, A of
(2.11), (2.12). Let W(z,A), f(z) denote related W and f written in the same way. We
recall that

G(z,\) = %, z€C, A€ C\(Tu0), (2.14)

see [Nol], [Bal] for detail properties of G. Note also that, under assumptions (1.6), (1.8),
W can be written as

= > Nuwy(z), AeC\0, z€C, (2.15)

l=—m

where wy; € C(C) N L>*(C), m = [N/2] (i.e. m is the integer part of N/2). In addition,
we have the following proposition:

Proposition 2.1. Let 1 be the function of (2.8), where W satisfies (1.6), (1.8),
[N/2] = m, and f € Cy(R?). Then for each z € C the function 1) = (2, \) has the
following properties in A (in variables z, A of (2.11), (2.12)):

9
Sx¥(z0) =0 for A€ C\(TUO); (2.16)

Z)\QJ fugs 1 (2) + O(A7?), A — oq,

(2.17)
_ 1 -
g1 (2) = ; / L O SOdRe Gl
Z)\l Yuf_y.(2) + O(N), A >0,

. (2.18)

ut (2 Z / : le s (O F (Q)dRe CaIm
1/}4-(27)‘) - ¢_(z,)\) = QO(Z, )‘)7 A € Ta (219)

where

Wiz, \) = (z,)\(l F0)), )\ c ']I‘ (2.20)
o(z p v. / f(l;v)‘z d AeT, (2.21)

where z(z) = (z1(2),22(2)), O(N) = (01(N\),02(\)) are given according to (2.11), (2.12),
QJ‘ = (—02,61) for 6 = (91,92).



Proposition 2.1 follows from considerations given in [Nol], [Bal]. In particulier, for
[N/2] = m = 0 Proposition 2.1 is a particular case of results of [Nol] (and goes back to
[FN)).

Properties (2.16)-(2.21) of ¢ permit to study inversion of Py by means of additive
Riemann-Hilbert problem techniques.

3. Inversion of Py
One can see that

Py f = Py, (wof), (3.1)
W(z,0) = W(z,0)/wo(x), zeR? §eS

under the assumption that

|w0| > co > 0, (3.3)
where .
wo(x) = 5= / W(z,0)d0, zcR>. (3.4)
T
Sl

Therefore, under assumptions (1.2), (3.3), inversion of Py is reduced to the case when
wo =1 on R2.

Let
fappr(z) = Fo(x)/wo(z),
o i / 1 / o i
Fofa) = o= [ W(a0*.0)d0. 1 (s.6) = -h(s,6),
St (3.5)
h(s,0) = lp.v. / %(tt’g)dt, seR, St zeR%
- —

R

We recall that (3.5) is known as the Chang approximate inversion formula for Py under
assumptions (1.2), (3.3). In addition, under assumptions (1.2), (3.3), due to Theorem 1 of
[No2], we have that

fappr = f(in the sense of distributions) on R* for all f € Cy(R?), (3.6)
if and only if
W(z,0) —wo(z) = wo(z) — W(z,—0), =cR* S (3.7)
However, property (3.7) is fulfilled for W of the form (1.6) if and only if

[N/2]

> (Jwal + |w_]) =0 on R (3.8)
=1



Below in this section we are focused on inversion of Py under assumptions (1.2),
(1.8), (3.3) for the case when (3.8) is not necessary fulfilled. In addition, we assume that
W is written in the form (2.15), where m > 1.

Consider the 2m x 2m operator matrices A and B such that

Aj,j :82, ]: 1,...,m,

Aj+17j:82 j=1,...,m—1,

Aj,j:afa j:m—l—l,...,?m, (39)
Aj7j+1 =0,, j=m-+1,...,2m—1,

A; ; =0 for all other cases,

Bj,m = 2DQ(?nfjJrl)(2‘/)827 ] =1,...,m,
Bj,m = ?I),Q(j,m) (Z)ag, ] =m+ 1, “e ,2m,
Bj,m—i—]. = ’UNJQ(m,ijl)(Z)aZ, ] = 1, ey, M, (310)
Bj,m—i—l = ’lI},Q(j,m) (z)@z, ] =m -+ 1, ceey 2m,
B; ; =0 for all other cases,
where
1 0 0 1,0 0
9, = ~(—— —i-2), 9, = ~(== +i-2), 3.11
2(81’1 Zal‘g) 2(8113'1 +28£L‘2) ( )
TIJQZ :wgl/wo, 717,25 wagl/wo, l 20,1,...,777,. (3.12)
Consider the vector-functions ¢ = (¢1, ..., qam), v = (v1, ..., V2 such that
= Wo(m—i z)Fo(z), j=1,....,m,
0y = gy (IF(2), 7 13
QG = W_o(j—m)(2)Fo(2), j=m+1,...,2m,
Vi = Uy, iy 1(2), F=1,...,m,
T R (3.14)
vj :u_z(j_m)+1(z), j=m+1,...,2m,

where Fp is the function of (3.5), W49 are defined by (3.12), uy; 4, uleﬂ are the function
of (2.17), (2.18), 1 =1,...,m.
Let xp denote the characteristic function of a domain D in C, i.e.

xp=1 on D, xp=0 on C\D. (3.15)

Let
V'(2) = (0,01(2), ..., 02um(2), OsVmy1(2),...,05v2m(2))

for v(z) = (v1(2),... ,vgm(z);, 2eC. (3.16)

Theorem 3.1. Let W satisty (2.15), (3.3) and f € C(C), supp f C D, where m > 1
and D is an open bounded domain in C. Then:

(A= XxpB)v = xpg, (3.17)
veC(C), v € L*(C), |v(z)|—0 as |z| — oo, (3.18)
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where A, B, q, v, xp are defined by (3.9), (3.10), (3.13), (3.14), (3.15) and v’ is defined
by (3.16) in terms of v. In addition,

Fo(2) + 0z (2) + O,vmy1(2)
wo(z) ’

where Fy/wq is the function of (3.5) and vy, U1 are the components of v.

We consider (3.17), (3.18) as a system of first order differential equations for
v = (v1,...,V2,) on C with a decay condition at infinity. One can see that : A is
independent of W and Fy, B is explicitely given in terms of W and is independent of Fj,
q is explicitely given in terms of W and Fy. In addition, f can be found via (3.19) as soon
as Fo/wo, Uy, Umi1 are known.

Theorem 3.1 is proved in Section 4.

z € C, (3.19)

f(z) =

Lemma 3.1. Let the assumptions of Theorem 3.1 be fulfilled and

Zsup |wo (2)] < —

zGD
m , (3.20)
Z sup [w_g9(2)] < 3
=1 z€D
Then system (3.16), (3.17) is uniquely solvable for v.
Lemma 3.1 is proved in Section 5.
Theorem 3.1 and Lemma 3.1 imply, in particular, that Py is injective on
Cp(C)={feC(C): suppf C D}, (3.21)
under assumptions (2.15), (3.3), (3.20), where D is an open bounded domain in C.
Remark 3.1. If W of (2.15) is real-valued for A € T, z € C, then
w_g9 =wy on C, [=0,1,...,m. (3.22)

In this case both inequalities (3.20) are reduced to each of them. If, in addition, f is
continuous compactly supported and also real-valued, then

Vom—jy1 =0; on C, j=1,...,m, (3.23)

where v = (v1,...,vay,) is defined by means of (3.14), (2.17), (2.18).

Remark 3.2. The system (3.17), (3.18) with symmetries (3.22), (3.23) and with
m = 1 is reduced to the following scalar equation

0,u — 2x pwaRedsu = x po Fy, (3.24)
u € C(C), Oue L*C), |u(z)|—0, as |z| — o0, (3.25)
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where u = v1, & = v9. In addition, formula (3.19) is reduced to the formula

o Fo + 2R685u. (3.26)

Wo
There are different possibilities to obtain a linear integral equation for finding f from
Fy and W proceeding from Theorem 3.1. One of these possibilities is realized as equation
(5.11) of Section 5. Another one is realized as Theorem 3.2 given below.

Let T, II, T, II denote the linear integral operators on the complex plane such that
1
Tu(z) = ——/ u(©)
¢ —

1 u(¢ (3.27)
Mu(z) = 0. Tu(z —/ dReCdImC,

T

C

Tu(z) = —%/%dﬁ?e(dlm(,
C

Hu(z) = 0:Tu(z) = —%/ (Eu_(iz)zdRe ¢dIm(,
C

(3.28)

where u is a test function, z € C; see, for example, [V] for detail properties of these
operators.

Theorem 3.2. Let W satisfy (2.15), (3.3) (where m > 1). Let F = wof, f € C(C),
supp f C D, where D is an open bounded domain in C. Then

Z )iy + (—I1)!5_91)xpF = Fy, (3.29)

where W9, Xp are the multiplication operators by the function of (3.12), (3.15), II, II are
the operators of (3.27), (3.28), Fy is the function of (3.5). In addition, equation (3.29) is
uniquely solvable for F in L?(C) (by the method of successive approximations) if

> sup |y (2 |—|—Sup lw_o(2)]) < 1. (3.30)
=1

Theorem 3.2 is proved in Section 6.

One can show that for the case when wy = 1 equation (3.29), actually, coincides
with related equation of [Ku]. In [Ku] it was shown that this equation of [Ku] is uniquely
solvable if

> iy (sup [ (2)] + sup [@-21(2)])
zeD zeD

min |wo(z)]

< 1. (3.31)



One can see that condition (3.30) is considerably less restrictive than (3.31), in general.
In addition, for m = 1 one can show that if W is given by (2.15) and

W(zA) =W(z,A) >c>0, ze D, AeT, (3.32)

then
lwo(2)] — [w_2(2)| — lw2(2)| = ¢, 2z€D, (3.33)

and condition (3.30) is fulfilled. Therefore, proceeding from Theorem 3.2 we have also, in
particular, the following result:

Theorem 3.3. Let W be given by (2.15) for m = 1 and conditions (3.32) be fulfilled,
and let f € C(C), supp f C D, where D is an open bounded domain in C. Then f is
uniquely determined by Py f and W via the linear integral equation (3.29) for m = 1
(solvable by the method of successive approximations in L*(C)).

Note that Theorems 3.2 and 3.3 remain valid under assumptions that f € L2(D),
f=0on C\D.

4. Proof of Theorem 3.1

Note that
Py f(5,0) = Py f(—s,—0), (s,0) € R xS (4.1)
As a corollary, we have that
oz, =) = —p(z,A), z€C, AeT, (4.2)
where ¢ is defined by (2.21).
- 1 [0
0 - QO 2,
W0(2,A) = 2m,/ 2224, 2 € C, A e AT, (4.3)
T

where ¢ is defined by (2.21). Then for each z € C the function ¢° = (2, \) has the
following properties in A:

%wo(z, A) =0 for XA e C\T, (4.4)
V0(z,\) = A0 (2) + O(A73), A — oo, (4.5)
V0(z,\) = M0 (2) + O(\?), A — 0, (4.6)
@Ug_(z,)\) —’gbO_(Z, )‘) :(10('27 )‘)7)‘ GT? (47)
where

Y (2,0) = ¥(z,A(1F0), AeT, (4.8)

and also
904(2) = —5— [ ¢le. (19)

T
P (z) = QLM / ”ﬁﬁdc. (4.10)
T
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Properties (4.4)-(4.10) follow from (4.3), where to obtain (4.5), (4.6) we use also (4.2).
Let

1z, A) = ¢(z, ¢0 (2,A) — Z)‘ZJ 1“2] 1(2) = i)\l—%uir%(z)
j=1

ze€C, e C\(Tuo),

(4.11)

where 1) is the function of Proposition 2.1, 9" is defined by (4.3), (CYIRE uf_Qj are the
coefficients of formulas (2.17), (2.18). Then for each z € C the function u = u(z, A) has
the following properties in \:

%,u(z A)=0 for e C\(TUO0), (4.12)
w(z,A) — 0, A — oo, (4.13)
u(z,\) — 0, A—0, (4.14)
M*‘-(zv )‘) - ,LL_(Z, )‘) = 07 AE Ta (415)
where

Properties (4.12)-(4.16) follow from (2.16)-(2.20), (4.4)-(4.8) and definition (4.11). Using
(4.12)-(4.16) we obtain that

u(z,\) =0, zeC, XeC. (4.17)

Due to (4.11), (4.17) we have that

Pz A) =D ANy (2) + Z)\l Yty (2) + 90z, N),
j=1 (4.18)
ze€C, e C\(Tuo).
Due to equation (2.5) for ¢ we have that
(AD. + A1) 0(z,\) = W(z,\) f(2), A€ C\(Tu0), z¢€C, (4.19)

where W is given by (2.15) and 9 is written according to (4.18). Proceeding from (2.15),
(4.5), (4.6), (4.18), (4.19) we obtain that

m—1

NT0uy; 1 (2)+ > A 0zu55,4(2) + duty (2) + 047, (2) + 0(1) =

=0 (4.20a)

M 11

Mg (2)f(2) for A — o0, z€C,

<.
I
o
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m—1

Z AT 0zui_y(2) + Z ANTH0uty_yi(2) + Osuy (2) + 0:40(2) +o(1) =
j=1

§=0
~1 . 0 '
Z )\2]85u2+j+1(z) + Z )\2=78Zu§rj_1(z) + Ozuy (2) + 0590 (2) +o(1) = (4.20)
j=—m j=—m+1

0
Z Mo (2)f(z) for A —0, z€C.

j=—m

In addition, proceeding from (2.21), (3.11), (4.9), (4.10) one can see that

0.4° 1 (2) = Fo(z), z€C, (4.21a)
0:0%(2) = Fy(z), z€C, (4.21b)

where Fy is the function of (3.5).
Formulas (4.20), (4.21) imply that:

Dxug; 1 (2) + Ozug; 1 (2) = wa;(2) f(2) for j=1,....,m—1, (4.22a)
Ouly(2) + 9zuy (2) + Fo(2) = wo(2) f(2);
8zu§j+1(Z) = wa;(2)f(2) for j=-m,
(951@-“(2) + azu;jfl(z) =wo;(2)f(z) for j=—m+1,...,—1, (4.220)
Ozuy (2) + O:uly(2) + Fo(z) = wo(2) f(2),

where z € C. In turn, formulas (4.22) can be rewritten as

Av = fuw, (4.23)
OzVm + O2Vm41 + Fo = wo f, (4.24)
where A is the operator matrix defined by (3.9), v is the vector-function defined by (3.14),
w= (w1,...,wsn) is the vector-function such that
Wi = Wom—_it1), J = Ll,...,m,
J 2( ]+1) '] (4.25)
Wj =W_9(j—m), J=m+1,...,2m,
and v, V41 are the components of v.
In addition, we have that
f = XDf' (426)
Formulas (4.23), (4.26) imply that
Av = xpfw. (4.27)
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Formulas (3.3), (4.24), (4.27) imply that

aZ'Um"'az'Um—i—l
(Bt O,

Av =xp (4.28)

One can see that, under assumption (3.3), formula (3.17) is equivalent to (4.28) and formula
(3.19) is equivalent to (4.24).

Under our assumptions, the properties that v € C(C), |v(z)| — 0 as |z| — oo follow
form formulas for uy; ; and ult%- of (2.17), (2.18). Under our assumptions, the property

that v' € L?(C) can be obtained recurrently for its components v},...,v), and for its
components vy, , . .., v;, ;1 proceeding from definition (3.16), equation (4.27) and the result

that (see [V]) B
HH”L2((C)HL2((C) =1, HHHL2((C)HL2(C) =1, (4-29)

where I, II are the operators of (3.27), (3.28).
This completes the proof of Theorem 3.1.

5. Proof of Lemma 3.1
Let A, B, © denote the 2m x 2m operator matrices such that

Aji=1, j=1,...,2m,
A, =11, j=1,....m—1,
A]+17] J (5.1)
Aj,j—|—1 :H, ] :m+1,...,2m,
/Ali,j = 0 for all other cases,
Aj,m = w2(m—j—|—1)ﬁ7 .7 =1,...,m,
Aj’m = w_g(j_m)ﬁ, j =m -|— 1, . ,2m,
Aj,m—i—l - wQ(m—j—l—l)Ha .7 = 17 U (52)

>

jmt+1 = W_oi—mIl, j=m+1,...,2m,
Bi,j =0 for all other cases,
9, =(-1)"7, 1<j<i<m,
Oy = (-IIY~", m+1<i<j<2m, (5.3)

©;,; =0 for all other cases,

where II, II are the operators of (3.27), (3.28), w9 are the functions of (3.12).
In addition to (4.29), we recall that (see [Ri], [V] and references therein)

||H||LP(C)—>LP(C) = ||f[||LP(C)—>LP(C) = )‘pv p>1, (5.4@)
where for any ¢ > 0 there is §(¢) > 0 such that
Ap <1l+e if |p—2]<d(e). (5.4b)
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One can see that in terms of v’ defined by (3.16) system (3.17), (3.18) takes the form

(/1 — XDB)’U/ = xpq, v € L*(C).
It is necessary to note that, under our assumptions, we have that

xpq € LP(C), p>1.

(5.5)

(5.6)

Property (5.6) follows from (5.5) and the property that v" € LP(C), p > 1, where v’ is
defined as in Theorem 3.1. In turn, the property that v € LP(C), p > 1, is proved in a

similar way as for p = 2 (using (5.4a) instead of (4.29)).
Besides, one can see that
OA=1, A0 =1,

where [ is the identity operator matrix.
As a corollary of (5.7), system (5.5) is equivalent to the system

(I —OxpB)v' =Oxpg, v € L*(C).
In addition, formulas (5.2), (5.3) imply that

(OxpB)i; =0 if j¢& {m,m+1},

m

def S =N\ m— g ~ =
1 = ((_')XDB)m,m = Z(_H) JXDwZ(m—j—H)Ha
j=1
def A = =\ m— ~
r,2 = (OXDB)mm+1 = Z(—H) IXDW2(m—j+1)II,
j=1

2m

ef A i—m— ~ =
21 € (OXDB)ms1m = > (I X D I,

j=m-+1

2m
def

ra2 S (OXDB)mitmi1 = Y (1) Xp@ g Il

Jj=m-+1
Let
g1 = (OXDDm, 92 = (OXDY)m+1,

where ©xpq is the vector-function of the right side of (5.8).
Using (5.9) we obtain that system (5.8) is reduced to the system

(G 0)-Co ) ()= ()

where 7; ; are defined in (5.9), g; are defined by (5.10), and to the formula

v' = OXpBX{m.mi13V + OXDY,
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5.11)

(5.12)



where X (m,m+13v" denotes the vector-function of the length 2m such that

(X{m,ms+13V")i = v; for i€ {m,m+1},

, . (5.13)
(X{m,m+13v'); =0 for i & {m,m +1}.

Proceeding from (4.29), (5.4), (5.6) we obtain that, under our assumptions, system

(5.11) is uniquely solvable for v/, ..., v}, ., in L*(C) (by the method of successive approx-
imations) and that, in addition, v;,,,...,v;,,, belong to LP(C) if p is sufficiently close to
2.

In addition, using (5.12) one can see that v' € LP(C) if p is sufficiently close to 2.
Using that
ve C(C), |v(z)| =0 as |z| = oo,
for v = (Tvy,...,Tv]

m?

5.14
Tv gy TUg,,), (5.14)

where T, T are the operators of (3.27), (3.28) and v’ € LP(C) if p is sufficiently close to 2,
one can complete the proof of Lemma 3.1.

6. Proof of Theorem 3.2
Proceeding from (4.22), (3.14), (3.18) we obtain that

v = T Z(_ﬁ)j_ka(mkarl) f7 Jg=1...,m, (61&)
k=1
o9m—j41
Vj = T Z (—H)2m7]+17kw—2(m—k+l)f7 J=m+1,...,2m, (61b)
k=1

where T, II, T', II are the operators of (3.27), (3.28). In addition, due to (4.22), (3.14) we
have also that

0 Um+1(2) + 0z (2) + Fo(z) = wo(2) f(2), z € C. (6.2)
In turn, formulas (6.1a) for j = m, (6.1b) for j = m + 1 and formula (6.2) imply that

wo f + Z wgl + H)lw_gl)f = Fyp. (6.3)

Using (5.4a), (6.3) one can see, in particular, that under our assumptions,
Fy € LP(C) for each p> 1. (6.4)

Equation (3.29) follows from formula (6.3), the definitions of F' and w9; and formula (4.26).
In addition, using (4.29) we obtain that

i (6.5)
> (sup [@2(2)] + sup [-2u(2)]).

zeD z€D
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Inequality (6.5) completes the proof of Theorem 3.2.
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